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This paper presents an introduction to Eéch closure spaces. The
set of all Cech closure operators on a set is closed under the operations
of union and composition. An association between Cech closure operators
on a fihite set and zero-one relation matrices is used to present matrix
operations corresponding to_union and composition of fech closure oper-
ators. Finitely generated Gech closure operators are defined, and it
is shown that the set of all finitely generated Cech closure operators
on a set, partially ordered in a natural way, yeilds a uniquely comple-
mented, distgibutive, and complete lattice and is therefore a Boolean
algebra. A Cech closure operator generates a semi-topology and an under-
lying topology; relationships between thege are studied. Several
separation properties are generalized to Cech closure spaces and studied
in this broader context.
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CHAPTER T
INTRODUCTION

Eech closure spaces were introduced by Eech [3]. For each Eéch
closure space there exists an underlying topological space that can be
defined in a natural way. Some familiarity with the rudiments of topology
on the part of the reader is assumed.

The set of all Sech closure operators on a non-empty set is closed
under union and composition; while the composition of two topological
closure operators is not necessarily a topological closure operator, it is
a ééch closure operator. The set of all Eech closure operators on a set,
partially ordered by inclusion, yields a complete lattice,

A finitely generated Eéch closure space is a generalization of a
finite Eéch closure space, The set of all finitely generated Eéch closure
operators on a set, partially ordered by inclusion, yields a uniquely
complemented distributive complete lattice.

Sharp, in [5], and Bonnett and Porter, in ﬁﬂ, represent finite topo-
logical spaces using zero-one matrices., Matrix characterizations of many
topological properties are given in these papers. Eéch closure operators
on a finite set can also be represented by zero-one matrices; mattix
operations corresponding to union and composition of 5éch closure oper-
ators are defined.

In this paper, several mild separation properties are extended to
Eéch closure spaces and characterized, for finite spaces, in terms of the
matrix associated with the closure operator. It is shown that finitely
generated Eéch closure spaces satisfying certain of these separation prop-

erties are topological spaces. Therefore some of the separation properties



for éech closure spaces carry over to the underlying topological space.

A ééch closure operator also generates a semi-topology; that is, a
collection of sets that satisfies the axioms for a topology, except for
the union axiom.

Sech closure operators of finite degree are defined and studied. It
is of interest to note that Cech closure spaces of finite degree provide

a generalization of topological spaces.



CHAPIER II
BASIC DEFINITIONS AND RESULTS

DEFINITION 2.1. A mapping c: P(X)—*P(X) is called a Cech closure
operator provided it satisfies the following three axioms:

(1) off) = ¢

(c2) Acc(A) for all AcX

(c3) c(AUB) = c(A)U c(B) for all A,BcX.

Then ¢, together with the underlying set X, is called a Sech closure
space and is denoted by (X,c). If c also satisfies:

(c4) c(c(r)) = c(A) for all A<X,
then (X,c) is a topological space.

DEFINITION 2.2. Let (X,c) be a E.‘./ech closure space. A subset A of X
is called closed provided A = c(A). A subset A of X is called open
provided iss complement X-A is chosed. ILet t(c) = [o: X-0 = c(x-0)f .

IEMMA 2.1. Iet (X,c) be a Cech closure space, and A<CB<X. Then
c¢(A) is contained in c(B).

PROOF. c(A)< c(A) (Uc(B) = c(AUB) = c(B) since AUB = B.

IEMMA 2.2. Let (X,c) be a Cech closure space, and A<X. If c(A) is
contained in A, then A is chased.

THEOREM 2.3. Let (X,c) be a Cech closure space. Then t(c) is a
topology on X (t(c) is called the underlying topology of (X,c)).

PROOF, Clearly, X and ;J are members of t(c). Suppose O and Q are
members of t(c). X-(0/]Q) = (X-0) U(X-Q) = c(x-o)Uc(x-Q) =
= c((x-o)U (Xx-Q)) = c(x-(0/)Q)). Now donsider an arbitrary collection of
setsg)q: "‘6./1.3 , each a member of t(c). For each we¢f , X-O4 is closed and
/}{X—Q( HES c_/Lg is contained in X-O4. Lemma 2.1 then implies that
c(n fX—Od: qe_/\.g) is contained in c(X-Ox) = X-Qx for every «€j . Hence

3



o() [ X-04t «€.A}) is contained in ()fX-Ox:< €Ay and by lemma 2.2,
() £X-0ez = €AS = x- Ufou: <& A { is closed.
Consider these examples of Gech closure spaces.
EXAMPIE 2.A. Let X = 51,2,3,Q} . Define c(1) = £1,2] , o(2) = {1,2},

e(3) = {2,3} , o(4) = §3,4} . For all A contained in X, let

if A =
o(4) = {U{c(a) ag A} otherwise.

By the definition of c(A), (C1) and (C2) are satisfied. Let A and B be
subsets of X. Then c(A{(JB) = U{c(x): x€ AUBJ} =
= (Ufe(x): xe A} ) (U fe(x): xeBf ) = c(a)Je(B). Thus (X,c) is a
Eech closure space.

EXAMPIE 2.B. ILet N represent the natural numbers. For all elements
n of N, let c(n) = {n, n+1}) . For any A contained in N, define
$ira=g

o(4) = U{c(n): ne A} otherwise.

EXAMPIE 2,0 Let X be any infinite set. For all A contained in X, let

$ ira= g
c(A) =} A if A is finite

X otherwise.

Notice that example 2.C, in addition to being a Sech closure space,
is a topological space.

DEFINITION 2.3. Let (X,c) be a Gech closure space. If c(A) = A for
every set A contained in X, ¢ is called the discrete closure operator on
X. If c(A) = X for every set a contained in X, c is called the trivial
¢losure operator on X.

DEFINITION 2.4. In a Gech closure space (X,c), c is finitely generated
provided for any subset A of X, c(A) =U{c(a)= aeA} . (X,c) is then

v
called a finitely generated Cech closure space.



THEOREM 2.4, Every finite Cech closure space is finitely generated.

THEOREM 2.5. Let X be a non-empty set and e: X—P(X) be a mapping
such that x€ e(x) for each xeX. ILet c(A) = (/fe(a): a€ A} for all AcX.
Then (X,c) is a Tinitely generated Cech closure space.

Essentially, a finitely generated Cech closure operator is determined
by its action on singleton sets.

DEFINITION 2.5. Let ¢ and d be Gech closure operators on a set X, and
A be a subset of X. Then define:
(cva)(a) = c(a)UJ a(4), and
(ced)(a) = c(a(a)).

THEOREM 2,6. ILet ¢ and 4 be Gech closure operators on a set X. Then

(cud) and (ced) are Cech closure operators on X.

PROOF. Let A and B be contained in X. Easily (cUd)($) = ¢ and
AC (cud)(A). Now (cud)(AUB)=
c(AUB)Ud(AUB)=
c(A)Ue@) U a(a) (a() =
(cva)(a)( ] (cua)(®).
Clearly (cod)(f) =¢ and A < (ced)(A). By definition,

(cod)(AUB)

c(a(aus))
c(a(a) Ja(®)) =
(cod)(a)() (cea)(B).

THEOREM 2.7 In the set of all Sech closure operators gc«j on a set

il

1l

X, the operation () is associative, commutative, and has an identity,
while the operation o is associative and has an identity.
PROOF, Since (/ 1is defined in terms of set unions, it inherits

commutativity and associativity. Let c, be the discrete closure operator



on X, and d any ‘C/ech closure operator on X. Then for any subset A of X,
(dJe,)(a) = d(a) | Jeo(a) = a(a) (/A = a(A). Now consider c, d, and e,
clements of {oxf. (co(doe))(A) = c(d(e(4))) = ((cod)oe)(). Again,
let ¢, be the discrete closure operator, and d any element of {- c .(}).
Ror any subset A of X, (c, 9 d)(A) = co(d(a)) = d(A) = d(co(A)) =

= (do c.)(A).

THEOREM 2,8, If c and d are Eech closure operators on a set X, and
A is a subset of X, then (c{d)(A) is contained in (ced)(A).

PROOF. By définition, (cUd)(A) = c(A)Ud(A). A is contained in
a(A), so by lemma 2,2, c(A) is contained in c(d(A)) = (ced)(A). Now d(A)
is contained in c(d(A)); hence (cUd)(A) is contained in (c ed)(A).

COROLLARY 2.9. If c and d are éech closure operators on a set X, and
A is a subset of X that is closed under d, or d(A) is closed under c, then
(cvd)(a) = (cod)(a).

While union of two éech closure operators commutes, composition does
not; the union of two Gech closure operators does not, in general, give
the same result as their composition, in either order. The following
theorem shows, however, that t(ced) = t(dec) = t(cUd).

THEOREM 2.10. Let (X,c) and (X,d) be Cech closure spaces. Then
t(c 0d) = t(doc) = t(c)/ }(a) = t(cud).

PROOF. Let O be a member of t(ced). Then (c°d)(X-0) = X-0, which
is contained in d(X-0). Lemma 2.1 implies, then, that (ce d)(X-0) =
= d(X-0) and, hence, O is a member of t(d). Then c(X-0) = c(d(X-0)) =
= X-00aNB O is ammember of t(c). Thus t(cod), and similarly t(dec), are
contained in t(c)ﬂ t(d). Now let Q be a member of t(c)/} t(d). X-qQ =
= ¢(X-Q) = d(X-Q); hence (ced)(X-Q) = c(X-Q) = X-@ = 4(X-Q) = °
= (doc)(X-Q).

Let 0 be a member of t(cUd). (cUd)(X-0) = c(x-0){ Ja(x-0) = x-0



and thus c¢(X-0) = d(X-0) = X-0. Therefore O is a member of t(c)/f}t(d).
Now let Q be a member of t(c)/] t(d). Then c(X-Q) = d(%¥-Q) = X-Q =
= c(x)J 4(x-0) = (cUa)(x4), and t(cUa) = ()] Ju(a).
DEFINITION 2.6. Let E;*: « eg&? be a collection of Gech closure
operators on a set X, and let B be a subset of X. Then
(Ufearwen 3)@) = U foxtm): « €A S,
THEOREM 2.11. If c. is a Bech closure operator on a set X for each
element o« of A, then (U{ Cuct c(e_/\.? ) is a Bech closure operator on X.
PROOF. The proof parallels the proof of theorem 2.6.
DEFINITION 2.7. ILet (X,c) be a Bech closure space., Then, if there

exists a smallest natural number n such that c™(A) = cnil

(A) for all A
contained in X, then c is said to be of degree n, and (X,c) is said to be
of finite degree.

THEOREM 2.12. A closure operator is Kurotowski if and only if it is
of degree one.

Clearly, there exist finitely generated ééch closure operators that
are not of finite degree (consider example 2.B). The following theorem
is due to Sharp [5].

THEOREM 2.13. If t is a topology on a set X then the family of
complements of members of t is also a topology on X (cailed the dual

topology with respectoto t).

PROOF., The proof is similar to that of theorem 2.3.



CHAPTER III
MATRIX REPRESENTATION

Shapp, in [5], showed that an nxn, zero-one, reflexive and tran-
sitive relation matriz T = (ti j] can be associated with each topology on
a finite set with cardinality n in the following way:

1 if je §x3
ts 2 =

1]
0 otherwise,

Thus there is a one-to one correspondence between the topologies on
a finite set X and the quasi-orderings of X [5]

The same kind of correspondence bgtween Bech closure operators on a
finite set and zero-one reflexive matrices can be established as follows:

DEFINITION 3.1. Let (X,c) be a Cech closure space where ]x( = n.
Define the nxn matrix A = [ai j] by

1 if Xj € C(Xi)

Q.. =
+J 0 otherwise.

Clearly, there is a one-to one correspondence between the reflexive
relations on a finite set X and the Eech closure operators on X.

Some of the notation developed by Bonnett and Porter, in [2] y
extends easily to Gech closure spaces. Let X be a finite set. Then
with each element x; of X, associate the vector €i = (J,i , L; yeoey Sni )y
where Sij is the Kronecker delta and |X) = n. With each subset A of X,
associate the vector A = Z (€.l: x, € A). Clearly, then, if A is the
matrix associated with a Eech closure operator c on a finite set X, then
Ay, the 1230 row of A, is (c(xi))v.

Throughout this paper, "I" will be used to denote the identity

matrix.



THEOREM 3.1. Let (X,c) be a finite Gech closure space and A its
associated matrix. Let B be a subset of X. Then (c(E))v =B : A, where
the matrix multiplication is with respect to Boolean arithmetic.

PROOF. Since c(B) =U gc(xi): X, € B} , the theorem follows if

jg—1 entry of Ei' A, Then

u.=Zn J .=a.-hence€’A=A
3 ke Y1k 1§ T G5 i i

COROLLARY 3.2. ZIet (X,c) be a finite Eech closure space and A the

(c(xi))v = A:.L = éi. A. Let uj denote the

associated matrix. A subset B of X is closed if and only if Bv = Bv- A,
where the matrix multiplication is with respect to Boolean arithmetic.

THEOREM 3.3, A reflexive, nXn, zero-one matrix T corresponds to a
topology on a finite set if and only if T2 = T, where the matrix multi-
plication is with respect to Boolean arithmetic [ 5].

THEOREM 3.4. Let (X,c) and (X,d) be finite Gech closure spaces
with associated matrices A and B, respectively. Then:

(1) the matrix associated with (X,cud) is A+B, and

(2) the matrix associated with (X,ceod) is BA,
where matrix addition and multiplication is with respect to Boolean
arithmetic,

PROOF. (1). The theorem follows if (A+}3).1 = ((cud)(xi))v for any
element x, of X. Iet x, be an element of X. (cUd)(x ) =
c(x )Ud(x ) = gx.. 3 5 ;U{ 1)? hence (A+B)
((eLa)(xy)),e

(2). The theorem fotlows if <BA)1 = ((COd)(xi))v for any element

i

x, of X. Let x, be an element of X. (co d)(xi) = c(d(xi)) =

{xk: X € c(xj P X € d(xi) for some X 3 X;. (BA)i =
(Zbi,] 317 .zbijajz,”" ? 3 9 )
J

ij " jn



=1 for some 1 < j <n

1 if b,. =1 and a,
jz b,. a., = 1J Jk
J i) Ok 0 otherwise.
That is,
1 if x. € d(x,) and € c(x.) for some x. € X
Ty - {1 T o et o e
y Jk 0 otherwise.

Hence (BA)i ((Cod)(xi))v.

THEOREM 3.5, Let (X,c) be a finite Cech closure space with asso-
ciated matrix A. Then:

(1) c is of finite degree n,

(2) t(c®) =t(cF) = t(e); 1 £ k <,

(3) A" is the matrix associated with t(c).

PROOF, (1). Since X is finite, n =

m+1

inf {m: c"(4) = ¢™(A) for all A< xf exists.

(2). Let O be a member of t(c). Then X-0 = c(X-0) = CZ(X—0> =es

vve= C(X-0). Now let O be a member of t(c")., c™(X-0) = X-0 =

c(c™(X-0)) = c(X-0); hence t(c) = t(c™).

The proof of (3) follows from theorem 3.4.

The following theorem is due to Sharp [5].

THEOREM 3.6. If T is the matrix corresponding to a topology t, then
T (the transpose of T) is the matrix corresponding tocthe dual topology
with respect to t.

DEFINITION 3.2. ILet (X,c) be a finite Gech closure space and A the
matrix associated with it. Then the dual Gech closure space with respect
to (X,c) is the 8ech closure space assoclated with the transpose of A,
and is denoted by (X,cT).

THEOREM 3.7. TLet (%,c), (X,c ), and (X,d) be finite Cech closure

spaces. Then:

10
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(1) c and ¢’ have the same degree,

(2) t(c) and t(cT) are dual topologies,

(3) (cod)T =doc.

PROOF. (1) and (2). Let A be the matrix associated with (X,c),
and let n be the degree of c. An, then, is the matrix associated with
t(c), and (An)T = (AT)n is the matrix associated with t(cT).

AT 8T,

(3). Let B be the matiix associated with (X,d). (BA)T =
where matrix multiplication is with respect to Boolean arithmetic, and

thus (3) holds,



CHAPTER IV
THE LATTICE OF EECH CLOSURE OFERATORS

DEFINITION 4.1. For any pair of \C,ech closure operators c¢c and d on a
set X, c<d provided c(A) < d(A) for all sets A contained in X.

DEFINITION 4.2. Iet X be a non-empty set. Then define L(X) as the
set of all Cech closure operators on X, and C(%) as the set of all
finitely generated t‘/ech closure operators on X.

THEOREM 4.1. Let X be a non-empty set. Then (I(X), <) and
(¢(x), <) are partially ordered((reflexive, anti-symmetiic, and tran-
sitive) sets.

PROOF. The theorem follows from definition 4.1.

DEFINITION 4.3. Let X be a non-empty set and ¢ and d be elements
of L(X). Then let cvd = l.u.b. {c,d} and cad = g.1.b. §c,d7 .

THEOREM 4.2. Let X be a non-empty set and ¢, a ech closure oper-
ator on X for each e € /| . Define d by d(A) = U{c,((A)zd 6_/[} for
each A < X. Then:

(1) 4 = \/’{éngcx s_/Lg , and

(2) (LX), V, A) and (c(X), V, A ) are complete lattices.

PROOF., That d is a Cech closure operator is shown in theorem 2.11;
d is clearly an upper bound of {c,(: 4 e._/\} . Let e be any element of
L(X) that is an upper bound of ic.‘: o(e_/\_g. Then c,(A) < e(A) for any
> e A and subset A of X; thus d<e. Now Afco: x€AS =
= sup ?e: e ¢ L(X) and e < c, for each & e_/]j Hence (L(X), V', /) is
a complete lattice.

Since the least upper bound of a collection of finitely generated
Jech closure operators is finitely generated, one shows that (C(X),V,A)

12
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is a complete lattice in a similar manner.

The symbols L(X) and C(X) will also be used to denote the lattice of
\éech closure operators on a non-empty set X and the lattice of finitely
generated \éech closure operators on X, respectively.

The operations \/ and A have the following properties in any
lattice [1]. Iet c, d, and e be elements of L(X). Then:

(1) cAc =¢c; cve =c,

(2) c¢cAd =dAc; cvd = d Ve,

(3) (cad)ae

(4) ca(evad)

cA(dAae); (cvd)ve = cv(dve),

cv(cad) = c, and

(5) ccd & cAd =c and cvd = d.

EXAMPLE 4,A. Although the union of two Jech closure operators
results in a Gech closure operator, the analogous result need not hold
for their intersection. Iet X = {1,2,3)7 and let c(f) =;£ , c(1) = fi,z},
o(2) = {2], o(3) = {3} A(f) =4 , al1) = f1f, a(2) = {2}, and 4(3) =
= [2,3}. Also, let (cfld)(A) = c(A)ﬂ d(A) for any subset A of X.
Clearly, (cNA)(#) = ;f and A< (¢NA)(A). TLet A = {1} and B = (32
Then (¢ Nd)(AUB) = c(aUB)/) d(AUB) = X, but (ena)(a)J(ena)e) =
= (c(1)/) d(i))U(c(3)ﬂ a(3)) = [1,33. Hence (cNd) does not satisfy
(G3); therefore (c1d) is not a Cech closure operator.

From theorem 4.2 it follows that cwvd = cUd. If c and d are
elements of C(X) for some non-empty set X, then c Ad can also be easily
determined.

THEOREM 4.4. TLet X be a non-empty set, and ¢ and d be elements of
C(X). Define e(x) = c(x)/]d(x) for any element x of X. Then (cAd)(A)=
=U[e(x)= X€E A} .

PROOF. Define e(A) = U{e(x): ch} for any subset A of X. Then



by theorem 2.5, e is a Eech closure operator on X. CGClearly, e<c and
e<d; hence e<c Ad. Now let y€(cAd)(x) for some element x of X.
Then y€ c(x)/) &(x) = e(x). Since e is finitely generated, the theorem
follows.

DEFINTITION 4.4. Let A = fa’ij] and B = [bij} be nx n, zero-one
matrices. Define the matrix operations A and V as follows:

(1) AAB

(2) avB

1l

[aij/\ bij] , and
[aijv bij] .

If A and B are matrices associated with é/ech closure operators c and

d, respectively, on a non-empty finite set ¥, theorem 3.4 implies that
AVB is the matrix associated with cwvd.

THEOREM 4.5. Let (X,c¢) and (X,d) be Cech closure spaces with
associated matrices A and B, respectively. Then the matrix associated
with (X,cAd) is AAB,

FROOF. This theorem follows from theorem 4.4,

THEOREM 4.6. Let X be a non-empty set. Then C(X) is a distributive
lattice and hence a modular lattice.

PROOF Let A be a subset of X, and ¢, 4, and e be elements of C(X).

(ca(dve))(a) =

= U fc(a)/] (a(a) Ue(a)): a € A}:

U f(e(@) N a(@) Ule(a) Ne(a))s a € 43 =
((ead)}v(cAae))(a).
Then (cVd)A(cVe) = ((ecvd)Ac)v((cvd)ae) =

=eV((cAe)v(dne)) = (cv(cae))v(d Ae) = cv(d Ae) by properties
of A and V and the first part of this proof.

DEFINITION 4.5. ILet X be a non-empty set, and ¢ € C(X). For each
x € X, let e(x) = {x}UX—c(x). Define c'(A) = UZe(x): xéA} for

14



any set A contained in X.
THEOREM 4.7. Let X be a non-empty set and ¢ € G(X). Then:
(1) c'€ c(x),
(2) c¢' is a complement of ¢ in C(X), and
(3) C(X) is uniguely complemented.

PROOF, 1), c'€ C(X) by theorem 2.5.

(2). Iet A be a subset of X. (cve')(A) = c(aA)J ((Ufe(x): xeaf)=

o J (U&3 U (xe(x)): xea ) =X, (cact)(4) =
U{c(a)/] c'(a): a.eA} =UZC(a)f)({ag U X-c(a)): a€ A} = A,

(3) Every distributive and complemented lattite is uniquely

complemented.
COROLLARY 4,8. C(X) is Boolean algebra, if X is a non-empty set.
DEFINITION 4.6. ILet c be a Gech closure operator on a finite set
X, and consider the associated matrix A = [aij] . Define A' = [éij] by

1 if i=j

al, = 1 if i#j and a;, =0

J
0 if i#j and 2 5

1

THEOREM 4.9. ILet (X,c) be a finite Eech closure space with associ-
ated matrix A. Then A' is the matrix associated with c¢', the complement
of c,

Clearly, all the members of the lattice of topologies on a finite
set X are contained by C(X), although the lattice of topologies is not
a sublattice of C(X).

n(n-1) elements.

THEOREM 4.10. If |X| = n, C(X) has 2
PROOF. Each reflexive, zero-6ne nxn matrix represents a Eéch

closure operator on X.

15

THEOREM 4.11, If X is finite, C(X) is an atomic lattice. If lX)z n,



C(X) has n(n-1) atoms.
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CHAPTER V
SEMI-TOPOLOGIES

DEFINITION 5.1. Iet X be a non-empty set and ; a subset of P(X).
Then E is called a semi-topology provided:

(s1) ;é €t; X€t, and

(s2) 0€+t and Q €t implies 0/)Qé€t.

DEFINITION 5.2. ZLet (X,c) be a Cech closure space. A subset B of
X is called c-closed provided B = c(A) for some set A contained in X. A
subset O of X is called c-open provided X-0 is a c-closed set. Let %(c)
denote the collection of all c-open sets in (X,c).

THEOREM 5.1, Let (X,c) be a Cech closure space. Then t(c) is a
semi-topology.

PROOF. Clearly, X and ;1( are elements of t(c). Let O and Q be
elements of {(c). Then there exist subsets A and B of X such that
X-0 = c¢(A) and X-Q = c¢(B). X-(0NQq) = (X—O)U(X—Q,) = c(A)Uc(B) =
= ¢(AUB); hence 0/]Q is an element of E(c).

COROLLARY 5.2. Let (X,c) be a Gech closure space. Then %(c) con-
tains t(c).

v
EXAMPLE 5.A. Distinct Cech closure operators can generate the same

semi-topology. Let X = {i,2,3} and c(1) = {i,a}, c(2) = 21,2;, and
c(3) = f1,35 let a(1) = f1,3}, a(2) = §,23, and 4(3) = X. Then
t(c) = t(a) = § #.83.820.%5 .

EXAMPIE 5.B. Not every semi-topology is generated by a Gech closure
operator. Tet X = §1,2,3,4§ and
H. {ff ,x,{i},bj,[h},{1,3},{1,4?,{2,3},[3,4%,{1,3,4},{2,3,4})). (%,1)
is a semi-topological space; assume & = t(c) for some Gech closure
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operator ¢ on X. Then X- §1,3,4§ = c(A) for some A contained in X; thus
c(2) =f2} similarly, o(1) =f1j. Since §1,3} and §2,37 are elements of
%, it follows that o(4) =f4}. Then, since §1,4§ belongs to %, §2,3} =
= ¢(A) for some set A contained in X. A # f2f; if A = 2,31 we would
have that % is the discrete topology on X, so A must equal f3f. Then
(1) = 14, o(2) = {23, o(3) = £2,3f, and (&) = fuf. Thus
o) = LA 02500 05 8 (23, 2, 5.4 250, (3,80, fruz. )
which does not equal t. Therefore t is not generated by a Gech closure
operator.

EXAMPIE 5.C. Consider the semi-topology t = (( $ x,$17.02f f where
X ={1,2,3§’. Define &(4) = fx: 0Oet and x€0 inplies 0/]A # yf)? Then
(1) = 1,3], 3(2) =§2,30 3(3) = F37and Y(3) =
54 X, f13,§2§,§1,2]§ 1s a semi-topology which contains t.

That ¢ as defined above is a Kurotowski closure operator and that

is contained in t(c) is the content of the next two theorems.

o<

THEOREM 5.3. ZLet (X, E) be a semi-topological space and define, for
any A contained in X, ¢(A) = ({x- 0€t and x €0 implies O/]A # #))
Then ¢ is a Kurotowski closure operator.
PROOF. That B(¢) = ¢ and ACT(A) is evident. E(AUB) =
§x= 0+ and x €0 implies 0/)(AUB) -74;/)2 =
{x: O€ % and x€ 0 implies (0/14)(J(0N3B) # ;5)? = 3(a)(J 5(B). ILet x

be an element of G(€(A)) for some non-empty set A contained in X, and let

I}

v
O be a member of t such that x is an element of O. Then 0/)3(4) # 4.
Now suppose x is not an element of G(A). Then there is a @, belonging
v
to t, such that x 1s an element of Q and A/]Q = ?‘ . Since x is an

element of c(c(A)), there exists some element y of X such that y is an

18

element of (O/]Q)/]E(A). Then y is an element of Q and ©(A), which implies



ANQ ;-{ f‘ . Hence a(8(A)) = c(a).

THEOREM 5.4. Let (X,‘il',) be a semi-topological space and ¢ be
defined as above. Then + is contained in ;(E) = t(c).

PROOF. Let O be a member of E, and suppose X is not an element of
X-0. Then x is an element of 0. Now 0/] X-0 = f‘ ; hence x is not an
element of &(X-0). Thus (X-0) is contained in X-0, so ¢(X-0) = X-O and
0 is a member of ;(E)

COROLLARY 5.5, Let (X,c) be a Gech closure space. Then
£(c) € t(c) € £(3).

COROLLARY 5.6. Let (X,c) be a lech closure space and A be a subset

of X. Then A< G(A)< c(A) < A.
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CHAPTER VI

SEPARATTON FPROPERTIES

Several mild separation properties are useful in the context of

w
Cech closure spaces.,

DEFINITION 6.1. ILet (X,c) be a Gech closure space, Thent

(1)
(2)

(3)

(1)

(5)

(6)

(7)

(8)

(X,c¢) is called T, if for each x€ X, c¢(x) = ?x},

1
(X,c) is called T
or y £ o(x),
(X,e) is called Ry if for each x,y€X, c(x)/] e(y) =5£ or
e(x) = e(y),

(X,c) is called symmetric (RO) if for each x,yE€X, x € c(y)

0 if for each x,y€X, x f ¥y, elther x# e(y)

implies v € c(x),
(X,c) is called Ty if for eaoh x,y€X, x ;é Vs c(x)/} e(y)

equals either the empty set or a singleton set,

(X,c) is called Tygq if for each x,y€ X, x £y, c(x)/]c(y)

equals either ){ ’ ﬁc}, or f y_?,

(X,c) is called T if for each x€X and disjoint set F, either
F

x¢ c(F) or c(x)/) F =% , and

(X,c) is called Tep i for each pair of disjoint sets F and G,

elther c(F)/}G =f{ or Fnc(G) = %

A discussion of most of the above separation axioms in the context

of topological spaces is found in Bomnett and Poxter [2]

THEOREM 6.1. The following series of implications hold for 8ech

closure spaces:

(1)
(2)

T, = R, =¥ R,
T, = Tyg =Ty =Ty, and
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(3) Ty = Tpp = Tp =T,

THEOREM 6.2. ILet (X,c) be a finitely generated symmetric Gech
closure space. Then 0 € t(c) if and only if X-0 € t(c).

PROOF. Iet O € t(c). Then X-0 = c(X-0). Let x € c(0). Then there
exists a y€ O such that x € ¢(y). Assume x € X-0. This implies that
¥ € c(x) ¢(X-0) = X-0, arcontradiction. Hence c¢(0) = O and X-0 € t(c).

COROLLARY 6.3. In a finite symmetric topological space, a set is
open if and only if it is closed.

THEOREM 6.4. Every finitely generated Ry Gech closure space is a
topological space.

PROOF. Let (X,c) be a finitely generated Ry Cech closure space and
A be a subset of X. Let x € c(c(A)). There exists a t € c(A) such that
X€ cft), and an a € A such that t € c(a). Since R, implies R

1
which implies c(x) = c(a). Thus x€ c(A) and c(c(4a)) = c(4).

o ‘€ c(x),

THEOREM 6.5. Every finitely generated Tp Yech closure space is a
topological space.

PROOF. Let (X,c) be a finitely generated Eech closure space, and
suppose that (X,c) is not a topological space. Then there exist elements
Xir Xss and x, of X such that x, € c(x ), x5 € c(xk), and x ﬂ-‘ c(xk)

Now x ¢{ i’x‘k} hence either x, ¢c(f X'k} ) or c(x, )/){x ,xk} Sé
But X3 € c(x.k) and x, € c(xj). Therefore (X,c) is a topological space.

COROLLARY 6.6. Every finitely generased Tep Cech closure space 1is
a topological space.

THEOREM 6.7, ZLet (X,c) be a finite Cech closure space with
associated matrix A. The following pairs of statements are equivalent:

(A) (X,c) is Ry
(A*) A is symmetric.

21



(B)
(B%)
(c)
(c*)
(D)
(D%)
(®)
(2%)

(F)
(F%)

(G)
(G*)

(1)
(1*)

22

(X,c) is Ry.

Two rows of A are either equal or disjoint.

(X,c) is Toe

A is anti-symmetric.

(X,c) is T,

A=1.

(X,c) is Ty

The intersection of two distinct rows of A is either empty or
a singleton.

(X,c) is T

YSs®
The intersection of the iﬁb and ;‘y:c'-l-1 rows of A, where i £ Js

is either 9‘, a4y OT ajj‘
(X,c) is Tpe

For each i, either the i.i-lrl row or the J‘.:c'-b column of A-TI is
Zero.
(X,c) is Top*

A-T or (A-I)T has at most one non-zero row.

PROCF. The proofs of A through F follow immediately from the

definitions. The proofs of G and H follow from theorem 6.5 and theorems

3.2 and 3.

5in [2], respectively.

THEOREM 6.8. Let (X,c) be a finitely generated Gech closure space.

(1)
(2)
(3)
(&)

If (X,c) is T, then t(c) is T

If (X,c) is Tp then t(c) is T

1l
Fl
If (X,c) is Tpp then t(c) is Top

If (X,c) is Ry then t(c) is Ry.

PROOF. A1l parts follow from the fact that the separation axioms

stated assure that (X,c) is a topological space.




v
EXAMPIE 6.A. A finitely generated Cech closure space can be T, and

0
the underlying topology may not be TO. Let X = gki’xz’XBE) and let ¢
i 0o 1
be represented by A= |1 1 0| . Then by theorem 6.7, (X,c) is Ty
o 1 1

yet t(c) is the trivial topology on X.
EXAMPIE 6.B. A finitély generated Cech closure space can be TYS

(and hence TY) and the underlying topology not be Ty (and hence not TYS)'

1 1 0
Let X = {ilzxz,x3§ and let ¢ be represented by A = o 1 14 .
i 0 1

Then (X,c) is Tyg bY theorenm 6.7, but t(c) is the trivial topology on X.
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CHAPTER VII
SUMMARY

An introduction to Eech closure spaces has been presented, and an
attempt at discovering some fundamental properties of Cech closure
spaces was made in this paper.

There is a one-to-one correspondence between the reflexive relations
on a non-empty finite set X and the Eéch closure operators on X; there
is a one-to-one correspondence between the reflexive and transitive
relations on X and the topologies on X [i].

The lattice of all finitely generated Gech closure operators on a
non-empty set (and, consequently, the lattice of all éech closure oper-
ators on a finite set) is a Boolean algebra. The relationship between
the lattice of Eech closure operators and the lattice of topological

closure operators on a fixed set is an area for further investigation.
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