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Preface 

The major purpose of this thesis is to define and 

illustrate what is meant by lta finite geometry associated 

with the dihedral group of a regular polygon." In Chapters 

One and Two, two such finite affine geometries are developed, 

based on the dihedral groups of the square and regular 

hexagon, respectively. In Chapter Three, patterns discerned 

in the first two chapters are refined to make them 

applicable to the development of a finite geometry based 

on the dihedral group of any regular even-sided polygon. 

Chapter Four focuses on the special role played by two 

subgroups of the dihedral group in the development of the 

associated geometry. 

This thesis is original rather than profound, 

imaginative rather than rigorous, but it is logical 

throughout. 

The author wishes to express her sincere appreciation 

to Dr. Thomas Bonner for his interest and assistance 

throughout the writing of this thesis. 
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Chapter One 

The Finite Geometry Associated
 
With the Dihedral Group of the Square
 

When considering a square, four essential points are 

obvious--the vertices. These four points, naturally, are 

to be included in the development of a related finite 

geometry. (See figure 1.) 

R• .~ 

C". ·D 
(figure 1) 

In order to utilize the transformations of the dihedral 

group related to the square, one must include the center as 

a point about which the square can be rotated. One must 

also consider the lines of symmetry about which the square 

can be reflected. These lines of symmetry indicate the 

position of four more essential points, namely, the points 

of intersection of these lines and the sides of the square. 

Therefore, these nine natural points (i.e. the center, the 

vertices and the midpoints of the sides) should be included 

in any geometry based on the dihedral group of the square. 

These points are indicated in figure 2. As these are the 

points suggested by the transformations on the square, one should 

begin the associated geometry with just them. However, keep 

in mind, that more points can be added, should that become 
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necessary. 
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(figure 2) 

It is of interest at this point to review the properties 

of an affine geometry. The basic axioms of such a geometry 

are: Axiom 1: There is at least one line. 

Axiom 2: There are at least two points on every line.
 

Axiom 3: Not all points are on the same line.
 

Axiom 4: There is exactly one line on any two distinct
 

points. 

Axiom 5:	 Given a line and a point not on that line, 

there is exactly one line on the given point 

and not on any point of the given line. 

The problem, then, is to find a geometry with a minimum 

number of points satisfying these five requirements and, 

of course, including the nine natural points determined 

by the transformations of the dihedral group of the square, 

D
4

, 

As the term "point" has been used in referring to the 

natural points associated with the square, in order to avoid 

confusion, this author shall refer to the "points" of the 
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finite geometry as Points. The "lines" of the finite 

geometry are not the natural lines of the square, but rather 

are to be understood as groups of Points. These groupings 

will become fixed as the geometry is developed. The "lines" 

of this geometry will be referred to as Lines. The relation 

"on" is to be interpreted in such a way that a Line is "on" 

each Point and each member of that group of Points is "on" 

the associated Line. 

One should require more of the geometry if it is to be 

considered associated with a dihedral group--namely, that 

the image of every Point, under the transformations of the 

dihedral group, be itself a Point and, similarly, that the 

image of every Line be itself a Line. These requirements 

necessitate replacing Axiom 2 with Axiom 2': There are the 

same number of points on every line. 

In observing figure 2, it is evident that there are 

three Points on each of the natural lines. Can the Lines be 

fixed so that there are also three Points on each Line? If 

so, some of these Lines are obvious. (Remember, Axiom 4 

requires that each pair of Points determine exactly one 

Line, so no pair of Points may be included on two different 

Lines.) 

Consider Point E. It lies on Lines GEH, FEI, AED and 

CEB. These four Lines are such that Point E is linked with 

each of the other eight Points exactly once. 
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Now consider a Point such as A. If one considers the 

Lines suggested by the natural lines through this Point, 

Point A is found on Lines AFB, AGC and AED. These Lines 

associate Point A with six of the other eight Points. 

Consider the inclusion of another Line, namely AIH. Now 

Point A has been grouped with each of the other eight Points 

exactly once. 

Therefore, under the transformation ~, i.e. a rotation 

of ninety degrees about the center, Point E, one finds 

anothe~ set of Lines--the images of those Lines on Point A-

this time the Lines are those on Point C. These Lines are 

CGA, CID, CEB and CHF. 

Applying the transformation again, one finds the Lines 

on Point D: DIC, DHB, DEA and DFG, respectively. Likewise, 

a third application of r leads to the Lines on Point B. 

These are BHD, BFA, BEC and BGI, respectively. 

As some Lines have appeared more than once, consider 

the list of all the Lines determined thus far: 

ABF AHI BGI DFG 

ACG BCE CDI EFI 

ADE BDH CFH EGH 

These are the Lines on Points A, B, C, D and E. The 

task now is to look at the Lines on Points F, G, H, and I. 

Point F is already found on Lines ABF, CFH, DFG and EFI. 

Clearly, it has been associated with each of the other eight 

Points in exactly one way. Through repeated applications 
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of transformation ~, it can easily be verified that this 

is also true for Points G, I and H, respectively. 

The finite geometry thus developed consists of nine 

Points and twelve Lines. There are three Points on each 

Line and four Lines on each Point. Does this geometry 

satisfy the affine axioms? Clearly it does satisfy Axioms 

1, 2, 3 and 4. It only remains for Axiom 5 to be illustrated 

in this geometry. 

As the reader recalls, Axiom 5 requires that "Given a 

line and a point not on that line, there is exactly one line 

on the given point and not on any point of the given line." 

In looking at figure 2, it is obvious that some groups of 

Lines do satisfy this axiom--namely the Lines associated 

with the natural horizontal and vertical lines. The Lines 

ABF, EGH and CDI are one such group of "parallel" Lines, 

i.e. Lines that have no Point in common. Another group of 

parallel Lines would be ACG, EFI and BDH. This leaves the 

six non-horizontal, non-vertical Lines to be considered in 

light of Axiom 5. These six Lines also fall into two groups 

of parallel Lines: BCE, ARI and DFG: AED, CFR and BGI. So 

Axiom 5 is upheld by the arrangement of Lines and Points. 

Therefore, this geometry is indeed a finite affine geometry. 

It would be desirable to be able to illustrate not only 

the Points of the geometry, but also the Lines. Figure 3 

shows one way to do this. The Points are indicated by the 

dots and the Lines are shown by the curves connecting the 
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associated Points. 

(figure 3) 

In view of the fact that aesthetic senses are sometimes 

upset by the use of curves to represent Lines, it might be 

preferred to illustrate the geometry in a different manner. 

One solution to this problem is to "straighten out" the 

offending Lines through a "repositioning" of some of the 

Points. This can be done quite simply by imposing a lattice 

structure on the Points and utilizing the concept of 

congruence modulo three in establishing coordinates on the 

lattice structure. Since the distance from the center of the 

square to the square itself is the same horizontally as 

vertically, a lattice of 1 X 1 rectangles serves this 

purpose well. Select a Point, say E, to serve as the origin, 

(0,0), on the lattice. The lattice is to be arranged so that 

the other Points can be assigned coordinates in the conven

tional manner, e.g. so that H is assigned (1,0). However, 

since it is the arithmetic of modulo three, only the integers 

0, 1 and 2 are used in the assignment of coordinates. 
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Consequently, the coordinates assigned to the Points are: 

A (2,1) D (1,2) G (2,0) 

B (1,1) E (0,0) H (1,0) 

C (2,2) F (0,1) I (0,2) 

Please note that there are many lattice points having the 

same modulo three coordinates. Each of these points is to 

be designated by the associated Point name. For example 

(4,0) = (1,0) = H. Thus, in this manner, the entire plane 

of lattice points may be used to represent the nine Points 

of the geometry. A portion of this lattice is found in 

figure 4. Points have been designated at the lattice 

points and the Lines indicated by the lines. 

'" 

(figure 4) 
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It is of interest to note that the Points found on the 

natural lines of the lattice are grouped in the same way as 

On the Lines of the finite geometry. This is important as 

it suggests a way to introduce algebraic representation of 

Lines, as well as Points. Since Lines are groups of Points 

and the Points have already been assigned modulo three 

coordinates, one can devise modulo three statements to 

represent the Lines. Suppose one designates a Line to be 

the Points in the form (x,y), where x, yare elements of Z3' 

such that a certain modulo three statement is true. This 

would allow the assignment of these statements to the 

twelve Lines: 

EFI: x ::: 0 (mod 3) ADE: x + y =- 0 (mod 3) 

BDH: x =- I (mod 3) CFH: x + y == I (mod 3) 

ACG: x ~ 2 (mod 3) BGI: x + y = 2 (mod 3) 

EGH: y=:O (mod 3) BCE: 2x + y=-O (mod 3) 

ABF: y ~ I (mod 3) DFG: 2x + y .:: I (mod 3) 

CDI: y :: 2 (mod 3) AHI: 2x + y ~ 2 (mod 3) 

Since all other statements of the form ax + by =c (mod 3), 

where a, b, c are elements of Z3' are equivalent to one of 

those listed above, this system of designation has been 

eXhausted. Consequently, one is able to use the lattice 

structure to devise an algebraic model for the nine Points 

and twelve Lines. Note that the same Lines are parallel 
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under this system as were parallel originally. 

Another method of illustration one might pursue for 

this geometry involves arrays which indicate the Points on 

Lines. In looking back on the development of the twelve 

Lines in the geometry, it is evident that under the trans

formation f ' the horizontal Lines are transformed into the 

vertical Lines and vice versa; likewise, each set of parallel 

non-horizontal, non-vertical Lines are transformed into the 

other set of such Lines. It is possible to establish an 

array of the nine Points such that the rows of the array 

are the horizontal Lines, and the columns of this array are 

one set of parallel non-horizontal, non-vertical Lines. 

Under the transformation? ' this array becomes a second 

array which illustrates in its rows and columns the other 

six Lines of the geometry. Two such arrays are: 

A F B eGA 

E H G and E F I 

D C I B D H 

In this representation of the geometry, it is important to 

remember that the letters of the arrays indicate the Points, 

but are not "graphs" of the Points. Also, remember that 

Lines are represented only by the rows and columns of the 

arrays. 

Although the concept of distance is not a requirement 

for a geometry, if it is to be introduced, then it is 

obvious that distance cannot be the same on all Lines. This 

is known since not all Lines can be mapped into each other 
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under the elements of D4 . 

No matter which model is used for the geometry of the 

dihedral group of the square, the Lines fall into two 

categories: vertical/horizontal versus non-vertical, non

horizontal, or rows versus columns. This suggests that 

distance must be defined differently on each type of Line. 

The units that are suggested by the natural geometry of the 

square are units of 1 along the horizontal and vertical 

Lines and units of J:i along the other Lines. 

Therefore, in summary, the finite geometry that has been 

developed consists of nine Points and twelve Lines. The 

axioms which define this geometry are: 

1. There are exactly nine Points. 

2. Every two Points determine exactly one Line. 

3. There are exactly three Points on each Line. 

The twelve Lines of this geometry can be grouped into four 

sets of parallel Lines. 

This finite geometry can be illustrated by a variety 

of models. The most simple, perhaps, is on a square where 

Points are the specified points related to the square and 

Lines are designated by specified curves on the model. 

Another geometric model is based on a square lattice imposed 

on the square. In this model, the points of the extended 

lattice are identified, by way of repetition, to represent 

the Points and the natural lines on the lattice points 

illustrate the twelve Lines. 
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A third model of the geometry is an algebraic representa

tion of the Points and Lines. Points are designated by modulo 

three ordered pairs and the Lines are assigned characteristic 

modulo three statements in such a way that the ordered pairs 

that satisfy a particular statement are the pairs assigned 

the Points on the associated Line. 

The fourth model for this geometry consists of two 3 x 3 

arrays in which letters represent the Points and the rows 

and columns of the two arrays represent the Lines. 

The characteristic of this geometry that is most 

peculiarly its own is that it is the finite geometry associ

ated with the dihedral group of the square. This implies 

that only Points essential to the applications of the 

transformations of D are included in the geometry and only4 

Lines which transform into other Lines under the eight 

elements of D are included as Lines in the geometry. Thus,4 

the very "substance" of the geometry, its Points and Lines, 

are determined by the natural points of the square and 

certain associated points determined by the transformations 

of the dihedral group. 

The author is introducing the phrase "finite geometry 

associated with the dihedral group of a regular polygon" to 

mean that geometry with the minimum number of points 

satisfying: 

1.	 The points intrinsic to the polygon and to the 

group of transformations of the polygon onto 

itself are included in the points of the geometry. 
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2.	 The lines of symmetry of the polygon are included 

as lines of the geometry. 

3.	 The image of any point (or line) of the geometry is 

itself a point (or line) of the geometry. 

4.	 The geometry must satisfy the five axioms of an 

affine geometry. 



Chapter Two 

The Finite Geometry Associated
 
With the Dihedral Group of the Regular Hexagon
 

The object of Chapter Two is to create a finite geometry 

associated with the dihedral group of the regular hexagon. In 

this group'f is a sixty degree rotation about the center of 

the hexagon. Reflections about the six lines of symmetry are 

other transformations of D One must establish a set of
6

. 

Points and a set of Lines. Lines shall be fixed sets of 

Points. The relation "on" shall have the same interpretation 

as	 in the geometry of nine Points. 

Consider the Points required by the dihedral group of 

the hex~gon, as they must be included in the geometry. 

Naturally, one must include the six vertices of the hexagon, 

the center, and the points where the lines of symmetry meet 

the sides of the hexagon. This indicates a minimum of 

thirteen Points. (See figure 5.) 

A H £? 

mr-"""\J 

r~c 
~ I< D 

(figure 5) 

14 



15 

On this diagram, many natural lines are associated with 

three Points. Obvious Lines would be ABH, ADG, AFM, BCI, 

BEG, CDJ, CFG, DEK, GHK, GIL and GJM. However, there are 

Point pairs not on any of these Lines. Consider the pair 

AI. There must be a third Point on that Line. This third 

Point cannot already be associated with either A or I; and 

the images of the Line on AI under the elements of D must
6 

also be Lines of the geometry. 

Points already associated with Point A on other Lines 

are B, D, F, G, Hand M. Points B, C, G and L are associated 

with Point I on other Lines. This leaves Points E, J or K to 

be possible on Line AI. 

Suppose the Line is AEI. Under the transformation f 

Line AEI becomes Line FDH. Under transformation f' ' Line FDH 

•
becomes Line ECM. Under v, the transformation of reflection 

about the vertical line of symmetry, Line FDH becomes Line CEH. 

This puts both Line ECM and Line CEH on the points C and E. 

Since there cannot be two different Lines on the same pair 

of Points, E cannot be the third Point on the Line on AI. 

Suppose, then, that the desired Line is AIJ. Under f ' 
Line AIJ maps into Line FHI. Line FHI, under f ' becomes . 
Line EMH. Under the transformation ~ , Line EMH becomes
 

Line DIH. This puts both Line FHI and Line DIH on the pair
 

of Points HI. This is not allowed in the geometry. Therefore,
 

the desired Line cannot be AIJ.
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The third possibility, then, is the Line AIK. However, 

under f ' AIK becomes Line FHJ. Under p , Line FHJ becomes 

Line EMI. Line EMI becomes Line DIM, under the transformation 

~ As there cannot be two Lines on the Points I and M, 

this third, and last, possibility for the other Point on 

the Line on AI must also be discarded. 

Thus the thirteen Points indicated on figure 5 are not 

sufficient to determine a Line on Points A and I. Therefore, 

at least one more Point must be added to the geometry. If 

the fourteenth Point is on a line of symmetry, under the 

elements of DB' five additional Points are determined. Will 

thes( ot~pn Points suffice? No, for there are now five 

Point 2e Lines, therefore there must be five Points on 

each Lil This forces the addition of two more Points on 

each of the other three lines of symmetry, thus, bringing 

the minimum number of Points to twenty-five. (If the 

fourteenth Point is not on a line of symmetry, the elements 

of the dihedral group determine an additional eleven POints, 

bringing the minimum number of Points to twenty-five, also.) 

To show that an affine geometry can be formed by this set, 

consider the twenty-five Points as arranged on two concentric 

hexagons, such that the radii are in ratio 1 2. (See 

figure 6.) 

As the greatest number of Points on any natural line 

in figure 6 is five, one should strive for a geometry with 

five Points on each Line. There are a number of such Lines 
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N T o
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It W Q 

(figure 6) 

suggested by the natural lines in figure 6: YAHBU, SFGCP, 

XEKDV, THGKW, YMGJV, XLGIU, XFMAT, YFLEW, WDJCU, TBICV, 

REGBO and NAGDQ. However, there also are "fragments" of 

lines, such as NTO and MI. What are the other Points on 

these Lines? 

Consider first the Line on NTO. Since N is on this 

Line, no other Point of Line NAGDQ can be on NTO. Likewise, 

since T is on the Line, no Point other than T of the Lines 

THGKW, XFMAT and TBICV can be on the Line NTO; and no Point 

other than 0 of the Line REGBO can be on Line NTO. Thus 

the two other Points on NTO must come from the set J, L, P, 

S, U and Y. Through a process of eliminating the Points 

which lead to contradictions, one can determine the other 

two Points on Line NTO. 
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Since the Points of fragment OUP are compatible with 

those of NTO, consider the possibility of Line NTOUP. Under 

the transformation? ' NTOUP determines Line SYNTO, Since 

it is not possible to have two Lines on the Points NTO, 

Points U and P cannot be the other Points on the Line in 

question. Similarly, Points Sand Y must be eliminated, 

as Line SYNTO would transform into Line RXSYN, under the 

transformation f ' thereby creating a second Line on Points 

SYN. Therefore, either the other two Points on Line NTO 

must be Land J, or it is impossible to define a Line on 

NTO. 

Line NTOLJ, under the elements of D determine Lines6 , 

SYNKI, RXSJH, QWRIM, PVQHL and OUPMK. These Lines satisfy 

the requirements of this finite geometry. This brings the 

number of Lines to eighteen. 

However, there are still Point pairs which are not on 

any of the eighteen Lines, for example, Points A and I. No 

Point already associated with either Point can be on the Line 

AI. Lines on Point A are YAHBU, XFMAT and NAGDQ; Lines on 

Point I are TBICV, XLGIU and QWRIM. Therefore the remaining 

three Points on Line AI must come from the set E, J, K, 0, P 

and S. By eliminating from this set the Points which lead 

to contradictions, one can determine the three Points that 

are on Line AI. 

Suppose Point 0 is on Line AI. Two more Points must 

still be found from the set given above. Obviously, Points 

E and P cannot be on Line AIO as these Points are already 
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on Lines with Point O. This means that the remaining Points 

must come from the set J, K and S. Consider a Line on AIOJ, 

under f ' this Line has the image FHNI. Under the trans

formation?, FHNI becomes EMSH, while, under transformation 
. 
~ , FHNI becomes CHOM. This indicates the presence of six 

Points on the same Line, namely EMSHCO. As this cannot be 

allowed in the geometry, it is clear that J cannot be on the 
;;1..

Line AIO. Suppose, then, the Line is AIOKS. Under t ' that 

is, f followed by f ' this Line has the image EMSIQ, while 
~. ~ 

under f L. , that is, f fa llowed by L- , the image of AIOKS 

is DIPMR. This puts two distinct Lines on Points I and M. 

Therefore, the Line AIOKS must be eliminated. As there are 

no Points compatible with AIO, Point 0 must be dropped from 

the set of Points that might be on AI. This set, then, is 

reduced to Points E, J, K, P and S. 

Next, consider the possibility of Point S being on the 

same Line as AI. Two more Points from the set of compatible 

Points must still be found for the Line AIS. As Points P, K 

and J are already on Lines with S, they cannot be considered. 

This leaves only Point E to be included on Line AIS. This 

Line then would not have sufficient Points to be retained 

in the geometry. Consequently, Point S must not be on the 

same Line as AI. The set of possible Points on Line AI 

now contains only E, J, K and P. 

Suppose Point K is on Line AI. Line AIK could not be 

on Point E since there is already a Line on the pair EK. The 
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only possible Line to be considered, then, would be AIKJP. 

Under f ' this Line transforms to FHJIO. This puts two Lines 

on Points J and I. Therefore, this Line must be eliminated 

and Point K cannot be on Line AI. 

The only Points left, then, to be on AI are E, J and P. 

Is it possible to have a Line AIEJP? In other words, are 

the images of this Line, under the transformations of D6 , 

also Lines? The images of AIEJP, under the elements of the 

dihedral group of the regular hexagon, are FHOIO, EMCHN, 

DLBMS, CKALR and BJFKQ. These six Lines do not include any 

Point pairs already on other Lines. This brings the number 

of Lines to twenty-four. 

Now Point A has been associated with all the Points on 

the inner hexagon. However, there are still some Points on 

the outer hexagon that are not yet on a Line with Point A. 

One such Point is Point O. What Points could be on the same 

Line as AO? They cannot be any of the Points on the Lines 

on A: YAHBU, XFMAT, NAGDQ, AIEJP and CKALR. Other Points 

that cannot be on the Line are those already on Lines with 

0: REGBO and FHDIO. The only Points that remain to be 

considered are Points S, V and W. Is there a Line AOSVW? 

The images of this Line, under the elements of D are6 , 

FNRUV, ESQTU, DRPYT, CQOXY and BPNWX. Under all twelve 

transformations of D the image of this Line is compatible
6

, 

with the Lines already determined. This brings the total 

number of Lines to thirty. 
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Consider this list of Lines to see if they satisfy the 

requirements of the finite geometry. The thirty Lines are: 

ABHUY BCITV CEHMN EFLWY HJRSX 

ACKLR BDLMS CFGPS EQSTU HLPQV 

ADGNQ BEGOR COQXY FNRUV IKNSY 

AEIJP BFJKQ DEKVX GHKTW IMQRW 

AFMTX BNPWX DFHIO GILUX JLNOT 

AOSVW CDJUW DPRTY GJMVY KMOPU 

It is obvious from looking at the first column of Lines 

that the Lines on Point A satisfy these requirements. Under 

the transformations of De' it is guaranteed that the Lines 

on Points B, C, D, E and F also satisfy the requirements of 

a finite geometry. 

Next, consider the Lines on Point G. These are ADGNQ, 

BEGOR, CFGPS, GHKTW, GILUX and GJMVY. These six Lines also 

satisfy the requirements of the geometry. As Point G is its 

own image under each transformation of the dihedral group of 

the regular hexagon, it is in a set by itself. 

Now, look at the Lines on Point H: ABHUY, CEHMN, 

DFHIO, GHKTW, HJRSX and HLPQV. These six Lines satisfy the 

geometry's requirements. Likewise, so do the Lines on Points 

I, J, K, Land M, as they are the images of the Lines on H, 

under the various elements of De' 

Point N and the Lines on it are the next to be considered. 

On N, one finds Lines ADGNQ, BNPWX, CEHMN, FNRUV, IKNSY and 

JLNOT. These Lines satisfy the requirements of the finite 

geometry, as do their images under the transformations of D6 , 

namely, the Lines on Points 0, P, Q, Rand S. 
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The Lines on Point Tare AFMTX, BCITV, DPRTY, EQSTU, 

GHKTW and JLNOT. These Lines and their images under the 

transformations of D that is, the Lines on Points U, V, W,
6

, 

X and Y, all satisfy the requirements placed upon the Lines 

of a finite geometry. 

Therefore, the geometry thus determined by the dihedral 

group of the regular hexagon has twenty-five Points and 

thirty Lines, with five Points on each Line and six Lines 

on each Point. This geometry does satisfy the requirements 

of a finite geometry as formulated by the author on pages 12 

and 13. 

In addition, this geometry also satisfies the axioms 

of an affine geometry. If one considers the set of "horizon

tal" Lines of this geometry, i.e. NTOLJ, YAHBU, SFGCP, XEKDV 

and RWQMI, it is obvious that these five Lines constitute a 

set of parallel Lines. Likewise, the set of "vertical" 

Lines, THGKW, FNRUV, CQOXY, AIEJP and DLBMS, are a second 

set of parallel Lines. Under the transformations f and f ~ 

each of these sets of Lines are transformed into two other 

sets of parallel Lines. These six groups of Lines satisfy 

the last axiom for an affine geometry. Therefore, the finite 

geometry developed is a finite affine geometry. 

Now consider some possible models for this finite 

geometry. To illustrate all thirty Lines on a diagram such 

as figure 6 would be rather tedious and probably not very 

helpful. Therefore, consider the other three models used to 

illustrate the Lines of the nine-Point geometry of Chapter One. 
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Look at the array method first. Consider the horizontal 

and vertical Lines. These two sets, under the transformations 

~ p and f ' determine the other twenty Lines. Suppose one 

constructed an array of the twenty-five Points such that its 

columns indicate the Points on the various vertical Lines and 

the Rows of the array indicate the sets of Points which 

are the horizontal Lines. This array, under the transformations 
~f and ;0 , would lead to two other arrays in which the rows 

and columns would be the other twenty Lines. 

Here is such an array:	 A B H U Y 

E D K V X 

I M W R Q 

J L T N 0 

PSG F C 

Under f and 
.;l 

f' this array determines the following 

two arrays: F A M T X E FLY W 

D C J U W C BIT V 

H L V Q P and M K U P 0 

I K Y S N H J X R S 

o R G E B N Q G D A 

The rows and columns of these arrays do in fact group 

the Points found on each of the thirty Lines in the geometry. 

For those who prefer a "picture" rather than arrays, 

one can construct a lattice structure to impose on the 

hexagons and then assign coordinates under the arithmetic 

of modulo five. 
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Recall that for a hexagon, the ratio of apothem to radius 

is 13 to 2. Consequently, one would have to use a lattice of 

13 X 1 rectangles. Let the origin of the lattice, (0,0), 

coincide with the center of the hexagons, Point G. Let Point 

C coincide with (4,0) on the lattice and Point H coincide 

with (0,2) on the lattice. These provisions will guarantee 

that the Points of the geometry coincide with points of the 

lattice. (See figure 7.) 

, N T 0 I 

1/ 1\ I 

~V A H I B \u 
V I 

1/ ,~ 1\1m I [l

sV fV G 1\ c \ p-
\ I 1\ I V / 

/ 
i-I-

1\ Lf\ 1/ oJ" 

X!:\ ~ ,t<: D ,V V 
I 

1\ I VI 

R 'vJ Q I 

(figure 7) 

Under this lattice, each Point is assigned a unique 

pair of modulo five coordinates: 

A (3,2) F (l,0) K (0,3) P (3,0) U (1,2) 

B (2,2) G (0,0) L (2,4) Q (4, 1) V (1,3) 

C (4,0) H (0,2) M (2,1) R ( 1,1) W (0, 1) 

D (2,3) I (3,1) N (l, 4) S (2,0) X (4,3) 

E (3,3) J (3,4) 0 (4,4) T (0,4) Y (4,2) 
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As illustrated in figure 8, there are many points on the 

lattice with identical modulo five coordinates. If each 

point of the lattice is marked with its corresponding Point, 

an interesting phenomena is observed: the Points found on 

the natural lines of the lattice are in the same groupings 

as on the thirty Lines. 
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(figure 8) 

This relationship between the natural lines and the 

Lines of the geometry enables one to develop an algebraic 

representation for this geometry, based on the lattice model. 
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Let the modulo five coordinates already assigned to the Points 

by the lattice structure be the algebraic designation of 

each of the Points. The Lines shall be the group of Points 

whose modulo five coordinates satisfy a specified modulo 

five statement. These statements would be as follows: 

GHKTW: x :: a (mod 5) CFGPR: y =0 (mod 5) 

FNRUV: x=l (mod 5) IMQRW: y ~ 1 (mod 5) 

BDLMS: x:::2 (mod 5) ABHUY: y~ 2 (mod 5) 

AEIJP: x :: 3 (mod 5) DEKVX: y ~ 3 (mod 5) 

COQXY: x =4 (mod 5) JLNOT: y :: 4 (mod 5) 

ADGNQ: x + y =a (rna d 5) GJMVY: 2x + y= a (mod 5) 

EFLWY: x + y -= 1 (mod 5) BNPWX: 2x + y= 1 (mod 5) 

HJRSX: x + y:: 2 (mod 5) DFHIO: 2x + y= 2 (mod 5) 

KMOPU: x + y:: 3 (mod 5) ACKLR: 2x + y::3 (mod 5) 

BCITV: x + y=4 (mod 5) EQSTU: 2x + y ~ 4 (mod 5) 

GILUX:3x + y~O (mod 5) BEGOR: 4x + y = 0 (mod 5) 

AOSVW: 3x + y =1 (mod 5) CDJUW: 4x + y ~ 1 (mod 5) 

CEHMN : 3x + y:: 2 ( rna d 5) HLPQV: 4x + y -= 2 (mod 5) 

BFJKQ: 3x + y =- 3 (mod 5) IKNSY: 4x + y:= 3 (mod 5) 

DPRTY: 3x + y -= 4 (mod 5) AFMTX: 4x + y :: 4 (mod 5) 

Since every other congruence statement in the form 

ax + by =c (mod 5), where a, b, c are elements of Z5' is 

equivalent to one of these listed, this modulo five system 

has been exhausted by the algebraic representations assigned 

the thirty Lines. 
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Therefore, one can find several ways to represent this 

geometry of thirty Lines and twenty-five Points. In each 

model, there are five Points on each Line and six Lines on 

each Point. There also are six groups of five parallel Lines 

in each model. 

To take a brief look at the concept of distance in this 

geometry, one must first realize that once again distance 

between Points cannot be measured the same way in all 

directions. The Lines group themselves into two categories: 

those which can be transformed, under the elements of D
6 

, into 

horizontal Lines and those which can be transformed, under 

the elements of D into vertical Lines. In the array model
6

, 

of this geometry, these groups would be row Lines and column 

Lines. For the algebraic model, the groups are Lines such 

that 4x + y= k (mod 5), x + y~ k (mod 5) or y:: k (mod 5), 

where k is an element of Z5' and Lines such that x ~ k (mod 5), 

2x + y=k (mod 5) or 3x + y::·k (mod 5), where k is an element 

of Z5' 

Distance could be determined in the same way along 

Lines belonging to the same category designated above. The 

units of measure suggested by the natural geometry of the 

hexagon would be a unit of 1 for the horizontal Lines (and 

the Lines associated with them) and a unit of ~ along the 

other Lines, 

In summary, through the application of the transformations 

of the dihedral group of the regular hexagon on two concentric 

regular hexagons with radii in ratio 1 : 2, there can be 
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developed a finite geometry of twenty-five Points and thirty 

Lines. Within this geometry, there are five Points on each 

Line and six Lines on each Point. This geometry satisfies 

the axioms of a finite affine geometry. 

The axioms of this geometry developed in Chapter Two are: 

1. There are exactly twenty-five Points. 

2. Every two Points determine exactly one Line. 

3. There are exactly five Points on each Line. 

This geometry can be illustrated on a lattice of 13 X 1 

rectangles on which the Points are assigned to the lattice 

points by way of repetition and the Lines are represented 

by the natural lines on the lattice points. 

Another model for this geometry is the use of algebraic 

representations suggested by the lattice model. The modulo 

five coordinates assigned the Points in the development of 

the lattice structure represent the Points while modulo 

five congruence statements represent the Lines. 

The array model for this geometry differs somewhat from 

that of the nine-Point geometry of Chapter One. The twenty

five Point geometry requires the construction of three 

five-by-five arrays of letters representing the Points. The 

rows and columns of these three arrays represent the Lines 

of the geometry. 

Once again, that which is most characteristic of this 

twenty-five Point, thirty Line geometry is that it is the 
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finite geometry associated with the dihedral group of the 

regular hexagon. 



Chapter Three 

Generalizations to Geometries Associated 
With Dihedral Groups of Regular Polygons with 2n Sides 

For a regular polygon with 2n sides, the associated 

geometry is based on the dihedral group of order 4n. This 

group is defined by the following relations: f 2n = 1.. 2 = Cf l)2 

= I, where f is a rotation of 180jn degrees about the center 
. 

of the polygon and ~ is a reflection about the vertical 

line of symmetry. The elements of this group are in the 

m'nform f L , where m = 0, 1, 2 J ••• 2n-l and n = 0,1., 

For a regular polygon of 2n sides, the associated 

geometry must have the 2n vertices, the 2n midpoints and 

the center as Points. So, the minimum number of Points in 

the geometry is 4n + 1. If these 4n + 1 Points are not 

sufficient to satisfy the requirements of the geometry, it 

is necessary to add more Points. However, since the 

image of a Point must itself be a Point, under all elements 

of the dihedral group, and every Line must have the same 

number of Points, another 2n-gon must be added to the 

diagram. This polygon should be concentric with the first 

and its radius should be twice as large as that of the 

first polygon. With the addition of this polygon, there 

have been added 4n Points to the geometry--2n vertices and 

2n midpoints. Continuing this process, it is clear that 

the number of Points to be included in the geometry is in 

30 
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the form k(4n) + 1, where k is the number of polygons. It 

has been shown that for n ;;: 2, k = I' for n = 3, k ;;: 2., 

The number of Points found on the natural lines is 

clearly dependent on the number of concentric polygons 

invol ved. For, while there are k polygons, the maximum 

number of Points on a natural line is 2k + 1. As the geom

etries associated with dihedral groups are to involve only 

essential Points, the number of Points should be kept to a 

minimum. However, each such geometry should have a unique 

number of Points on a Line. This suggests that the number 

of concentric regular 2n-gons be different for each type of 

polygon, namely n-l polygons of 2n sides. This implies the 

imposition of n-2 polygons about the original 2n-gon, such 

that all the polygons are concentric and the radius of each 

additional polygon is double that of the previous polygon. 

The Points on these polygons are so situated that there 

are, at most, 2n-l Points on each natural line. This suggests 

that Lines be fixed groups of 2n-l Points. This suggestion 

is compatible with the three Points on a Line in the geometry 

associated with D
4 

and the five Points on a Line in the 

geometry associated with DB' 

Therefore, let it be conjectured that: 

1. n-l concentric regular 2n-gons are to be used in 

developing the finite geometry associated with the 

dihedral group of order 4n. These concentric poly

gons are to have radii in ratio 1 : 2 : 4 : 2n - l 

and 2. The number of Points on each Line in such a 

geometry is 2n-l. 



On the basis of these two conjectures, it is possible 

to prove several statements about the geometry associated 

with D
2n 

, 

Statement 1: The number of Points in the geometry is 

(2n-l)2. 

On each of the n-l concentric regular polygons, 

there are 2n vertices and 2n midpoints, each of 

which is a Point. These 4n(n-l) points and the 

center are all the Points of the geometry. Since 

2 24n(n-l) + 1 = 4n -4n + 1 = (2n-l) , there are 

(2n-l)2 Points in the geometry. 

Statement 2: The number of Lines in the geometry is 

2n(2n-l). 

The (2n-l)2 Points can be arranged in 

(2n-l)2 [(2n-l)2-1] ordered pairs of different 

Points. As order is not of consequence in this 

2 2
geometry, there are (4n -4n + 1) (4n -4n)/2 

= 2n(n-l)(2n-l)2 Point pairs to be considered. 

As every Line consists of 2n-l Points, there are 

(2n-l)\ 2 = (2n-l)(2n-2)/2 = (n-l)(2n-l) pairs of 

Points on each Line. Therefore, there are 

[2n(n-l )(2n-l)2] .: [(n-l )(2n-l)] = 2n (2n-l) unique 

Lines in the geometry. 

Statement 3: The number of Lines on a Point is 2n. 

Select one of the (2n-l)2 Points of the geometry. 

2The remaining 4n -4n Points must each be associated 
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with this Point on exactly one Line. There are 

2n-2 other Points on each of these Lines. These 

2n-2 Points are unique for each Line. Therefore, 

2there must be (4n -4n)/(2n-2) = 2n Lines on this 

Point. As the Point was selected arbitrarily, 

there must be 2n Lines on each of the (2n-l)2 

Points in the geometry. 

The patterns found in the development of the finite 

geometries associated with the dihedral groups of the square 

and the regular hexagon suggest several ways to arrive at a 

model for the geometries associated with the dihedral group 

of a regular 2n-gon. 

As there are (2n-l)2 Points, these Points can easily be 

accommodated in a square array (2n-l) X (2n-l). The 2n(2n-l) 

Lines of the geometry should fall into 2n groups of parallel 

Lines with 2n-l Lines in each group. This allows for each 

Point to be on one Line in each set of parallel Lines. The 

2n groups of parallel Lines should fall into two categories: 

those that transform in to I' hori zon tal" Lines under the 

elemen ts of D (where a "horizon tal" Line is one whose2n 

Points fallon natural horizontal lines), and those Lines 

which do not transform, under the elements of the dihedral 

group, into horizontal Lines. There should be n groups in 

each category. 

In the square array, assemble one set of horizontal 

Lines as the rows of the array and place one set of non
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horizontal Lines as the columns of the array. This array, 

under the transformation f ' becomes a second array in which 

the rows are a second set of horizontal Lines and the columns 

are a second set of non-horizontal Lines. Under repeated 

applications of the transformation/, ' there can be developed 

a total of n arrays which illustrate the 2n sets of parallel 

Lines and thereby indicate the Points On each of the 2n(2n-l) 

Lines. (It is precisely because of this evolution of Q arrays 

that this discussion has been limited to finite geometries 

associated with dihedral groups of regular 2n-gons. Should 

an odd-sided polygon be the basis of the dihedral group and 

finite geometry, this type of model is not applicable.) 

As illustrated in Chapter Two, as the geometry increases 

in size, the determination of the Points on the individual 

Lines is more tedious. But, if the natural lines are used 

as guides, this is not impossible. The construction of the 

model for the larger geometries is aided by consistent 

reference to the concentric polygon configuration on which 

the geometry is based. 

It is of interest to note that if a Line of 2n new 

Points is added to one of these geometries, a new type 

of geometry is formed--one in which two Lines always 

determine a Point. The incorporation of the new Line and 

new Points is achieved by adding the first new Point to 

each Line of one set of parallel Lines, then adding the 

second new Point to the Lines of a second set of parallel 

Lines, and so on, until each new Point has been added to 
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the Lines of one set of parallels. Thus, each of the 2n(2n-l) 

Lines have received another Point. This brings the total 

number of Points on each Line to 2n, including the Line on 

all the new Points. The number of Lines in this new 

2geometry is 2n(2n-l) + 1 = 4n -2n + 1.	 The number of Points 

2in the new geometry is (2n-l)2 + 2n = 4n -2n + 1. Note that 

the number of Lines in this geometry equals the number of 

Points. Thus, it is possible to create a projective geometry 

by adapting a finite geometry based on the dihedral group of 

an even-sided polygon. 

Therefore, in summary, if the number of concentric 

regular polygons of 2n sides is n-l and each polygon has a 

radius twice that of the one smaller than itself, it is 

possible to develop an affine geometry associated with the 

dihedral group of order 4n, in which there are (2n_l)2 

Points and 2n(2n-l) Lines, with 2n-l Points on each Line 

and 2n Lines on each Point. There will be 2n sets of 

parallel Lines, with 2n-l Lines in each set. The geometry 

thus developed will satisfy these axioms; 

1. There are exactly (2n-l)2 Points. 

2. On every two Points, there is exactly one Line. 

3. There are exactly 2n-l Points on each Line. 

A model of n square arrays can be designed for each of these 

finite affine geometries. 
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In addition, these geometries can be changed into 

projective geometries in which two Lines always determine 

a Point, by the incorporation into the geometry of one Line 

of 2n Points. 



Chapter Four 

Relationships Between the Geometry
 
Associated with D2n and the Subgroups of D
2n 

As stated in Chapter Three, the dihedral group of a 

regular 2n-gon is a group of order 4n, with defining 

2n ' 2 . 2
rela t ions f = L. = (fl.-) = I. The subgroups of this group 

must be of orders that divide 4n. The subgroups that are 

of special importance in the development of the related 

geometry are a normal subgroup of order n, SG = {I, f 1.-, 
n
 

4 ,)IIJ-:J..) f '2

f , ... 'f I, and one of order 2n, SG2n = (I, f ' P ,
 
.:IN-I l ... , f . These two subgroups are essential to the 

evolution of the geometry. 

For example, the dihedral group of the regular hexagon 

is of order twelve. The elements of the group can be 

generated by the transformations f' a rotation of sixty . 
degrees about the center of the hexagon, and L, a reflection 

about the vertical line of symmetry of the hexagon. The 

defining relations of D are f 6 = L2 = (f{)2 = I. All elements
6 

of D
6 

can be written in the form pm ln, where m = 0,1, ... ,5 

and n = 0, 1. Proper subgroups of this dihedral group can 

be of order 2, 3, 4 or 6. D has thirteen proper subgroups-
6 

)" ";L 3 J/- =>1two subgroups of order 6: 2. I, P , fJ 'f ' f ,p an d 
A J/ , 1 . '

L ,~I, f 'f ' 1.-, f I,. S ' 

three subgroups of order 4: 
~. 3 --1il,lI,(~, L 

S' .3 ;1.., 5 (. f~land(. I, f 'f L, f L 5 l I, f3 , P L. , /' L), 
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5 :J.. ~ 2. 
one subgroup of order 3: (I,p 'f S and
 

c 32
seven subgroups of order 2: I, f S, , I, L 1 , 

3Z[I, fl ~ , i I ,p~L ~ , ~ I 'f t I ,Ilt~ and 

(I .1f,;
2 'f! L.i 

Two of these subgroups, both of them normal subgroups, 

are of special import in the development of the associated 
:L .l/ ) 

geometry for De' These subgroups are SG = 3 iI'l 'f J 
~ 3 ;.f. 5)

and SG = [ I, /r'.J The role of these twoe '/'f'!'! ~ 
subgroups in the development of the twenty-five Point geometry 

is illustrated in the paragraphs that follow. 

The minimum number of Points in a geometry associated 

with the dihedral group of a regular 2n-gon is 4n + I, The 

Points upon which this is based are the center, one vertex 

of the 2n-gon, one midpoint of a side of the polygon and their 

images under the elements of SG2n , The center is its own 

image under all the elements of SG2n , the vertex has 2n images, 

including itself, under the transformations of SG as does2n , 

the midpoint. In the twenty-five Point geometry, the set 

of images of A, Hand G under the subgroup [I, f P
:J-

, ... , f 
5') 

~ J 

is A, B, C, ... , M. This is the set of Points on the inner 

hexagon, thirteen Points in all. 

The total number of Points in a geometry associated 

with D is (2n-l)2 = 4n(n-l) + 1. These Points are the set2n 

of images of a vertex and a midpoint from each of the 

concentric polygons and the center, under the elements of 

SG2n . Once again, the center is its own image under all the 
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transformations. Each of the other 2(n-l) Points has 2n 

distinct images, including itself. Therefore, the total 

number of Points in the geometry is 4n(n-l) + 1. In the 

twenty-five Point geometry, the entire set of Points can be 

determined by finding the images of the Points A, G, H, Nand 
:L 3 

T, under the transformations of the subgroup I,? I{J''f 

"" 5'ff ' f -J • 

All the Lines of the geometry based on D can be found2n 

by looking at the images of several lines under the trans

formations of SG The Lines on the lines of symmetry have2n . 

n images, including themselves, since order is not of 

consequence in the geometry. All other Lines of the 

geometry have 2n distinct images under the elements of SG2n . 

Therefore, it is necessary to consider the images of 2n Lines, 

under the transformations of SG to develop the entire set2n , 

of Lines for the geometry. For example, in the twenty-five 

Point geometry, Line SFGCP has only three images under the 

5 2- 3 4 5 
elements of SG6 = !.. I, f ' P , P 'f 'f 1 ' namely SFGCP, 

REGBO and QDGAN, and Line THGKW has only three images under 

the elements of the same subgroup, namely, THGKW, YMGJV and 

XLGIU. Every other Line has six images under these elements. 

In this way, all thirty Lines of the geometry can be deter

mined from six Lines, for example, SFGCP, THGKW, NTOLJ, 

TAMFX, AIPJE and NFRUV, under the elements of SG
6

, 

The Lines of the geometry based on D have 2n sets of2n 

parallel Lines. These parallel sets fall into two categories: 

those that can be transformed, under elements of D into
6

, 

horizontal Lines and those that cannot. If one set of each 



of parallel Lines can be determined under the elements of 
. 2- 4- ~.:Jl\) -::L.., 

SG or the elements of SG ~ I, f f ,"', f _t . TheJ2n n 

latter subgroup is preferable as it does not generate any 

duplications. If the larger subgroup is used, the elements 
N ",+1 ;J.JtJ - f 

,[/ ,~ , ... , generate duplicates of previous images, 

This may be avoided if the subgroup SG is used. This 
n 

illustrates why n arrays are sufficient to identify the 

entire geometry. While it was suggested in the previous 

chapters to develop the n arrays through consecutive appli

cations of the transformation f the arrays could beJ 

generated, in different order, through repeated application 
~ 

of ;0 , the generator of SG ,n 

Therefore, the subgroups of the dihedral group of a 

regular polygon with 2n sides are essential to the develop

ment of the associated geometry. The use of the elements 

of the subgroups generated by F and (Y 
~ 

simplify the 

development of the sets of Lines and Points, as well as 

the determination of the sets of parallel Lines. 
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type of paralle] Lines is determined, the other 2n-2 sets 



Chapter Five 

Conclusion 

This thesis has defined the term "geometry associated 

with the dihedral group of a regular polygon." It is that 

geometry with the minimum number of points necessary to 

satisfy the following conditions: 

1.	 The points intrinsic to the polygon and to the 

group of transformations of the polygon onto itself 

are included in the points of the geometry. 

2.	 The lines of symmetry of the polygon are included 

as lines of the geometry. 

3.	 The image of any point (or line) of the geometry is 

itself a point (or line) of the geometry. 

4.	 The geometry must satisfy the five axioms of an 

affine geometry. 

Two such geometries, one associated with D and the
4 

other with D have been developed in detail. It has been6 , 

indicated how to develop the associated geometry for the 

dihedral group of any even-sided regular polygon. The case 

of the odd-sided regular polygon has been left for future 

investigation. 
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