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Preface

The sole purpose of this work is to help the reader gain a precise,
clear cut, indepnth understanding of the principle of mathematical induc-
tion., To reach this end it is necessary that you, the reader, have {1) a
fundamental knowledge of set notation and theory and (2) a working knowl-
edge of functions and sequences. The first shall be assumed, since
fundamental set theory is basic to mathematics and should be common knowl-
edge to one interested in a concept of the magnitude of induction. The
second, a working knowledge of functions and sequences, shall be afforded
an introduction and brief review.

Therefore, the body of this work will consist of three chapters.,
Chapter One includes the necessary introductory material and a brief
discussion on the meaning of induction and its importance, Chanter Two
will present finite mathematical induction, implementated with demonstra-
tions of its uses and applications through examples, Chapter Three will
discuss transfinite induction through a similar format.

As you proceed through this work, realize that the beauty of
mathematical induction is that it is not derived fram experience, but
rather it is an inherent, intuitive, almost instinctive property of the

mind,
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Chapter One

A Beginning

To camprehend mathematical induction, one mast possess a fundamental
knowledge of set theory, functions and sequences, since these topics are
essential to the discussion of the concept of mathematical induction. In
fact, these topics are employed in the very definition of the first prin-
ciple of mathematical induction.

Therefore, to insure a solid basis for and full understanding of

this work, the following introductory material is briefly presented.

SECTION 1: Sets

2 fundamental knowledge of set notation and theory is hasic to
mathematics, and is assumed to be comon knowledge to one interested in
a concept of the magnitude of induction, Thus there shall be no formal
presentation here, The student interested in reacquainting himself with

the set concepts may find reference to Flora Dinkines' Elementary Theory

of Sets helpful, or any of several other works on basic set theory. (3)

SECTION 2: Functions and Sequences

The discussion of functions is dependent on the ideas of (1) ordered
pairs and {(2) relations, which are directly involved in its definition.
Therefore the discussion shall begin with the definition of ordered pairs,
follow through an operation on ordered pairs known as the Cartesian

product, and culminate with a discussion on relations, functions, and

sequences,



First consider the concept of ordered pairs of numbers.

DEFINITION: An ordered pair is denoted by (%,y) where x is called the

first coordinate and y is called the second coordinate. (13, p.3)
DEFINTTION: The ordered pair (x,y) equals the ordered pair (u,v) if and

only if x=u and y=v. (13, p.3)

Therefore, an ordered pair is a set of two numbers in which order
is important, for example: (4,5) # (5,4).

Secordly, consider an operation which yields ordered pairs when
performed on two sets.

DEFINTTION: The Cartesian Product of two sets A and B (symbolized A x B)

is the set of all ordered pairs having the first coordinate fram
set A and the second coordinate fram set B. (8, p.70)
The Cartesian Product of A and B where A = (1,2,3) and B = (a,b) is
the set of ordered pairs:
AxB= {(l,a) . (1,b),(2,a),(2,b),(3,a), (3,b!}
Now, with the knowledge of the above definitions, the following
definition of relation should be more easily camprehended,

DEFINITION: A relation from a set A to a set B is any set of ordered

pairs in A x B, The set of first coordinates in a relation is the
damain, The set of second coordinates in a relation is the range.
(8, P.71)
A relation, then, is a rule which relates elements of the domain
with elements of the range, The relation less than on the two sets {0,1,2}
and {1,2} vields the set of ordered pairs: {(0,1), (0,2), (1,2)} since 0el,
0€2, and 1<2,
By computing A x B where A={0,1,2} (domain) and B= {1,2} (range),
one obtains:

axs= {(0,1),00,2),1,1),01,2),(2,1,(2,2}.
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It is seen that the rolaticon 1oss than yiolds a set of ordered pairs con-
tained in the larger set M x 5, therchy satisfying the definition of a

relatiorn,

wWith relation defined, the final step of a series of definitions
that leads to the important concebt of a function, is camlete.
DEFINITICN: A function F is a relation in which no two ordercd pairs have

the same first occordinate and different second ocoordinates. (3, p.§2)

The set of ordered pairs {(O,l), 1,2, (2,3)} is a function; hoor-
ever, Z’(O,l), n,2), (1,3)} is not, since 0 has two different second
coordinates, 1 and 2. In rore formal terms, a function I' is a rule that
associates with each element ¥ in the domain a unique elemont y in the
range. This unique element y is often denoted by F{x), rcal "I of x".
Fi{x} or v is called the image of x under F,

The function or rule y=x°, with a domain D={x|x&Reals if;, has a
range consisting of a set of non-negative real nunbers, and F(0)=02=0=Y:
so (0,9} is an ordered pair of the [unction, as is (1/2,1/4), (~1/2,+1/4),
(3,9), and (-3,9).

The definition of a sequence in terms of a function is supplied
balow:

DEFINITION: A sequence is a function whose dorain is the set of positive

integers Y. {13, p.5)

The value of the sexquence S at n, where n is an element of the
positive integers N, is denoted Shs and is called the nth term of the
sequence. So the ordercd pairs of this special function would he of the
form (n, 5.), vhere n is some element of the domain of positive integers

n

and S, is the value of n under the given rule S, However, since the darein



of a sequence is always the set of positive integers, it is often

written{S {rather than f{in,s))} .
The sequence {‘;‘1'} can be denoted as {(n,'l!i)} , where n is an
element of N, and the terms of the sequence are';",'i',j'.'%.... The

fifth term of this sequence would be the value of this secuence vhen n=5,

that is: S, = 1/5.

In finishing, this presentation was meant as a brief review of
fundamental terms involved in the discussion and understanding of math-
metical induction., It was not intended to be a detailed or comprehensive
study of the above terms. If more detailed discussion is necessary for
fuller camprehension of the above subjects, then it may be helpful to

refer to Fundarental College Algebra by Mervin L. Keedy. (8)

SECTION 3: The Mystic Undertaking of Mathematical Induction

The principle of mathematical induction provides one of the most
powerful methods of proof availahle to the mathematician, Its applications
are widespread, touching areas of math from algebra and geometry to trig-
onometry, Its application in the definitions of certain mathematical
concepts allows a level of clarity and precision which would be otherwise
unattainable. Mathematical induction is, in fact, invaluable, for it
supplies a process of proving which eliminates the necessity for veri-
fication for all rositive integers. Yet induction fought a long embit-
tered battle for recognition as an acceptable method in “higher" science.

In 1739, David Hume's A Treatise of Human Nature questioned the

world as to the validity of induction as a plausible means of inference
for the higher, nure sciences, His skeptical problem about the future,

often called the nroblem of inxluction, stated in short that: "Our



axpestations are formed by omstoms an? habhit, hut lacr Snetification.”

(4, p.176) Cleosely related is the skeptisa) problem abonut reneralizations:
“Can amy nuber of obsrrved instances, short of a complete survey, over
make it reasonahls to bnlisve a generalization?" (4, p.176) THMine there-
fore stated the doubt that any ncourrcnee could be "fully" oroven mntil
every case had been checked., Tris method, however, was stifling and pre-
posterous, for in dealing with the infinite as mathematics often does, it
is impossikle to verify covery case.

Through years of study, and with the help of great mathematicians
such as Blaise Pascal, (1623=14¢62), Pierre de Fermmat, (16N1-1065}, and
Jacolb Bernoulli, (1€54-1703), the beginning of mathematical induction had
already bequn to form when Hume completed his famous Treatise. But its
acceptance into the higher sciences had to wait until the 17th century.
it was during this time that Guiseppo Ieano, (1858-1232), stated his
famous firth axiom, Peano's Axiomns were meant as an axiomatic basis for
the natural nunders, and Peano's fifth axiom is essentially the first prin-
cinle of mathematical induction.

Peano's axiomatic approach (paired with and camiled on others'
achuevements) took mathematical induction from an inductive process to a
methaxd of deductive proof. The inductive nrocess involves mere conjectures,
or incomplete induction, from which properties of tlhwe positive intcyers
may be discovered, but not assumed true without proof. However, the
accepted form of mathematical induction is a rigorous method of deductive
proof that eliminates the necessity of verification for all positive
integers. Mathematical induction literally takes tlwe step from inductive

assumption to deductive fact.
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Jules !enri Poincare, (1854-1912), a fampus French mathematican,
put it best when he said, ".... at once necessary to mathematics and
irreducible to logic, Mathematical induction is not derived from exper-
iences, rather it is an inherent, intuitive, almost instinctive property

of the mind. Uhat we have done, we can do again." (7, p.5)



Chapter Two

I'nite Induction

With the building blocks supplied, and an insight into tae history
and development of induction, the first principle of mathematical induc-
tion is at hand.

The first principle of mathematical induction can be proven by
application of the well-ordering axiom for the positive integers, or it
may be stated as an axiom. Guiseppo Peano chose to state the first prin—
ciple as his fifth axiam; this approach shall be examined in Section 2 of
this chapter. Immediately ensuing is a proof of the first nrinciple of

mathematical induction using the well-ordering axiom.

SECTION 1l: The Well-ordering Axicm
The concept of order in mathematics is defined as follows:
DIFDIITICH: A set X is ordered if for everv »x and y in X, aither x€y or
v&x. (2, p.54)
Thus the natural numbers are ordered, hecause for any two elenents
of the set chosen, one is either less than the other, or they are equal,
o Further property of the set of natural numbers is that it is
well ordered.

WELL-CRDFRTNG PRIMCIPLE: 2An ordered set is well-ordered if and only if

every non-ampty subset has a smallest element. (1, p.213)

Therefore there exists an element L for every non-empty subset of
anv well-crdered set such that: L<x for all x an element of the well-
oriered set, In the sct of natural nunbers, I, would exmual 1, since 1=<x

no matter what other element of the set is chwosen for x.

(a8}



Examples of scts biat are not well ordered [i.e. contain no least

elcment in the set) are:

T = {xlx is an element of ratiomals, O<x<-l}

S {xlx is an element of negative integers, x<—l}

,j The following proof is presentod as an illustration of the Tell-
ordering axiam, and a demonstration of using it to prove a staterent
about the natural nurbers,

STATHMINT: For every natural mumber n, 2 is a factor of n- +n

PROCE: Let P(n) denote the open sentence "2 is a factor of n® + n",
ILet S be the set of all natural numbers X such that I'(x) is false,
Therefore if x is an element of S then 2 is not a factor of x% + x. The
approach to this proof lies in the fact that if the set S is empty, then
the statemant must ne true for all natural mubers n. Thercefore use a
proof by contradiction, and assuwe that S is not emoty,

If 5 is not ampty then by the well=ordering Axiom there exist a
smaliest alement t in S, ilence, t iy the smallest integer such that 2 is

-
“ 4+ 1=2has 2 as a factor, then

not a factor of t° + t. Since P(l) = 1
t>1. Furthermore, P(t-1) = {(t-1)2 + {t-1) has 2 as a factor, sincc

+ = 1<t and t is the smallest integer such that 2 is neot a faceor of s =
t* + t, Sincc 2t has 2 as a factor (it is cwious 2 Aivi‘es 2t p oo s

of {({(+=1Y- + (=1} + 2t must have a factor of 2 {tiils holds since

2% + 2y = D{xty) is true for all natural munbers;. But (t—-l)2 + =i
+2b =t -2+ 1+ t-1 + 2t =t2 + t, Therefore, t2 + t has 2 as a
factor, this contradicts the assumption that 2 is not a factor <f t- + <,

Thus, the conclusion is that there oxists no smallest integer t

(&1

1 -~ : 2 .
such that 2 1s not a factor of P(y) = = + £; the set

L2
|_J
i
{3
e
T
fot
-
1)
7
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is a factor of I'{n) = 1~ + n fo1r every wositive integer n, 112, oW

’;
The Firet Trinciple of Mathematical Invluction as a Theorer

In situations where mathematical induction is applical.le, thicrc

a une—-to—-one correspondence betweon an infinite set of statoments,

and the natural nubers n,
For exatple S, is the statement:

- ]
g 1 +3+5+ e« « o+ (2nn=1) = n*

“n

Then for cach natural mmber n thern exists a staterent Spr 28 follows:

Spp 1=17

[49]
Ll
-y
._l
+
[
+
(83}
i
(o)
1

g8 1L+ 3+ 5+ 7 =14% etc,
Concurrently, since a saquenze is a function, then segquence and Junction
notation may be interchanged, thercfore the above may be restated

equivaiently as:

P(1): 1+ 345+ «++ (2n-1) =n>
P(l): 1L =1-
B(2): 1+ 3=2°
2
F{3): 1+ 3+ 5 =37
D(4): 1+ 3+5+ 7= 4%, etc,

This is sirply concurrent synholism and should not confuse the reader.

The statements Sy (02 P(n}) can not be proven for all natural

mmbers n 1y validating a few cases, nor even by validating a vast nuher
of instances, for this does not irmly that cvery case holds truc. In
fact, this would Le incorplete induction. Consequentially, the need for
a method of proof arises wich does not necessitate the validation of
The rethod kncem as

ery case. mathematical induction satisfics this

n&.':\_':_'-i. -
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Mathematical induction is used to nrove a statement of the type:
For every natural number n, S is true. Even more specifically,
to prove that all of the following are true:
Sys Sas Sgs Sge t0v, Sy e
The following principle of mathematical induction can be used for
such a proof, and is presented along with a proof of the principle by
way of the well-ordering axiam,
THROREM: Iet P(n) be a function over the natural numbers, and assume
the followings
(a) P(l) is a true statement
(b) For any natural number k=21, if P(k) is true then
Pk + 1) is true.

Conclusion: P(n) is true for every positive integer.

Iet S ={x 1l x is a positive integer and P(x) is a false statement} .

Assume S is not empty, then by the well-ordering axiam there exists an
integer t in S which is the smallest; that is, t is the least positive
integer such that P(t) is false., By hypothesis (a) P(1) is true, thus
t#1., Furthermore P(t ~ 1) is true since t - 1<t and t is the smallest
integer such that P(t) is false.

By hypothesis (b), since P( t-1) is true, then P( (t-1) + 1) is
true; that is P(t) is true. This contradicts the statement that P(t) is
false, Thus, the set S must be empty, and therefore P(n) is true for
every positive integer. (13, p.l1l0)

Fram the abhove theorem, the first vrinciple of finite induction

may be more clearly stated:
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PRINCIPLEY OF "ATHIZWANTICAL IrDUCTIO]: Tet Sy {(or P (n)) he a statement

for all natural numbers n, and show:
{a) PRasis Sten: Sl is true (or: P(1l} is true)
(b) Induction Step: Tor all natural mumbers k, if 5, then
Sk41 {or: If P(k) then P(k+l))
Conclusion: S, is true for all natural mmbers n (or: P({n) is true for
all natural murbers n).
According to the theorem then, to prove S, is true, one must show
(@) 51 is true and (b) assuming Sy, show Sy 1s true.
To see this more clearly, suppose hoth parts of the proof are com—

pleted, resulting in the following endless sedquence of statements:

S1 Basis Step
S7?S» These can be calculated ur to any value
59953 of n an elerent of the natural nurbers, however,
5325, cannot he assumed for values greater than n.
522541 Induction Step

. This ster allows the conclusion, using the axiom

or princinle of induction, that S is true for the
remaining cases greater than the n calculated
(i.e.: true for all natural mmbers}.

An illustration of the first principle of mathematical induction
follows:
STATFMFIIT: For everv natural number n,

1+3+5+7++ 9%+ (2n=-1)=n?
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Spelf L+ 345+ 7+« « o+ (D=1 = (kt1)?

{a) Basis Step: 5yt {(2(1)-1) 2 -1
=1

12

i

thorefore true for 9.
(1) Induction Step:
Assure Sp: 1+ 34+5 4 -« o 4+ (2?{—1)‘:!:2
Dnduce Sppgt 1+ 3+ 5+ o« o 4+ (2k=1) + (2(tlj=1)={k+1}
(1) 1+3+5+ .+ «+ (2k=1) = k?

(2) L4+ 3+ 5+ ¢ o o+ (2k=l)+(2(kH1)=1)=k2H (2 (k41)~1)

(3) =42 2% 21
{4} = +ke
(5) ={k+1) 4

therefore by adding (2 (k+1)-1) to hoth sides of S and simplifying the
right hand side, one deduces or arrives at Spyj.

Since S is true for 8y and for 4y when &, assumed, then by
mathepatical induction 5, is true for all natural numxrs n.
SDCTIAN 3: The First Principle of Mathematical Induction as an Axiom

As is stated in Section 1 of this chapter, the first principle ol

8

mathematical! induction may be proven by way of the well-ordering adom or

may be stated A3 an aiiom.  The difference betwesn these two choic:s is
pedagogical, since it can Le proven that the well-crdering axion an? th

first principle of matheratical inducticn arc egquivalent statciwents) tiac

iz, they irply one anothar.

o



It is in the study of the natural numbers that the princionle of
mathematical induction is applied as an axiom. Guisenpo Peano constructed
an axiomatic structure for the natural numbers, laying down five axioms,
which were to become known as Peano's Axiams. The fifth of these axiams,
of which a simplified form is supplied below, is essentially the first
principle of mathematical induction.

Axicm I 1 is an element of N where N is the set of natural

nmbers.

Axiom II: To each x an element of N there corresvonds an unicue
element x* an element of N called the successor of X.
x'=x+4+1)

Axiom ITII: For each x an element of N there exists an x'# 1,
that is, 1 is not the successor of any muber.

Axiom IV: If X,y are elements of N such that x' = y', then x=v.

Axiom V: Let S be a set of elements of M. Then S=N orovided
the following conditions are satisfied:

(1) 1 is an element of S
{(2) If x is an element of 35, then x' is an element
of S. (9, p.46)

These assertions came to be "considered as the fountainhead of all
mathematical kmowledge., Fram them it is possible to define integers, ra-
tional numbers, real numbers and camplex mmbers, and to derive their
usual arithmetic and analytic properties.” (5, p.47-48) 1In this work,
the applications of Peanco's fifth axiom are of immediate importance. The
proof of the case below differs little from that presented when math-

ematical induction was proven as a theorem.



STATHMENT: For every natural numer i,

1+24 3+« +ns=n (ml) /2

It

S1: 1 =1(2)/2
Sps 1+ 2+ 74 0 o o4 (kHl)/2
Spg1 L+ 2+ 3+ 0 o o+ (KL} o (k+141) /2

PROCF: Define S by 5= {klk is an element of N and 142+ «+k=k (k+1)/"}

(a) DBasis Step: Sy: 1= 2/2

I

1(2) /2

1(1+1)/2
therefore true for Sp.
{b) Induction Step:
Assume S : 1474 s o +k=k (k+1) /2
Deduce: 5 11 142+4eeotkt (k+1)=(k+1) (k+141) /2
={k+1) (k+2) /2
{1) Add k+l to both sides of Si:
142434 o et (L) =k G54+1) /24 (k+1)
(2} Factor cut k+1 and find a comwon denominator for the
second term:

=(3+1) { (x/2)+1})

(k413 ((k/7)+(2/2))
=(k+1) (k+2) /2
therefore by assuming 5;, Sk41 can be deduced.
Therefore =l by Peano's fifth axiam, Since S is the set of all natural

nunbers for which the statement is true, and since it has been proven S=i,

then the proposition is true for all natural numbers.



SECTICI 4: Danger

Sefore proceeding with this Adiscussion of mathenatical induction, &
warning should be given, Mathanatical induction is a beautiful avd power—
ful tool of mathematics, It provides methexds of proof, means for verifi-
cation of forrmilas, and a clear cut precisc way of defining certain
mathematical concepts, which is discussed in Section 7. Yet mathematical
induction is very dangercus, for it is easy to nisuse.

It must always be remerbered that rathematical induction is a two
part method. The order in which these two parts are verified is not
significant, but the verification of aach separately, is the crux ¢f an
inductive proof.

ne nust always verify that the proposition, or formuila, under
scrutiny is true not only for the least integral value of n for which it
holds, but also for any value n=k+l, assuming r=k is true. (This idea is
expounded upon in the coming section.) Then and only then will the prog-
osition be true for all natural numbers n.

1f, for example, one performs the basic step of an inductive vreci,

A finds it true for any number of natural nuber valiuwes, but neglects
to perform the inductive step, then that proposition still remains unveri-—
fied. The best one can offer from this is a conjecture as to the naturc
of the proposition. Examples in which the basis steps can be shown, jun
the inductive stoeps are impossible to daonstrate are:

x 3 < s . - .
(1) 244+04eee+2n = n3-5n"+12n-6 whic- is true for 1,2, and 2,

o
o
rr

fails for n=4.

(2) n< =n

(3) x%+x+4l is a prime nuber,

similarily, if one donconstraves the inductive step, but rails to

perforn the basis step, then the proof is incomlete., The best one can



offer from this situation, is a case of incomlete induction. Bwamples

of thest types are:

(1) 1+2434eeain=1/Dri{ntl)t2

(2} i%=x+7
which holds for the 4yemeral case or irductive step, yet no value of n
makes the proposition true——-try a few!

In conclusion, one of the two steps heing true, Aoes not constitute
a proof for all natural numbers n, DIceth cases must he shown for an induc-

ive pronf; otheryise, one is just conjecturing or performing incomlele

induction.

SECTION 5: Inductive Variations

(9T

Witi, the discussion of the first principle of induction completed,

the text vill now advance into a disoussion of variations of this hasi

0

principle, Three such variations will be discussed, and reasons for their
existence will be supplied.

The first principle of induction iz repeated here for ease of
refersnce in cormarison to the given variations,

FIRST PRUCIPLE OF MATHEMATTCAL TNDUCTION:

1et Pi{n) Le an open sentence about natural munbers al assune the
Followings
{a) P{l) is a true statement
fl:) For any integer k=21, if Pk} is true then
P{t+l) is true.
Conclusicn: P{n) is true for every natural number. (13, p.l2;

Jariation I:

The first variation cames about vhen one is confronted oith an open
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sentonce {n) such that Pi{l} is false, P(2) is false, an” P&} i

£
J
81
L

if t is an integer loss than sore intog2r ap hawever, P(n) is tr
every intoger nw2a.

Theroly, the basis step does not hava o begin with the natural mae-
ber 1, but may begin with any natural mumber, even more so, any integer,
positive or negative—zith the given stipulation that any chosen integsr
k is greater than or equal to the given least integral value for which tae
proposition holds (a).

And so the first variation is obtained by simply substituting in an
integral value for which the proposition holds, same a, in place of 1.

First Variation:

let P{t) be an open sentence about integers, and assume the followiiwg:
{a) For some integer a, P(a) is a true statement,
(h) For every integer k2a, if P(k) is true, then
P(k+1l) is truz,
Conclusion: P(t) is true for every integer t such that; tZa.
Consider the mapping from M to A as {ollows:
Mea A
le2a
Je»atl

1€ a2

Q) = P(a)

e

ROOF: Let Q(m) be the opeon sentence Dia+im=1}). If m is any positive

integor, then a+(e-l}2za. Therefore, if one can prove 2(m) in trae for

avery positive integer, then D{t) is true for every integer tFa. TG



apply the first princinle of induction to show that Q(m) is true for
everv positive integer, By the definition of 0O(m), Q(1l) is the state-
ment P(a+(1-1))=P(a).

By hypothesis (a) P(a) is true, and it follows that Q(l) is true.

Assume that Q(k) is true for same integer k21, Again by defini-
tion of Q(m), this means P(a+(k=1)) is true,

By hypothesis (b) P(a+(k+l)=-1l) is true; that is P(atk)=Q(1l+k) is
true.

Therefore, by the first principle of induction one concludes that
Q(m) is true for every positive integer and P(t) is true for every
positive integer tZa (a is not assumed positiwve). (13, p.14)

An application of the first variation follows:

STATEMENT: Let P(n) be the following open sentence: 2'<n!

Now P(n) is false for r=1,2,0r 3, however P(n) is true for all
integers greater than or equal to 4.
PROOF: Show P(t) is true for every integer greater than or equal to
a, whare a=4,

(a) Basis Step: 0(1l) where Q{l)=P(a) and a=4.

1) 2%<a (1) Prove

{(2) le<4l {2) Definition of exponents

(3) 16<4°3°2+1 (3) Definition of factorial ()
{4) 16<24; true {4) Closure for multiplication

therefore true for Q1) thus by definition true for P(a) or P(4).
(b) Inductive Step:

Assume 2k< k!

Deduce 2k

1) 2X<xi (1) Hypothesis

+1 < (k+1)!



{2} 22t (2% Moltiplicstion

() 2. olenitl (3} Ioponontial Taws

4y > e (") Substitution into Step 2
(5) 2<k+l, for any Kk {3} Hypothesis:; k2Za and a=4

therefore 2 <4+1, is truc,

{(6)  2kl<k) (k+1) (A) Multiplication and Step &
(7Y kle (+1)=(k41}! (7) Definition of factorial {!:
(3) 2k1<(k+l)t {q) Substitution into Step 6
(%) ki< 2k! (?) oOrder Propertics

(10) 2l (10) Order Properties

therefora, P(t) is true for every integer t24 by the first variation.
M second example of this variation, which may be considerzd

by the reader, is: In cvery polygon of n sides the sum of the interior

angles is (n=2).180°

Variaticn II: The Second Principle of lathiematical Inuckion.

e second principle of mathermatical indwertion is another retho?
of proof which draws the same conclusion as that of the first principle:
a proposition P(n) is trve for cvery oositive integer (natural nurher),
liowever, one begins with a slightly differont assumption, althouch P{1)
rust: etill e held true, now nonsider that for any wositive integer, 1,
if the proposition is true for overy nozitive integer less than k, thon
it is tru~ for k.

mhe formal statement and pronf of this theorem follerw:

SpCOND PRIVICIPLE OF MWMFMATICAL T'MUCTION:

Iet I'(n) b an open sentencoe about the onsitive integors and assow the
following:

2} F{1) is a true staterent



(b} For any wvositive inteyer k, it P{y) is true for every
positive intoger y<k, then P(k) is trua.

conclusion: F(n) is true for every natural number., (13, n.l5%)
PROOF: let S= {x'x is a positive integer and P(x) is fal.-?.e} . If S is
not empty, let € be the lease integer in §; (Since P(1) is true, t>1)
that 1s, t 1s the smallest positive intcyer such that P(t) is false,
then, P{y) is true for every positive integer y<t, and by iypothesis
(Y P(t) is true. This contradiction proves that F{n) is true for every
positive integer. (13, p.l4)

The second principle of induction can be applied to orove the
following statement concerning a Fibonacei Sequence. A Fibonacci Sequence
being a sequence in which the nth temn equals a(,-y) + a(p.n), where &
is the first term and a» is the second tem of the sedquence; tlherefore,
ik a;=l, a,=2, then an=an_l+an—2 for all n>?2,

STATY.ENT: an<(7/4)D for every positive integer n,
PROCE:
(a) Basis Step: n=1
(1} a;=1 (1) Given
() 1<7/4)1, true {(?) Substitution

then for n=2,

(L) 3.2':2 {1} Giwven
(2) 2<(1/4)° (z) Substitution
(3} 2<49/4, krue {3) Ixponential Laws

therefore true for P{1) and P(2}.
(L) Induction Step:

sssume for an integer 1:>2 that Ply) is true for all v<k.



Deduce P(k) is true; show a, < (7/4}K

(1) P{k-1) and P(k=2}, true bv assumtion

(2} therefore a,_; < (7/4)KL and ay_5< (7/4)K2

() ap=ay_1tayp < (/8K L (1/0yk-2=(7/0)k~2 4 ((7/2)41)

2 (7/8) 2= (7/0)%

(4)  ap <(7/0)%2 . (11/4) < (7/4)
(5) therefore a, < (7/4)K
therefore by the second principle of induction, P{n} is true for every

positive integer,

Variation III:

This final variation is not often used, but hecause of its "wide
open" nature, it gives the reader an idea of the varietv of induction
methods that are available,

In this variation one is again operating with the basis step of
the inductive method. Recall fram the first variation the discussion of
substituting for one an inteqral value a, for which the proposition holds,
and applying this as the hasis step——the first damino with which one
starts the chain reaction of induction. MNow in place of this basis
element substitute a new element——-—an &, where {ak} is anv unbounded
sequence of positive integers with the -rooerty that ak<ak+1, (in
essence, then, any unbounded increasing sequence of positive integers such
as the natural nurhers {1,2,3,4,...1‘1,.. or the sequence ‘qn=2n) . This
inductive method takes the following form:

variation ITI: ILet P(n} be an omen sentence about the positive integers

and assune the following:
(a} Play) j5 true for every positive integer k.
(h) For any masitive integer v, if P(u) is true, then P(u-l) is true.

Conclusion: P(n) is true for every nositive integer,



To gain a better understanding of this variation it will be dis-
cussed through the following special case., 'The special case chosen is
the one mentioned above, Sn=2n. Therefore substitute 2K in place of ay
and formulate a proof for that case,

Variation ITI: (2K): Iet P(n) be an open sentence about the positive

integers and assume the following:

@ P(2%) is true for gvery positive integer k

(b) For any positive integer u, if P(u) is true, then P(u-1) is true.
Conclusion: P(n) is true for every positive integer.

PROOF: Iet S= {xIx is an integer and P(x) is false} . If S is non—emoty,
there exists a smallest integer t such that P(t) is false, By hypothesis
(a), Pin) is true for every inteqral power of 2, Hence, there exists some
positive integer v such that 2%»t. Let d be the difference 2V-t; that

is, d=2V-=t,

How, if P(t+l) is true, by hypothesis (b) one would have that P(t)
is true, This is a contradiction., If P(t+l) is false, bv a similar
argument one could conclude that P(t+2), P(t+3), B(t+4), ... , P{t+d) is
false, However, since t+d=2Y, this would imply that P(2Y) is false, a
contradiction of hypothesis (a)., Thus, P(n) is true for every positive
integer. (2, p.l5)

This case of variation IIT is used to prove the Jensen's Inequality:
A function f defined on a closed interval [a,b:[ is called convex if for
each pair of nunbers y and z in [a,b} we have

£((y+z) /2) < (£(y)+£(2)) /2.

This proof, due to its length and lack of use to this work excent

as an example, is omitted., The interested reader may find the nroof in

its entirety in Bevan Youse's Mathematical Induction. (13, ».15)




SECTICH f: Multivle Liduction

One more type of Zinite mathematical induction is of enouch con-
segquence to be discussed separately, bthis is the idea of perforing
induction an more than one elenent at the same time. Thus this new typce
of induction is really not new at all, but is the performance of the types
of indduction previously discussed, on multiple elements, simultaneously.
This technique is known as n-induction.

The simplest form of n-induction is double induction, the periorm—
ance of induction on two elerents at the same tie.

Double Inducticn: D=N x I = {(x,y)l x is an element of il and y is an

element of N} ; that is, D is the set of all ordered pairs of natural
nutbers., If S is a subset of D such that the following are true:

{a} (1,1) is an elarent of S3;

(7
+

() If (h,k) is an element uf S, then (h+l,k) is an =2lenent cof

(c; If (h,x) is an element of 5, then (h,k+l) is an element of

[6)]
~

Then S=D

PROOF: Let S'= {(x,y} | x and v are 2lements of i and (x,y) is not in b} .
As in previous proofs, attagst to show S' is emoty through a contradic-
tion, and thersby proof that S=D. (x,y)# (1,1) since (1,1) is au clement
of 5 by the hypothesis (a), therefore concider the cases where (X,y) iz ui-
equal to (1,1), and x and y arc the least elawents in their respective
positions.

CASE Is =1, v is unequal to 1. If y#1 then, since y is a natural number
by hypothesis, y>1 or y=1>0., Since y is chosen as the least e¢lement for
the second vosition of (x,y) where (x,y) is an element of 3", then (1,y-1;
is an element of &, This, however, implies that (1, (y=1)+1) is ann =loment
of Sor (1l,y} ic an elerment of &, Therefore no such elewent v exises

vhen =1, such that (1,y) is an elerent of Z4.
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CASD LI &#l, y=1 follows the same foun as Case I, sinwly apply te
argument perfomed on vy in the first case, to tiw variable x in Lo
seconl caso,

CASE TiT: x#£l and y#l then botll x and y ars greatcr than one, 30 3—-1> 7
and y=1>0. Select (X,y) such that x lias miminal value of all (x,y)€5S',
then (x=1,y} is an clement of 5. However by hypothesis (&) ({(x=1)+1,y;=
{x,y) is an element of S. This contradicts the hypothesis that (x,y) is
an elament of 3'. Selecting (%,y) such that y has wmiminal value of ali
{x,y) beionging tc 5! can be treated similarly. Tierefcre no x>1 and
y>1 exists such that (x,y) is an »2lonent of 3'.

mercfore all possible cascs lead o contradictions, and &' must le
crpty. This then provides tha* =D vhere D= N x N,

This procef of Double Induction is seen to parallel the previocus
proofs of induction; indeed, it is identical excent for the checking of
an extra case. This identical proof, extended to include cne more casc
or elenent, vould provide the proof for Triple Induction (the inductica
of ttree elaments performed simultaneously: 2,7,2) 1g an 2loment of 0),
Tripie InTiwction will nor ke formrlly stated so the reador can morme fulls
sanprehend the above discussion of jeriormancs for one moce cass.

Triple Induction: Tet =1 ¥ 7T« M = {(T!,‘-j,ﬂ} l 3 iz an alenent of ¥,

iz an olerent 0of 1, and 2 is an elerent of M} « If 0 is asuahset 2T T

ket

such that the folloving are true:
() (1,1,1) is an element of 3;
() If {1,k )) is an =lement of S, then (l, k, X} is an elomons

“E

ile
L ]



e (<t X)) is an

[}
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{(7)  If (h,k, [t} is an element

%

I,
11

21 1f {h,k,Xr iz an elarent o7 &5, then (h,k,J+1) is an

fypothesis {a), D), and (&) can ke drawn verbatinm from the proof
of Double Induction. The fourth: hypothesis (1) is the evtra case that
rust be proven, This is readily done w applying the same method to e
third element of the ordered triple, as was appliad to the first two
elements (i.e.: simply show that there is no elament z such that {(x,y,2)
is an elcrnent of 8').

By continmiing this identical argument n times, one should e akle
to prove that induction can be perfonmed on any finite narber of eloments
similtancously., This proof is the proof of n-induction.

n=induction: Let Zn=N]_ X My N3 ¥oe s e ¥ Nn = {(al, any agr...aﬁ} |

aj is an element of N; i=1,2 ,3,...} where the subscripts indizate the

nurber and position of each ohject in the n-tuple., I VY, is a subset

of I then Y=2, if:
(1) (11' 12""'111) iz an element of Y,

(2 1f (hl'bﬂi-"'bn] is an element »f ¥, then (hl+‘ s

S ens :3‘1_.-1)

iz an clament of Yn

) It (bl,};._-;_.,...,bn) is an element of Y, then (bl,b2+l,l:3,...,bn)

is an clement of Yn

(ntl)  IE (I, hz""'}'q} is an =lement of ‘fn then

M

: 1 ' ! e £
1]’51'.)2,,,,,1’}!1‘1-.-_) ig an element of Yn'
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g oan &lownant of 19, and ~onditicns 1

Fae

PRYE: Iet “= {xlv. = b
thraash (BHD) are givr:n} .
CPST T: Show 1 is an elemant of <,
€7y, ten =TT iF conditions (1) and (?) with k=1 are satisficd,
Thiz followss directly from the first princinle of mathematical induction:
therefore, 1 iz an elerent of X
CASE II: If ¥ ic an elament of ¥, then k41 is an element of X,
Tet ¥ be the set of omdered (ktl)-tunles of positive integers not in
Yi.41. Show X is erpty. "he assuption that k=K allows no elements
blrhz,..., or by such that (by,bp,..erb,hky1) 15 an element of X, Choose
2'v41 as the least clement in the 141 nosition of the elorents of X, By
hymothesis (1) (11,12,...,1}:+1) is an 2lament of Yppe then (1*_-1, ‘,,12,__.'
B # 0y 1o yyy) and BT O RELNY > or By =120 Siace By
vas chosen to he the least alament in the %41 position of the aloments of V,

=1) is an =2lerent of 7

Tepps DE Dy ((+1)+1) of tha

~ ]
(5 sbopeae sy g
hypothesis, if (bl'bQ""'HTH-l_l) is an 2lement of Y149t then (7“-1,1.)2,...,

£~

2" 41=1)41) is an element of T4y OF (171h;3113;...,b'1:+1) ig ar elorprt ~f

k3

Tigve Thorefore, X must be amty and Y £ Y=rF,. Then if ¥ ic

SN
an elerent of W then k4l is an element nf 7, Thorsfore ™0 and U =7 for
all n is an element of N, with the conditions (1) to (o)) givon.

So with this proof, the discussion of methods of finite mathematical

induction is canpleted. The next section will present an inportant apoli-

cation of finite mathematical induction.
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SECTION 7: Amplication
The anplications of mathematical induction stretch beyond the means
of its use as a proof or as a method of verifyving formulas. Among its

other apulications is its use in Inductive or Recursive Definitions.

Mathematical definitions must be both precise and rigorous, this
unique combination can be difficult to accomplish when discussing certain
mathematical concepts. In fact some concepts, such as the polygon, are
very difficult to define.

When a concept involving the positive integers is defined for one
and is also defined for the integer k+l when it is defined for the integer
k, then it is defined for every positive intéger. It is clear that in
this case one is applying the inductive principle, and it is these cases
that result in the use of inductive or recursive definitions.

A well knovn inductive definition is the definition of exvonential
notation, (ak) where k is an element of the positive integers.
DEFINITION: For any real muber a, define

(1) a'=a

(2) a**l= (ak)°a where k is a positive integer,

B (a3
Therefore a=(a)‘a

(a3) ‘a*a

and similarly

(a) *ar*a‘y

(al) ‘a*ara-a

Thereby any exponential power can be recursivelv broken down to any

desired lewvel, or inversely; increased to any exponential power.
With this final topic, the discussion of finite mathematical

induction is camleted, The text now advances forward into the

transfinite realm!



Chavter Three

Transfinite Induction

According to Webster the adiective transfinite has the following
definition:

TRANSFINITE: 1. going beyond or survassing any finite number; 2a. beino

a power of a mathematical aggregate whose cardinal number is not finite;

Zb. being either an index by purely algebraic means. i.e.: ordinal
nuwbers., (11, p.2,427)

First, it is given in this definition that transfinite means beyond
the finite nuwbers, or simply infinite., Therefore transfinite induction
deals with mathematical induction on infinite nuvbers or sets. However,
the definition also brings about two new terms in its description of
transfinite: (1} Cardinal Numbers and (2) Ordinal Mhrbers.

In order to obtain a comlete and knowledgeable understandino of
what transfinite induction is, it is necessary to first introduce cardinal
and ordinal numbers, Thus, this chapter on transfinite induction is
divided into three main sections: (1) Cardinal Numbers, (2) Ordinal
Wurbers, (3) Transfinite Induction.

SECTION 1: Cardinal Numbers

Cardinal numbers are a means of dividing sets into classes, assign-

inag two sets to the same class if and only if they are equivalent.
{1N, pP.132)
for exanple, 1f aiven two sets, each with five elements, then these

two sets would be assigned to the same class since they are ecuivalent,

29



This class would be the class of all sets containing five elements, and
is given the cardinal number 5. Some exarples of sets with a cardinal
number of 5 are:

s= {1,2,3,4,5}

= {6,12,18,24,30)

V= {m,n,o,p,q}
Similarly, the cardinal number 1 corresponds to all sets containing one
element, the cardinal number 10 corresponds to all sets containing ten
elements, and the cardinal nurber 1,000 corresponds to all sets containing
one-thousand elements.

Cantor formalized the concept of cardinal numbers as a (1-1) -

correspondence between the elements of sets:

DEFINITION OF CARDINAL NUMBFRS: If A and B are two sets such that there

exists a (1-1)~ correspondence between the elements of A and the elements
of B, then we shall say that A and B have the same cardinal number. (12, n.84)
EXAMPLE:

2=1,2,3,4,5,6}

= 10,20,30, 40,50, 60}

There exists an obvious (1-1)- correspondence between A and B,
therefore they have the same cardinal numbers. That cardinal number is
the nmnumber of elements in the set; thus in this case A and B have the
cardinal number 6.

It is obvious that as long as a set has a finite number of elements,
then its cardinal number simply corresponds to the mumber of elements

in the set. But what is the cardinal number of an infinite set?
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Cantor, to assiyn cardinal numbers to infinite sets, had first
to decide a means of classifying infinite sets, To achieve this purpose
of classification, he analyzed one of the "simplest" infinite sets, the
set M of natural numbers,

Upon analysis of the set N, Cantor found it to possess a distinc~-
tive propertyv, The set of natural numbers, though infinite, is still
denumerable. By denurmerable, is meant, that the natural numbers have a
"natural” order by which any element may be counted {the process is
achieved by simply adding one to the previous element until the desired
element is attained).

Cantor further discovered that some infinite sets, when arranged
in a specified order by saome predetermined index or rule, can he set up
in a {1-1) =~ correspondence with the natural mumbers N, Such sets,
through this (1-1)- correspondence, are also denumerable or countable.

On the other hand, some infinite sets could not be put in a (1-1)=- corres-
pondence with the natural numbers ¥, these sets are said to be non-
denumerable or uncountable,

Cantor, therefore, used denunerability and non—denumerability to
classify infinite sets. To the infinite sets which are denmumerable or
countable, Cantor assigned the cardinal number N o ("aleph-null"), To the
infinite sets which are non—denumerable or uncountable, Cantor assigned
the cardinal number c,

As previously stated, to show an infinite set has a cardinal
mmber X ot it is necessary to provide an index or rule by which the set
may be specifically ordered, such that a (1-1)=- correspondence hetveen the

ordered set and the set of natural numbers exists.
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This can be dore witn the set of raltional nuibers R as follows:
{1}y Defimtion of x: &= {pf’q an e¢lement of R‘p is an integer,
G is an element of i and {}a,cj)=1} .
2) Index of p/q is Ipl +g (thus the index of 2/3 is |2) +3=3}.
{3) Order tie elements of a set of a yiven index in pairs of
absolute values, the relative order between pairs is
determined by nueerical magnitude {thus the order of the sec
of inlex % is: {-1/4,1/4;—2/3,2/3;-—3/2,3/2;—:1/1,4/1} .
{4) Arrange finitce scts of indexes according to size of theix
indexes,
Therefore the final ordering of tiwe eletents of R is:
R is an elevent of {0,~1,1;-1/2,1/2;-2,2;-1/3,1/2;=3,% ...}
bvery element of R has a unigue wosition and a definite index. Tiaw
to cbtain a {(1=1}- correspondence betireen R and 5, let e nth numiber on
R, starting from the left, be Jencted by r,, and make the pairing (n,ry),
n is an element of N, r is an elament of R. (12, p.SD)

As an example of a set wihich has tiwe carlinal nanber ¢, taie the
set of all reals iz « The set of reals is non—denuncrabls since tictrc
Joes not exist a (1=1)= correspondonce betiween the natural nunbers 1§ and
the recals 4.

in conclusion, cardinal nuakers tell literally how many elements
are in a set. The finite cardinals arc 7 and the natural numbers
1,2,3,4, 00000, The infinite cardinals, termed transfinite cardinals,
are nunbers of the type X and c. There are other transfinite cardinais;
in fact, infinitely nmany. lowever, for this text, the cardinal numbers

have been sufficiently explored.



SIOTION Z:  Ordinal ouniwers
To Jefine ordinal numizers it is necessary to understand the cons~

cepts of (1) simply ordersd, (2 order types, and (3) well-orierad sets,

Therefore eacl. of thwze concepts will e defined and discussed previous

to wie mtroduaction of ordinal aunsers,

sirply Crdered: A 3et C (having exactly n slements, n is an elamwnt of

N) is simply ordered relative to < ({orecedes) if:

(1} If x,y are elements of € and if x#fy, then x<y or y<x.

(2) 1if x,y are elements of C and x<y, then x#y.

(2} 1f %,vy,2 are elerents of ¢ and x<y and y<z, then x<z. {%,p.13)
Order Type: Mn order type is a property comwon to two sets that have a

(1-1)~ correspondencs that prescrves the ordaxr relations,

A set st be sinply orderad to have an order type, but what
axactly is an order bype? & few examples might best exemplify the neaning
of order type.
STPLE f L
Ist S be a set with cardinal nwder 2, then S={a,b} (since S rust have 2
elements). These 2 elements can be ordered in two ways (either a<i or b<a),
put either result is still an oricred pair, thercfore, any set with two
clements has order type two.
IAPLE & 23
Iet the set S have cardinal number 3, then S has three clements that can
pe orderced in 3! or l.2e.3=f ways. But still, each of the six orderings

would e an oriderel triple, therefore any set with three elermenis hac

order type tiwree,



In general then, any set with a finite carlinal mmber n can be
ordered in n! ways., Tach of the orderings is an ordered n-tunle, there-
fore the order type must be n.

The next question is naturally, does the previous general statement
hold also for infinite sets (or sets with transfinite cardinal numbers ?VL
or ¢}? The answer is no., The reason can be easily demonstrated.

Consider the set N of natural nubers, N can be assigned its
natural order: n<ntl for all n an element of W. Call this order tyvpe w,
Another simple ordering of M is: (1) if a,b are elements of N, and a is
odd, b is even, then a<bh; (2} if a and b are both odd, then a<b denotes
the natural order; (3) if a and b are both even, then a<b means h<a in
the natural order. The order just defined is: 1,3,5,¢e.,2ntl,c0uianay
2Nyeee,6,4,2. Call this order tvpe v. Then there exists at least two
order types on the set of natural nubers.,

The oonclusion can be drawn that for simply ordered sets of n
elements, there exists only one order tyme n., But for infinite sets there
may eXist many order types.

Viell-ordering Sets: A simoly ordered set is well ordered if it has a

first element for every non-empty subset of itself, (14, p.159)

Lvery finite simply ordered set is well ordered. The set of natural
numbers N, when ordered in "natural order” w, is well ordered; however,
the set N under order type y is not well ordered, since the subset of
even numbers has no first element. Thus, an infinite set may or may not
he well ordered, demending on the order type of the simple order.

Finally, with sirply ordered, order types, and well ordered all

defined, the definition of ordinal mumbers is at hand.



Ordinal Mumbers: The order types of well-ordered sets. (12, p.l21)

From the above discussion it is known that all finite sets are
well ordered and have a unique ordering tyve. In fact, the ordering
type for a finite set is equivalent to the cardinal number n of that set.
Then it is true for all finite sets that the cardinal and ordinal numbers
are equivalent. Thus, the set S= {1,3,5,7f has both a finite cardinal
and finite ordinal number of 4,

Infinite sets, however, may be so ordered as to belong to more than
one well-ordering type, thus transfinite cardinals and transfinite ordin—
als are not equivalent., This is why for the set W, the cardinal mumber
is No' while the ordinal number for the "natural order"” of M is w .,
(Other existing well-ordering types for the set N are symbolized differ-
ently.) Literally, an ordinal number specifies which one of the well-
ordering types over a given set.

Generating "new"” well-ordering types, from established "older" well-
ordering types, such as the finite ordinals or w, can be accomplished bv
a method of addition defined below:

ADDITION OF ORDER TYPLES: If A and B are order types, then A+B is the

order type determined by AUB, so that the elements maintain the

original order for A and B, unless an element belongs to both sets,

then the order type of A supersedes the order type of B. (14, p.163)

gince this method of addition is generating "new" well-ordering
types, it is, per se, generating "new" transfinite ordinal numbers.
Intuitively, these new ordinal numbers can be visualized by first regard-
ing the elements of A in the order in which they occur, and then follow
these elements with the elements of B in the order thev occur. For

oxamle, if A is the odd natural mumbers {1,3,5---} and B is the even
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natural numbers {2,4,6°+7 then a3 is {1,3,5,%7%:2,4,6,°**} . The
order type of this set is #+4&, since both A and B have order tyre &.

The operation is not camutative, however; for if the ordinal
nutber 1 is represented by §0% and carbined with @, then 1+ is
{0,1,2,3"-} . This order type is obwiously still @, therefore l+uw=4,
But #+1 would be represented by {1,2,3-++,0} , which is a new order
type. Continuing this argurent for n an element of the natural numbers,
infinitely many transfinite ordinals of the form &+n can be generated,
In fact, as with transfinite cardinals, there are infinitely many trans—
finite ordinal numbers,

The following table summarizes same of the information provided in
the sections over cardinal and ordinal numbers,

I. Equivalence of Finite Cardinal and Ordinal Numbers.

Cardinal Ordinal
Cardinal/Ordinal MNumber Representation Representation
1 First '[a} {a}
2 Second {a,b} fia, 3
3 Third {a,b,c} {(a,b,c)}
For any n Naturals {1,2,3,---,1} {(1,2,3,...1“;}

1I. Cardinals ordered according to magnitude,

1€2<3<eee<n<ees ~o (1-1 correspondence with Naturals)

No = c (1-1 correspondence with the Reals)

2
=1 (set of all subsets of the Reals)
In fact, for any cardinal nurber «, 2" is a new cardinal number such that

&
A< 27,
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Transiita Induction Principle: A sicple crdered set U is said to satisfy

the transfinite induction principle provids? thats

-

1) W has a [irst element
{(2)  If Gf1 such: that (a) ¥y contains tie first element of 1/, anl
{L) 1f ¥ contains a section Ww (denotes tie set {’ [x< '.-J} ) then it
contains w; then TH=ll, (12, .116)

Staterment number (2) is the actual transfinite induction principle.

t is used to show that all elemecnts of a wwll-ordere? set ™ nossess a
given property.

It should be noted that finite nethoratizal induction iz a specisl
t/pe of transfinite induction. Iliore specifically: transfinite matheoma-
tical inducticon, performed on a set 7 wilch hasz an order type of W
necomes identical with the finite or ordinary princivle of ratheratical
induction, To more fully cxprehend this relationship between finite ara
transfinite inducticn, compare the metlhiods of performing both types.

In proving that the elements of a dommerable set 5 have a certain
property P, onc applies the finite form of mathematical induction:

since S is denumerable then its elements may be ordered in a form
off a type & seauence:

5 N Cea> S PR SR
(1) Prove 7 has property P (Dasis step)
(2) Prowe 1f for any ¥, an element of S, the property » holds,

then the property T holds for X4 also.  (Inducticon step)



Then v finite mathematical induction all x an element of S have the
nroperty P,

Hord suorose that W ois any set, be it denumerable or non-demmer—
able. In order to prove that all its elerments have a certain mropertv P,
apnly the transfinite induction princinle:

T™ven thouch 7 mav e uncountable, it might be well=-ordered. If 7 is
well-ordered thens:

(1) Prove the first element, w) of ' has property P, (Basis sten)

(2) Prove if for any w, an element of 1i, all the elements of "/w

(i.e. {x | x<w}) have the property P, then the property P
holds for w also. {Induction step)
Then by transfinite mathematical intaction all w an element of 7T have
the rroverty P.

Therefore it is evident, from the abowve discussion, that finite math-
ematical induction is a special case of transfinite mathematical induction.
Thus several special cases of nroof by transfinite induction have been
nrevicusly demonstrated, that is: all previous mroves involving finite
mathematical induction were a form of transfinitely mathematical induc-—
tive proof. However, in the interest of further clarification of trans-
finite mathamatical induction, and its application in proving theorems
on sets W with ordering other than @, the following nroof is presented,
TIORI: Let ! and W' he well-ordered sets. Then either W and W' are
of the same order tvne, or one is of the same order type as a section of
the other,

PROOF:
CASE T:

—————i i,

If ¥ is aempty, the theorem holds trivally. (This is not the case involving
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induction, and is of little interest, therefore it is not further
discussnd. )
CASF, T1:
W is not emmty, Then since W is non-erpty and well-ordered, W has a
first elerment Wy .
(1) Fither all elements of ' are in order-preserving (1-1)-
correspondence with elements of the section W/w, or not,
(2) TIf they are not, then nair wy with the first element w'; of W',
(3) Therefore, if w is an element of 7 and each element of the
section W/w is already paired with some element of W', then
either all elements of ' are already in order-oreservina (1-1)-
correspondence with elements of W/w or not,
(4) If they are not, mair w with the first element of ' not
already paired with elerents of 0,
(5) Then by the transfinite induction nrinciole, either all
elements of W' are paired in this manner with elements W, or

conversely, (12, p.120}

SECTION 4: Definitions by Transfinite Tnduction

NDefinition by transfinite induction is nerformed in much the same
format as that of definition by finite mathematical induction.

Begin by considering a well-ordered set W with a first element Wy,
Then if some mathematical entity E is defined for:

(1) E(wy) and then;

(2) for each w is an element "7, E(w) 1s defined in terms of the

section /4 or its elements,

Then from the transfinite induction principle it can be concluded



that E(w) 1s defined for every w is an element of W,
This type of definition allows a nrecise and clear cut method
of defining mathematical concepts involving sets of order type other

than &,



Chapter Four

Conclusion

The original concept of this thesis was to explore, define, and
clarify finite mathematical induction.

To achieve this end a ground work was laid in sets, functions, and
sequences. From this ground work, the first princinle of mathematical
induction was introduced as an axiom. Then, with the aid of the Well-
ordering Axiom for the positive integers, this first principle was itself
proven.

After the first principle was exnlored through examples, the text
advanced to variations of finite mathematical induction such as: The
second principle of mathamatical induction and multiple induction. These
variations were then similarily explored. In conclusion of finite math-
ematical induction, there was a discussion of their application in
definitions of mathematical terms.

The author was then urged=—="strongly"—by Doctor Marion Emerson
to include in this thesis transfinite induction. Thus, the appropriate
introduction in cardinal and ordinal numbers was presented, so that trans-
finite induction could be included.

This thesis, thereby, is a fairly complete study of mathematical
induction. In its pages I hope you found the answer to most of your
questions, but not all of them. Because, for me, the interest in mathe-
matical induction was much like the intuitive idea behind it: Fvery time

I answered a question, there was still one more.
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