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Preface 

The sole purpose of this lvork is to help the reader gain a precise, 

clear cut, indenth understanding of the nrinciple of matherratical induc­

tion. To reach this end it is necessary that you, the reader, have (1) a 

fundarrental knowledge of set notation and theory and (2) a IVOrking knCM1­

edge of functions and sequences. The first shall be assurred, since 

fundarrental set theory is resic to matherratics and should be ccrmon ~ll­

edge to one interested in a =ncept of the magnitude of induction. The 

second, a IVOrking knowledge of functions and sequences, shall be afforded 

an introduction and brief reviev. 

Therefore, the lxxly of this IVOrk will consist of three chapters. 

Chapter One includes the necessary introductory material and a brief 

discussion on the rreaning of induction and its :i.nPortance. Chanter 'I\vo 

will present finite mathematical induction, irvlerrentated with denonstra­

tions of its uses and applications through examples. Chapter Three will 

discuss transfinite induction throuqh a similar format. 

As you proceed through this IVOrk, realize that the beauty of 

mathematical induction is that it is not derived fran exoerience, but 

rather it is an inherent, intuitive, alnost instinctive property of the 

mind. 
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Chapter One 

A Beqinning 

'Ib oamprehend matherratical induction, one must possess a ftmdarrental 

k:ncMledge of set theory, functions and sequences, since these topics are 

essential to the discussion of the concept of matherratical induction. In 

fact, these topics are employed in the very definition of the first prin­

ciple of mathematical induction. 

Therefore, to insure a solid basis for and full understanding of 

this work, the following intrcrluctory material is briefly presented. 

SB:TICN 1: sets 

A fundarrental knowledge of set notation and theory is basic to 

mathematics, and is assrnred to be camon knowledge to one interested in 

a concept of the magnitude of induction. Thus there shall be no forrral 

presentation here. 'tt1e student interested in reacquainting himself with 

the set concepts may find reference to Flora Dinkines I Elerrentary Theory 

of sets helpful, or any of several other works on basic set theory. (3) 

SOCTICN 2: Ftmctions and Sequences 

'tt1e discussion of functions is dependent on the ideas of (1) ordered 

pairs and (2) relations, which are directly involved in its definition. 

Therefore the discussion shall begin with the definition of ordered pairs, 

follow through an operation on ordered pairs known as the Cartesian 

Product, and culminate with a discussion on relations, functions, and 

sequences. 

2 
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First consider the concept of ordered pairs of numbers. 

DEFINITION: An ordered pair is denoted by (x,y) where x is called the 

first coordinate and y is called the second coordinate. (13, p.3) 

DEFINITICN: The ordered pair (x,y) equals the ordered pair (u,v) if and 

only if x=u and y=v. (13, p.3) 

Therefore, an ordered pair is a set of t= numbers in which order 

is important, for example: (4,5) ~ (5,4). 

secondly, consider an operation which yields ordered pairs when 

perforrred on t= sets. 

DEFINITICN: The Cartesian Product of t= sets A and 13 (syniJolized A x B) 

is the set of all ordered pairs having the first coordinate fran 

set A and the second coordinate fran set B. (8, p.70) 

The Cartesian Product of A and 13 where A = (1,2,3) and B = (a,b) is 

the set of	 ordered pairs: 

A x B = {(l,a), (l,b), (2,a), (2,b), (3,a), (3,b~ 

Now, with the la10wledge of the above definitions, the follo:ring 

definition of relation should be !!Ore easily canprehended. 

DEFINITION: A relation fran a set A to a set 13 is any set of ordered 

pairs in A x B. The set of first coordinates in a relation is the 

darain. The set of second coordinates in a relation is the range. 

(8, p.71) 

A relation, then, is a rule which relates elements of the danain 

with elernents of the range. The relation less than on the t= sets {0,1,2] 

and {1,2J yields the set of ordered pairs: {(O,l), (0,2), (1,2~ since Del, 

0<2, and 1<2. 

By CCII1pUting A x B where A={0,1,2! (demain) and EF {l,2} (range), 

one obtains: 

A x EF [(0,1), (0,2), (1,1), (1,2), (2,1), (2,2l}. 
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It is seen t..~t lhe r:J:d~ion :':?S5 tiu:: yieJ r2s a set of ordered puir.s con­

taLT"led il'l L'-lc Idrycr set 1'. x S, t21ercby satisfying the definit.ion of u. 

relation. 

With relation defined, the fin.'\.l step of a series of defbitior.s 

t!ut leads to the important concept of il funotion, is ccrnpletc. 

DEFli'ITIG:,; f, function F is 11 relation in \\mch no n'O ordered pairs ;uve 

tl.e same first OJOrdinate and different second OJOr-Jinatcs. (3, p.8}) 

The set of ordered pairs [(0,1), (1,3l, (2,3)} is a functian; 11(;;.1­

ever, [(0,1), (f),2), (1,3)} is not, since f) has t:\.'O different second 

coordinates, 1 and 2. In r.ore fomul teIT.1S, a function r is a rule t!lat 

associates with each element x in t!lf' domain a unique el=t y in the 

range. This unique elertB'lt y is often denoted by F (:{), rcil'~ "r of x". 

F (x) or 'i is called tJle image of x u'lcler F'. 

The function or rule y=x2, with a domain D=[xlxc Reals JiJ, has a 

range consisting of a set of non-negative real numbers, iIDd F(O)=02=0=y, 

so (0,0) is a.. ordered pair of the [unction, as is (1/2,1/4), (-1/2,+1/4), 

(3,9), and (-3,9). 

The definition of a sequence in terms of a function is supplied 

below: 

DEFTIUTIO:I: 11. sequence is a flU1ction whose rbruin is the set of posi~ive 

integers N. (13, 1".5) 

The value of the sequence S at n, V.nere n is an eleme.'lt of the 

positive integers N, is denoted Sn' and is called the nt.h term of the 

sequence. ,;0 the ordered pairs of this special flU1ction would be of t..'1e 

form (n, Sn)' ',mere n is sane element of the domain of positive intccJers 

and Sn is the value of n lU1der tim given rule S. JIcJ\>'ever, since t.he ,3Ql'E t" 
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of a sequence is always the set of positive integers, it is often 

written{Snlrather than {(n'Snl] . 

The sequence {-k} can be denoted as {(n, *)} , \.mere n is an 

.l..L.L...L
elerrent of N, and the terms of the sequence are I , 2. 3 Y•••• The, , 

fifth tem of this sequence =uld be the value of this sequence \omen n=5, 

that is: Sn = 1/5. 

In finishing, this presentation was rreant as a brief review of 

fundarrental terms involved in the discussion and understanding of rrath­

rretical induction. It was not intende:1 to be a detaile:1 or =tIPrehensive 

study of the aOOve terms. If I1Dre detaile:1 discussion is necessary for 

fuller ~rehension of the above subjects, then it rray be helpful to 

refer to FundaIrental College Algebra by Mervin L. Keedy. (8) 

SOCTION 3: The Mystic Undertaking of Matherratical Induction 

The principle of rrathematical induction provides one of the I1Dst 

powerful rreth:xis of proof available to the rrathematician. Its apnlications 

are widespread, touching areas of rrath fran algebra and gearretry to trig­

oncc.:etry. Its application in the definitions of certain rrathernatical 

conceots allows a level of clarity and precision \'ihich \o;ould be otherwise 

unattainable. Mathematical induction is, in fact, invalui'lble, for it 

supplies a process of proving \'ihich eliminates the necessity for veri­

fication for all positive integers. Yet induction fought a long ernbit­

tere:1 battle for recognition as an acceptable rreth:xi in "higher" science. 

In 1739, David Hmre 's A Treatise of Hurran Nature questioned the 

v.orld as to the validity of induction as a plausible rreans of inference 

for the higher, PUrE' sciences. His skeptical problem about the future, 

often calle:1 the nroblem of induction, stated in short that: "Our 
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CXfJCct.3.tions arc fo~l hy C11St.clns ruIn ~ahit:, hut lacl~ jnsti.fir..ation .. It 

(4, p .. 17~) Clo~Qly rQ-l.~tec.\ is t..l-t.(> skpptit;3.1 problem about se~E'yC!.1.i2atiQ"'ls: 

"Can a~.i nm,icr of 0bs,....~:red inst_lmc~C;, short of ft complf"t.p. r;n:rvf~~1, (!".;er. 

rra.~e it reasonabl'0 to h-;1 ieve l. qenr;ral b~ation?" (4, p.J76) PUr'k? t..h0.r:B­

fore statro t.he doubt that anl' 0CCllrr(";nc~ coulrl he Ilfu11 y" ;:nuvr-'r. l~nt._i 1 

ever':J.? case had been chec1::~,.. n~ is ~t~lC)(l, ha.\~ver, ivaS sti::l:i.rtg ant' prr>­

pJsterous, for in d~~ali..."1g htith t~e infi.!1ite as ITlc'1thf::fl'dtics often :-'!o("ls, i+:. 

is in~ssible to verify 0.VC!}' ~ase. 

,,'hrough years of study, and with the help of great matherraticians 

such as Blaise Pascal, (1623-1(62), Pierre de Fernat, (160l-1GGS), and 

Jacob Bernoulli, (1654-1705), t:le l.>eginning of nl3.them3.tical induction had 

already begun to form ,,,hen Hurre completed his fanous Treatise. B,lt its 

acceptanoe into the higher sciences had to wait until the Bth century. 

It \~as during this tirre that Guiseppo ['cano, (l858-1932), stated his 

farrous fifth axian. Peano's Axioms vJerc neant as an axianatic basis for 

the natural nunters, and fuanO's Iifth axian is essentiCllly the first prin­

ci!)lc of mathematical induction. 

Peano 's axionl3.tic approach lpaired 'lith ana ccmpilcd on others' 

achieverrents) teok mathematical induction fran "'-1 inductive pr=ess to '" 

rrethod of deductive pr=f. The inductive process involves mere =njectures, 

or incanplete indUl.-tion, frc:rn which properties of the positive intc.'gers 

may be discover(.-'C!, but not assUI,ed true without proof. lla.vever, the 

accepted form of natIlelll3.tical induction is a rigorou.s nethcx1 of deductive 

proof that elullinates the necessity of verification for all rDsit.cve 

integers. ~latllGtl3.tical ulductior. literally takes tlle step from inductive 

assumption to dc.>ductive fact. 
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Jules Henri Poincare, (1854-1912), a farrous French rnathermtican, 

put it best when he said, "•••• at once necessary to rnathE!l1\3.tics and 

irreducible to logic. !13.thematical induction is not derived fran exper­

iences, rather it is an inherent, intuitive, alrrost instinctive property 

of the mind. l'/hat we have done, we can do again." (7, p.5) 



Chapte:r ~ 

I'lllite Inuuct.ion 

(vith the building blocks supplied, and an insight into L)e histo:ry 

an<1 developrent of induction, the firnt principle of Iffithenutical i;1duc­

tion is at hand. 

'l11e first principle of mathematical induction can be prove.""l by 

application of the well-ordering axian for the positive integcr~, or it 

may be stated as an axian. Guiseppo Pc-ano chose to state L'1e first pJ::in­

ciple as his fifth =ian; this approach shall be ex.amined in ,,ectiOll 3 of 

this chapter. II11rediately ensuin.q is a oroof of the first TJrinciplc of 

mathelffitical induction using the wcll-orderL""lg axian. 

SD:TIm 1: The i·1ell-ordering fu-:iom 

'l'he ooncept of order in. mathematics is r1.eflned as follo.lS: 

DEFTIJITIOlJ: "~et X i~; ordered if for every x anl y in X, either x'y or 

y~x. (9, p.54) 

Thus the natural nur.t:ers are ordered, because for any t;".o elenents 

of the set chosen, one is either less th:m t.'"te other, ur t.'"te:l are ec,'llill. 

l. further property of the set of natural numbers is that it is 

v/Ell ordered. 

WELL-QRDRRI!JG PRUl::IPLE: l\n ordere..1 set 1s 'vell-or:oered if and only if 

every non-empty subset has a smallest el=t. (1, p.213) 

Therefore there exists an eler.ent L for every non-ernpty subset of 

any 'dell-ordered set S'-1Ch that: L!fx for all x an eler.ent of the 'well­

or~ered set. In the set of natural numbers, I. v.Duld e<JUd.l 1, since l:::x 

no matter wi1at other eler.ent of the set is chosen for x. 

3 
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F.Zarples of sets t:k1t JI'C not ~ll ordered (i.e. contain no leas"t 

elrnent in the set) are: 

'I' = {xIx is all eler.ent of rationals, O<x<l} 

S = [x Ix is an elerrent of negative integers, x<-l} 

The folleMing proof is oresenLoo as :1.'1 illustration of t'le '·;ell­

ordering axian, and a drnonstration of usiny it to prove a statere!lt 

about t..'"!e natural nlnJ'bers. 

STNTIHCNT: For every natural lllmUJer n, 2 is a factor of 112 + n 

pRCX:lr: 1£,t P (n) denote the open sentence "2 is a factor of n2 + n". 

let S be the set of all natural 'lumbers x such that I' (x) is false. 

2Therefore if x is an elerrent of S then 2 is not a factor of x + x. 'I'llC 

approach to this proof lies in the fact that if t'le set S is enpty, U12!1 

the state:1Y'Jlt must he trcle for all natural nUUlbers n. Therefore use a 

proof by contradiction, and assure t'lat S is not emoty. 

If S is not ei"pty thc.'l by the hcll-ordering i;xiom t.'1ere exist a 

smallest f?lerrent tinS. Hence, t b t.'1e smallest integer such that:: is 
.,2not a factor of t + t. SiJl= P (1) = 1L. + 1 = 2 has 2 u.s a factor, t11en 

t>l. Furthenrore, P(t-l) == (t-l):! + {t-l) has 2 as a factor, sillGe: 

t - 1<t and t is the smallest integer such tlldt :2 is not .:1 fa'..::c..::'r 0:: r (t~ = 

., 
.... .1- .• 

t~ + t. Si.11CC 2t has ~ as a factor (it is df,JioU3 2 'livir~2~; ~~ '-I , tl"'...o.::: S\ 11. '] 

of ((t-l)" ~ (t-l») + 2t :mJ.5t have a fa..:tor of 2 (this 'lold8 sirlce 

2x ~ 2-.; ~ :: (x+v) is true for all natural nl.lllTIerSI. But (t-l) 2 + (t-1). . 
r) .... 2+ 2t ~ t~ - 2t + 1 + t-l + 2t = t~ + t. Therefore, t + t has 2 as a 

factor, this contradicts the assLD11ption that 2 is not a factor of t 1 + c. 

Thus, t.~ conclusion is t..'l.at. there ~~ists no s:ullest i.'1tc~2r t 

~U"'h tl' ·;"t '/ ; ,_ ...·10.. a .artn~ ....,f r> (,.) = t 2 + i-'. r"h p sot .~ ; c.: r~lt-~ - ,-n ~ )iJ """". ....... ... ..L. .... ~ '- ......... _ .... -- .. ,- ~; ............ _ ..... ...L ·r ....:1' _....._. ­
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...
is a ioct..").l" of l' {n) =.;	 ~1- + r. f:)r cV?ry t.ositb."~ intcgc!r :1. ~l.~, j).~l) 

SLC".iIOl! ~: rrhc First	 Pri.ncip10 of ~:atllC:'r.'.atical Ind't1ction .3.5 a '.:'hL.:.nrer~ 

In sit~.1:-1.tions ~~lerr:o rratllEr-atical induc~ion is .J.pp1.ic;'l,Llt~t ~1(TC 

~dsts a 'Jnc-t.:.r-onc corresf.On:icnce lx.:::t':'decr. ~ infirlito set of StiltC!"'61 Ls, 

(Sn]' and the natural	 nlFlbers n. 

Por exa:r.,>le S'1 is t,'1e staterrent:
 

...
 c • 1+3+5+ • • + (2n-l) = n"
~'n' 

Then for cac:, natur'll	 nunt>er 11 there ",xists a statenEnt Sn' as fo11o..'S: 
... 

1 = I'
 
...
 

51: 

c' • 1 + ::' = 2­'-'2· 

S • 1 + J + 5 = ]::'3'
 

1 +. ..._) + " -r - , pt"c.
~) . l:= 42 _34: 

Concurrently, since a S2']uence is ~ ftmction, then seq',E~r.ce 3nd :unction 

notation nay be interch;;ugc.'<l, then,fore the above may be restatee 

equiValently as: 

P (n) : 1 + 3 + 5 + • • • + (2n - 1) = n2 

P(l): 1 = 1-
'J 

P (2) : 1 + 3 = 2::' 
'J 

r (3) : 1 + 3 'r S = 3­

P (4) : 1 + 3 + 5 + 7 = 4L
, etc. 

This is s~)ly =ncurrent symlX>lism and should nat confuse the reader. 

The statenents Sn (0:':' P (n)) can not te ProV"'..!1 for all natural 

nur.bcrs n by validatinq i'I fC\-1 cases, nor even b] v<'llic'.ating a vast ntr..bc,­

of instances, for tllis "Ices not L",ply that rever] case holds true. In 

fact, t..~is ';-Ou1d Lot-:; inlX.JG\"J1ete induction. Consec;llentia11y, the ~~ec~:} for 

a ~t.."'mc1 of proof arises ~.,,}ri.ch ·ioos not necessitate the valic."!ation Q= 
every cas~. The r.et..'oJ k..tlO:,7Il dS 1:1athemati.:::a1 induct.ion sa:'isfies tr..L; 

n~~-e·~:. 
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~1atherratical induction is used to ?rove a staterrent of the type: 

For every natural number n, Sn is true. Even rrore specifically, 

to prove that all of the following are true: 

SI'	 521 53' 54' ••••• , Sn' ••• 

The following principle of rmtherratical induction can be used for 

such a proof, and is presented along \"ith a proof of the principle by 

way of the v.o211-ordering axiom. 

'l.'IIDJRU1: Let P (n) be a function over the natural numbers, and assurre 

the	 following: 

(a)	 P (1) is a true staterrent 

(b)	 For any natural number k~l, if P(k) is true then 

P(k + 1) is true. 

Conclusion: pen) is true for every positive integer. 

Let S = {x 1 x is a positive integer and P (x) is a false staterrent} 

Assurre S is not ~ty, then by the v.o211-ordering axiClO there exists an 

integer tins \.ffiich is the srmllest: that is, t is the least oositive 

integer such that P (t) is false. By hypothesis (a) P (1) is true, thus 

t # 1. Furthernore P (t - 1) is true since t - 1 < t and t is the smallest 

integer such that pet) is false. 

By hypothesis (b), since P ( t-l) is true, then P ( (t-l) + 1) is 

true: that is P(t) is true. This contradicts the staterrent that pet) is 

false. Thus, the set S IlRlst be empty, and therefore pen) is true for 

every positive integer. (13, p.10) 

Fran the above theorem, the first principle of finite ir1duction 

rmy be rrore clearly stated: 
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PRINCIPh": or 'lI\THEI'1!\TICAL n~_1tJCI'IO:l: Let Sn (or P (n)) be a stater.ent 

for all natural ntnbcrs n, and show: 

(a) Basis Sten: 3 is true (or: P(l) is truA)1 

(b)	 Induction Step: For all natural numbers k, if Sk' then 

Sk+l (or: If P (k) t.,'len P (k+l) 

Conclusion: Sn is true for all natural mnnhers n (or: Pen) is true for 

all natural numbers n) • 

."oc=rding to the theorem then, to prove Sn is true, one P1USt show 

(a)	 Sl is true ano (b) assuming Sk' s~, ~+l is true. 

To see this JTOre clearly, supJX)se hath parts of the proof are com­

pleted,	 resulting in the following enoless sequence of stateP"€-nts: 

Sl Basis Step 

Sf~S2 These can be caleulatect up to any value 

32"33 of n an alet'ent of t.,'1e natural num'>ers, however, 

S3~S4 cannot he assurred for values greater than n. 

SJt'Sk-H	 Induction Step 

This step allo.'5 the =nclusion, using the axiom 

or nrincinle of induction, t.'lat S is true for the
J'	 . n 

remaining cases greater t.han the n calculated 

(i.e.: true for all natural numbers). 

An illustration of the first principle of mathematical iJ-,a.uction 

fo11o:,,-;;: 

ST.'\TF1'[F;llT: For E>~rv natural mlITllJp..r n, 

1 + 3 + S + 7 +	 • • • + (2n -1) = n2 
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PR..'XJF: 

Sr. : 1 + 3 + ::; + . • • + (2n -::.; = n2 

S, : 1 = 1":' 
~ 

uk-. 1- (2k -1) = ),:'.
 

1 + 3 + 5 + 7 + • • + (7(k+l)-1) = (k+l)4 
~
 

" I-t3+5t7+ 

S1~+1 : 

(a) Basis Step: S . (2(1)-1) = :>. - 11" 

= 1 

12 = 

t.'1~:t:'efore true for 81­

(b) Induction Step: 

Asst~ ~: 1 + 3 + 5 + + (2%.-1) = 1:2
 

1E1uce Sk+l: 1 + 3 + 5 + • + (2k-l) + (2(k+l)-1)=(l-:+1)-
')
 

(1) 1 + 3 + 5 + • + (2k-l) = k 2 

(2 )	 1+3+5+ • • + (2k-l)+(2 (k+l)-1)=J,2+(2 (k+l)-l) 

_1,2 +71.-+"_1(3)	 -,.. _J""_ 

(4 )	 =l-:2+:~k-ll 

(5) = (hl):>' 

therefare by acding (2 (J,+l)-1) to ;)()L'l sides of 5.. and si.m.plifyil1.Cj thQ'. 
right :-und side, one deduces Dr :.rrrives at .sJ~+l. 

since SI1 is true for Sl illlO for :"k+1 when Sk asS1E,'Ii':J., L...en by 

netl1CIt\"Itic<J.l ind11ction Sr: is true for al1 natural num.'Jcrs n. 

SIL"TICl\ 3: 1'he Pirst principle of :1athematical Induction as an'\:-:iom 

N3 is stat.,2cl in ~~~~on 1 of this ch.apte~, t~c first iJrinciple: 0-: 

nathematical induction Tluy be p!:'OV\3P. by 'day of the Hell-orocring a::k,r,-, -x 

;my be statL."<1 ;\S i\Il axio::1. The difference betvief'Jl L'lese 0..0 c\10iC'_'5 ioO 

p;dagogical, SL"1C8 it C.3~1 be proven that t~tn; f:JRll-c·rderin:j ,"l:-:ior:l ~¥1 e1e 

first pri!::~iplc of ma~~em.:J.tic.::.l induction arc e:fuiva1.c..'1t £ta':"..Ci.-.'C..'1ts; tll·1.C 

is, tLe;y i.."'·ply Q~r:~ a"""1o'!-J1·~r. 
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It is in the study of the natural nurnl:>o.rs that the princi!")le of 

mathenatical induction is applied as an axian. Guiseppo Peano =nstructed 

an axiarratic structure for the natural numbers, layinq dCMll five axians, 

which were to beccrne known as Peano' s Axians. The fifth of these axian.s, 

of which a simplified fonn is supplied below, is essentially the first 

principle of mathematical induction. 

Axian I: 1 is an elenent of N where N is the set of natural 

n1.lml::ers. 

Axian II: 'Ib each x an elenent of N there =rreSPOnds an uniaue 

elerrent x· an eleIT'f'.nt of N called the successor of x. 

(x' = x + 1) 

Axian III: For each x an elenent of N there exists an x' .. 1, 

that is, 1 is not the successor of any nurnl:>o.r. 

Axian IV: If x,y are elenents of N such that x' = y', then x=y. 

Axian V: let S be a set of elenents of N. Then S=N provided 

the	 following =nditions are satisfied: 

(1)	 1 is an elenent of S 

(2)	 If x is an elenent of S, then x' is an element 

of S. (9, p.46) 

These assertions came to be "=nsidered as the fmmtainhead of all 

mathematical knowledge. Fran them it is possible to define integers, ra­

tional numbers, real numbers and COll'lex numbers, and to derive their 

usual arithrretic and analytic properties." (5, p.47-48) In this \\Drk, 

the applications of Peano's fifth axian are of imrEdiate importance. The 

proof of the case bela., differs little fran that presented when math­

ematical induction was proven as a theorem. 
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STArn-...JIoNI': For ever]' rlatUl~al nlllii..er ;1, 

Sn: 1 + ~1 3 + ••• +	 n = n (n+1) /2 

51: 1 = I(.::!)/.::! 

SJ<.: 1+2+3+·· + k(k+l)/2 

5k+1: 1 + 2 + 3 + • + (k+1) • (k+l+1)/2 

PRCOF: Define 5 by S= [klk is an e1enent of Nand l+2+•••+k=k(k+l)/:} 

(a)	 Basis 5tep: 51: 1 = 2/2
 

= 1(2)/2
 

= 1(1+1)/2
 

therefore true for 51_ 

(b)	 Induction Step:
 

Assurre 5,,,: 1+2+••• +k=k (k+l)/2
 

Deduce: ~+l: 1+2+•••+k+(k+1)=(k+l) (k+1+1)/2
 

= (k+1) (k+2)/2 

(1)	 Add k+1 to I:oth sides of Sk:
 

1+2+3+- ••+J~+ (k+1)=k ()~+l) /2+ (k+1)
 

(2)	 Factor out k+1 and find a =::UlDn denominator for the 

second tenn: 

= (J:+l) «k/2)+1)) 

= (k+1) ( (k/~) + (2/2)) 

= (k+l) (k+2)/.::! 

therefore by assuming S-j(t 5k+1 can be deduced.
 

Therefore S=lJ by Peano's fifth axiom. Since S is the set of all natur:ll
 

mnnbers for which the staterrent is t..""Ue, and since it has been proven 5=;;,
 

then the proposition is t.rue for all natural numbers.
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Sfl:TTO;; 4: Danger
 

:Jefore proceed1.h9 ...~ith ·~'U.s disGussi':':1 0': Il1i.lthe;.atical L"1duct.ion, .::.
 

warnlllg sbJulJ be given. Hathematicul induction is a beautiful ~Y:' l;0I'-JeJ.'­

ful tool of nu.ther1dti"s. It provides l1cth:x1s of prouf, ll'eans fer verifi ­

cation of formulas, and a clear cut precise way of defining certain 

matberratical concepts, w!'.ich is discussed in Section 7. Yet math6naticn: 

induction is ver:! <1angerous, for it is easy to misuse. 

It must al,;ays be rerrEr.1bercd th.:lt rcathematical induction is a t~ 

part rrethocl. The order in '..r..ich t.'1ese ty;o parts are verified is not 

significant, but the verification of e3.ch sep;n-atcly, is the crux of <in 

inductive proof. 

Ct1e must always verify t.'1at the proposition, or formula, under 

scrutiny is true not only for the least integral value of n for wr.ic;l it 

holds, but also for any value n=k+l, a"sLlllling n=k is true. t01.is idee:.. is 

expounded upon in the caniny section.) ':i'!lE'1l and only L'1en ',.,ill the P!:uir' 

osition be true for all natural numbers n. 

If, for example, one [X'rforms tl'Je basis step of ar. inJllctive preof, 

and finds it tnJe for any number of natural mJn~,)€r values, hut ncylect.s 

to perform the inductive step, t'1e::l that proposition o:;till rerrains unveri­

fied. The \Jest one can offer from Glis is a conjecture as to the nature 

of t.ile p=position. Examples in \'lhich thc basis stqJs can be shown, ;Yu: 

the inductive steps are i.~ssible to denonstrate are: 

(1) 2+4+0+- •• +2n = 113-5n~+12n-6 whic:-~ 1.s true for 1,:, :lllU J, bu.t 

fails for n=4. 
~ 

(2) 1'1":'" =n 

(3) x2+x+41 is a prime rrur~;er. 

.3lmilari1y, if one G.::~ncn3trd~s t!1C ~nductive ~:;tcp, but. ~a.i.ls Lv 

perfonu the l.>asis step, then the proof is inccm:>letc. The best one can 
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offer fram tc;,is situation, is a <:d:oe o~ incol1pletc i:1.ductian. fu:.:l111ples 

of thcsG t.iI)Cs are: 

(1) 1+2+J+·· .. ·j·:,=;1/2n(nl,1)tl 

(2) ;: l-y=x+7 

which llolds for the 'jencr:l.l case or ir.dllCtivc step, yet no value of n 

makes the proposition true try a fe\;! 

In conclusion, one of the C,D <}te?s being true, does not constitute 

a proof for all natural ntm'.bers~. !1c'!:h =ase~ must hE:' shoT,,,n ~O~ a.~ inC:ec­

tive proof; othend.se, one is jl15t oonjecturing or performing incO<"TI!Jlete 

induction.
 

SECl'ION 5: Inductive Variations
 

l'litl, the discussion of the first principle of induction cexnplcted, 

t,.'1e text I:ill nCM advance into a 'jiscussion of variations of t..'1is basic 

principle. Three such variations ",ill be discussed, and reasons ';:or cleLL 

e:-dstence ~lill be supplied. 

The first principle of induction i<} repeated here for ease of 

reference in ~isan to the given variations. 

FIrST l':U,lCIPLE OF !1ATHE:li\TIC'\L r:·IT)UcrICN: 

:Let P (n) 1:e an open sentence about natural nUnDer" a,c1 assurn2 the 

follO'Hinq: 

(a) P (1) is a true statC'TP.J1t 

(b) For ill'll' integer t: ~l, if F (k) is true then 

F (k+l) is true. 

Con<:lusion: P (n) is t.."'LlC for every natural nunber. (13, 1'.10) 

\lariation I: 

The first vnriation ccr:es about '.tlen one is confronte3 ·..:it): an open 
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sentcn-:e ~l(nj SL":l'.i. that. P{l) i.s false, Fen is false, a·Y"'.. P(t) is fals{-~, 

if t is 3>'1 integer les5 t'1an S7.C ir.t':'<jc?r "I hOl'lever, l'(E) is trClc for 

every int~~gcr n ~a. 

Tt1crcby, th.G basis step 0LieS not '1n.......~ -:'0 begin ',-lith elC n':ltur2~ m.L.~'~
 

ber 1, bnt rruy be<;in ..\'it" any natural num.'"Jer, even rrore so, any int,..'ger, 

positiVI:! or TIegiltive-""\;it.'l t."e given stipulation that any chosen integ::r 

k is greater than or equal to the give.., least integral value for which t:le 

proposition 11Olc15 (a). 

And so the first variation is obtained by simply substituting in an 

integral value for ~lhi.ch the ;Jropositioll holds, sare a, in place of 1. 

First Variation: 

Let P (t) be an open SE'.ntence about integers, and assurr~ t.'le follCJ\·;ing: 

(a)	 For sarc integer a, P (a) is a true stateIrent. 

(h)	 For everi intAger k~a, if P(k) is true, then 

P (k+l) is trU<;. 

Conclusion:	 P (t) is true for '2very integer t such that; t ~a. 

CO:n.sider t..l-te mapping fr(){ll n to JI... as [ollC1~'lS: 

11~A 

l~a 

2_a+l 

3~a+2 

Q(ro) = l' (a) 

l'OCOF: Let Q(m) be the o;JC.' sentence l' (a+(m-l) ). If m is any IDsiti':e 

i:1tcgcr, the.... a+(m-l)~.:I. T'1crcfore, if onc can prove Q(m) i:; t.,.1<". for 

:~v:~.rj FOsitive integ02r, e-lcn I' (t) is t:...'"Ue for every inta~·c~r t~Cl. ~:-c 
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apply the first principle of induction to shot" that Oem) is true for 

everv rositive integer. By the definition of 0(m), 0(1) is the state­

rnent P(a+(l-l))=P(a). 

By hypothesis (a) pea) is true, and it foll~vs that Q(l) is true. 

Assurre that Q(k) is true for serre integer k~l. 1\qain by defini­

tion of Q(m), this means P (a+ (k-l)) is true. 

By hY!X'thesis (b) P(a+(k+l)-l) is true~ that is P(a+k)=Q(l+k) is 

true. 

Therefore, by the first principle of induction one amcludes that 

Q(m) is true for every rositive integer and pet) is true for every 

positive integer t ~a (a is not assUllEd rositive). (13, 0.14) 

An application of the first variation foll=: 

STATEMENT: Let pen) be the foll~q open sentence: 2n", n! 

Now pen) is false for n=1,2,or 3, ho.vever pen) is true for all 

integers greater than or equal to 4. 

PRlX)F: Show P (t) is true for every integer greater than or equal to 

a, where a=4. 

(a)	 Basis Step: 0(1) where Q(l)=P(a) and a=4.
 

4
(1)	 2 < 4! (1) Prove 

(2 )	 l6<4! (2 ) Definition of exrxments 

(3)	 16 <4' 3'2"1 (3 ) Definition of factorial (!) 

(4 ) 16 < 24; true (4) Closure for multiplication 

therefore true for Q (1) thus by definition true for P (a) or P (4) • 

(b)	 Inductive Step:
 

Assurre l< kl
 

Deduce 2k+l < (k+l)!
 

(1)	 2k<'k! (1) HY!X'thesis 
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'). ,1~'1J:-:m	 1,:2) ~'tIll tiplic:a '.:ion~.'~	 ~~~. 

(~)	 ?'2k~~1:+1 (3) ~·qnncnt.inl L3.\olS 

~:.:+Joe; 2k I(4)	 .. (f1) Substitution inti'] .st~p :2' ~. 

(5)	 2< ]~+1, ror any]; ( ~\ :fypJt.1-tcsis: }: ~a -:mel. a=·1~I 

therefore :2 <4+1, is true. 

(6)	 2k!<kl (l~+l) (r,) Multiplication and Step S 

..(7)	 k!· (k+l) = (k+l) ! (7) Definition of factorial ,
\. 

l , 

(8)	 2k! < (){+1) ! (g) Substitution into Step 6 

(9)	 kl< Jk! (9) 0Mer prr;pertics 

(10) 2k+l< ()~+l) ! (11) ) Order Propcrties 

therefor", P (tl is true for every integer t .. 4 by the fi.rst vurio.tion. 

l\ second exaIllple of this variation, which =y be considerXl 

by the reader, is: In every polygon of n sides the sum of the interior 

angles is (n-2)'1800 

variation	 II: The s...."COrYl Principle cf 'laUlematico.l In:.1uction. 

']']1" "9('ond principle of rnath=tical in, h~(~io'1. is anoth'·L' ,..~t' 10" 

of proof ';1hich c1ra\""s the sarx~ conclusion as t'13t of the fir~3t prin("':';.~l0.: 

a tJropJsition P (n) is true f0r ,,:vcry fX)siti .....re i..'1tGger {r~atural nur:t.hcr}. 

IIa..·.TJ2ver, one beqins ·,.;it-l) a slightly l:1i:ferr:~nt: aGsulTlption, al~mn{~;h !'(l) 

I1US'L ~-ti.ll be h::ud true, nO-oJ rnnsi':1er tllrt+ for any :.nsiti\~c jnteger, j--, 

if t~0 prorxJsition is tr\lC for cveri rX)?;itive integer less r_lun 1-:, t..l1c'r, 

it is I:nl" for k. 

'!'h,' formal statem?.nt ana prcnf of this theorem fo11rM: 

sErXND FRTI·K:IPLf: OF :V\'."'ll'l''il'.Tlcro. I':nUcrroN: 

let r (n) ~-)I'~ an (1Orln c;pnt_encC' Mout. t..:.~e '.nsitivc' int8g0.t"s a"lt:l. ass'·.!'"¥:' t""lC 

foll(J'.~ing: 

(a)	 P (1) is a true staterent 
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(L) For any tX)sitl.ve iIlte<.Jer k, if f' (y) is true for "veLl' 

positive intc'ger y<x, Ulen P(k) is t=. 
conclusion: pen) is true for every natural number. (13, n.15) 

PROOF: let S= {xIx is a positive iI1tL.><Jer and P (x) is false}. If S is 

not empty, let t be the lease integ8r 1.11 S; (Since P(l) is true, t>l) 

that is, t ~s the smallest positive iI1t'-"Jer such blat P (t) is false. 

Then, P (y) is true for fNery positive iI1teger y< t, anc: by ;rypothesis 

(b) P (t) is true. T'nis =ntradiction proves ttJat P (n) is true for eve.ll' 

positive integer. (13, p.14j 

:he second priIlciple of induction can be applied to orove me 

follCMiIlg statcnent concerning a Filxmacci Sequence. II. riJnrJacci SequencE: 

being a sequence in lvhich the nth teno equals a (n-l) + J. (n-~)' ·"here 3.1 

is tile first tena arrl a2 is the second ten,\ elf L'le sequence; U,erefore,
 

if al=l, a~=2, then an=iln-l+an-2 for all n"'2.
 

STA'I'EIE."'<T: an«7/4)n for eve.ll' pClsitiv,-, integer n.
 

PRC(lF: 

(a)	 33sis Step: n=l 

(1) al=l	 (1) Given 

(2 ) 1«7/4)1, true (2 ) Substitut.ion 

t21eJ.1 for n=2. 

(1)	 a2=2 (1) Given 

(2)	 2«7/4)-" (2) Substitution 

(3) 2<49/4, I:ruB (J) Elqx>nential Laws 

therefore tn.lC for I' (l) and P (2) • 

(L)	 Induction Step: 

;"\SSl.ltlle for an integer 1: > 2 that P (y) is true for all y< k. 



22 

Deduce P(k) is true; show ak <:(7/4)k 

(1) P(k-l) and P(k-2), truP. bv ass\llTl[Jtion 

(2) therefore ak_l < (7/4l k- l and ak-2< (7/4)k-2 

(3) ak=ak-l+ak-2 <: (7/4)k-4 (7/4)k-2= (7/4)k-2 • «(7/,1)+1) 

(4) ak«7/4)k-2. (11/4) <:(7/4)k-2(7/4)2=(7/4)k 

(5) therefore ak< (7/4)k 

therefore by t.l,e second principle of induction, P(n) is true for every 

positive integer. 

Variation III: 

This final variation is not often used, but because of its ''wide 

o;xm" nature, it gives t.l,e reader an idea of the varietv of induction 

rrethods t.'1at are available. 

In this variation one is again operating wit.l, the basis step of 

the inductive rrethod. Recall fran the first variation the niscussion of 

substituting for one an integral value a, for which the proposition holds, 

and applying this as the hasis step-the first dcrnino '·lith Hhich one 

starts t.he chain reaction of induction. 1'10\'1 in place of this basis 

elerrent substitute a new elerrent--an ak ·~'here {akS is any unhOlmded 

sequence of ]X)sitive integers "lith the ;:>rooertv that a;f"k+l' (in 

essence, then, any tmlxlunded increasing sequence of ):XJsitive integers such 

as the natural numbers ti,2,3,4, ...n,.Jor the seq'.lence Sn=2n ). nus
 

innl1cti'le J'1et:hod takes the follO\'ling forn:
 

variation III: L?t P(n) be an 0)1"'J1 Sf'J1tence about the ]X)sitive intpqers
 

ann assurre the fnllO\'linq:
 

(a) P(ak ) is true for every positive integer k. 

(b) For any ]X)sitive intpqer u, if P(u) is true, then P(u-i) is true. 

conclusion: P(n) is true for every cositive integer. 
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To gain a better understanding of this variation it \~ill re dis­

cussed through the folloNing special case. 'IDe SPecial case chosen is 

the one mentioned alxJve, S =Zn. Therefore substitute 2k in place of ak 
n '. 

and formulate a proof for that case.
 

Variation III: (2k ): let Pen) be an open sentence about the positive
 

integers and assurre the following:
 

(a) p(Zk) is true for every positive integer k 

(b) For any positive integer u, if p(u) is true, then P(u-l) is true. 

conclusion: pen) is true for every positive integer. 

pRCOF: let S= {xIx is an integer and PIx) is false}. If S is non-em;Jty, 

there exists a smallest integer t such fu,t pet) is false. By hypothesis 

(a), pl'n) is true for every inte<Jral oawer of Z. Hence, there exists some 

jXlsitive integer v such that Z">t. let cJ be the difference zV-t; that 

is, d=2v-t. 

NOt~, if P(t+l) is true, by hypothesis (b) one ~uld have that pet) 

is true. This is a contradiction. If PItH) is false, by a simi.1M 

argurrent one could conclude that P(t+Z), P(t+3), I? (t+4) , ••• • P(t+cl) is 

false. However, since t+d=Zv, this ~uld imply t~t P(Zv) is false, a 

contradiction of hypothesis (a). Thus, pen) is true for everJ positive 

integer. (Z, p.15) 

This case of variation III is used to prove the Jensen's Inequality: 

A function f defined on a closed interval [a,b] is called convex if for 

each pair of numbers y and z in [a,b] we have 

f«y+z)/Z) ~ (f(y)+f(z) )/Z. 

This proof, due to its length and lack of use to this \-.Drk except 

as an exaIrl>le. is emitted. The interested reader lTI3.y find t!-}e nroof in 

its entirety in Bewm Youse's ~1athematical Induction. (13, 0.15) 
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SIXTION r;: 'IL.ilti}.Jl~ Llc'uction 

one :c:orc tl'1JC of '::i.nite mathe..~tical induction is of C!lOuSh c..'On­

s~uencc to !Y2! ·:1isc:ussed separately, this is the iJ.ea of pcrfonrJJ1'3 

induction on !TOre th.a..'1 one elull::..i'1t at the sanE tllTI8. Thus tIllS nC"'/ tYi?2 

of induction is r-eally not TIelv at all, but is tIle performance of the types 

of induction [Jreviously discussed, On multiple elerrents, sil'lultaneously. 

'I1us technique is known as n-iru.1uction. 

The siI1r,:>lest 1:0= of n-induction is cloulJle induction, the perfoITI..­

ance of indUCtiOl"l on biO elCl7e.llts at the sarre tille. 

IbLWle Induction: D=N x :; ~ {(x,y) I x is an elerrcnt. of iJ an} y is a" 

eler.ent of N} i that is, D is the set of all ordered pairs of nat~rral 

numbers. If S is a subset of D such that the follawing are true: 

(a) (1,1) is an element of 5; 

(!:;) If (h,l;:) is an elerrent ,)f S, then (h+l,k) is an ,~lenEr!t ot s; 

(c) If (h,1;:) is an element of S, t!1en (h,k+l) is al"l elen'ent of Si 

Then S=D 

PrIDF: Let S'~ [(X,y) I x and y are elerrents of N ancl (x,y) is not in J 
AS in fJrevious proofs, attcr"Jt. to 5)1<:10'1 5' is ernuty through a =ntradic­

tien, anJ tllereby proof that S=D. (x,y) # (1,1) since (1,1) is ali clerrent 

of S by the hypot.'lesis (a), tl"lerefore con"ider tl1e cases \vhere (x,y) 1s W1­

equal to (l,ll, and x and y are t11e least elements in their respe.>cth-c 

fJOSitions. 

CASE I: =1, y is lIDeyual to 1. If y;tl then, since y is a natural number 

by hypothesis, y >1 or y-l>0. Since y is chosen as the least clerrent fOL 

the second lXlsition of (x,y) ,,/llere (x,y) is an ele,rel"lt of :::;', then (l,y-l; 

is an ele.r.cnt of S. '~~J.s, ha,/ever, implies tl1at (1, (y-l) +1) is ,m dC:1Dl:' 

of S or (l,y) is an eler.l:mt of S. 'l'herefore no SUC:1 elar.ellt y tAis;:;:. 

',,:hen ~~l, ;3uc:h that (l,y) ii.3 3:1 elererit of S'. 
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C\SL "::1: ..,;;"1, y~l follows L1e saLle fonn as Case I, s:in'Pl'll apply 1:: oe
 

argun-etlt t=erfonre::l on Y in the first case, t.u tl-.lc ·\l~i.a~-lc x jn ;-j-1C
 

S8Con::.l case.
 

CASE III: x+l an:1 'llfl 1::'161' bot:: x 0.",,: y arc greater t1lan one, 30 ;:-1 > ~
 

an] y-l >0. Select (x,y) such that x lias mimini'll value of all (x,y) Eo S' ,
 

then (x-l,y) is an elcnent of S. IIoNever by hyp:>thesis (b) (x-l)+l,yi~
 

(x,y) is an eleo.ent of S. 'I'his =ntr<rlicts the hyp:>thesis that (x,'ll) is
 

an elem=nt of S·. Selecting (x,y) s'..lch that y has miminal value of all
 

(x,y) beionging to s' can be treated si-"lilarly. Therefore no x >1 a"l
 

y >1 exists such tl1at (x,'ll) is .:laJIcrol':mt of S·.
 

Therefore all fX)ssible cases lead to contradictions, and ~~I ~..1st Le 

C;.."'l'Ipty. T:ll.sthcn provides tha~ S=~ U:1cre !F i~ x N. 

This proof of Double L,c;uctiun is seen to parallel the previ0us 

proofs of induction1 indeed, it is identical except for the checking of 

an extra case. 'nri.s identical lJroo£, extendal to :incltrle one nore Ca5(~ 

or elel:ent, ".'OUld provide the proof: for Tri;)le Induction (t':" ind:.lctiG.l 

of Uxee elG!"eIlts perfo!TI'?c: simulta:1.eou~ly: (;-:,:;,::~) Is J.:l: :::!l::;".-:,.::.nt c£ f;'. 

'TrilJl.~ I.","l~lct_ion ':Jill no:: !":e zo.tT1r?.lly statec1 80 t:-tl2 reader Ca.~-l rrQ':"-c £nl~.: 

.::CII::·prel....end the atove discussi:m c.'[ i-Crfon~..:.l..';.cc: for n:-:.t? ~\.).c'? c,?.se. 

'''''"J''',le To1°1,,<,tl'011- Tot rJ'l:"'" ", v ~1.-:= 1 1 ~r ." / .. 1'<:' ~11 ,'Ir.:.... ,,·...-:·,·1r of ,.V' {(~,~~ .....t' .J..,l'- .•,. - 4";';:' _'.~I ..••• '-'1'"'' .... -'-''-'-' ..... _:..1.1..,;._ , 

,. ; (' ""n ~l·~r:- ,..... J· amd"';s an e1er='nt of p} Ir ~ is" s1"'\v"'C~ ')~•• ,. ...-&").1 ... ,..-,i J.._' ~~ '_. 1._, _ _~~ I., '-. ..L. ~. .1. ~. ,," _ ~< ......... ) c... "
 

such that t:lC follo'ling are true: 

('1) C:., 1,1) is 'In e1err12Ilt of S1 

Ih),'''' If "1 l; 1') i ~ ~'ll~ , •• of S l-io. (11+1 ).,,1-.1", .;) "''''----'--'. ._-,;.~\' ,._,1- ..1..---> , nl",r~~t:::;.0' ....::.... , +-hen ~, l'< '"l~~F'".....~-

':1[ ~; 
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(.~)	 If (ll,k,,l) is Lin elt~l~'"1t "::f S, r-"':'1~!: Cl,~t-l,.l) is a;"1 

element of 3; 

(2)	 If (h,k,.l) Is 3,ll elCJ:"C11t ~= L~:' t:'!.E:1 (h,k,.l+I) is an 

eler.18nt of ~. 

llYfotl1osis (a), OJ), and (c) can !xl dra'.>JI1 verbatim fran the p=i' 

of Double Induction. The fourtJ-: hYi:cthe3is (:1) is tJle extra case that 

rrust be iJroven. ~s is readily done by applying the sarrc rrethod to 1::-,8 

third elcluent of t..'18 ordered triple, as \.;as applied to tJte first t~7.) 

ele.Tents (i.e.: simply Sha.l that lJ'.ere is no el=t z such that (x,y,::.) 

is an elerrent of S'). 

By cont:L....uing tlus identical argur'el1t n tllrcs, one should be a,':,le 

tel prove that :L'1duetion can be J..>erfonced on any finite Iyurrer of elCJ101ts 

sir.Jultaneollsly. 'lhis proof is the proof of n-induction. 

n-il'1du::tion: let Zn=Nl x tI~ ,: tJ3 x ••• x '1 = {tal a.." a •••a' I 
~ in' _ l' ~li 

3i is 3rJ. eleroont of !'Ii i=l,2,3, ...} ~....here the suhscripts inni-:atc the 

ilurl.Jer and position of each d)ject in the n-tuTJ10. I~ Yn is :l ;;ti'"!set 

of Zn then Yn=Zn if: 

(1) (11'	 1.." ••• ,1 ) is an eler:~nt of Y..- n	 ,. 

(.."
-/	 If (bl,b2' ••• '~n) is an eleD\Ol1t. ':If "':1 t~"en (bl +l,b2 , ••• ,b,'l) 

is all e lC!J"X'..nt of Yn 

r~)\--' It (b' ' ). l,J,/'), ••• ,JJ 
.0 n 's ~M.L. <,u_ eln '=.nt­L.i.l_,... aF'... v-n th~M~. (.... l ­ -1 h h 'J~1'~.J')· ''''~3' .•. ''-' 

.~ n 

is ill) clenEnfc of Yn 

(n+l) If (bl , ~,." ..• ,1" ) is an elerrei"1t of Y then- _ n n 

\'b b ~ +!, . -, nJ t ~ v
1, 2, •.. ,""-. _J lS an ~. J;rren 0 ........
 _.1	 n· 
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P~ro. Ie!"'" 
_~ _. {,.",

J..:_.,~,~,
_.,.. l·' . .;~. ,,;;,J,!~.- ;:,'l"\'r~-t ...... .L 

',t '-41"..,....1 ..............,.:I..:; .... ;r-15
",~.L. 

1
.,.~.= ,-,1­1\_", '.1.. . J L .l.~, .~ .("':>0"--""-0 ,., ...l ,~.-'l.:'L~,~ 

eTL'Jul:31~ (1::+]; r:l.r(~ given1 
Cl~L T: Sho\'1 1 i.3 an e1ercnt of }:. 

If Y1C~l' tll~n 7,=~r.,;~~ iE cl)nditions (1) .J.n::~ (::!) "~rith k=l are satisfic,J. 
~ 

This foll~;s directly fran the first principle of rrath"lnatical i.:1duc'::ion;
 

th,crefoX"e, 1 i~,~ an elerrent of K.
 

CASE II: Jf],: is an e1errent of <:, then k+1 is an elerrcnt of R.
 

T..et X be L'18 set of ordered (k+1)-tup1es of positive integers not in
 

Yk+l' ShO';'] '( is eMpty. ""'e assun1ption that k=I< alla,-IS no clor:ents
 

b1 ,l:2, ••• , or ~ such 1:.'1at (b1,b2, ••• ,c-1~,b.<+1) is an e1errent of X. CheXls"
 

lJ']:+l as t,'1e least elerrent in the 1:+1 !).,')sition of 1:.'10 e1en~nt,_, "f X. By
 

hycothcsis (1) (11,12, ••• ,1}:+1) is em elerrent of Y!'.1-1' t'1en (J'" ~J~, ••• ,
 

b'k+1)~(11,12,••• ,lk+1) an" b'k+1:;t1/i\+l>1 or h',+,-l >'1. Sbcc })'::+1
 

~..;as chosen to r..e the least ~l~~nt in t~l(~ l~+l 1?Osi.tion of +:.1,\(:: ~leTTE!l+-.f'. ")[ Y, 

(bl'b?, ••• , b' ]..+1-1) is 211 ? lerent of Y, l' Dl1t !oy ((J:+l)+l) of t;,,,,
_.- ,+­

; s an l>:>lpY"........n .... of ,- tJ'en (1, ' h:'TAJthf'sis, if (D1,b?, ••• ,h'" _1-1 ) ~ '.- ".,";.....,~ -- .Lj""_I' _ .._-~ ",0.." ••• ,.., "'" -_-I ,:, 

/1 1-_ 1-,1) is(1:>"':+1-1)+1) is ,LT1 clem:~..rlt of j-l:+l 0r ~ )1""::"···'" '~+-l ' ~r: p 1·-~~ f~l"'t rj f 

v Thr.~.core X muct be ,.,.,'~)....~ ~'nn Y =~L ,'-F ",r =.:7 rrn.,n,.., ; r. ...,.. ;,~p

"'~.:+l· - ,- ..1..':~.L , - ...... - ~'i '-1 '-U·' :-:.+1 'k+l ,'.- .11,,: '1-:: ......... .1 -'-~ " L, ••
 

:m r.'lcT'Ent of V then k+1 is an pIE'f'lSnt nf '-. ~cr'?foi"~ T~_~;' ~ ;:J,T1r, 'r ':" f7 f,:;r ,....., -'n 

all n is a"'1 eJ,2.rr¥'-'Jlt of ~1, vlith t'le cDnJit.ion'") (1) to (n+]) SIlveri. 

So -,lith this proof, the discussion of IlEthods of finite I1\3:thel"iltical 

induction is CClolp1eted. The next section 'dill present an important appli ­

cation of finite mathematical irrluction. 
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SOCTlOiI 7: Anplication 

The applications of rrathenatical induction stretch beyond the rreans 

of its use as a proof or as a method of verifying formulas. l\rronq its 

ot.!Ier a{J!Jlications is its use in Inductive or Recursive Definitions. 

~1athenatical definitions must be both precise and rigorous, this 

lmique canbination can be difficult to aCaJrnplish when discussing certain 

rra.thernatical concepts. In fact some concepts, such as the polygon, are 

very difficult to define. 

When a concept involving the positive integers is defined for one 

and is also defined for the integer k+l when it is defined for the integer 

k, t.1-Ien it is defined for every positive integer. It is clear that in 

this case one is applying the inductive principle, and it is these cases 

that result in the use of inductive or recursive definitions. 

A well kncMn inductive definition is the definition of eXlxmential 

notation, (l) where k is an elerrent of the positive integers. 

DEFDJITION: For any real nurrber a, define 

(1) al=a 

(2) k+l ( k) k . ... tega = a ·a where ~s a pos~t~ve ID er. 

5_ ( 4).
Therefore a - a a 

and similarly = (a
3
)·a·a 

= 
2

(a )·a·a·a 

= 
1

(a )·a.a.a.a 

Thereby any exponential power can be recursivelv broken down to any 

desired level, or inversely: increased to any exponential power. 

With this final topic, the discussion of finite rrathernatical 

induction is carpleted. The text reM advances fonoard into the 

transfinite realm! 



Chanter Three 

Transfinite Induction 

Accordino to lVebster the adiective transfinit.e has the following 

d8finition: 

TAA~SFnnTE: 1. going beyond or s~ssing any finite number; 2a. beina 

a pcME'I of a matherratical aggregate wtnse cardinal number is not finite; 

2b. being either an index by purely algebraic rreans. i.e.: ordinal 

numbers. (11, p. 2 ,427) 

First, it is given in this definition that transfinite rreans beyond 

the finite ntm1bers, or simply infinite. Therefore transfinite induction 

deals with mathematical induction on infinite ntm1bers or sets. [lowever, 

t.'"te definition also brings atout t:\-K) n€!'," terms in its description of. 

transfinite: (1) Cardinal Numbers and (2) Orainal Nur:1bers. 

In or.der to obtain a complete and J<r1CJI',ledgeable un<'lerstandina of 

what transfinite induction is, it is necessary to first introduce cardinal 

and ordinal numbers. '!hus, this chapter on transfinite induction is 

divided i..T1to three IMin sections: (1) Cardinal Numbers, (2) Ordinal 

NtInbers, (3) Transfinite Induction. 

SECI'ICW 1: Cardinal Numbers 

cardinal numbers are a rreans of dividing sets into classes, assiqn­

ina two sets to the sane class if and only if they are equivalent. 

(In, p.132) 

FOr example, if given t:\-K) sets, each with five elerrents, then these 

t= sets \~uld be assigned to the sane class since they are equivalent. 

29 
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This class ~uld be t'Je class of all sets containing five eterrents, and 

is given the cardinal number 5. Son:e examoles of sets ,lith a cardinal 

number of 5 are: 

S= {1,2,3,4,S} 

T= {6,12,18,24,30} 

V= {m,n,o,p,q} 

Sllnilarly, the cardinal number 1 corresponds to all sets containing one 

elerrent, t.he cardinal nUi11bE'r 10 corresponds to all sets containing ten 

elerrents, and the cardinal number 1,000 corresponds to all sets containing 

one-thousand elerrents. 

cantor fonnalized the concept of cardinal numbers as a (1-1) ­

correspondence between the elerrents of sets: 

DEFINITION OF CARDINAL NUMBF.RS: If A and B are t;,o sets such that there 

exists a (1-1)- correspondence bebveen the elerrents of A and the elements 

of D, then we shall say that A and B have the saIle cardinal number. (12, 0.84) 

EXAlU'LE: 

A={l,2,3,4,S,6} 

B= (10,20,30,40,SO,60) 

There exists an obvious (1-1)- correspondence between A and B, 

therefore they have the Satre cardinal numbers. That cardinal number is 

the number of elerrents in the set; thus in this case A and B have the 

cardinal number 6. 

It is obvious that as long as a set has a finite number of elemi'Jlts, 

then its cardinal number s:i.mply corresponds to the number of elerrents 

in the set. But what is the cardinal number of an infinite set? 
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Cantor, to assiqn cardinal numbers to infinite sets, had first 

to decide a rreans of classifyinq infinite sets. 'Ib achieve this purp::lse 

of classification, he analyzed one of the "simplest" infinite sets, the 

set !'I of natural numbers. 

Upon analysis of the set 1'1, Cantor fotu1d it to possess a distinc­

tive pronerty. The set of natural numbers, though infinite, is still 

denurrerable. By denurrerable, is rreant, that the natural numbers have a 

"natural" order by which any element may be co=ted (the process is 

achieved by sirrply adding one to the previous element until the desired 

elerrent is attained). 

Cantor further discovered that sorre infinite sets, when arranged 

in a specified order by sorre predetennined index or rule, can be set up 

in a (1-1) - corresp:JI1dence with the natural numbers N. Such sets, 

through this (1-1)- correspondence, are also denUlTErable or countable. 

Q1 the other hand, sorre infinite sets =uld not be put in a (1-1)- corres­

pondence with the natural numbers N, these sets are said to be non­

denurrerableortu1cotu1tab~. 

Cantor, therefore, used denurrerability and non-<1enurrerability to 

classify infinite sets. 'Ib the infinite sets \#lich are denurrerable or 

co=table, Cantor assigned the cardinal number No ("aleph-null"). 'Ib t..'1e 

infinite sets which are non-denUlTErable or =countable, Cantor assigned 

the cardinal number c. 

As previously stated, to shcM an infinite set has a cardinal 

nunber fl( 0 ' it is necessary to provide an index or rule by which t..'J.e set 

may be specifically ordered, such that a (1-1)- correspondence bev:leen the 

ordered set and the set of natural numbers exists. 
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'rhis	 can Le done Witil the set 01 ratiolio.l nu:nbers R as follo.;s: 

(1) Defirution of ,,: r:= {Pt'q an elerrent of !-tl p is all intecjer, 

q is	 an elenent: of. Ll ar~ ~l:J,q)=l}. 

(2)	 Index of D/q is Ipl +q (tilUS the inUex of '2/3 is 1'21 +3='0). 

(3)	 Order the elerrents of a l>",t of a yivp..!l index in pairs of 

absolute values, tile relative order between pairs is 

determined by nUlIerical rcae,nitude (thus the order of tile sel: 

of i.n:iex Sis: {-1/4,l/4;-2/3,:,/1;-3/2,3!'2;-Vl,4/1J 

(4)	 Arrange finite; set:; of i.'"1dexes according to size of their 

indexes. 

Therefore the final ordering of the eler;ents of R is: 

R is	 an elel;-ent of {O,--1,1;-l/2,l/?;-2,2;-l/3,1/3;-3,3; •••} 

Every elerrent of R. has a tmi,lUC lX/sition and a definite inrlex. :'i,u;; 

to cl.>talil a (1-1)- corresponclen= l::etHeen R :m:'! r;, let thl. nth numLer :jl 

I{, starti.,g fran the left, l::e dcnoteC:l ::>y r , an~l m3J.:,. the pairing (ll,rn ),n 

n is an elerrent of ;" r n is an ela"""t of R. (12, i'. SD) 

As an eJ2n'ple of a set. Wilich ~1a3 oJ.e ccu.-~lLUll Hur:J..:er c, take the 

set of all reals I{. 'The set of rl~a1i3 is non-denur;crablc since Llcrc 

..kes !lat exist a (1-1)- oorrc:sjXlndcncc betdE.€l1 the natural numbers 1, anu 

the reals~. 

In conclusioil, cardinal nurnLer:; tell li·terally ho., many eler'li'..nts 

are in a set. 'Ihe finite cardL'1dls are 0 and the natural ntnlbers 

1,'2,3,4, ••• ,n... '1':le inf:L'1ite cardinals, tented transfinitE: cardinals, 

are numbers of the type,\:'o and c. There are other transfinite cartlinais; 

in fact, infinitely many. lra-Jewr, for t.lris text, the cardinal numbers 

have been sufficiently ex1Jlore:J.. 
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Si)::TIOl'1 ::: O1.~UiJ.ld1 .:.,_::.r.~Xrs 

To 3efi.ne oI.din.al nur:lers it is nc~ssary to unJ.crstanu the con­

..:;-e?ts of {Ii ~imply ord.ero::1, (2) ouler t:-il"-=S, and (3) well-orJ.e::reJ. s.ets. 

'1nerefore eact of t:-lese concepts will :ce d"fincd and discussed previou;; 

to t.l-le introduction of oI.dinal ~1urnber.s. 

siJrply Ordered: i\ Set C (having exactly n elerrents, n is an eler,=t of 

N) is siInply or::erB.1 relative to < ~)rece:ies) if: 

(1\ If x,y arc elerrents of C and if xl"., then x<y or y<x.~J 

(2) If x,y are elements of C ~1d x<y, then x~y. 

(3) If x,y,z are cler....:nts of C and x<y and Y<z, tllen x<z. (fJ,p.l~) 

Order Type: :"ill order ty"e is <J. pro]JEe1.ty can"X>!1 to OjQ sets that have a 

(1-1) - ::orreSjXJndenc8 U,at preserves the order relations. 

A set [oust be s1101P1': JroerL>Q to bave a,. order type, but ,·]bat 

e.'<acUy is an ordcr type? A fC'd examples might best exemplify the r:eanincj 

of order type. 

::;(l;!,!PLE f 1: 

L2t S be a set. with cardinal I1\.DuLer 2, t..'1en s={a,b} (since S MUSt have :'. 

eleln~nts). 'l'hese 2 elerrents can be ordered in n.o '1ays (either a<b or b<a), 

but either result is still an o17kred pair, lc'1ercfore, any set with t"iQ 

clements has order type b,u. 

m~'1P.LE ;'~ ::: 

Let the set Shave cardir.al number 3, then S has three elerrents that can 

be ordered in J! or 1.2·3=~ ways. But still, each of the six ordering,; 

-..ould be an or.1ereJ triple, t..'lerefore any set with three eler:ents )laS 

order tY)JC crree. 
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In general then, anv set uith a finite cardinal number n can be 

ordereel in n! 'vays. rAch of t11c orderings is aTl ordere<l Tl-tuole, there­

fore the order type ~lst be n. 

'{'he np-Xt question is naturally, does the previous general staterrent 

'1old also for infinite sets (or sets with transfinite cardinal numbers 10Iq 

or c)? '{'he answ=r is no. The reason can be easily clerronstrated. 

Cbnsider the set '.j of natural nllf'lh:"rs. ;.j can be assigned its 

natural order: n.cn+l for all n an elerrent of N. call this order type w. 

Another simple ordering of N is: (1) if a,b are elerrents of N, and a is 

odd, b is even, then a<b; (2) if a and h are l:oth odd, then a"'b denotes 

the natural order; (3) if a and b are l:oth even, then a"b neans h"'a iII 

the natural order. The order just defined is: 1,3,5, ••. ,2n+l, •.. ; ... , 

2n, ••• ,6,4,2. Call this order tyr>e y. Then there exists at least 0....0 

order types on the set of natural ntll'C':>ers. 

The ronclusion CM be dra<m that for simply ordered sets of n 

elerrents, there exists only one order type n. But for infinite sets there 

na.y exist IrBny order types. 

I'lell-orderinC'[ sets: A siJrply ordered set is ~ll ordered if it has a 

first element for ever] non-empty subset of itself. (14, p.159) 

h'very finite simply ordered set is \-Jell ordered. 'Ihe set of natural 

m.rrnbers N, \.men ordered in "natural order" w, is ~11 ordered; haivever, 

the set N under order type y is not 'Yell ordered, since the subset of 

even numbers has no first elerrent. 'Ihus, an infinite set mayor may not 

be ~ll ordered, depending on the order type of the simple order. 

Finally, ,·lith sir.1rJly ordered, order types, and ~ll ordered all 

defined, the definition of ordinal numbers is at hand. 
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Ordinal Numbers: The order types of well~rdered sets. (12, p.12l) 

From the aJ:ove discussion it is knotm that all finite sets are 

well ordered and have a lll1ique ordering type. In fact, the ordering 

type for a finite set is equivalent to the cardinal nurroer n of that set. 

Then it is true for all finite sets that the cardinal and ordinal numbers 

are equivalent. Thus, the set S= £1,3,5,7J has both a finite cardinal 

and finite ordinal number of 4. 

Infinite sets, however, may be so ordered as to belonq to rrore than 

one well-ordering type, thus transfinite cardinals and transfinite ordin­

als are not equivalent. This is ,..ihy for the set N, the cardinal number 

is ,\'", while the ordinal number for the "natural order" of II is IJ) • 

(other existing well~rdering types for the set }j are symbolized differ­

ently.) Literally, an ordinal nurroer specifies \...w.ch one of the well­

ordering types over a given set. 

Generating lOne''''' \oIell~rdering types, from established "older" well­

ordering types, such as the finite ordinals or (;J, can be aCCCJITqJlished by 

a rrethod of addition defined below: 

1\DDITION OF ORDeR TYPES: If A and R are order types, then A+B is the 

order type determined by AllB, so that the elerrents maintain the 

original order for A and 13, lll1less an elerrent belongs to both sets, 

then the order type of A supersedes the order type of B. (14, p.163) 

since this method of addition is generating "new" well~rdering 

types, it is, per se, generating "new" transfinite ordinal numbers. 

Intuitively, thesP. n""ol ordinal numbers can be visualized by first regara­

ing the elerrents of A in the order in \'ihi.ch they occur, and then follOl'l 

these elerrents with the elerrents of B in the order they occur. Por 

example, if A is the odd natural numbers {1,3,5"'} and B is the even 
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natural numbers {2,4,6···} then A+3 is {1,3,5,···;2,4,6,···}. The 

order type	 of this set is lJJ+ilI, since l::oth A and B have order tY[1e ill. 

The operation is not ccmnutative, however; for if the ordinal 

number 1 is represented by {o} and CClllbined with tAJ, then 1+(1) is 

{O,1,2,3.·.}. This order type is obviously stillW, therefore 1+101=&1. 

But "'+1 Yo'OUld be represented by [1,2,3 ... ,o} , which is a new order 

type. Continuing this argwent for n an elerrent of the natural n\.mlbers, 

infinitely many transfinite ordinals of the fonn ilI+n can be generated. 

In fact, as with transfinite cardinals, there are infinitely many trans­

finite ordinal numbers. 

The following table surmarizes sene of the infonnation provided in 

the sections over cardinal and ordinal nunt>ers. 

I. Equivalence of Finite Cardinal and Ordinal Numbers. 

Cardinal Ordinal 
Cardinal/Ordinal Number Representation Representation 

1 First {a} {a \ 

2 Second {a,b} «a,b)} 

3 Third {a,b,c! {(a,b,c)} 

• 

FOr any n	 Naturals {1,2,3,···n} {<1,2,3,···n~ 

II.	 Cardinals ordered a=rding to magnitude. 

1<2<:3<···<n<··· No (1-1 correspondence ..lith Naturals) 

2"'. = c (1-1 correspondence with the Reals) 

2c = f (set of all subsets of the Reals) 

at 
In fact, for any cardinal number j(, 2 is a new cardinal number such that 

<: 2"'­.. .
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(') f ~J..1:i:;	 C:lJ'~ bc: C':..::-~.:'c;..:tG.d )..i. :':~\;'":"::-'':''~l~'- t:1
1C iIC1uc:ti0"i.1 ::?C) t>'it: ,~_ ,I .L...:':'.l' 

1.~. _
21l~' 11, if C" ?r'~:"1' ~,:,':":: 'r!~n+' , :·;::'i.S t;lJ,.~i -:;. ~'.t:':, .J. J;j.i:O~~:t', t::·:~~ ~ .... :": l~:'·, +-.2: ~;",: 

~..J.C,)iy.~rty • '~hLs luvisi.0r~ yi{~l'k:t=.:-U"'.sIiJ Llt·~ induction. 

'rra..'1S£i:u'':2 I.n-iuction principle: ~\ 3iri;;..,)le crd2re'.i set t: is said to sati~; Ej 

the transfi.J1ite llYlu...::tion principle T.)rovi~l2'~ t.ha~: 

{I}	 :;l ;las a fir.3t elerlent 

(2) If iifl: sue" that (a) :"1 contains the first ele,rent of ,:, ,Ulol 

{Ll i::: ")1 contains a section Hlw (d,'notes the set {:, I x <"J} ) th"';1 it 

O'J,.'1tains .,,'; then Hl=';·J. (12, ;".11(,) 

statcr:ent. number (2) is OlE' actunl tra'1,GfiJ1itc induction princi~Jlc. 

1.L. ~ ~ .... ...r..-= used to sm, that all elerrcnts of a ,..""ll-ordere;' spt '.1 ,X13::ie,;S a 

given property. 

It should be noted tl'..at finite nBthcsr.atL-::-:tJ induction is a '3P(;Ci0~. 

tjJJEO of transfinite induction. I'ore specifically: transfinite :Xlth~C1il-

tical induction, :LJerforeed on a set ':1 ~:iYd.ch j",az an orr~r typ,; of W 

~s identical \vith the fi:1ite or on~_inar.f principle of LBt:ha~-atic.:-.d 

induction. To rrore fully cnloprerumd tilis relationshin l:oeuleen finite a.:,," 

transfi,1ite induction, ~e t.'1e rretllo<is of pcrfonning 'x:>th types. 

L'1 proving that the eleme.'1ts of a dcnuncralJle set. S 'lave a cert2.in 

property P, one applies t.he finite fom of mathematical induction: 

since S j,s de.'1lJllCrable then its elerents may be OIT1.~red in i1 fom 

of a t~-p;? 6J sequence: 

~~ .., •>:1' X 2'''''-3' ••• '''"n' •• 

(1)	 Prove ':1 has property P (Dasis step) 

(2)	 Prove if for any ~:n an elerrent of S, t..1"}e propert:l :r hclrh, 

then the prooert.y :' holr1.s for ~-+ 1 also. (Inrluc....'"tion step) 
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Then by finite rratheP.'atical indnction all x an cleniE'nt of S have the 

property P. 

1'10.<1 suorose t..hat ,..1 is My set, lJe it. denUITerabl" or non-dcImmer­

able. In order tD prove that all its el".r:-..nts have a certain nrooertv P, 

apoly the transfinite indl~tion princinle: 

TVen thourlh 1'1 IT'CIv )Je uncountable, it might be ,""'ll-orrlererl. If ~.) is 

<lell-ordered t..'Jen: 

(1) Prove the first element, I?l of \.r has property P. (Basis steo) 

(2) Prove if for any \'I, an element of \'1, all the elements of ''J/IV 

(i.e. {x I X("'}) have the Pronerty P, then the property P 

holds for \'1 also. (Induction step) 

Then by transfinite rratl1el'i3.tical in.luction all IV an element of •.) hav" 

t..'Je r>rooerty P. 

Therefore it is evident, frun t'1" ilbove discussion, that finite math­

ematical induction is a special case of transfinite mathematical induction. 

Thus several special cases of oroof by transfinite induction have been 

m:eviously derronstrated, that is: all previous nroves involvinq finite 

mathematical induction <lere a form. of transfinitely rnathp..rnatical induc­

tive proof. f-loI,>ever, in the interest of furt.her clarification of trans­

finite rratherratical induction, and its application in proving t.heorems 

on sets \.) '.vith ordering other t..l1an fAJ, the follCMinq proof is presented. 

TIWDI1I1I: Let ,,) and \'1' be <>ell-ordered sets. Then either N and "1' are 

of the sarre order tvpe, or one is of the sarre order type as a section of 

tl1e ot..'Jer. 

PROOF:

CASE I: 

If ,') is €!T1Pty, the tl1eorem holds trivally. (This is not the case involving 



40 

inductirm, and is of little intprest., the,efore it is not further
 

discuss0d. )
 

CASE II:
 

c', is not eJl"ty. 'I'hen since \'1 is non-€TTty ann \vell-ordered, ,~ has a
 

first elene;nt wl'
 

(1)	 Bither all elerrents of \';' are in order-preser"inq (1-1)­

=rresoondence with elerrent.s of the section l~/",_, or not. 

(2)	 If they are not, then nair wl with the first elenent ''''1 of "J'. 

(3)	 Therefore, if w is an elertk"..nt of -'I and each elerrent of the 

section IVw is already paired \-lith serre elerrent of \.J', then 

either all elerrents of Vl' are already in order-DrP.servincr (1-1)­

=rrespondence with elerrents of H/vl or not. 

(4)	 If they are not, nair ,., with the first elerrent of W not 

already paired ",ith eltT-Ents of \~. 

(5)	 'l'hen by the transfinite induction Drincble, either all 

elerrents of 1'1' are paired in this manner \-lith eleJTents :'7, or 

=nversely. (12, p.120) 

SocrION 4: Definitions by Transfinite Induction 

Definition by transfinite induction is roerfonred in much the sane 

fOIT!1at as that of definition by finite mathematical induction. 

Begin by =nsidering a ~ll-ordered set w with a first elerrent '''1" 
Then if sane mathematical entity E is defined for: 

(1)	 E (wl) and then: 

(2)	 for eac!l '" is an e1errent "J, E(w) is defined in terms of tJ1e 

section \")/\'1 or its e1errents. 

Then fran the transfinite induction principle it can be =nclucted 
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that E (",) is defined for every w is an F.lcment of 1'7. 

This tyr;e of definition allows a precise and clear cut rrethod 

of defining mthematicu =ncepts involving sets of order type other 

than w. 

Ii 



Chapter Four
 

Conclusion
 

The original concept of this thesis ,'!as to explore, define, and 

clarify finite mathematical induction. 

'!b achieve this end a ground ,~rk was laid in sets, functions, and 

sequences. Fran this ground ,~rk, the first princinle of matherratical 

induction ,.,as introduced as an axiom. 'Ihen, with the aid of the \'Jell ­

ordering Axiom for the positive integers, this first principle was itself 

proven. 

After the first principle ,-/as 0..xnlored through exarrq:>les, the text 

advanced to variations of finite mathematical induction such as: 'Ihe 

second principle of mathematical induction and multiple induction. These 

variations l.ere t..'1en similarily explored. In conclusion of finite math­

ematical induction, there was a discussion of their application in 

definitions of mathematical terms. 

'Ihe author was then urged-"strongly"-by D:letor Harion Eirerson 

to include in this thesis transfinite induction. 'Ihus, the appropriate 

introduction in cardinal and ordinal numbers was presented, so that trans­

finite induction oould be included. 

'Ihis thesis, thereby, is a fairly complete sttrly of mathematical 

induction. In its pages I hope you found the answer to rrost of your 

questions, but not all of them. Because, for rre, the interest in matlle­

matical induction was much like the intuitive idea behind it: Every tinE 

I answered a 'JUestion, there 'vas still one rrore. 

",
r,' 
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