AN ABSTRACT OF THE THESIS OF

Joyce D. Hawthorne for the Master of Science Degree in Physical Science presented on August 10, 1981.

Title: Neutron Diffraction of Samarium Deuteride

Charles Granding Abstract approved:

Studies are being performed on the crystal structure of rare earth metal hydrides for use as hydrogen storage systems. As hydrogen is added to the metal, a face centered cubic hydride is formed. Additional hydrogen is then absorbed and the metal lattice reduces its size. In the lighter rare earths, this reduction in lattice size appears to a stoichiometry of $MH_{3,0}$. With samarium and the heavier rare earths, the face centered cubic absorbs hydrogen and then undergoes a solid phase transition to a hexagonal structure capable of absorbing hydrogen up to the $MH_{3,0}$ limit.

The location of the hydrogen atoms within the cubic and hexagonal phases around the transition is the focus of this project. These atom positions can best be detected by neutron diffraction techniques applied to different stolchiometries, both cubic and hexagonal, bracketing the transition. The experiments were performed on samarium-154 deuteride.

My part in this ongoing research involve first designing and building a system of known volume. Then, different stoichiometric samples of samarium deuteride, using determined P-T-C conditions, were prepared. A neutron diffraction pattern was run on each sample. Interpretation of this pattern provided an analysis of the hydrogen locations in the cubic and hexagonal crystal lattices. NEUTRON DIFFRACTION OF SAMARIUM DEUTERIDE

4

A Thesis

Presented to the Division of Physical Sciences EMPORIA STATE UNIVERSITY

In Partial Fulfillment of the Requirements for the Degree Master of Science

> by Joyce Donelle Hawthorne August 1981

Thesis 1951 H

Chuber M. Grunlig Approved for the Major Department

Approved for the Graduate Council

424801 0R. APR 2 6 1982

ŧ.,

This thesis was performed

ч

under the auspices

of the

LOS ALAMOS NATIONAL LABORATORY

of the

UNIVERSITY OF CALIFORNIA

PREFACE

The characterization by neutron diffraction of the cubic and hexagonal samarium deuterides is outlined in this thesis. Some background of lanthanide hydrides as well as samarium hydrides is reported. Some basic crystallography and analysis of diffraction patterns is presented. The preparation of the samarium deuterides is described followed by the procedures used in obtaining and analyzing the diffraction patterns. Detailed results are provided in graphical and table form.

The research presented opens up additional questions which will be analyzed further.

Gratitude goes to the Los Alamos National Laboratory for its graduate assistant program that enabled me to perform this research.

Appreciation goes to Dale Tuggle without whom this work would never have been possible and whose knowledge and supervision was superb. Also appreciation is extended to Bob Von Dreele who provided the computer programs utilized in the analysis and gave expert advice. Appreciation goes to John Yarnell who built the diffractometer and whose help was invaluable.

There were many others who are to be thanked for their help and support. Among them are Helen Fuller for computer assistance, David Abelman for drawing some of the figures, Cyntha Robison for typing the thesis, and the staff of WX-5 who helped me build and maintain the hydride preparation system.

iv

TABLE OF CONTENTS

SECTION	P1	\G E
1	INTRODUCTION	1
2	LITERATURE SEARCH	2
2.1	Lanthanide Metal Hydrides	2
2.2	Samarium Hydrides	6
2.3	Magnetic Characteristics	14
2.4	Hydride Preparation Techniques	14
3	THEORY	16
3.1	Crystallography	16
3.2	Neutron Diffraction	19
3.3	Calculation of Intensity	23
3.3.1	Geometric Structure Factor	23
3.3.2	Multiplicity	25
3.3.3	Absorption	25
3.3.4	The Temperature Factor	25
3.3.5	The Lorentz-Polarization Factor	26
3.3.6	The Scale Factor	28
3.4	Profile Analysis	29
4	EXPERIMENTAL	34
4.1	The Hydriding Apparatus	34
4.2	The Diffraction Apparatus	36
4.3	Wavelength Determination	38
4.4	The Deuterium Reageant	38

SECTION

PAGE

4.5	The Samarium Reageant	38
4.6	Samarium Deuteride Preparation	39
4.7	The Diffraction Procedure	40
5	DATA AND RESULTS	4 5
5.1	Cubic Analysis	45
5.2	Hexagonal Analysis	45
6	DISCUSSION	66
7	SUMMARY	69
REFEREN	CES	70
APPENDI	x	
A	N Values For Various Crystal Systems	75
в	The Computer Programs: CWPREF, CWLS, AND CWPLOT	78
с	The Method of Least Squares	82
D	Estimated Standard Deviations	8 6
E	Samarium Metal Analysis	88
F	Raw Diffraction Data: Two Theta Versus Neutron Counts	91
G	Space Groups 194 and 225; P63/mmC and Fm3m	116

LIST OF TABLES

PAGE

TABLE

1.	Ionic Radii and M-H Distances in the Samarium Dihydrides
2.	Neutron Capture and Coherent Crosssections for Hydrogen and Deuterium
3.	Neutron Capture Crosssections and Isotopic Abundance of Samarium
4.	Calculation of SmD Stoichiometry
5.	Atomic Positions and Site Occupation Factors in the Cubic Samarium Deuterides
6.	Lattice Sizes of the Experimental Samarium Deuterides
7.	Comparison of the Hexagonal Indexing Analysis 59
8.	Atomic Positions and Site Occupation Factors in the Hexagonal Samarium Deuterides
9.	Reliability Factors

LIST OF FIGURES

FIGURE		PAGE
1.	The Fluorite Structure	. 3
2.	The Bismuth Trifluoride Structure	. 4
3.	Pressure-Temperature Diagram of the Samarium Hydride System	. 9
4.	Pressure-Temperature-Composition Diagram of Samarium Hydride	. 10
5.	Pressure-Composition Diagram for Some Lanthanide Deuterides	. 12
6.	Temperature-Composition Diagram for Samarium Hydride	. 13
7.	Bragg Reflection from Planes	. 17
8.	A Schematic of the Hydriding Apparatus	. 35
9.	A Schematic of the Diffractometer	. 37
10.	The Quartz Tube	. 42
11.	The Aluminum Cylinder	. 43
12.	SmD _{1.97} Experimental Diffraction Profile	. 47
13.	SmD _{2.38} Experimental Diffraction Profile	. 48
14.	SmD _{2.89} Experimental Diffraction Profile	. 49
15.	SmD _{2.99} Experimental Diffraction Profile	. 50
16.	SmD Refined Cubic Profile	. 51
17.	SmD Refined Cubic Profile	. 52
18.	SmD Refined Cubic Profile	. 53
19.	SmD _{1.97} Comparison of Cubic Intensities	. 56
20.	SmD Comparison of Cubic Intensities	. 57
21.	SmD _{2.89} Comparison of Cubic Intensities	. 58

ix

60

PAGE

FIGURE				
22.	SmD 2.89	Refined	H ex agonal	Profile

- SmD_{2.99} Refined Hexagonal Profile 23. 61
- SmD_{2.89} Comparison of Hexagonal Intensities 24. 63
- 64 SmD_{2.99} Comparison of Hexagonal Intensities 25.

SECTION 1

INTRODUCTION

Hydrogen reacts with the rare earth metals to form dihydrides with properties very different from the metals. These dihydrides can absorb more hydrogen to a limit corresponding to the trihydride composition. Hydrogen's use as a viable energy source would require the use of safer, more compact storage systems than pressurized tanks or liquid storage.¹⁻³ Rare earth metals and alloys can store hydrogen and release it by dissociation on demand. For this reason, the structure of the rare earth hydride systems are being characterized in detail.

The light lanthanide dihydrides have cubic structures that become more dense as they absorb more hydrogen. The heavier lanthanide dihydrides also become denser as they absorb additional hydrogen, but at some point during the absorbtion, they transform from the face centered cubic structure to a hexagonal structure. The face centered form of several rare earth hydrides have been characterized by x-ray diffraction and in the case of cesium hydride by neutron diffraction. Some x-ray diffraction has been performed on holmium trihydride in its hexagonal form.

It is the purpose of this work to try to characterize by neutron diffraction both the face centered cubic and the hexagonal phase of the samarium hydrides. It is hoped that this will help lay further foundations for solid state hydrogen storage systems.

SECTION 2

LITERATURE SEARCH

2.1 Lanthanide Metal Hydrides

All rare earth metals react exothermally with hydrogen to form hydrides. These hydrides have very different properties from their parent metals. Most are black, brittle flakes that crumble easily and are pyrophoric.

With the exception of europium and ytterbium, all the lanthanides can form a dihydride of the formula MH_2 . X-ray diffraction measurements of several lanthanide dihydrides⁴⁻⁵ and a neutron diffraction of cerium dihydride⁶ show the dihydride to have the fluorite structure shown in Figure 1 with the metal atoms at the positions (0,0,0) and the face centering positions (0, $\frac{1}{2}$, $\frac{1}{2}$). The hydrogen is located in the tetrahedral holes at the positions ($\frac{1}{2}$, $\frac{1}{2}$, $\frac{1}{2}$).

If the hydrogen pressure is high enough, the dihydride dissolves more hydrogen and can reach a maximum composition of MH_3 . The additional hydrogen goes into the octahedral holes at the centers of the edges of the cubes at the $(0, 0, \frac{1}{2})$ positions to form the bismuth trifluoride structure shown in Figure 2.

The first three lanthanides: lanthanum, cerium, and praseodymium, absorb hydrogen to the trihydride limit keeping the face centered cubic structure. There is evidence that neodymium acts as the heavier rare earths.⁷ Samarium and the heavier lanthanides, at some stoichiometry above the face centered dihydride, transform into a

Figure 1: The fluorite structure. Dark circles represent metal atoms. Light circles represent hydrogen atoms.

•

Figure 2: The bismuth trifluoride structure. Dark circles represent metal atoms. Light circles represent hydrogen atoms.

•

closepacked hexagonal structure. A neutron diffraction study of the hexagonal structure has been performed on holmium trihydride by Mansmann and Wallace.⁸ They proposed a hexagonal structure of space group P_q cl (D_q^4d) using a unit cell of six molecules at these positions:

6 Ho in (j):
$$(2/3 \ 0 \ 1; \ 0 \ 2/3 \ 1; \ 1/3 \ 1/3 \ 1)$$

12 D in (g): $(x \ y \ z; \ y \ x-y \ 2; \ y-x \ x \ z;$
 $y \ x \ 1/2 + z; \ x \ x-y \ 1/2 + z;$
 $y-x \ y \ 1/2 + z)$ with $x = 0.36$,
 $y = 0.03$, $z = 0.095$
4 D in (d): $\pm (1/3 \ 2/3 \ z; \ 1/3 \ 2/3 \ 1/2 + z)$
with $z = 0.175$
2 D in (a): $\pm (0 \ 0 \ 1/2)$.

The hydrogen radius is smaller than expected. Therefore, the tetrahedral hydrogens are slightly displaced from their ideal positions. "The actual HoH₃ structure is obtained by also displacing the octahedral hydrogens from their positions between the holmium planes into these planes. Only one third actually reach these planes, the other two thirds stay slightly out of these planes" to avoid close contact with the tetrahedral hydrogens. Mansmann and Wallace suggest that the other rare earth trihydrides might have this structure.

As the rare earth metals absorb more hydrogen beyond the dihydride limit, the lattice size decreases and the density increases. This phenomena is known as the lanthanide contraction.⁹ It has not been determined whether this contraction is also present in the hexagonal phase.

ų.

2.2 Samarium Hydrides

X-ray diffraction measurements show that samarium hydride forms a face centered cubic dihydride with the fluorite structure. The dihydride structure has four samarium atoms at (0, 0, 0) and $(0, \frac{1}{2}, \frac{1}{2})$ and eight hydrogens in the tetrahedral positions at $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$.

The lattice size for $\text{SmH}_{2.0}$ as measured by x-ray diffraction is a = 5.376 \pm 0.003 A.¹⁰ Using this value, the x-ray density is calculated to be 6.52 g per cc.¹¹ The metal-hydrogen distance calculated from x-ray diffraction data is 2.328 A,¹² but there is disagreement about the sizes of the samarium and hydrogen ions. A summary of ionic radii and metal-hydrogen distances of the dihydride given by various authors is given in Table 1.

X-ray diffraction shows that samarium dihydride, like the other rare earth dihydrides can take on additional hydrogen. The hydrogen goes into the octahedral holes of the fluorite structure. The Sm⁺³ radius in the trihydride determined by Holley, Mulford, Ellinger, Koehler, and Zachariesen¹³ is 1.804 A.

As the stoichiometry increases above 2.0, the lattice size decreases and interplanar distances decrease. Pebler and Wallace¹⁴ note that the lattice size of $SmH_{1.9}$ is a = 5.376 A but decreases to a = 5.34 A at $SmH_{2.7}$. They explain the contraction by proposing that the conduction electrons of the metal ions repel each other, increasing the metal lattice size and weakening the electrostatic interaction of oppositely charged components. Then when hydrogen is introduced, the electrons are tied up and interaction between the samarium and hydrogen ions increase and pulls the molecule together forming a denser structure.

TABLE 1

IONIC RADII AND M-H DISTANCES FOR SMH

Samarium Radius	Tetrahedral Hydrogen Radius	M-H Distance	References
1.751	0.577	2.328	a
0.97	1.28	2.25	Ь
1.90	0.43	2.33	c
1.95	0.38	2.33	đ
0.96	1.40	2.36	e

Values in Angstroms

а	Holley, Mulford, Ellinger, Koehler, and Zachariesen,
	J. Phys. Chem. <u>59</u> , 1226 (1955)
b	Libowitz and Gibb, J. Phys. Chem. 60, 510 (1956)

- Denver Research Institute, "Investigation of Hydriding
 Characteristics of Intermetallic Compounds", Summary Report
 LAR-55 USAEC (1961) (Paulings Method)
- d Denver Research Institute, Ibid (Bond Distances)
- e Gibb and Schumacher, J. Phys. Chem. <u>64</u>, 1407 (1960)

Pebler and Wallace¹⁵ found the cubic to hexagonal transition to occur at $SmH_{2.59}$. The lattice sizes for the hexagonal are a = 3.72 A and c = 6.779 A.

Pebler and Wallace¹⁶ propose an explanation for the transformation in terms of the lattice contraction. Pairs of tetrahedral ⁴ hydrogen ions move closer during the contraction to a separation of 1.5 A. Since the radius of the hydrogen ion is 0.65 A, the ions are only 0.2 A apart and a strong repulsion occurs. To relieve the stress, the crystal transforms to the hexagonal phase. This transformation also results in an additional density reduction of ten percent.

Pebler and Wallace¹⁷ locate the boundaries of the two phase region at $\text{SmH}_{2.53}$ and $\text{SmH}_{2.59}$. Messer and Park^{18} determine the transition boundaries to be $\text{SmH}_{2.5}$ and $\text{SmH}_{2.7}$ while Mintz, Hierschler and Hadari¹⁹ record $\text{SmH}_{2.4}$ and $\text{SmH}_{2.85}$.

Messer and Park²⁰ in 1972 performed extensive work on the decomposition pressure versus temperature of the samarium-hydrogen system. The measured transition pressure was lower as the temperature ascended and higher as the temperature descended. This hysteresis loop shown in Figure 3 is found in other hydrides and shows the lower equilibrium pressure of the hexagonal phase, which is more stable at the lower temperature. They estimate the "true, reversible" transition temperature to occur just below the rapid rise in pressure on the warming runs as shown in Figure 3 and the transition pressure to occur just below the lowest pressure on the hexagonal side of the plateau as shown in Figure 4. The transition at 250°C and 300°C occur at 70mm and 475mm, respectively, as read from the graph in Figure 4.

Figure 3: Pressure versus temperature of the samarium-hydrogen system. —> ascending temperature; ---- descending temperature. Taken from Messer and Park, J. Less-Common Metals <u>26</u>, 235, 1972.

.....

\$

Figure 4: Dissociation pressure versus H/Sm. Taken from Messer and Park, J. Less-Common Metals <u>26</u>, 235, 1972.

•••

Mintz, Hadari and Bixon²¹ do not estimate the two phase transition plateau but report the heating plateau at 350° C and the cooling plateau at 270° C for both pressures equal to approximately 700mm. These values were later corrected by Mintz, Hierschler, and Hadari²² to $314 \pm 5^{\circ}$ C on heating and $230 \pm 5^{\circ}$ C on cooling.

Dissociation information was provided by Korst and Warf²³ for the dihydride between compositions of $SmH_{1.95}$ and $SmH_{2.1}$ as shown in Figure 5. Messer and $Park^{24}$ performed dissociation experiments for stoichiometries between $SmH_{2,2}$ and $SmH_{2.8}$. Their results are shown in Figure 4. Mintz²⁵ produced one curve of the temperature-composition graph between stoichiometries of $SmH_{2.0}$ and $SmH_{2.8}$. Their work is shown in Figure 6.

Greis, Knappe and Muller²⁶ performed x-ray diffraction analysis on the samarium hydrides and deuterides. Besides the cubic and hexagonal phases, a new tetragonal phase was reported to exist between the cubic and hexagonal forms. This new phase had a tetragonal structure of space group I 4/m with 2 atoms per unit cell. The intermediate phase occurs at lower room temperature equilibriums while the phase relationships previously reported occur at high temperatures.

Greis, Knappe and Muller²⁷ determine the cubic to exist for compositions at $SmH_{1.95-2.34}$ for high temperature equilibrium and at $SmH_{1.95-2.28}$ for low temperature equilibrium. They determine the lattice parameters for the Sm_3H_7 to be a = 3.7780 A and c = 5.3647 A and for Sm_3D_7 to be a = 3.7716 A and c = 5.3503 A. The hexagonal parameters for SmH and SmD are respectively, a = 3.7870 A and c = 6.7926 A and a = 3.7726 A and c = 6.7632A. Figure 5: Dissociation Pressure Isotherms for some rare earthdeuterium systems. Taken from Korst and Warf, Inorg. Chem. 5, 1719, 1966.

.....

Figure 6: Temperature-composition graph by thermal analysis of the samarium-hydride system. ---- First cooling; -----Heating from room temperature to 600°C; ----Cooling from 600°C to room temperature. Taken from Mintz, "Thermodynamics and Statistical Mechanics of Some Hydrides of the Lanthanides and Actinides". NRCN-398 Israel Atomic Energy Commission; 1976, pp108.

No superstructure reflections were seen in the hexagonal or tetragonal samples.

The phase diagrams and pressure-temperature-composition information for the samarium hydrides have not been fully developed.

2.3 Magnetic Characteristics of Samarium Hydrides

The magnetic characteristics are considered by Kubota and Wallace²⁸ who found no magnetic ordering for either the cubic and hexagonal samarium hydrides between 4.2 K and 300 K.

2.4 Hydride Preparation Techniques

In general all preparative techniques for samarium hydrides involve direct contact of the metal with the hydrogen in a closed system. Some means of measuring the temperature and the pressure in the system is provided. The stoichiometries are determined using the ideal gas law and the measured amounts of the samarium metal.

Samarium metal is easily oxidized and especially sensitive to air and moisture. The reaction of the metal with the hydrogen is greatly inhibited by any surface film, so the metal surface is cleaned and prepared under some inert gas or mineral oil and loaded into glass containers. The metal is weighed accurately in either the inert gas, the oil, or in a vacuum. The metal is then degassed in a vacuum system for several hours with or without heat and then heated to the reaction temperatures desired. Hydrogen is then admitted to the system for reaction. In most cases the reaction starts immediately but the reaction time is related directly to the surface film. The reaction will occur at any temperature if sufficient time is allowed for it to diffuse through any film present.

The hydrides can be produced by direct reaction to the desired stoichiometry or taken to a stoichiometry higher than desired and after the reaction is completed, dissociated to the desired stoichiometry. Whatever the temperatures and pressures of the reaction, all samples were left to anneal for hours to days to ensure equilibrium conditions.

Specific descriptive procedures of several researchers can be found in their respective works.²⁹⁻³⁵

SECTION 3

THEORY

3.1 Crystallography

Constructive and destructive interference takes place when waves are reflected from a series of planes. Bragg noted that constructive interference had its maximum intensity when, for a particular direction, the parallel rays left the planes at the same angle they originally entered and when the path difference of the waves reflected from successive planes was equal to the wavelength or a multiple of the wavelength of the wave. The path difference for waves reflected off different planes, shown in Figure 7, is AB + BC or 2AB. This distance can also be expressed as $AB = d(\sin\theta)$ where d is the distance between the two planes. The full expression for the Bragg equation becomes

$$n\lambda = 2 d \sin \theta \tag{1}$$

The same interference phenomena can be shown to be true for arrays of points in a lattice as seen in Figure 7.

There are fourteen possible point lattices called the Bravais lattices. In actuality only seven are distinct and are the basis for the seven crystal systems. The first seven Bravais lattices have points only at the corners of the lattice; the latter seven have points elsewhere in the lattice. Each of the latter have the same size,

Figure 7: Bragg reflection from a) planes and b) arrays of points.

_---

-

shape, and orientation as one of the first seven, thus displaying the same conditions as the first seven.

Each point lattice has a certain inherent symmetry. Successive operations about an axis or plane will bring the lattice points back to their original positions. There are four basic operators: reflection, rotation, inversion, and rotation-inversion. All crystals belong to one of the seven crystal systems and each crystal must display a certain number of the symmetry operations characteristic of its crystal system.

Two other operators may also be at work in the crystal: a screw axis and a glide plane. Continued operation of either does not produce coincidence but does produce a pattern repeat.

When all possible combinations of the six symmetry operators are considered, the number of possible sets of points on a lattice with particular symmetry elements totals two hundred and thirty. These are called the two hundred and thirty space groups. They are listed in the International Tables for X-Ray Crystallography.³⁶

A crystal is a three dimensional regularly repeating pattern of atoms. The repeating pattern is called the unit cell and can be described by a section of three dimensional space. The unit cell can be described by its lattice parameters: a, b, and c, the lattice sizes, and alpha, beta, and gamma, the angles between the axes. Planes of atoms within the crystal cross the three axis, a, b, and c, at distances x, y, and z, respectively. To avoid infinite x, y, and z values when the planes are parallel to an axis and have an infinite intercept, the reciprocals of the intercepts are taken, reduced to a common denominator and the numerator is called the Miller indices (hkl). Planes parallel to each other are of the same set and can be described by the same
Miller indices. Also, the set of planes in a crystal made equivalent by symmetry can be described by the same set of Miller indices.

The distance between planes in a set is a function of the Miller indices of the set and the lattice sizes of the unit cell. The exact relationship depends on the geometry of the crystal system. For example, in the cubic system,

$$d^2 = a^2 / (h^2 + k^2 + 1^2) = a^2 / N$$
 (2)

where $N = h^2 + k^2 + 1^2$. The value of d in these equations is equivalent to the d/n value of the Bragg equation.

3.2 Neutron Diffraction

Neutrons, like x-rays and electrons, have both wave and particle properties. As a neutron passes through a solid, it may be scattered by the nucleus of the atoms in the crystal in accordance with Bragg's Law.

In a reactor, neutrons are slowed down by collisions with water molecules to an average energy of 0.025 eV^{37} (thermal neutrons). If the temperature is constant, the neutrons have a root mean square velocity³⁸ given by the equation

$$mv^2/2 = 3kT/2$$
 (3)

The deBroglie wavelength can be calculated from

$$\lambda = h/mv \tag{4}$$

Combining these equations gives

$$\lambda^2 = h^2 / 3mkT$$
 (5)

At room temperature the spectrum of wavelengths associated with these thermal neutrons becomes a Maxwellian distribution with its maximum between 1 and 2 angstroms. $^{39-40}$ These wavelengths were on the order needed to detect the d spacings of crystals.

It is necessary for constant wavelength diffraction to have a single wavelength. To produce this, the beam of neutrons passes out of the reactor and is reflected from the planes of a monochromating crystal. Only the neutrons reflected in a single direction are used to irradiate the sample.

From a powder sample the neutrons scatter in all directions off the different sets of planes in the crystal. A counter rotates around the axis of the sample in small steps, sampling portions of the scattered wave. The intensity at each angle is recorded producing a diffraction pattern.

In x-ray diffraction, the scattering occurs from the electrons. Thus the larger the atomic number, the more scattering occurs. An x-ray pattern will therefore show the positions of samarium atoms and will not detect the deuterium atoms. Neutrons, on the other hand, scatter primarily from the nucleus of an atom. Within a factor of two or three, all atoms scatter neutrons equally well.⁴¹ Deuterium atoms can then be detected with greater ease.

The choice of deuterium rather than hydrogen is made because of the neutron capture and coherent neutron scattering crossection effects as listed in Table 2. 4^2

The choice of the samarium-154 isotope was made on the basis of isotopic neutron capture crossections and availability of this isotope as shown in Table 3.

TABLE 2

CAPTURE AND COHERENT CROSSSECTIONS

FOR HYDROGEN AND DEUTERIUM

	TABLE 2		
	CAPTURE AND COHERENT C	ROSSSECTIONS	
	FOR HYDROGEN AND D	EUTERIUM	
	Capture	Coherent Scattering	
Element	Crosssection	Crosssection	
	(barns)	(barns)	
Hydrogen	0.332	1.76	
Deuter ium	0.00052	5.59	

21

TABLE 3

South and the second statements of the

ISOTOPIC ABUNDANCE, CAPTURE AND TRUE ABSORPTION

CROSSSECTIONS OF SAMARIUM

		True Absorption	Capture . Crosssection	
Samarium	Percent	Crosssection		
Isotope	Abundance	(barns)	(barns)	
144	3.1	-	0.72	
146	2 x 10	-		
147	15.1	-	60	
148	11.3	-	4.7	
149	13.9	114,000	42,000	
150	7.4	3,500	104	
151	-	-	1.5×10^4	
152	26.6	6,350	204	
154	22.6	3	51	

The x-ray diffraction scattering factors vary with the Bragg angle. In neutron diffraction, the neutron scattering factor, b, does not vary significantly with angle.⁴³ The value of the neutron scattering factors for samarium-154 and deuterium are 0.96 x 10^{-24} cm and 0.667 x 10^{-24} cm, respectively.⁴⁴

3.3 Calculation of Intensity⁴⁵

The intensity of the reflections are calculated by

$$I = F^{2} [(1 + \cos^{2}2\theta) / (8\sin^{2}\theta\cos\theta)] p A \exp(-2B(\sin\theta/\lambda)^{2}$$
(6)

where p is the multiplicity of the reflection $|F|^2$ is the geometric structure factor $exp(-2B(sin\theta/\lambda)^2$ is the temperature factor A is the absorption factor

and
$$[(1 + \cos^2 2\theta) / (8\sin^2 \theta \cos \theta)]$$
 is the Lorentz-
polarization factor.

3.3.1 The Geometric Structure Factor 46-47

The amplitude and phase of a diffracted wave from a single atom is proportional to be $\exp(i\phi)$. The amplitude of the scattering is determined by the geometric structure factor, $\{F\}$. $\{F\}$ is the quantity that determines how the intensities of the reflections from the crystal depend on the atomic arrangement within the unit cell and can be calculated as a function of atomic positions, Miller indices and scattering factors of the individual atoms. F, the scattering amplitude for the unit cell, is described by

$$F = b_1 \exp(i\phi_1) + b_2 \exp(i\phi_2) + \cdots + b_j \exp(i\phi_j) = \sum_{j=1}^{j} b_j \exp(i\phi_j)$$
(7)

The phase difference, ϕ , between the wave scattered from an atom at coordinates x, y, z and the wave scattered from the origin (assume the origin to be 0) for the reflection with the Miller indices (hkl) is

$$\phi_j = 2 \Pi (h \mathbf{x}_j + k \mathbf{y}_j + l \mathbf{z}_j). \tag{8}$$

The equations for the wave can be rewritten as

$$F = b_{1} \exp \left[i2Ti(hx_{1} + ky_{1} + lz_{1})\right] + b_{2} \exp \left[i2Ti(hx_{2} + ky_{2} + lz_{2})\right] + ... = \sum_{j=1}^{n} b_{j} \exp \left[i2Ti(hx_{j} + ky_{j} + lz_{j})\right]$$
(9)

or

$$F_{hkl} = j_{\pm l}^{2} b_{j} \exp\left[2i\Pi(hx_{j} + ky_{j} + lz_{j})\right]$$
(10)

This can be rewritten trigonometrically as

$$F = \int_{n=1}^{n} b_n \left[\cos \Pi \left(h u_n + k v_n + l w_n \right) + i \sin 2 \Pi \left(h u_n + k v_n + l w_n \right) \right]$$

$$(11)$$

or in the form

$$\mathbf{F} = \mathbf{A} + \mathbf{i}\mathbf{B} \tag{12}$$

where

$$A = \sum_{n=1}^{N} b_n \cos 2 i (h u_n + k v_n + l w_n)$$

anđ

$$B = \sum_{n=1}^{N} b_n \sin 2\pi (hu_n + kv_n + lw_n).$$

.3.2 Multiplicity⁴⁸⁻⁴⁹

The multiplicity factor, p, has a maximum value of 48. The actual value of p depends on the crystal form determined by the Miller indices and is equal to the number of equivalent planes in the crystal form represented by the Miller indices. For example, the $(1 \ 1 \ 1)$ form represents the equivalent planes $(1 \ 1 \ 1)$, $(-1 \ -1 \ -1)$, $(1 \ 1 \ -1)$, $(1 \ -1 \ 1)$, $(-1 \ -1 \ 1)$, $(1 \ -1 \ -1)$. The $(1 \ 1 \ 1)$ peak represents reflections from all eight planes and the multiplicity value is therefore eight.

Tables of multiplicites can be found in Mirkin,⁵⁰ the International Tables for X-Ray Crystallography,⁵¹ Lipson and Steeple,⁵² and Cullity.⁵³

3.3.3 Absorption

Neutron absorption coefficients for most materials are on the order of 0.3 cm⁻¹ compared to the order of 1000 cm⁻¹ for x-rays.⁵⁴ These smaller absorption coefficients make it necessary to use larger samples.⁵⁵ Reduction of intensities due to absorption is small and is normally not included in the intensity calculations unless absolute intensities rather than relative intensities are desired.

3.3.4 The Temperature Factor 56-58

The temperature factor, B, accounts for the thermal vibration that atoms undergo about their mean positions. The amplitude of the vibrations increases with temperature and changes with the type of atom and the bonds holding it. The effect is a unit cell expansion causing the d spacing to change and thus the two theta positions to increase. The effect of this temperature factor on the intensity of the profile is twofold: a decrease in the intensities of the lines and an increase in the intensities of the background scattering between the lines.

The temperature factor can be applied in two ways. As the overall temperature factor, it is assumed that every atom in the cell can vibrate thermally in exactly the same way. It is applied as written in Equation 6. This is normally used in the earlier stages of refinement. Later it is applied to each type of atom in the unit cell by replacing b with

$$b = b_{exp} \left[-B \left(\sin \theta / \lambda \right)^2 \right]$$
 (13)

The value of B is determined by use of the Wilson plot and is discussed along with the scale factor.

3.3.5 The Lorentz-Polarization Factor 59-61

Some reflection occurs at angles that slightly deviate from the exact Bragg angle for a particular reflection, each producing some intensity. The effect on the profile is a change in height and halfwidth of the peak. The Lorentz factor accounts for these effects.

The equation

$$\Delta \theta = \lambda / (2Nsin\theta) \tag{14}$$

gives the maximum angular range of crystal rotation over which appreciable energy will be diffracted in the Bragg angle two theta. This means that the maximum height of the peak is proportional to $1/sin\theta$. Thus the intensity is larger at lower angles and smaller at higher Bragg angles.

The changes in halfwidth in the intensity of the peak is proportional to

$$(1/\sin\theta)$$
 $(1/\cos\theta)$ or $1/\sin2\theta$ (15)

The effect is a larger width at higher two theta angles.

In powder patterns the intensity also depends on the number of crystals oriented at or near that angle. This has the form of

$$\Delta N/N = (\Delta \theta \cos \theta)/2 \tag{16}$$

Putting these three effects together the relationship becomes

$$L = (1/\sin 2\theta) (\cos \theta) (1/\sin 2\theta)$$

= $\cos \theta / \sin^2 2\theta$ (17)
= $1/(4 \sin^2 \theta \cos \theta)$

This factor is normally constant for any given set of measurements and is not included when one is interested only in relative intensities.

X-ray beams are partially polarized and the effect is expressed

$$P = (1 + \cos^2 2\theta) / 2.$$
 (18)

Usually the Lorentz and polarization factors are combined into a single expression:

 $LP = (1 + \cos^2 2\theta) / (8 \sin^2 \theta \cos \theta)$ (19)

Neutron beams are not polarized and thus polarization is not included in the calculations. However, if magnetic scattering is studied, the polarization factor must be taken into account.

27

3.3.6 The Scale Factor⁶²

It is necessary to find a way to relate the observed intensities to the absolute intensities on the same scale. This is done by use of the scale factor, k, that relates the two as

$$\left|\mathbf{F}\right|_{abs} = \mathbf{k} \left|\mathbf{F}\right|_{rel} \tag{20}$$

The value of k can be found by use of the Wilson plot.⁶³ The average value of the observed intensities can be defined as

$$\overline{I}_{rel} = (|F|_{rel}^2) avg \qquad (21)$$

For a unit cell containing N atoms it can be shown that the theoretical average intensity is given by

$$\overline{I}_{abs} = \sum_{i=1}^{N} f_{i}^{2}$$
(22)

Ideally, the ratio

$$\vec{I}_{abs}/\vec{I}_{rel} = \xi_{i} \xi_{i}^{2} / (|F|^{2}) avg \qquad (23)$$

should be the scaling factor required to place the individual intensities on an absolute scale. However, thermal vibrations directly affect the atomic positions in the real crystal. For each atom, then, the equation becomes

$$I_{abs} = \sum_{i=1}^{N} f_{io}^{2} \exp(-2B(\sin\theta/\lambda)^{2})$$
(24)

If the temperature factor, B, has the same value for all atoms then

$$\widetilde{I}_{abs} = \exp(-2B(\sin\theta/\lambda)^2) \bigotimes_{i=1}^{N} f_{oi}^2$$
(25)

Now. if

$$C = \overline{I}_{rel} / \overline{I}_{abs}$$
(26)

then

$$I_{rel} = C \exp(-2B(\sin\theta/\lambda)^2) \bigotimes_{i=1}^{N} f_{oi}^2$$
(27)

and

$$\overline{I}_{rel} / \sum_{i=1}^{N} f_{oi}^{2} = C \exp(-2B(\sin\theta/\lambda)^{2}). \quad (28)$$

Taking the in of both sides results in

$$\ln \frac{I}{\operatorname{rel}}_{\substack{\text{rel} \\ \stackrel{\text{N}}{\underset{i=1}{\overset{\text{f}}{\overset{\text{c}}}{\overset{\text{c}}{\overset{\text{c}}{\overset{\text{c}}{\overset{\text{c}}{\overset{\text{c}}}{\overset{\text{c}}{\overset{\text{c}}{\overset{\text{c}}{\overset{\text{c}}}{\overset{\text{c}}{\overset{\text{c}}}{\overset{\text{c}}{\overset{\text{c}}{\overset{\text{c}}}{\overset{\text{c}}{\overset{\text{c}}{\overset{\text{c}}}{\overset{\text{c}}}{\overset{\text{c}}}{\overset{\text{c}}}{\overset{\text{c}}}{\overset{\text{c}}}{\overset{\text{c}}}{\overset{\text{c}}}{\overset{\text{c}}}{\overset{\text{c}}}{\overset{\text{c}}}{\overset{\text{c}}}{\overset{\text{c}}}{\overset{\text{c}}{\overset{\text{c}}}{\overset{\text{c}}}{\overset{\text{c}}}{\overset{\text{c}}}{\overset{\text{c}}}{\overset{\text{c}}}{\overset{\text{c}}}{\overset{\text{c}}}{\overset{\text{c}}}{\overset{\text{c}}}{\overset{\text{c}}}{\overset{\text{c}}}{\overset{\text{c}}}{\overset{\text{c}}}{\overset{\text{c}}}{\overset{\text{c}}}{\overset{\text{c}}}}{\overset{\text{c}}}{\overset{\text{c}}}}{\overset{\text{c}}}{\overset{\text{c}}}{\overset{\text{c}}}}{\overset{\text{c}}}{\overset{\text{c}}}}{\overset{\text{c}}}{\overset{\text{c}}}}{\overset{\text{c}}}{\overset{\text{c}}}}{\overset{\text{c}}}}{\overset{\text{c}}}}{\overset{\text{c}}}{\overset{\text{c}}}}{\overset{\text{c}}}}{\overset{\text{c}}}}{\overset{\text{c}}}}{\overset{\text{c}}}}{\overset{\text{c}}}{\overset{\text{c}}}}{\overset{\text{c}}}}{\overset{\text{c}}}{\overset{\text{c}}}}{\overset{c}}}{}}{\overset{\text{c}}}}}{\overset{\text{c}}}}{\overset{c}}}{}}{\overset{c}}}{\overset{c}}}{}}{\overset{c}}}{\overset{c}}}{\overset{c}}}{}}{\overset{c}}}{}}{\overset{c}}}{}}{\overset{c}}}{}}{\overset{c}}}{}}{\overset{c}}}{}}{\overset{c}}}{}\overset{c}}}{}\overset{c}}}{}\overset{c}}}{}\overset{c}}}{}\overset{c}}}{}\overset{c}}}{}\\{}}{\overset{c}}}{}\overset{c}}}{}\overset{c}}}{}\overset{c}}}{}\overset{c}}}{}\overset{c}}}{}\overset{c}}}{}\overset{c}}}{}\overset{c}}}{}\overset{c}}}{}\overset{c}}}{}\overset{c}}}{}\overset{c}}}{}\overset{c}}}{}\overset{c}}}{}\overset{c}}}{}\overset{c}}}{}\overset{c}}}{}\overset{c}}}{}\overset{c}}}\\{}}\\{}\overset{c}}}\\{}\overset{c}}}\\{}}\overset{c}}\\{}}\\{}}\\{}}\overset{c}}\\{}}\\{}}\\{$$

If the left side is plotted against $(\sin\theta/\lambda)^2$, the result is a straight line with intercept ln C and a slope of -2B (from which the temperature factor can be calculated). C is related to the k of Equation 20 by

$$k = C^{-\frac{1}{2}}$$
(30)

3.4 Profile Analysis⁶⁴⁻⁶⁵

The analysis of raw data begins by determining the two theta values of the observed reflections. Sin θ and/or $\sin^2 \theta$ values are then calculated.

If the lattice parameters are known, the appropriate d spacing equation combined with Bragg's law, can be used to calculate the sin θ and/or sin² θ values. A comparison of the calculated and observed sin θ or sin² θ values is made. A matching set determines the characteristic set of N values and thus confirms the validity of the crystal system. A copy of the characteristc N values for several crystal systems is reproduced from Lipson and Steeple⁶⁶ in Appendix A. A more complete list can be found in Mirkin.⁶⁷

If a match is not achieved, another crystal system is chosen and the procedure repeated until a match is achieved.

For the cubic system, the appropriate equation to be used is

$$\lambda^2/4a^2 = (\sin^2\theta)/N \tag{31}$$

where $N = h^2 + k^2 + 1^2$.

In the hexagonal case, the equation is

$$\lambda^{2}/(4\sin^{2}\theta) = 4N / 3a^{2} + 1^{2} / c^{2}$$
 (32)

where $N = h^2 + hk + k^2$. During initial indexing in the hexagonal case, only reflections with 1 = 0 are considered. If these values match, the calculated values of $\sin^2\theta$ can then be adjusted for different values of 1 and a more extensive comparison made.

If the lattice parameters are unknown, the integers, N, are determined by finding the common factor in the $\sin^2\theta$ values either by trial and error or by difference methods. The multiples of the common factor then correspond to the N values and are then matched to the characteristic set of N representing the crystal systems. High two theta angles should be used for determining the lattice parameters using the appropriate d spacing equation. Since there are two lattice parameters, the lattice parameters are determined by solving simultaneous equations for two peaks. More complete descriptions of these methods can be found in Lipson and Steeple,⁶⁸ Mirkin,⁶⁹ and Cullity.⁷⁰ The more unknown parameters there are, the more difficult it becomes to index the pattern. Several graphical methods have been beveloped to help solve the more complex problems. Hull-Davey⁷¹⁻⁷² took the logs of the plane spacing equations and after rearranging them and incorporating the c/a ratio into the equation, he subtracted the equations for two different plane spacings. The resultant equation depends only on h, k, l and the c/a ratio. By solving these two equations simultaneously for different c/a values, a graph is obtained suitable for indexing any pattern.

To use the graph, log d values or the d spacings of the pattern are calculated and marked on a piece of paper using the scale of the graph. The strip is placed on the chart and moved around to find a c/a ratio that matches. The (hkl) indices are then read from the curves. Any systematic absence and peaks containing more than one reflection can be determined. This furthur helps identify the space group to which the structure belongs.

The lattice sizes are then determined by solving simultaneous equations for the high angle reflections.

Bunn,⁷³ Schwartz and Summa,⁷⁴ Harrington,⁷⁵ and Bjurstrom⁷⁶ are also credited with graphical methods that work in the same way as a Hull-Davey chart. Graphs for each crystal system can be found in Mirkin.⁷⁷

The next step involves the determination of the number of atoms in the unit cell.⁷⁸ The equation

$$A = V' / \rho 1.66042 = nM$$
 (33)

31

here V' is the volume in cubic angstroms and rho the density in g/cc, the molecular weight of the molecule, A the sum of all the atomic meights in the unit cell, and n is the number of molecules in the unit well. The number of atoms per unit cell is then calculated from n.

The space group and atomic positions of the atoms must then be determined by trial and error.⁷⁹ The presence or absence of some Miller indices eliminates some space groups. The pattern of relative intensities can be compared to already existing patterns in Mirkin⁸⁰ and the choice of a space group can be made. Mirkin⁸¹ also contains lists of compounds and their structures. The space group of a similar compound can be applied to a substance. Mirkin⁸² also provides a table indexing space groups and coordinates using the number of atoms in the unit cell.

Once a space group is chosen, the corresponding symmetry operators are located in the International Tables for X-Ray Crystallography.⁸³ Numbers are chosen for the atomic positions and inserted into the general coordinates of the space group. The structure factors and the intensities are determined at each angle. This calculated pattern is then compared to the observed pattern. Adjustments can then be made on any or all parameters (including positions and lattice sizes) and the pattern is refined until the best fit is obtained.

The refinement $process^{84-86}$ was also trial and error and it is made easier by use of the computer. Each facility has its own programs, but most are based on the weighted least squares program formulated by R.M. Rietveld.⁶⁷ A description of the least squares analysis is given in Appendix C. Reliability factors or R factors⁸⁸ are normally used to determine the goodness of fit between the experimental and calculated diffraction profiles. Several R values are defined by Rietveld and Wilson and are discussed in Stout and Jensen. Most R values are variations of one of two basic forms:

or

$$R = \frac{\xi |\Delta F|}{\xi |F_0|} = \frac{\xi ||F_0| - |F_c||}{\xi |F_0|}$$
(34)

$$R = \frac{\xi_{1} W_{1} (|F_{o1}| - |F_{c1}|)^{2}}{\xi_{1} W_{1} |F_{o1}|^{2}}$$
(35)

SECTION 4

EXPERIMENTAL

4.1 The Hydriding Apparatus

The stoichiometries of the samarium hydrides prepared were determined using the pressure-temperature-volume relationship of the ideal gas law. Careful measurements of pressure, volume, and temperature of the gas, and the mass of the samarium are needed. A schematic of the hydriding apparatus used to prepare the samples is shown in Figure 8.

The volume of the system was determined by taking a standard, known volume, and measuring its temperature and pressure after filling it with deuterium. The rest of the system was then closed off and evacuated. The standard volume was then opened, flooding the system. When equilibrium was re-established, the temperature and pressure of the system were measured and the volume calculated using the ideal gas law. The volume of the system was 16.16 liters and includes the hashed lines, the standard volume, the ballast tank and the quartz tube.

Temperatures were determined using chromel-alumel thermocouples. The temperature of the reaction vessel (quartz tube) was measured by placing the thermocouple in the bottom end of the quartz sample holder against the reaction vessel. The gas temperature in the manifold was measured by a thermocouple placed on the copper line leading to the quartz tube. Temperatures inside the quartz tube were much hotter than the temperature of the gas in the manifold, but because the quartz tube

34

Figure 8: The hydriding apparatus for preparation of samarium deuteride. 1. Standard volume 2. Raw deuterium 3. Hastings Vacuum gauge 4. Baratron pressure manometer 5. Ballast tank 6. Temperature readout 7. Temperature controller 8. Lindberg tube furnace 9. Quartz tube 10. Uranium bed 11. Diffusion (Veeco) pump with Phillips-Granville Ionization gauges.

has a volume (0.04 liters) that was negligible when compared to the volume of the entire system, the gas temperature was recorded as the reaction temperature.

Pressure was measured by means of an MKS model 170M baratron capacitance manometer.

4.2 The Diffraction Apparatus

A schematic of the Omega West Diffractioneter at the Los Alamos National Laboratory is shown in Figure 9. A copper crystal set to reflect from its (220) planes is used as a monochromator. The six foot cylindrical shield around this crystal was filled with iron fillings and oil and lined with uranium. The shield was capable of rotating in order to change the beam direction from the reactor and the wavelength of the neutrons, but was normally left in a fixed position. The specimen table rotated independently. The counter contained gaseous boron trifluoride and revolved around the axis of the specimen table by tenths of a degree. The neutrons enter the counter and react with the boron-10 isotope according to the reaction:

$${}^{10}_{5}B + {1 \atop 0}n = {7 \atop 3}Li + {4 \atop 2}He + 2.8 \text{ MeV}$$
(36)

The lithium and helium nuclei produce on the average 7 x 10^{9} ion pairs.⁸⁹ The electrons are accelerated to the anode producing a current that can be recorded as a count. Additional electrons are produced by the collisions of the ion pairs with the gas molecules but these usually measure less than one percent of the total.⁹⁰ Figure 9: A schematic of the Omega West Diffractometer.

- 1. Control and Recording System 2. Reactor 3. Shield 4. Monochromating Crystal

 - 5. Specimen Table 6. Boron Trifluoride Counter

4.3 Wavelength Determination

The wavelength of the diffracted beam was determined by diffraction from a niobium oxide standard. The wavelengths were determined for each reflection in the profile. A weighted average was calculated by multiplying the peak wavelength by its intensity and averaging these. The wavelength thus determined was 1.275 angstroms.

4.4 Deuterium Reagent

Impurities in the deuterium can produce surface reactions that inhibit the hydriding of the samarium metal. A uranium bed was designed and used to reduce this possibility and to purify the deuterium. Uranium and deuterium were allowed to react. As necessary, the uranium hydride was heated, driving off the deuterium and leaving the unwanted uranium compounds behind.

4.5 Samarium Reagent

The samarium-154 isotope was separated from the raw metal on the Calutron at the Oak Ridge National Laboratory. To protect it from impurities, it was loaded into a glass container, evacuated, sealed and placed in a second can, and again evacuated and sealed. Analysis shows the samarium to be 98.69% samarium-154. The detailed analysis of the sample is recorded in Appendix E. Since samarium is very sensitive to contamination, it was opened and prepared for use under an inert argon atmosphere. A continual influx of welding grade argon flowed into a glove box. By mass spectrographic analysis, the oxygen level in the box was determined to be less than 0.1% oxygen after a minimum flushing time of two hours. The sample was sawed, using kerosene as a lubricant, into slices and then cut into small pieces, washed twice with anhydrous ethanol and loaded into a quartz tube that had previously been cleaned, outgassed at 450 C, and carefully weighed. The tube was then placed on the system for hydriding.

4.6 Samarium Deuteride Preparation

When the system was evacuated to a base pressure of 2×10^{-7} torr deuterium from the uranium bed was allowed to fill the system to a pressure between 700-1000 torr. The initial temperature of the quarts tube and the gas were recorded. The stopcock was opened and the temperatures and pressure were again recorded. Reaction usually started immediately and proceeded very quickly with an exothermic heat of reaction. It was impossible to record these temperatures due to the rapid rate of the increase, although maximums were recorded. Once the reaction slowed and the tube started to cool the temperature was adjusted to $250 \pm 5^{\circ}$ C. Reaction was allowed to proceed in most cases over days and sometimes weeks until equilibrium was re-established at each new temperature. In cases where the higher stoichiometries were made, the tube was then allowed to take on more hydrogen as the tube was allowed to cool to room temperature.

Due to the limited amount of samarium-154 isotope available, the $\operatorname{SmD}_{2.89}$ and $\operatorname{SmD}_{2.99}$ samples were made as previously described. The $\operatorname{SmD}_{2.38}$ and $\operatorname{SmD}_{1.97}$ samples were prepared by dissociation of one of the previous samples. The $\operatorname{SmD}_{2.89}$ sample was placed on the evacuated system and opened to the system. The temperature was increased. Dissociation occurs in the manner shown in Figure 5. As a H/M ratio of 1.8 is approached, the equilibrium pressures are small. This necessitated the removal of deuterium in successive steps until a stoichiometry of SmD_{1.97} was reached. After dissociation was performed, this same sample was again placed on the system and opened to a measured pressure of deuterium. The association process was halted at a stoichiometry of SmD_{2.38}. Table 4 provides the information used to calculate the stoichiometry of the samples.

4.7 The Diffraction Procedure

The quartz tube shown in Figure 10 containing the sample was placed in an aluminum cyclinder pictured in Figure 11. The cylinder was then evacuated and placed on the specimen table of the diffractometer. A diffraction pattern for two theta values ranging from 2 to 90 degrees was performed.

The raw data was indexed by hand and computer to determine the crystal structure and lattice sizes indicated by the data. This was then fed into the program CWPREF which indexed the experimental data and prepared the experimental diffraction profile. A data file containing the proposed space group information was then created and fed into the program CWLS. This program calculated a profile and then compared it with the experimental profile produced in CWPREF. The calculated profile was then refined in steps by changing the CWLS parameters until a best fit was obtained.

R values were used to determine the extent of the best fit between the experimental and calculated patterns. Three R factors were used in this analysis:

TABLE 4

STOICHIOMETRIC DETERMINATION

Sample	G r ams	Moles	Pressure	H/M	Tube
No.	Sm	Sm	Difference*	Ratio	No.
1	15.797	0.1026	171.93	2.89	86
2	18.681	0.1213	210.40	2.99	75
3	15.797	0.1026	112.69	1 .9 7	86
4	15.797	0.1026	136.61	2.38	86

* Pressures in torr

Volume = 16.16 liters

Temperature = 27.2°C

Figure 10: The quartz tube used as the reaction vessel for samarium-deuteride preparation.

•

Figure 11: The aluminum cyclinder used to hold the samarium deuteride during neutron diffraction.

$$R \text{ profile} = \frac{100 \boldsymbol{\xi} \left| \mathbf{F}_{obs} - \mathbf{F}_{calc} \mathbf{s} \right|^2}{\boldsymbol{\xi} \left| \mathbf{F}_{obs} \right|}$$
(37)

44

R weighted =
$$\frac{100 \left[\frac{100 \left[\frac{100 - F_{calc} S}{100} \right]^2}{\frac{1}{2}} \right]^{\frac{1}{2}} (38)$$

and

in here

R expected = 100 [no. of degrees of freedon]¹ (39)
$$\xi_{w}|F_{obs}|^2$$

Standard deviations for the refined parameters were calculated during the refinement as outlined in Appendix D.

SECTION 5

DATA AND RESULTS

The raw data for each sample appears in Appendix F. The experimental profiles are shown in Figures 12-15. $\text{SmD}_{1.97}$ and $\text{SmD}_{2.38}$ are both face centered cubic. $\text{SmD}_{2.99}$ is hexagonal. $\text{SmD}_{2.89}$ contains both the cubic and hexagonal phases.

5.1 The Cubic Analysis

The proposed cubic space group for samarium hydride is F 4/m 3 2/m or 0_h^5 (see Appendix G) with

3 Sm at 0 ½ ½ 1 Sm at 0 0 0 8 D at ½ ½ and 4 D at 0 ½ 0.

Calculations by hand and by computer analysis using CWPREF, CWLS, and CWPLOT (Appendix B) confirm this is the correct structure. The refined profiles for the cubic samarium deuterides are shown in Figures 16-18. Cubic positions determined in this study are listed in Table 5. The determined lattice sizes are listed in Table 6. A comparison of experimental and calculated intensities are listed in Figures 19-21.

5.2 The Hexagonal Analysis

The peaks were indexed both by hand and by use of the CWPREF program. Table 7 compares the two sets of calculations. Peaks numbered

45

7, 13, 17, 22, and 24 were found to match the hexagonal N pattern 7, 13, 17, 22, and 24 were found to match the hexagonal N pattern 7, 4A, 7A, 9A, 12A, and 13A where $A = \lambda^2/3a^2$. The lattice parameter, 7, is determined to be 3.7638 A. The log d values were calculated and 91 10tted along the scale on a Schwartz and Summa graph for indexing exagonal crystals. A match was made along the line representing the 7/4 ratio of 1.79. Each line was indexed accordingly. The (0 0 1) lines are either absent or too weak to observe.

The relative intensities of these peaks were compared to those 92of known hexagonal structures in Mirkin. An approximate match is made for H15 structure representing K₃Bi and Na₃As. The structure correlates with the P 6₃/m m c or D₆⁴ h space group (see Appendix G) with these coordinates:

2 Sm at 1/3 2/3 ¼
2 D at 0 0 ¼
4 D at 1/3 2/3 z and 2/3 1/3 z+¼

where z = 0.583. This information was used in the CWLS program to refine the calculated hexagonal profile. The best fit between the experimental and calculated profiles is shown in Figures 22-23 for $SmD_{2.89}$ and $SmD_{2.99}$. The refined coordinates and parameters are shown in Table 8 for both samples. A comparison of the experimental and calculated intensities is shown in Figure 24-25. The lattice sizes are listed in Table 6. R values for both refinements are shown in Table 9.

46

Figure 12: Raw neutron diffraction profile for SmD 1.97

,

Figure 13: Raw neutron diffraction data profile for SmD 2.38

Figure 14: Raw neutron diffraction profile for SmD 2.89

Figure 15: Raw neutron diffraction profile for SmD 2.99

Figure 16: Comparison of the experimental and refined profiles for cubic SmD 1.97

Figure 17: Comparison of the experimental and refined profiles of cubic SmD 2.38

Figure 18: Comparison of the experimental and refined profiles of the cubic SmD_{2.89}

TABLE 5

and the second second

ATOMIC POSITIONS IN THE CUBIC SAMARIUM DEUTERIDES

Cu	b ic	x	У	Ż	N	N_1
1.97	1 Sm	0	0	0	0.04355 <u>+</u> 0.00339	1.04520
	3 Sm	0	ł	ł	0.12689 <u>+</u> 0.00339	1.01512
	8 D	³ X	1 <u>4</u>	ł	0.35268 <u>+</u> 0.00339	1.05805
	4 D	1	0	0	0.00000 <u>+</u> 0.00339	0.00000
2.38	1 Sm	0	0	0	0.04071 <u>+</u> 0.00602	0.97704
	3 Sm	0	ł	ł	0.15411 <u>+</u> 0.00602	1.23288
	8 D	ł	1 <u>4</u>	<u>1</u> 4	0.33287 + 0.00602	0.99862
	4 D	ł	0	0	0.16656 + 0.00602	0.99932
2.89	1 Sm	0	0	0	0.00889 <u>+</u> 0.00280	0.21336
	3 Sm	0	4	4	0.12229 <u>+</u> 0.00280	0.97832
	8 D	¹ x	ł	<u>1</u> 4	0.30105 <u>+</u> 0.00280	0.90316
	4 D	ł	0	0	0.15069 <u>+</u> 0.00280	0.90423

N₁ represents the ratio; calculated site occupation factor/expected site occupation factor. The ratio should = 1 if the site is filled as expected for the structure.

л А

and the state of the state of

TABLE 6

LATTICE SIZES OF EXPERIMENTAL SAMARIUM DEUTERIDES

H/M	a	c
1.97	5.3274 <u>+</u> 0.000B	-
2.38	5.2975 ± 0.0059	-
2.89cub	5.3215 <u>+</u> 0.0042	-
2.89hex	3.7600 <u>+</u> 0.0156	6.7874 <u>+</u> 0.0156
2.99	3.7493 <u>+</u> 0.0038	6.7212 + 0.0045

a and c in Angstroms

. •

Figure 19: Comparison of the cubic intensities of SmD_{1.97} POSN is the 20 angle, INUC is the calculated intensity, and IOBS is the observed intensity. ESD is the estimated standard deviation.

					•	
						•
н	ĸ	L	POSN	INUĈ	. IDBS	ESD
1	1	1	2378	1398	1329	49
2	Ū	0	2756	132	0	0
2	2	0	3944	4664	4890	79
З	1	1	4664	1180	1126	50
2	Z	2	4886	48	165	37
4	0	0	5708	1171	1257	53
3	3	1	6277	715	905	55
4	2	Ō	6460	69	301	51
4	2	2	7158	3176	3049	71
5	1	ī	7680	535	598	40
á	â	2	7680	1.79	100	12
	1	0	1000	175	177	
1	4	U	5212	1230	1330	57
5	3	1	-9005	893	918	75

.

,

Figure 20: Comparison of the cubic intensities of SmD 2.38

				-			
L.				TNUC	1005	5 6 D	
– –	N	L	L N 2 V	THOF	1003	C 2 N '	
1	1	1	2422	364	192	61	
2	0	0	2802	629	473	54	
2	2	0	3997	9565	10313	124	
3	1	1	4722	330	632	72	
2	2	2	4945	150	382	70	
4	0	0	5773	1934	2747	94	
3	3	1	6347	13	802	93	
4	2	0	6531	464	902	102	
4	2	2	7245	5311	5016	111	
5	1	1	7761	127	370	60	
3	3	3	7761	42	123	20	

· .

•

Figure 21: Comparison of the cubic intensities of SmD 2.89

Ĥ	K	L	PDSN	INUC	IDBS	623
1	1	1	2386	716	482	54
2	0	0	2763	71	32	
2	2	0	3953	6450	605.9	70
3	1	1	4674	687	920	97
2	2	2	(80)	001	020	28
<u> </u>	4	2	4040	32	305	46
4	0	0	5719	1328	2761	78
3	3	1	6289	245	1397	70
4	2	0	6472	238	525	47
4	2	>	7181	1270	2000	07
F	-		7101	2214	3808	90
2	1	Ŧ	7694	71	684	54
3	3	3	7694	24	228	19
4	4	0	8528	1335	1201	10
5	3	ı	0022	1,000	1201	11
ĩ	~	-	7022	12	959	134
0	0	0	9187	74	2140	619
4	4	2	9187	295	8560	2478

•

TABLE 7

INDEXING HEXAGONAL SMD

			TABLE 7			
		INDEX	ING HEXAGONAL S	SMD		
29 exp	20 cal	sin ² 0 exp	sin ² 0 calc	d avg.	hkl	reflection
•	25.00		.0468		101	1
	31.70		.0746		102	2
	39.60	.1153	.1147	1.879	110	3
0.40	40.80	.1192	.1215	1.847	103	4
	41.20		.1238		111	5
	45.90	1 5 4 3			112	6
	46.10	.152/	.1533	1.633	200	/
1/+40	4/.60	.1010	.1048	1.58/	201	8
2 50	51.20	.1840	.104/	1.48/	104	10
0.00	53.00	-1900	.1331	1 216	20.2	10
a.uu	50.30	.2350	23/3 76A5	1.310	203	12
	67 60		2670		210	13
3.80	63.80		.2792	1.207	211	14
5.00	66 - 80		.3030	1.207	204	15
7.40	67.30	. 3078	-3070	1,150	212	16
2.40	72.20	- 34 88	-3472	1.080	300	17
	73.00		.3338		213	18
3.50	73.90	.3580	.3572	1.066	301	19
6.20	76.70	.3807	.3830	1.034	302	20
	80.80		.4200		214	21
	82.20		.4321		303	22
5.70	85.40	.4625	. 46 43	0.938	220	23
9,50	89.80	. 4999	. 4982	0.906	304	24

Common factor for sin² values was 0.0383

Figure 22: Comparison of the experimental and refined profiles of hexagonal SmD_{2.89}

Figure 23: Comparison of the experimental and refined profiles of hexagonal SmD 2.99

TABLE 8

ATOMIC	POSITIONS	IN	THE	HEXAGONAL	SAMARIUM	DEUTERIDES

onal	x	У	2	N	Nl
2 Sm	1/3	2/3	4 1	0.06267 <u>+</u> 0.01004	0.75207
2 D	0	0	<u>+</u> 4	0.06267 ± 0.01004	0.75207
4 D	1/3	2/3	0.57714	0.09884 <u>+</u> 0.01004	0.59306
			<u>+</u> 0.00301		
2 Sm	1/3	2/3		0.09201 <u>+</u> 0.00982	1.10412
2 D	0	0	j ^z	0.09201 <u>+</u> 0.00982	1.10412
4 D	1/3	2/3	0.59630	0.18871 <u>+</u> 0.00982	1.13226
			<u>+</u> 0.00275		
	2 Sm 2 D 4 D 2 Sm 2 Sm 2 D 4 D	x 2 Sm 1/3 2 D 0 4 D 1/3 2 Sm 1/3 2 Sm 1/3 2 D 0 4 D 1/3	x y 2 Sm 1/3 2/3 2 D 0 0 4 D 1/3 2/3 2 Sm 1/3 2/3 2 Sm 1/3 2/3 2 D 0 0 4 D 1/3 2/3 2 Sm 1/3 2/3 2 D 0 0 4 D 1/3 2/3	x y z 2 Sm $1/3$ $2/3$ $\frac{1}{4}$ 2 D 0 0 $\frac{1}{4}$ 4 D $1/3$ $2/3$ 0.57714 4 D $1/3$ $2/3$ 0.57714 ± 0.00301 ± 0.00301 ± 0.00301 2 Sm $1/3$ $2/3$ $\frac{1}{4}$ 4 D $1/3$ $2/3$ 0.59630 4 D $1/3$ $2/3$ 0.59630 ± 0.00275	x y z N 2 Sm $1/3$ $2/3$ $\frac{1}{3}$ 0.06267 ± 0.01004 2 D 0 0 $\frac{1}{3}$ 0.06267 ± 0.01004 4 D $1/3$ $2/3$ 0.57714 0.09884 ± 0.01004 4 D $1/3$ $2/3$ 0.57714 0.09884 ± 0.01004 ± 0.00301 ± 0.00301 ± 0.00982 2 Sm $1/3$ $2/3$ $\frac{1}{3}$ 0.09201 ± 0.00982 2 D 0 0 $\frac{1}{3}$ $2/3$ 0.59630 0.18871 ± 0.00982 4 D $1/3$ $2/3$ 0.59630 0.18871 ± 0.00982 ± 0.00275 ± 0.00275 ± 0.00275 ± 0.00275

and the second secon

Figure 24: Comparison of the hexagonal intensities of SmD 2.89

		•	· *			
			•			
н	K	L	POSN	INUC	1 0 8 S	E'S D
0	0	1	1048	0	266	142
0	0	2	2136	620	682	42
1	0	0	2228	145	443	36
.1	0	1	2479	399	326	43
1	0	2	3120	535	648	48
0	0	3	3245	0	590 .	45
1	1	0	3936	4338	4 800	68
1	0	3	3986	3262	3248	56
1	1	1	4092	0	241	32
0	0	- 4	4387	277	196	38
1	1	2	4534	1118	856	49
2	0	0	4582	15	50	4
2	0	1	4721	108	696	48
1	0	4	4987	254	189	38
2	0	2	5121	361	220	42
1	1	3	5205	0	189	33
0	0	5	5577	0	664	48
2	. D	3	5742	1836	2974	72
1	1	4	6055	1179	2108	67
ï	1	.0	6212	2	603	32
2	1	1	6326	118	3873	79
2	0	4	6548	278	850	45
2	1	2	6661	753	1140	53
0	0	6	683 7	723	1230	62
3	0	0	7167	2168	2265	47
2	1	3	7201	2760	2630	53
3	0	1	-7274	0	503	34
3	0	2	7589	783	1741	64
2	1	4	7933	698	796	56
3	0	3	B105	0	695	48
2	2	0	8516	2066	2219	70 ·
2	2	1	8617	0	442	36
3	0	4	8818	1125	928	49
.2	2	2	8921	843	9 B Z	43
3	1	0	8956	31	4 2	2
3	1	1	9057	55	104	7

Figure 25: Comparison of the hexagonal intensities of SmD 2.99

H	ĸ	L	POSN	INUC	IOSS	ESD
1	0	0	2255	142	12	26
1	0	1	2509	33	6	27
1	0	2	3159	33	42	26
1	1	Ō	3967	1663	1803	46
ī	0	3	4036	1447	1535	44
1	1	1	4125	0	67	22
ī	ī	2	4575	433	369	29
2	ō	ō	4615	43	99	16
2	Õ	ī	4757	22	35	30
ī	Õ	4	5050	78	39	27
2	0	2	5163	22	0	0.
ī	ī	3	5256	0	26	24
2	Ō	3	5794	786	893	47
1	1	4	6119	110	34	36
2	ī	0	6251	59	27	33
2	1	1	6367	47	191	42
2	Ō	4	6612	36	128	39
2	1	2	6707	16	121	40
3	ō	Ō	7210	612	650	35
2	1	3	7257	1147	1263	47
3	ō	1	7318	0	161	26
3	0	2	7639	237	616	48
2	1	4	8001	37	0	0
3	ō	3	3165	0	226	39
2	2	Ō	8564	498	354	48
2	2	1	8668	0	56	31
3	ō	4	8890	103	0	0
2	2	2	8977	221	204	31
3	1	0	9007	49	42	8
	-					

.

.

~

.

TABLE 9

State State

RELIABILITY FACTORS

H/M	R profile	R weighted	R expected
1.97	16.74	13.17	8.99
2.38	37.89	25.98	9.18
2.89cub	47.58	32.84	12.44
2.89hex	51.43	40.74	10.67
2.99	41.72	28.17	19.33

SECTION 6

DISCUSSION

 $SmD_{1.97}$ and $SmD_{2.38}$ are both face centered cubic and belong to the proposed space group F 4/m 3 2/m. The site occupation factors for the $SmD_{1.97}$ sample shown in Table 5 indicate the deuterium to be located in the tetrahedral positions. Any additional deuterium goes into the octahedral positions as shown by the site occupation factor for the $SmD_{2.38}$ sample. $SmD_{1.97}$ shows good agreement between the experimental and calculated profile as indicated by the R factors in Table 9.

The agreement between the experimental and refined profiles represented by the R values in Table 9 for the $\text{SmD}_{2.38}$ sample is not good. Greis⁹ claims that at a H/M of 2.34 a phase change occurs. Any stoichiometric determination was an average over the entire sample. It is plausible that some of the additional phase is present. A further indication of this is the doublet peak shown in the $\text{SmD}_{2.38}$ raw profile in Figure 13.

The lattice parameters for the deuterides should be smaller⁹ than the a = 5.34 A for the hydrides. They should also provide evidence for the contraction of the lattice. The values a = 5.3274 A and a = 5.2977 A for $SmD_{1.97}$ and $SmD_{2.38}$ respectively, are reasonable values and support the contraction.

The hexagonal space group determined disagrees with that of 95 Mansmann and Wallace. The R factors representing the agreement between

66

the experimental and calculated profiles for the hexagonal space group $P \ 6_3/m \ m \ c$ of the $\ SmD_{2.99}$ sample are not the best, but no other refinement resulted in better agreement. It should also be noted from Figure 15 and Figure 22 that the two larger peaks at two theta values equal to 34.1 and 83.0 are not indexed. These probably represent two of the superlattice peaks that have been found to occur in some of the hexagonal forms. Since the CWLS program tries to account for all data in the calculation of the R factors, the R values will reflect this problem. There is good enough agreement to conclude this space group represents the structure. No superlattice analysis has been made at this time.

The literature lattice parameters for the hexagonal unit cell are for the hydride a = 3.76 A and c = 6.79 A. The values determined in this work are a = 3.7493 A and c = 6.7212 A and are in reasonable agreement since the deuteride parameters are generally smaller than the hydride parameters.

Both the cubic and hexagonal analysis were applied to $\text{SmD}_{2.89}$. Both patterns can be detected but neither can be refined to an acceptable agreement. There are no provisions in the computer programs available to refine a set of data using two different space groups. It is proposed that if these programs are written, the $\text{SmD}_{2.89}$ pattern would be a combination of the cubic and hexagonal. Because the present programs will not differentiate between the peaks of the two space groups and tries to incorporate all data in each refinement, neither the lattice sizes or any other parameters are valid. The site occupation factors for this sample from Table 8 show the Sm at(0, 0, 0) in the cubic refinement to be lower than expected and the Sm in the hexagonal to be

67

slightly lower than the expected $(0, \frac{1}{2}, \frac{1}{2})$. This may be an indication that this sample is on the average more bexagonal than cubic. The site occupation factor of 0.009 instead of the expected 0.04 in the Sm(0, 0, 0) position i.e., the origin of the unit cell, would indicate that the samarium atoms have moved. The only plausible explanation is a change to a different structure, i.e. the hexagonal, where the origin is located in a different relative position.

SECTION 7

SUMMARY

The purpose of this work was to determine the cubic and hexagonal space groups of the samarium hydrides and the positions of the atoms in the unit cell. This has been accomplished, but not to the best extent possible. This work was performed only as a preliminary effort in a project which will continue until the entire system is characterized. Samples will continue to be made at H/M stoichiometric ratios between 1.90 and 3.00 by 0.05 increments. Each sample will be analyzed with the structures determined here. In addition, superstructures will be determined and a tetragonal analysis will be performed.

It appears that there is some change occurring in the range of $SmD_{2.34}$ to $SmD_{2.38}$. It is not known whether this was from cubic to hexagonal or tetragonal and should be further investigated.

A computer program should be developed to handle two separate structures and to determine the extent to which each structure is present.

69

REFERENCES

- E. Snape and F. E. Lynch, "Metal Bydrides Make Hydrogen Accessible - I, II," Chem. Tech. 10, 578 and 768 (1980).
- R. H. Wiswall, Jr. and J. J. Reilly, "Metal Hydrides for Energy Storage," Proc. of the 7th Intersociety Energy Conversion Engineering Conf., Sept. 25-29, San Diego, Calif. (1972).
- Westlake and Satterthwaite and Weaver, Physics Today <u>31</u>
 32 (1978).
- Holley, Mulford, Ellinger, Koehler, and Zachariesen, J. Phys. Chem. 59, 1226 (1955).
- 5. Pebler and Wallace, J. Phys. Chem. <u>66</u>, 148 (1962).
- Holley, Mulford, Ellinger, Koehler, and Zachariesen, J. Phys. Chem. <u>59</u>, 1226 (1955).
- 7. Moshe H. Mintz, "Thermodynamics and Statistical Mechanics of Some Hydrides of the Lanthanides and Actinides," NRCN-398 Israel Atomic Energy Commission, Beesheba.
- 8. Mannsmann and Wallace, J. Phys. 25, 454 (1964).
- 9. Pebler and Wallace, J. Phys. Chem. <u>66</u>, 148 (1962).
- Holley, Mulford, Ellinger, Koehler, and Zachariesen, J. Phys. Chem. <u>59</u>, 1226 (1955).
- 11. Holley and Mulford, Ibid.
- 12. Holley and Mulford, Ibid.
- 13. Holley and Mulford, Ibid.
- 14. Pebler and Wallace, J. Phys. Chem. <u>66</u>, 148 (1962).
- 15. Pebler and Wallace, Ibid.
- Pebler and Wallace, Ibid.
- Pebler and Wallace, Ibid.
- C. E. Messer and M. K. Park, J. Less-Common Metals, <u>26</u>, 235 (1972).

- Mintz, Hierschler, and Hadari, J. Less-Common Metals, <u>48</u>, 241 (1976).
- 20. Messer and Park, J. Less-Common Metals, 26, 235 (1972).
- 21. Mintz, Hadari, and Bixon, J. Less-Common Metals, <u>37</u>, 331 (1974).
- 22. Mintz, Hierschler and Hadari, J. Less-Nommon Metals, <u>48</u>, 241 (1976).
- 23. Korst and Warf, Inorg. Chem. <u>5</u>, 1719 (1966).
- 24. Messer and Park, J. Less-Common Metals, <u>26</u>, 235 (1972).
- 25. Moshe H. Mintz, "Thermodynamics and Statistical Mechanics of Some Hydrides of the Lanthanides and Actinides," NRCN-398 Israel Atomic Energy Commission, Beesheba.
- 26. O. Greis, P. Knappe, and H. Muller, (to be published).
- 27. O. Greis, P. Knappe, and H. Muller, (to be published).
- 28. Kubota and Wallace, J. Appl. Phys. <u>34</u>, 1348 (1963).
- 29. Holley and Mulford, J. Phys. Chem. <u>59</u>, 1226 (1955).
- 30. Holley and Mulford, Ibid.
- 31. Pebler and Wallace, J. Phys. Chem. 66, 148 (1962).
- 32. Korst and Warf, Inorg. Chem. 5, 1719 (1966).
- Messer and Park, J. Less-Common Metals, 26, 235 (1972).
- Mintz, Hierschler and Hadari, J. Less-Common Metals, 48, 241 (1976).
- 35. C. L. Huffine, "Fabrication of Hydrides," in <u>Metal</u> <u>Hydrides</u>, Mueller, Blackledge, and Libowitz, Academic Press, N.Y., (1968), pp. 675-744.
- 36. International Tables for X-Ray Crystallography, Vol 1: Symmetry Groups, Kynoch Press, Birmingham, England, (1965).
- 37. Nuclides and Isotopes, General Electric, (1977), pp. 11.
- 38. G. E. Bacon, <u>Neutron Diffraction</u>, Clarendon Press, Oxford, (1975), pp. 3.
- 39. Mandelcorn, <u>Nonstoichiometric Compounds</u>, Academic Press, N.Y., (1964), pp. 41.

- 40. H. Lipson and H. Steeple, <u>Interpretation of X-Ray Powder</u> <u>Diffraction Patterns</u>, Macmillian, N.Y., (1970), pp. 111.
- G. M. Barrow, <u>Physical Chemistry</u>, "Diffraction Methods," McGraw-Hill, N.Y., (1974), pp. 529.
- Blackledge, <u>Metal Hydrides</u>, Academic Press, N.Y., (1968), pp. 7-8.
- Mandelcorn, <u>Nonstoichiometric Compounds</u>, Academic Press, N.Y., (1964), pp. 42.
- Bacon, <u>Neutron Diffraction</u>, Clarendon Press, Oxford, (1975), pp. 38-41.
- 45. B. D. Cullity, <u>Elements of X-Ray Diffraction</u>, 2nd Edition, Addison-Wesley Pub. Co., Reading, Mass., (1978), pp. 139.
- 46. Cullity, Ibid., pp. 115-126.
- Lipson and Steeple, <u>Interpretation of X-Ray Powder</u> <u>Diffraction Patterns</u>, Macmillan, N.Y., (1970), pp. 214-217.
- Lipson and Steeple, Ibid., pp. 203-210.
- B. D. Cullity, <u>Elements of X-Ray Diffraction</u>, 2nd Edition, Addison-Wesley Pub. Co., Reading, Mass., (1978), pp. 127.
- 50. L. I. Mirkin <u>Handbook of X-Ray Analysis of Polycrystalline</u> <u>Materials</u>, Consultants Bureau, N.Y., (1964), pp. 380.
- 51. International Tables for X-Ray Crystallography, Vol 1: Symmetry Group, Kynoch Press, Birmingham, England, (1965).
- 52. Lipson and Steeple, <u>Interpretation of X-Ray Powder</u> <u>Diffraction Patterns</u>, <u>Macmillan</u>, N.Y., (1970), pp. 322-323.
- 53. B. D. Cullity, <u>Elements of X-Ray Diffraction</u>, 2nd Edition, Addison-Wesley Pub. Co., Reading, Mass., (1978), pp. 523.
- 54. Bacon, <u>Neutron Diffraction</u>, Clarendon Press, Oxford, (1975), pp. 71.
- 55. Mandelcorn, <u>Nonstoichiometric Compounds</u>, Academic Press, N.Y., (1964), pp. 43.
- 56. B. D. Cullity, <u>Elements of X-Ray Diffraction</u>, 2nd Edition, Addison-Wesley Pub. Co., Reading, Mass., (1978), pp. 135-139.
- 57. G. H. Stout and L. H. Jensen, <u>X-Ray Structure Determination</u>, Macmillan Co., N.Y., (1968), pp. 205-208 and 449-450.
- 58. M. J. Buerger, <u>Crystal Structure Analysis</u>, Wiley, N.Y., (1960), pp. 231-237.
- 59. B. D. Cullity, <u>Elements of X-Ray Diffraction</u>, 2nd Edition, Addison-Wesley Pub. Co., Reading, Mass., (1978), pp. 127.
- G. H. Stout and L. H. Jensen, <u>X-Ray Structure Determination</u>, Macmillan Co., N.Y., (1968), pp. 195-199.
- Lipson and Steeple, <u>Interpretation of X-Ray Powder</u>
 Diffraction Patterns, Macmillan, N.Y., (1970), pp. 199-200.
- G. H. Stout and L. H. Jensen, <u>X-Ray Structure Determination</u>, Macmillan Co., N.Y., (1968), pp. 207-208.
- 63. Stout and Jensen, Ibid., pp. 204-208.
- 64. B. D. Cullity, <u>Elements of X-Ray Diffraction</u>, 2nd Edition, Addison-Wesley Pub. Co., Reading, Mass., (1978), pp. 324-340.
- 65. Mirkin, <u>Handbook of X-Ray Analysis of Polycrystalline Materials</u>, Consultants Bureau, N.Y., (1964), pp. 90-311.
- Lipson and Steeple, <u>Interpretation of X-Ray Powder</u> <u>Diffraction Patterns</u>, Macmillan, N.Y., (1970), pp. 312-315.
- 67. Mirkin, <u>Handbook of X-Ray Analysis of Polycrystalline Materials</u>, Consultants Bureau, N.Y., (1964), pp. 207-224, 237-238, 254-257, and 272-274.
- Lipson and Steeple, <u>Interpretation of X-Ray Powder</u> <u>Diffraction Patterns</u>, Macmillan, N.Y., (1970), pp. 113-156.
- 69. Mirkin, <u>Handbook of X-Ray Analysis of Polycrystalline Materials</u>, Consultants Bureau N.Y., (1964).
- 70. B. D. Cullity, <u>Elements of X-Ray Diffraction</u>, 2nd Edition, Addison-Wesley Pub. Co., Reading, Mass., (1978), pp. 324-340.
- 71. Cullity, Ibid., pp. 330-332.
- 72. Lipson and Steeple, <u>Interpretation of X-Ray Powder</u> <u>Diffraction Patterns</u>, MacMillan, N.Y., (1970), pp. 148-149.
- 73. G. W. Bunn, Chemical crystallography, London, (1945).
- 74. M. V. Schwarz and O. Summa, Praktische Auswertungshilfsmittel fur Feinstrukturun-tersuuchungen, Muchen, (1932).
- 75. Lipson and Steeple, <u>Interpretation of X-Ray Powder</u> <u>Diffraction Patterns</u>, <u>MacMillan</u>, N.Y., (1970), pp. 149-151.
- 76. Lipson and Steeple, Ibid., pp. 144-148.
- 77. Mirkin, <u>Handbook of X-Ray Analysis of Polycrystalline Materials</u>, Consultants Bureau, N.Y., (1964), pp. 224-233, 242-248, 258-267, 278-283, 287-295 and 296-297.

- B. D. Cullity, <u>Elements of X-Ray Diffraction</u>, 2nd Edition, Addison-Wesley Pub. Col, Reading, Mass., (1978), pp. 342-343.
- 79. Cullity, Ibid., pp. 343-345.
- Mirkin, <u>Handbook of X-Ray Analysis of Polycrystalline Materials</u>, Consultants Bureau, N.Y., (1964), pp. 207, 235-236, and 249-253.
- 81. Mirkin, Ibid., pp. 406-424.
- 82. Mirkin, Ibid., pp. 348-370.
- 83. International Tables for X-Ray Crystallography, Vol 1: Symmetry Groups, Kynoch Press, Birmingham, England, (1965).
- 84. Lipson and Steeple, <u>Interpretation of X-Ray Powder</u> <u>Diffraction Patterns</u>, MacMillan, N.Y., (1970), pp. 236-240.
- G. H. Stout and L. H. Jensen, <u>X-Ray Structure Determination</u>, MacMillan Co., N.Y., (1968), pp. 385-394.
- B. D. Cullity, <u>Elements of X-Ray Diffraction</u>, 2nd Edition, Addison-Wesley Pub. Co., Reading, Mass., (1978), pp. 360-363.
- 87. H. M. Rietveld, J. Appl Cryst 2, 65 (1969).
- 88. Lipson and Steeple, <u>Interpretation of X-Ray Powder</u> <u>Diffraction Patterns</u>, MacMillan, N.Y., (1970), pp. 236.
- G. E. Bacon, <u>Neutron Diffraction</u>, Clarendon Press, Oxford, (1975), pp. 13.
- 90. Bacon, Ibid., pp. 14.
- 91. Mirkin, <u>Handbook of X-Ray Analysis of Polycrystalline Materials</u>, Consultants Bureau, N.Y., (1964), pp. 264.
- 92. Mirkin, Ibid.
- 93. O. Greis, P. Knappe, and H. Muller, (to be published).
- 94. G. G. Libowitz, <u>The Solid State Chemistry of Binary Metal</u> Hydrides, W. A. Benjamen, Inc., N.Y., (1965).
- 95. Mannsmann and Wallace, J. Phys. <u>25</u>, 454 (1964).
- 96. O. Greis, P. Knappe, and H. Muller, (to be published).

APPENDIX A

N Values For Various Crystal Systems

N = 1	Cubic	• + /•	Tetregonel N = h ^s + k ^s	Hexegonal $N = h^2 + hk + k^2$	N	N -	Cubic h" +	k" + /	Tetregonel N = h ¹ + k ^a	Hexegon N = hº + /
hkl	ጉ አለ	hki	hk	hk		hkl	hki	hШ	hk	hk
100			10	10	34	530		530	53	<u> </u>
110	114	110	11	11	34 35	433	531	435		
200	200	200	20	20	36	600	600	600	607	60
210			21		36	442	442	442		
211		211			37	610			61	43
220	220	220	22	21	38	611 577		511 522		
300	220	220	30	30	20	J 34		93 <u>2</u>		57
221			50	30	40	620	620	620	62	54
3 10		310	31		41	621				
311	311				41	540			54	
222	222	222	27	22	41	443		534		
320		321	34	31	42	533	533	241		61
					44	622	62 2	622		
400	400	400	40	40	+5	630			63	
410			41		45	542		_		
322 411		411			46 47	631		631		
330		330	33							
					48	444	444	444		- 44
331	331			32	49	700	•		70	70
420	420	420	42		49	532		740	74	53
421 777		232		41	50	550		710 550	/1	
JJZ		332			50	543		543	55	
					•••	• ••				
422	422	422			51	711	711			
500			50	50	51	551	551			
430			43		52	640	640	640	64	62
510		510	51		53	720			72	
431		431			53	541				
511	511			33	54	721		721		
333	333				54	633		633		
530			52	42	54	55Z		552		
520			52		55 56	547	642	642		
-JZ					50	V42	U742	07 <u>2</u>		
521		521			57	722				71
~		221		51	57	544				~ •
440	440	440			58	730		730	73	
522			44		59	731	731			
441					59	553	553			

,

•

N — J	Cubic hª + k	• + /•	Tetragonal N = h² + kª	$Hexagonal N = h^{2} + hk + k^{2}$	N	N = h	Cubia " + k"	; + /ª	$Tetragonal N = h^{*} + k^{*}$	$HexagoN = h^* + hk$
₽ hkl	F hkl	l hki	hk	hk		P hk/	F hki	l hki	hk	hk
					82	910		910	91	
650			65	54	82	833		833	•••	
643					83	911	911			
732		732			83	753	753			
651		651			84	842	842	842		82
				63	85	920			92	
800	800	800	80	80	85	760			76	
810			81		86	921		921		
740			74		. 86	761		761		
652					86	655		655		
811		811			87					
741		741			88	664	664	664		
554		554			89	922			85	
733	733			72	89	850				
820	820	820	82		89	843				
644	644	644			89	/02				
821					90	930		930	93	
742					90	851		851		
653		653			90	754		754		
000	000	000			91	931	931			65
644	660	822	66		91					21
600	000	660	66							
830			83	61	92					
661					93	852				74
831		831			94	932		932		
750		750	75		94	763		763		
743		743			95		,			
751	751			55	96	844	844	844		
555	55 5				97	940			94	83
662	662	662		64	97	665				
832					98	941		941		
654					98	853		853		
752		752			98	770		770	77	
				73	99	933	933			
840	340	840	84	a ċ	99	771	771			
900			90	90	99	/55	755			
841 744					100	10,00	10,00	10,00	10,0	10,0
/ 44 662					100	800	800	800	80	

APPENDIX B

-

The Computer Programs: CWPREF, CWLS, and CWPLOT

CWPREF

The CWPREF program handles the raw data, indexing each reflection and drawing the raw profile.

Input Parameters: Wavelength Unit Cell Parameters Background Profile Miller indices of the reflections Multiplicities of indices Gaussian peak parameters: U, V, W Two Theta Values and their corresponding neutron count, i.e. raw data

After subtracting off the background, the counts at each position are weighted by the factor $1/\sigma_1^2$ where σ is the estimated standard deviation. The program then determines the halfwidth parameters and the shape of the peaks. Then it determines which reflections contribute to each peak and its corresponding two theta values. The experimental profile is then stored on a tape for use in the CWLS and CWPLOT programs.

CWLS

The CWLS program calculates a profile by least squares methods and then compares this profile with the experimental profile.

79

Input Parameters: Wavelength

Centrosymmetry

General equivalent positions of the space group in matrix form Translation Vectors in matrix form Neutron scattering factors x, y, z values for the general positions Cell parameters U, V, W Site occupation factor Scale factor Overall and individual temperature factors Zeropoint Codewords used to indicate the parameters to be refined and the order of refinement.

CWLS calculates the observed and calculated structure factors and then rescales them in the next cycles by use of the linear rescale factor

 $LRS = \xi |F_{c}| / \xi |F_{c}|$

First, initial values are chosen and inserted in the data program (CWINS2). By using a series of codewords, the analyst will have the program adjust in successive steps, any of the parameters designated by the codeword. After each series of refinements, the

[&]quot;Site occupation factors represent the number of atoms to be found at each location. It is usually determined by dividing the number of atoms in each position by the total number of symmetry operators.

new values are then placed into the input file and used in the next series of refinements. After each cycle the R values are determined and their effect on the refinement noted.

The order of parameters can be varied. The usual order succeeds as 1) scale factor, 2) zeropoint, 3) cell sizes, 4) overall temperature factor, 5) atomic positions, 6) U, V, W, site occupation factors, individual temperature factors, etc.

CWPLOT

The CWPLOT program plots the raw data and the calculated profile on the same axis. Unfortunately, it plots only the portions of the profile it is comparing, not the entire profile. It does not, therefore, account for all the peaks in the raw profile nor allow for missing peaks. CWPLOT also draws a difference profile that is not included on the graphs presented in this thesis because it reduces the clarity of the graph.

81

APPENDIX C

The Method of Least Squares

METHOD OF LEAST SQUARES

The method of least squares is a method that determines the best values of the parameters by minimizing the sums of the squares of the weighted differences between the observed and calculated values of all the points.

In diffraction, the quantity to be minimized is

$$D = \frac{\xi}{hkl} W_{hkl} \left(\left| F_{o} \right| - \left| k F_{c} \right| \right)^{2}$$
(1)

where W_{hkl} is the weight of the observation and \sum_{hkl} is the summation over all points for the observed reflections.

Minimization is achieved by taking the derivative with respect to each parameter and equating it to zero. This leads to the n number of normal equations:

$$\sum_{hkl}^{\xi} W_{hkl} \left(\left| F_{o} \right| - \left| k F_{c} \left(p_{1} p_{2} \cdots p_{n} \right) \right| \right) = 0$$

$$\frac{\partial \left| kF_{c} \left(p_{1} \cdots p_{n} \right) \right|}{\partial P_{j}} = 0$$

$$(2)$$

for j = 1, 2... n.

The function $|\mathbf{F}_{C}|$ is expressed as a Taylor series and neglects second and higher orders so that

$$|\mathbf{k} \mathbf{F}_{\mathbf{c}}(\mathbf{p}_{1} \dots \mathbf{p}_{n})| = |\mathbf{k} \mathbf{F}_{\mathbf{c}}(\mathbf{a}_{1} \dots \mathbf{a}_{n})| + \frac{\partial |\mathbf{k}\mathbf{F}_{\mathbf{c}}|}{\partial \mathbf{p}_{1}} \Delta \mathbf{p}_{1} + \dots$$

$$\partial \mathbf{p}_{1}$$
(3)

+
$$\frac{\partial |kF_c|}{\partial P_n} \Delta P_n$$

where $p_1 \dots p_n$ is any scale, position, thermal parameters, etc. and Δp_j = $p_j - a_j$. Substituting equation 3 into equation 2 and expanding and rearranging produces a series of equations called the normal equations. These equations can be solved simultaneously for the most probable values of the parameters. The normal equations can be written in matrix form as

where
$$a_{1j} = \sum_{r=1}^{m} Wr (\Delta F_r) - \frac{\partial (F_{cr})}{\partial P_j}$$

(4)
 $a_{11} x_1 + a_{12} x_2 + \dots + a_{1n} x_n = u_2$
 $a_{21} x_1 + a_{22} x_2 + \dots + a_{2n} x_n = u_2$
 $a_{21} x_1 + a_{22} x_2 + \dots + a_{2n} x_n = u_2$
 $a_{n1} x_1 + a_{n2} x_2 + \dots + a_{nn} x_n = u_n$
 $a_{n1} x_1 + a_{n2} x_2 + \dots + a_{nn} x_n = u_n$

If these equations have a solution, then there exists an inverse matrix such that multiplication of the two matrices = 1. Then the diagonal of the inverse, $b_{ii} = 1/a_{ii}$, can be shown to be a measure of the correlation of the parameters i and j. The correlation coefficient is defined as

$$d_{ij} = b_{ij} / (b_{ii})^{\frac{1}{2}} (b_{jj})^{\frac{1}{2}}$$

84

The correlation matrix is used by the CWLS program to determine the solution to the normal equations and thus determine the best value for the parameters refined.

APPENDIX D

Estimated Standard Deviations

ESTIMATED STANDARD DEVIATIONS

The equation for calculating the standard deviation, σ , for any parameter, p, is

$$\sigma_{pi} = \begin{bmatrix} b_{ii} & (\sum_{r=1}^{m} Wr \ \Delta Pr^{2}) / (n-n) \end{bmatrix}^{\frac{1}{2}}$$

where b is the ith diagonal element of the inverse matrix (See Appendix C),

Wr is the weight of the rth ΔF ,

m is the number of observations,

n is the number of parameters,

and $w = 1/\sigma_{fo}^2$.

During the least squares refinements, the estimated standard deviations are also calculated for each parameter refined.

APPENDIX E

Samarium Metal Analysis

ANALYSIS OF SM 154 ISOTOPE

Isotopic Analysis

Isotope	Percent	Precision
144	0.02	<u>+</u> 0.01
147	0.14	<u>+</u> 0.02
148	0.12	<u>+</u> 0.02
149	0.17	<u>+</u> 0.02
150	0.12	<u>+</u> 0.02
152	0.74	± 0.05
154	98.6 9	<u>+</u> 0.10

Rare Earth Analysis

Element	Percent	Element	Percent
Yb	0.002	Gđ	<0.02
Y	< 0.005	Tb	<0.05
La	<0.02	Dy	<0.1
Ce	<0.2	Ho	<0.02
Pr	<0.05	Er	<0.005
nđ	<0.05	Tm	<0.03
Eu	< 0.005	Lu	<0.005

Spectrographic Analysis

Element	Percent	Element	Percent
Ca	0.01	Mn	< 0.02
Ca Na	< 0.01	Mo	< 0.02
79 71	< 0.05	Na	<0.01
р Л.	< 0.01	Ni	<0.05
D	<0.01	Pb	<0.02
Bo	<0.001	Pt	<0.05
90 0 4	<0.02	Rb	< 0.02
BI	<0.05	Sb	<0.05
	<0.05 <0.05	Si	<0.01
	<0.05	Sn	٥.02
	40.05	Sr	<0.01
Cs Cu	20.01	Та	0.05
	(0.02	 Ti	<0.01
Fe Oo	<0.05	v	<0.02
Ge	<0.05	Ŵ	<0.05
нg	K (0.03	Zn	<0.2
K	40.01		<0.05
Mg	<0.00E	41	• -
L1	< V.VU5		

APPENDIX F

Raw Diffraction Data: Two Theta versus Neutron Counts Raw Neutron Diffraction Data for SmD 1.97 at λ =1.275

2000	85	2460	73	2920	· 68
2010	92	2470	73	2930	73
2020	114	2480	86	2940	76
2030	108	2490	62	2950	72
2040	76	2500	58	2960	82
2050	70	2510	67	2970	54
2060	66	2520	82	2980	75
2070	57	2530	33	2 9 9 0	67
2080	49	2540	73	3000	61
2090	52	2550	68	3010	64
2100	70	2560	86	3020	65
2110	66	2570	83	3030	52
2120	65	2580	65	3040	5
2130	58	2590	78	3050	58
2140	67	2600	85	3060	20
2150	61	2610	82	2070	77
2160	55	2620	70	3080	77
2170	46 .	2630	75	3000	72
2180	123	2640	74	3100	() 6 0
2190	106	2650	79	2110	74
2200	R 5	2650	59	2120	10
2210	32	2600	77	3120	75
2220	7C R1	2690	70	3160	()
2220	81	2000	41	3150	64
2230	76	2090	40	3150	07
2250	80	2700	70	3170	0 U 7 E
2260	67	2720	70	2180	12
2270	86	2720	91	3100	100
2280	86	2750	106	3170	102
2200	22	2750	97	3200	0/
2200	85	2750	106	3230	70
2310	67	2700	77	3220	10
2320	01	2790	71	3230	73
2220	71	2750	4 L 4 D	3240	53
2320	112	2790	73	3230	00
2251	157	2800	()	3200	02
2325	202	2010	07	3270	94
2300	272	2020	12	3200	09
2290	302	2830	54	32.90	104
2300	24	2540	24	3300	78
2390	299	2850	67	3310	94
2410	127	2860	05	3320	48
2420	161	2870	74	3330	114
2420	111	2890	83	3340	97
2430	90	Z890	61	3350	91
2440	91	2700	63	3360	100
2450	69	2910	81	3370	107

92

					-
3380	125	3840	99	4300	85
3390	110	3 8 5 0	116	4310	90
3400	110	3860	83	4320	101
3410	107	3870	110	4330	88
3420	95	3880	98	4340	111
3430	100	3 8 9 0	95	4350	
3440	97	3900	125	4360	95
3450	123	3910	264	4370	83
3460	102	3920	556	4380	112
3470	109	3933	940	4300	105
3480	103	3940	1120	4400	102
3490	112	3950	060	4400	01
3500	100	3960	750	4420	03
3510	104	3070	484	4420	77
3520	113	3975	207	4440	6 T 0 D
3530	08	3950	100	4453	100
3540	100	6000	142	4440	100
2550	03	4000	146	4470	90
2560	116	4010	140	4470	7/
3570	115	4020	137	4400	104
2590	77	4030	127	4490	104
3500	22	4040	124	4500	91
3390	73	4050	94	4510	81
3500	125	4060	94	4520	82
3610	112	4070	80	4530	91
3620	96	4080	82	4540	106
3530	92	4090	88	4550	105
3640	110	4100	90	4560	103
3650	107	4110	98	4570	107
3660	68	4120	95	4580	105
3670	101	4130	119	4590	99
3680	108	4140	112	4600	98
3690	117	4150	93	4610	83
3700	100	4160	96	4620	102
3710	120	4170	104	4630	157
3720	80	4150	109	4640	205
3730	102	4190	110	4650	307
3740	92	4200	121	4660	298
3750	79	4210	94	4570	327
3760	102	4220	95	4680	280
3770	78	4230	97	4690	227
3780	98	4240	83	4700	139
3790	26	4250	90	4710	100
3800	112	4260	77	4720	73
3,910	11C DK	4270	22	4730	20
2820	90 82	4230	72	4740	105
2820	0J 04	4200	6 7 J	4750	102
202V	70	7674	77	7730	TAN

4760	102	5220	0 A	6490	310
4770	101	5220	117	5000	210
4780	112	5340	117	2240	274
4790	105	5750	107	5700	317
4 9 0 0	107	7270	102	5710	317
6910		5260	101	5720	309
4010	50	5270	100	5730	216
4020	(4	5280	87	5740	191
4830	101	5290	98	5750	135
4840	100	5300	97	5760	137
4850	84	5310	108	5770	129
4860	99	5320	112	5780	112
4870	108	5330	12	5790	109
4880	106	5340	109	5800	115
4890	97	5350	115	5810	128
4900	117	5260	116	5820	126
4910	77	5370	100	5830	133
4720	117	5380	113	5840	109
4930	102	5390	101	5850	159
4940	98	5400	85	5860	121
4950	78	5410	107	5870	106
4960	96	5420	20, 20	5880	174
4970	99	5430	104	5800	122
4080	01	5430	104	5000	117
4000	60	5450	100	5900	11/
5000	90	5450	104	5910	120
5010	90	5400	104	5920	120
5010	71	5470	94	5930	140
5020	100	2450	114	2940	136
5030	111	5490	105	5950	138
5040	70	5500	70	2460	125
5050	(0 0 5	5510	130	5970	129
5060	87	5520	99	5980	127
5070		5530	96	5990	122
5080	93	5540	103	6000	131
5090	111	5550	100	6010	116
5100	100	5560	108	6320	131
5110	89	5570	110	6030	126
5120	126	5580	91	5040	141
5130	95	55 90	117	6050	130
5140	112	5600	102	60.60	135
5150	113	5610	91	6070	126
5160	81	5620	111	6080	127
5170	100	5630	110	6070	129
5180	91	5640	105	6100	134
5190	95	5650	126	6110	136
5200	98	5660	116	6120	120
5210	- 75	5670	140	4130	1 2 7
	• •	• •		0130	754

6140	128	6600	162	7060	142
6150	136	6610	183	7070	134
6160	142	6520	168	7080	117
6170	124	6630	163	7090	129
6180	135	6640	156	7100	129
6190	150	6650	161	7110	148
6200	142	6650	172	7120	197
6210	148	6670	158	7130	251
6220	176	6680	167	7140	381
6230	133	6690	184	7150	534
6240	179	6700	161	7160	606
6250	21.6	6710	167	7170	615
6260	257	6720	167	7180	611
6270	295	6730	146	7190	466
5280	279	6740	165	7200	321
6290	261	6750	171	7210	241
6300	216	6760	171	7220	1 9 9
6310	192	6770	153	7230	128
6320	167	6780	165	7240	123
6330	175	6790	157	7250	122
6340	145	6800	150	7260	146
6350	161	6810	140	7270	121
6360	172	6820	157	7280	134
6370	160	6830	134	7200	122
6380	174	6840	163	7300	140
6300	173	6850	174	7310	112
6400	151	6860	134	7320	125
6410	152	6870	156	7320	120
6420	150	6880	161	7340	150
6430	179	6890	159	7350	112
6440	170	6900	147	7360	125
6450	180	6910	147	7370	116
6460	203	6920	1 7 2	73 80	110
6470	187	6930	160	7500	110
6480	102	6940	160	7390	108
6400	195	6950	140	7400	115
6500	180	6950	144	7410	121
6510	166	6970	141	7420	98
4 5 2 0	170	6940	142	7430	116
4520	140	6990	145	7440	99
6560	172	7000	162	7450	118
6550	102	7010	138	7460	122
6550	193	7020	120	7470	129
0 JOV 4 6 7 0	120	7030	141	7480	132
03/V 4503	167	7040	122	7490	125
5260	100	7050	133	7500	126
0247	103	1010	164	7510	104

7520	108	7980	67	8440	118
7530	127	7990	111	8450	128
7540	122	8000	101	8460	124
7550	100	8010	85	8470	172
7560	114	8020	101	8480	194
7570	121	8030	110	8490	287
75 80	118	8040	120	8500	108
7590	142	8050	115	8510	207
7600	127	8060	112	8520	278
7610	153	8070	96	8530	266
7620	142	8080	99	8540	1 9 9
7630	147	8090	114	8550	176
7640	159	8100	124	8560	161
7650	188	8110	116	8570	1 1 2 2
7660	208	8120	114	8580	113
7670	228	8130	105	8590	127
7680	254	8140	98	8600	108
7690	210	8150 ·	112	8610	110
7700	206	8160	104	8620	111
7713	170	8170	110	8630	100
7720	142	8190	98	8640	124
7730	103	8190	117	8650	117
7740	104	8200	99	8660	120
7750	114	8210	105	8670	120
7760	105	8220	100	8690	115
7770	132	8230	111	86.00	143
7790	107	3240	114	8700	114
7790	110	8250	105	8710	111
7800	132	8260	87	8720	1 2 2
7810	114	8270	94	8730	111
7820	123	8280	74	8740	117
7830	113	8290	115	9750	109
7840	92	8300	127	8760	115
7850	105	8310	99	8770	122
7860	117	8320	101	8790	120
7870	113	8330	107	8790	120
7880	107	8340	130	8800	105
7890	103	8350	110	8810	104
7900	113	8360	117	9920	140
7910	123	8370	104	8830	125
7920	109	8380	92	8840	109
7930	116	83 90	112	8850	122
7940	133	3400	98	3360	115
7950	112	8410	121	3870	102
7950	100	8420	103	3830	114
7970	117	8430	104	8890	106

8900	120
8910	114
8920	102
8930	114
8940	93
8950	134
8960	149
8970	157
8980	193
8990	217
9000	249

,

.

Raw Diffraction Data for SmD $_{2.38}$ at λ =1.275

1000	285	1480	235	1950	333
1010	153	1470	254	1970	357
1020	183	1500	253	1980	320
1030	170	1510	271	1970	297
1040	193	1520	295	2000	307
1050	174	1530	269	2010	282
1050	198	1540	26 5	2020	275
1270	157	1550	2 B B	2030	253
1090	184	1550	311	2040	322
1030	178	1570	339	2050	265
1100	150	1580	334	2050	274
1110	163	1590	302	2070	280
1120	152	1600	328	2030	285
1130	167	1510	354	2090	242
1140	157	1520	310	2120	275
1150	167	1630	352	2110	252
1150	196	1540	298	2120	259
1170	197	1650	323	2130	215
1180	193	1650	344	2140	263
1190	170	1670	319	2150	296
1200	197	1580	335	2160	337
1210	195	1590	365	2170	315
1720	187	1700	354	2190	339
1230	173	1710	342	2190	299
1240	182	1720	3 4 2	2200	264
1250	197	1730	351	2210	224
1250	156	1740	355	2220	242
1270	180	1750	351	2230	267
1280	201	1750	343	2240	Z76
1290	196	1770	337	2250	306
1300	213	1780	351	Z260	272
1310	175	1770	356	2273	263
1320	196	1 800	352	2230	215
1330	235	1810	338	2290	213
1340	228	1820	348	2300	277
1350	215	1830	332	2310	201
1350	217	1840	317	2320	202
1370	207	1350	355	2330	227
1380	221	1850	365	2340	191
1370	234	1570	350	2350	200
1400	235	1880	342	2350	2 00
1410	230	1590	342	2370	210
1420	231	1900	345	2330	200
1430	223	1710	323	2390	194
1440	234	1970	365	2400	192
1450	204	1930	341	2410	171
1450	223	1940	365	2420	183
1670	257	1950	335	2430	143

98

-

2660	178	2910	134	3390	313
2440	179	2920	151	3390	305
2450	169	2930	148	3400	330
2470	155	2940	158	3410	351
2430	184	2950	143	3420	394
24.00	175	2950	144	3430	355
2839	228	2970	117	3440	354
2510	176	2930	162	3450	344
2210	195	2990	156	3450	357
2520	187	3000	135	34.70	312
2230	185	3010	158	3490	272
2290	182	3070	147	3490	285
2223	170	3030	160	3500	335
2220	164	3040	145	3510	321
<u>2</u> 71J	164	3050	172	3520	335
200J	144	3060	149	3530	315
2290	171	3070	153	3540	316
2610	157	3090	181	3550	317
2122	176	3090	183	3550	293
2227	1/0	3100	153	3570	287
2333	150	3110	160	3580	290
2040	150	3120	164	3590	299
2000	100	3130	192	3600	301
2000	· 14J	3140	201	3610	290
2013	151	3150	211	3520	285
2000	143	3160	211	3630	312
2777	160	3170	206	3640	301
2710	163	3130	233	3650	279
2720	144	3190	216	3660	303
2720	150	3200	234	3670	306
2740	170	3210	219	3690	306
2750	150	3220	267	3690	287
2750	174	3230	233	3700	242
2770	156	3240	238	3710	301
2780	159	3250	247	3720	286
2770	144	3250	250	3730	262
2800	153	3270	240	3740	260
2810	161	3290	285	3750	263
2821	129	3290	243	3750	201
2830	145	3300	262	3770	250
2840	123	3310	263	3780	260
2650	129	3320	254	3790	763
2360	143	3330	253	3830	247
2 7 2	154	3340	2.72	3810	232
2630	151	3350	275	3820	273
2690	164	3350	2 B S	3830	253
2200	147	3370	272	3840	こっと

.

•

3850	280	4320	217	4790	216
3850	275	4330	230	4800	217
3870	285	4340	223	4810	224
3830	247	4350	241	4820	234
3890	285	4350	222	4530	213
3900	314	4370	225	4840	241
3910	273	4330	234	4850	230
3920	325	4390	227	4550	217
3930	454	4400	237	4870	212
3740	725	4410	204	4880	225
3750	1009	4420	237	4870	2 27
3960	1167	4430	223	4900	233
3970	1104	4440	195	4710	233
3730	791	4450	217	4920	220
1320	797	4450	221	4730	217
4000	765	4470	21j	4740	245
4010	738	4490	214	4950	243
4020	395	4490	224	4950	253
4030	1017	4500	199	4970	227
4040	745	4510	213	4930	255
4050	750	チラこつ	226	4990	232
4060	593	4530	250	5000	227
4070	477	4540	235	5010	219
4030	335	4550	307	5020	255
4090	332	4560	357	5030	256
4100	334	4570	435	5040	241
4110	273	4580	343	うつうつ	240
4120	247	4590	348	5050	221
4130	287	4600	331	5070	234
4140	274	4610	305	5080	228
4150	283	4620	271	5070	237
4160	281	4530	247	5100	233
4170	273	4640	267	5110	20+
4130	231	4650	245	5120	229
4190	247	4560	219	5130	235
4200	233	4570	247	5140	260
4210	232	4690	225	5150	245
4220	2ŭ5	4590	209	5150	255
4230	255	4730	231	⇒170	237
4240	211	4710	241	5190	237
4250	247	4720	265	5190	247
4250	233	4730	241	520 0	257
4 <u>2</u> 70	204	4740	224	5210	<u>21</u> ĉ
4290	530	4700	247	5220	?26
4290	201	4750	742	5230	240
4300	215	4770	201	52 40	207
4310	222	4190	234	5250	224

•

5260	241	5740	304	6220	. 353
5270	217	5750	354	6230	400
5280	255	5760	433	6240	366
5220	225	5770	490	5250	353
5300	230	5730	578	5250	390
5310	237	5790	633	5270	353
5320	226	5900	554	5250	390
5330	213	5810	534	52 90	387
5340	244	5820	477	5300	379
5350	224	5830	383	5310	371
5260	226	5840	357	6320	340
5270	265	5850	365	5330	419
5280	257	5850	308	< 534 0	412
5330	240	· 5970	321	6350	421
5477	252	5880	311	6350	457
5433	235	5390	285	5370	469
5410	263	5900	314	5390	462
5420	244	5910	299	6370	436
5450	253	5920	325	5400	457
2442	235	5930	339	5410	451
3430	226	5940	324	5420	435
2433	24.3	5950	347	5430	473
547J 5790	228	5950	299	5440	450
5450	252	5970	301	5450	420
5490	223	5980	315 ·	5460	428
5510	230	5990	277	5470	400
5520	243	6000	322	5430	÷12
5530	25s	5010	317	5490	434
5560	237	6020	342	6500	429
5550	283	6030	313	5510	437
5550	280	5040	332	5520	435
5550	249	5050	338	5530	459
5570	276	6050	331	5540	415
5550	249	5070	354	6550	457
5400	295	5080	344	5560	445
5610	749	5070	317	557C	461
2010	23.3	5100	319	6580	432
5525	263	5110	331	6590	458
5660	235	5120	337	6500	432
5653	2.4.2	5130	374	5610	405
1650	273	5140	372	5520	413
5670	279	5150	355	5530	413
5623	2 4 2	5150	35√	5540	433
5505	264	5170	347	5650	437
5700	265	5180	373	5550	430
5710	267	5190	375	5570	430
5720	28:	5200	384	5550	<u>441</u>
5730	315	5210	368	5590	402

۰.

101

.

5700	429	7170	385	7540	313
5710	407	7180	445	7550	268
5720	447	7190	511	7660	271
6730	434	7200	547	7570	32 -
5740	382	7210	543	7630	275
6750	435	7220	ラタイ	7590	267
5750	432	7230	655	7700	245
6770	414	7240	577	7710	263
6780	384	7250	731	7720	240
6790	402	7260	741	7730	252
6800	436	7270	647	7740	260
5810	371	7280	530	775C	247
5820	405	7290	497	7750	239
5930	398	7300	412	7770	251
5340	387	7310	332	7730	235
6850	373	7320	345	7790	255
6850	424	7330	. 340	7800	254
6870	373	7340	314	7810	242
5885	375	7350	336	7820	237
5890	340	7360	332	7830	223
5900	374	7370	357	7940	234
6910	362	7390	352	7850	245
6920	387	7390	365	7860	215
5730	422	7400	330	7870	222
5940	394	7410	324	7850	250
5950	355	7420	325	7970	212
5950	367	7430	303	7900	211
6970	327	7440	315	7910	244
6980	342	7450	274	7920	271
5990	320	7450	267	7930	225
7000	322	7470	252	7940	255
7010	342	7430	265	7950	247
7020	338	7490	251	7960	250
7030	322	7500	243	7970	23:
7040	338	7510	264	7930	243
7353	321	75 <u>2</u> 0	257	7990	201
7050	328	7530	255	9000	23 :
7070	278	7540	235	8010	213
7090	327	7550	277	9020	23:
7090	304	7550	271	6333	214
7100	341	7570	291	3040	213
7110	303	7530	245	0-0-0	232
7120	305	7590	237	-060	22 -
7130	342	7-00	325	4973	730
7140	342	7610	354	3030	219
7150	354	7620	331	4390	Z 4 5
7150	475	7530	35¥	F100	230

8110	242
3120	222
8130	211
3140	207
9150	267
3160	214
<u>8170</u>	224
3180	224
9190	210
3200	257
8210	238
3220	220
9230	273
3240	298
8250	251
<u>8260</u>	322
-270	335
8280	364
82 70	347
3300	420
3310	357
3320	301
8330	265
3340	269
8350	251
3350	257

1090	92	1560	103	2030	94
1100	107	1570	109	2040	102
1110	100	1580	97	2050	116
1120	76	1590	104	2060	101
1130	80	1500	105	2000	- • •
1140	88	1510	115	2070	
1150	84	1520	89	2080	107
1150	30	1630	110	2090	95
1170	92	1640	28	2100	113
1180	83	1650	99	2110	78
1190	79	1660	97	2120	91
1200	90	1670	106	2130	116
1210	71	1680	24	2140	132
1220	90	1690	108	2150	130
1230	77	1700	00	2160	154
1240	77	1710	1 18	2170	160
1250	83	1720	126	2180	131
1260	74	1730	110	2190	125
1270	97	1740	110	2200	116
1280	84	1750	121	2210	107
1290	88	1750	108	2220	107
1300	73	1770	110	2230	101
1310	76	1790	112	2240	119
1320	30	1700	104	2250	125
1330	32	1900	107	2260	131
1340	94	1810	77	2270	97
1350	76	1010	102	2280	97
1360	79	1820	102	2290	92
1370	92	1840	114	2300	8 5
1381	70	1040	94	2310	59
1320	87	1050	100	2320	97
1400	87	1830	1124	2330	109
1410	95	1070	113	2340	91
1420	97	1880	100	2350	99
1430	87	1040	130	2350	140
1	24	1010	130	2370	155
1440	85	1910	112	2330	141
1450	105	1920	111	2370	145
1460	75	1930	118	2400	135
1470	93	1940	105	2410	114
1480	74	1950	131	2420	115
1470	+7	1950	119	2430	85
1500	99	1970	. 111	2440	92
1510	101	1990	104	2450	87
1520	114	1970	122	2460	83
1530	95	2000	105	2470	99
1540	114	2010	102	2480	112
1550	114	2020	106	2490	53

2500	95	2960	89	3430	101
2510	90	2970	75	3440	100
2520	93	2980	83	3450	102
2530	87	2990	74	3460	91
2540	80	3000	79	3470	85
2550	70	3010	72	3480	93
2560	84	3020	94	3490	79
2570	84	3030	101	3500	97
2580	91	3040	101	3510	101
2590	84	3050	80	3520	83
2600	83	3060	78	3530	94
2510	87	3070	91	3540	86
2620	94	3080	97	3550	107
2630	110	3090	83	3560	82
2640	84	3100	101	3570	94
2650	89	3110	105	3580	95
2660	90	3120	91	3590	95
2670	80	3130	103	3500	100
2680	76	3140	114	3610	87
2690	66	3150	130	3620	93
- 7	00	3160	103	3630	91
2700	94	3170	150	3640	93
2710	89	3130	112	3650	99
2720	78	3190	127	3660	97
2730	(4	3200	110	3670	84
2740	04 //	3210	100	3680	85
2720	00	3220	103	3670	114
2700	86	3230	104	3700	88
2770	41	3240	101	3710	95
2780	82	3250	109	3720	81
2790	11	3260	108	3730	91
2800	102	3270	95	3740	92
2810	84	3280	101	3750	99
2820	73	3290	120	3760	87
2830	78	3300	100	3770	84
2840	81	3310	113	3780	84
2850	79	3320	106	3790	95
2860	80	3330	130	3800	96
2870	75	3340	110	3810	73
2850	11	3350	121	3820	109
2890	51	3360	127	3830	3)
2900	73	3370	126	3340	72
2910	86	3380	147	3850	113
2720	78	3390	131	3860	133
2130	64	3400	 	3870	195
2743	77	3410	70 110	3880	234
2950	79	3420	87 TIO	3890	223
		9 T L V	J (J	—	

•

3900	277	4370	81	4840	95
3910	418	4380	95	4850	107
3920	593	4390	85	4860	89
3930	754	4400	87	4870	76
3940	940	4410	59	4980	94
3950	887	4420	95	4890	81
3960	805	4430	91	4900	85
3970	5.8.6	4440	109	4910	82
3980	449	4450	66	4920	77
3990	379	4460	107	4930	98
4000	325	4470	89	4740	99
4010	332	4480	104	4 950	111
4020	357	4490	74	4750	80
4030	303	4500	103	4970	75
4040	230	4510	98	4980	95
4350	163	4520	123	4990	82
4060	137	4530	120	5000	97
4070	98	4540	144	5010	102
4080	104	4550	153	5020	89
4090	98	4560	141	5030	74
4100	113	4570	146	5040	88
4110	102	4580	.134	5050	77
4120	111	4570	108	5060	83
4130	112	4600	129	5070	104
4140	100	4610	120	5080	95
4150	95	4620	119	5090	76
4160	90	4630	128	5100	57
4170	106	4640	140	5110	82
4180	93	4650	144	5120	95
4190	85	4660	161	5130	114
4200	95	4670	136	5140	81
4210	110	4680	149	5150	88
4220	83	4690	133	5160	111
4230	84	4700	114	5170	93
4240	94	4710	115	5180	95
4250	95	4720	113	5190	108
4260	92	4730	105	5200	36
4270	119	4740	111	5210	91
4230	37	4750	110	5220	02
4290	84	4760	95	5220	117
4300	35	4770	56	5255	102
4310	39	4730	63	5250	132
4320	79	4790	97	5760	100
4330	74	4900	82	5200	991
4340	89	4810	93	5280	109
4350	73	4320	75 -	5200	100
4350	74	4830	93	52.90	100
				2200	104

5310	93	5780	303	6250	22/
5320	94	5790	223	6260	210
5330	101	5800	105	6270	212
5340	110	5810	188	6290	205
5250	104	5920	168	6200	209
5260	105	5820	160	6200	274
5370	83	5840	122	6310	2/0
5380	108	5040	122	6320	203
5390	88	5850	139	6320	204
5400	92	5860	198	6340	240
5410	101	5870	179	6250	209
5420	03	5850	115	6360	200
5430	102	5890	183	6370	290
5440	38	5900	184	6380	297
5450	102	5910	145	6100	209
5460	102	5920	158	6400	220
5470	115	5930	174	6410	270
5480	108	5940	155	6420	257
54.00	136	5950	141	6420	200
5500	106	5960	164	6660	240
5510	111	5970	131	6450	100
5520	104	5730	145	6450	140
5520	117	5990	147	6400	140
9930 5540	102	5000	144	6410	167
2240 5550	105	6010	169	5460	123
5550	120	6020	124	6470	175
550U 5570	102	6030	170	6500	145
5570	105	6040	154	6510	170
5550	127	6050	186	6510	170
5590	77	5060	200	6530	177
5600	134	6070	152	6550	172
5610	124	6080	154	5550	120
5620	156	60 90	204	6500	100
5630	193	6100	210	6570	120
5640	161	6110	204	5500	124
5650	120	6120	189	6590	1/7
2500	100	6130	231	6500	147
5570	102	6140	217	6630	137
5680	193	6150	234	0520	124
2540	241	6160	215	0030	107
5700	224	61.70	255	004J ((E0	153
5710	204	6180	208	5520	155
5720	204	6190	245	0050	135
5/30	201	6200	232	0070	144
つて40	202	ó210	195	5580	159
5750	507	5220	206	5690	150
5760	-308	6230	244	5700	157
5770	220	6240	222	6710	145

6720	155	7200	420	7470	1 / 2
6720	154	7200	739	7070	143
6730	195	7210	303	7680	142
6740	156	7220	333	7690	164
6750	172	7230	266	7700	148
6760	129	7240	230	7710	117
6770	143	7250	223	7720	142
6730	145	7260	203	7730	110
6790	176	7270	176	7740	128
6800	142	72.80	140	7750	112
6910	145	7200	120	7760	120
6930	1 2 1	7270	124	7770	122
6820	121	7300	192	77700	152
6830	131	7310	160	7780	114
6840	139	7320	169	7790	102
6850	138	7330	165	7800	10 ô
6360	154	7340	156	7810	132
6870	154	7350	175	7320	128
6830	154	7360 -	152	7830	126
6890	152	7370	167	7840	106
6900	149	7380	133	7850	119
6910	136	7200	142	7860	120
6220	147	7370	102	7970	114
6920	197	7400	124	7070	110
6930	122	7410	155	7880	
6940	149	7420	131	1840	118
6950	140	7430	117	7900	105
6960	127	7440	114	7910	119
6970	122	7450	118	7920	99
6980	135	7460	131	7930	139
6990	151	7470	124	7940	108
7000	148	74.80	113	7950	121
7010	136	7400	127	7960	122
7020	142	7500	110	7970	106
7020	163	7510	115	7040	110
7030	100	7510	132	. 7900	114
7040	TDA	7520	145	7990	124
7050	171	7530	145	8000	104
7060	182	7540	155	8010	106
7070	144	7550	155	8020	134
7030	165	7560	205	3030	136
7090	172	7570	143	3040	83
7150	207	7580	199	8050	107
7110	207	7530	203	8050	112
7120	221	7600	201	8070	121
7130	269	7610	207	BOBO	121
7140	336	7619	207	2000	115
7150	384	1020	184	0047	117
7160	182	7630	168	8100	123
7170	497	7640	149	8113	103
7180	506	7650	153	8120	120
7190	434	7660	190	8130	120
· • •	· - ·				
8140	110	861.0	124		
------	-------	--------------	-------		
8150	121	8620	121		
8160	136	8630	111		
9170	131	8640	120		
8180	142	8650	120		
8100	115	8660	149		
8200	140	8670	140		
3210	164	9680	163		
3210	156	6600	122		
8230	156	8700	122		
8240	150	8710	735		
8250	143	9720	1 2 2		
9260	170	9720	115		
0200	143	9740	117		
0210	155	9760	12/		
9200	140	5750	1 7 7		
0700	147	0700	172		
0300	1 2 2	0770	115		
0320	123	0/00	117		
3320	120	9900	1 3 2		
0260	1 3 3	0000	105		
0340	122	8830	107		
0370	122	0020	197		
0360	127	2840	121		
8370	140	. 0070	141		
8380	118	002U 8940	112		
8340	. 123	0000	117		
9400	140	0070	151		
8410	135	0000	100		
9420	135	8890	100		
8430	144	8700	123		
8440	149	0410	1/3		
8450	156	3720	104		
8460	155	8930	104		
8470	155	0940	140		
8480	204	8900	104		
8490	175	0400	143		
8500	217	8970	134		
8510	218	8480	161		
8520	239	8440	105		
8530	232	9000	157		
8540	236				
8550	206				
3560	156				
8570	130				
3530	143				
8590	144				
9600	117				

.

109

·

•

Raw Diffraction Data for $SmD_{2.99}$ at $\lambda = 1.275$

1000	41	1450	42	1920	47
1010	57	1470	43	1930	34
1020	37	1430	54	1940	41
1930	37	1490	26	1950	40
1040	54	1500	50	1950	43
1050	38	1510	52	1970	37
1060	43	1520	48	1930	51
1070	35	1530	53	1990	43
1080	45	1540	45	2000	44
1000	4.2	1550	43	2010	43
1106	45	1550	45	2020	10
1110	47	1570	45	2030	5 T
1120	55	1530	4.3	2040	36
1120	54	1320	52	2050	42
1143	29	1660	3C 2 3	2050	53
1150	46	1410	43	2070	30
1120	10	1420	11	2020	57
1170	37	1610	74	2000	51
1120	37	1550	47	2100	44
1130	37	1540	27	2130	42
1190	30	1555	21	2110	41
1200	38	1050	39	2120	44
1210	47	1570	>2	2139	39
1220	4 I 5 5	1550	45	2145	5-1
1230	55	1590	43	2150	40
1240	47	1700	46	2150	33
1250	49	1/10	39	2170	43
1250	40	1720	51	2130	45
1270	56	1730	43	2190	44
1280	35	1740	41	2250	36
1290	41	1750	44	2210	43
1300	46	1750	45	2220	41
1310	42	1770	43	2230	35
1320	41	1730	48	2240	40
1330	5Ú	1790	4 C	2250	49
1340	29	1800	36	2260	44
1350	41	1310	52	2270	34
1350	44	1820	45	2230	50
1370	44	1930	54	2290	53
1330	44	1340	5.5	Z 3 0 0	44
1390	35	1350	51	2310	50
1400	43	1859	47	2320	47
1410	34	1970	37	2330	37
1420	47	1335	58	2340	47
1430	45	1896	32	2350	39
1440	45	1930	3.8	2350	41
1450	53	1910	42	2370	41
		—	_		-

•

.

2380	49	2940	35	1300	43
2390	46	2850	31	3310	38
2400	40	2350	31	3320	35
2410	49	2370	31	3330	48
2420	44	2880	30	3340	43
2430	37	2890	30	3350	40
2410	40	2900	38	2260	51
2450	40	2210	42	3300	51
2460	25	2920	37	2290	50
2470	55	2020	25	2200	57
2470	50	2343	<u> </u>	2600	
2403	70 50	2950	22	3400	72
2440	23	2950	20	2410	()
2000	40	2930	24	3420	טים מיד
2210	77	2710	7 G 7 T	3430	77
2720	33	2700	27	3470	/ L
2230	40	2999	55	2420	21
2549	40	3000	31	3430	27
2550	35	3610	24	3479	50
2950	50	3020	29	3400	52
2570	36	3030	28	3490	> 1
2530	37	3040	35	3500	>5
2590	32	3050	37	3010	56
2500	51	3050	31	3520	47
251û	41	3070	30	3530	55
2620	46	3090	26	3540	41
2530	51	3090	21	3550	44
2540	42	3199	29	3560	48
2550	55	3110	37	3570	43
2650	46	3120	33	3590	54
2570	43	3130	30	3590	- 44
2590	33	3140	40	3600	41
2690	38	3150	48	3510	55
2730	34	3160	45	3520	49
2710	41	3170	45	3630	43
2720	35	3130	43	3640	44
2730	34	3190	42	3550	j 8
2743	31	3200	44	3650	50
2750	29	3210	46	3570	41
2750	41	3223	39	3 5 8 0	55
770	37	3230	41	3590	5 9
7733	37	3260	51	3799	45
2730	34	3250	41	3713	51
2305	12	3260	35	3720	
2 4 1 1	ני. 7 ג	3270	42	373.0	
ションペ	5 I 6 1	3220	7 J	3747	57
2920	7	100	т.:. 	3750	
الها تراجز بنا	57	コビマリ	T '		71

3760	34	4220	52	4530	65
3770	48	4230	44	4570	55
3730	54	4240	45	4700	54
3790	31	4250	42	4710	50
3800	50	4250	52	4720	42
3810	53	4270	46	4730	55
3320	44	4280	38	4740	70
3930	54	4270	40	4750	56
3840	52	4300	39	4750	53
3850	55	4310	55	4770	50
3850	39	4320	43	4790	61
3870	55	4330	50	4790	50
3380	64	4340	37	4300	55
3890	49	4350	44	4810	57
3900	70	4350	48	4820	46
391Ú	53	4370	44	4930	57
3920	87.	4390	55	4540	54
3930	154	4370	46	4350	47
3940	218	4400	3 9	4350	43
3950	272	4410	51	4570	43
3950	342	4420	40	4380	42
3770	355	4430	47	4370	57
3930	303	4440	63	4900	57
3990	240	4450	32	4910	49
4000	242	4450	56	4920	40
4010	254	4470	44	4930	52
4020	297	4490	51	4940	49
403C	237	4490	48	4950	51
4040	303	4500	41	4950	45
4050	242	4510	41	4970	62
4060	158	4520	32	4980	53
4070	130	4530	38	4990	50
4030	111	4540	51	5000	57
4090	50	4550	77	5010	56
4100	60	4550	32	5020	53
4119	53	4570	194	5030	52
4120	53	4530	102	5040	48
4130	55	4593	105	5 7 9 0	> 0
4140	કર્વ	4500	115	5050 - (5 0	5 ר
4150	54	4510	7つ	5070	59
-150	5 9	4520	77	5030	65
4175	53	4630	55	5 7 9 3	57
4196	50	4540	54	5130	50
4190	59	4550	79	5110	52
6200	44	4550	63	5120	51
+ ≤10	3.5	4670	55	2130	54

5140	52	5600	59	6060	68
5150	45	5610	53	5070	72
5150	45	5620	65	6090	84
5170	54	5530	74	6070	97
5130	4 5	5540	54	5100	33
5170	39	5550	77	5110	38
5200	52	5550	55	5120	94
5210	53	5673	52	6130	103
5220	53	5530	74	5140	
5230	57	5670	37	5150	104
5240	57	5700	71	5150	37
5250	59	5710	31	6179	103
5250	5 Ü	5720	72	5130	113
5270	54	5730	79	5190	37
5230	80	5740	74	5200	22
5290	50	5750	125	6210	30
5300	50	5750	116	5220	109
5310	51	5770	155	5230	24
5320	72	5730	147	5240	105
533Û	53	790	173	62 50	94
5340	54	58.00	205	5250	105
5350	55	5810	132	5270	34
5350	67	5820	152	6230	121
5370	54	5830	122	6290	116
5390	58	5840	124	5300	116
5390	51	5950	95	5310	110
5430	64	5850	93	6320	
5410	71	5870	75	6330	103
5423	うら	5830	77	6340	20
5430	52	5990	35	6350	103
5440	59	5900	33	6750	114
5450	47	5910	55	5370	130
5450	61	5920	77	5390	138
5470	56	5930	79	5390	174
5480	50	5940	59	6400	171
5490	67	5051	- - -	6410	124
5500	64	5040	55	6420	110
3510	50	577)	q n	5430	1 1 6
5520	53	5340	79	5455	127
5030	61	5991	47	64.50	1.34
5540	65	5000	73	5460	1.50
3530	57	5010	3.5	5471	174
55 h 0	62	5020	73	6433	100
5370	28	5030	57	5630	R.2
5530	52	5040	3,2	5544	1 3 4
5590	55	6350	97	551)	1.13
		~ ~ ~ ~ ~			

6520	138	6930	94	7443	7 7
5530	112	6990	98	7450	97
6540	124	7000	102	7450	34
6550	118	7010	88	7470	36
5550	107	7020	30	7490	35
5370	97	7030	79	7490	58
5590	135	7340	23	7500	95
6590	109	7050	86	7510	58
5600	121	7060	95	7520	39
6510	92	7070	34	7530	75
5520	130	7686	94	7540	32
5530	115	7090	105	7530	105
5540	107	7100	111	7550	110
5550	- 72	7110	23	7570	113
5550	104	7120	105	7530	125
6570	104	7130	113	7590	130
6580	118	7140	98	7500	138
5590	102	7150	26	7510	139
6733	124	7150	35	7520	148
6710	97	7170	134	7630	134
6720	110	7130	152	7540	135
5730	101	7190	136	7650	136
5740	129	72.00	195	7550	130
6753	124	7210	233	7670	164
6750	125	7220	232	7530	103
5770	108	7230	279	7570	105
6780	123	7240	301	7700	32
6790	104	7250	279	7710	7 9
6800	105	7250	245	772)	74
5910	109	7270	227	• 7730	75
5920	119	7280	221	7740	56
6930	76	7270	153	7750	95
6940	101	73.10	142	7750	90
6990	104	7310	120	7770	70
5354	105	7370	127	7730	30
5370	104	7330	85	7770	56
5730	112	7347	117	7900	80
5470	102	7350	131	7910	7 -
5930	175	7350	118	7 ~ 2 0	71
5717		7373	115	7330	53
6930	107	7390	126	7840	72
5930	117	7370	121	7950	53
67+0	125	7400	115	7355	59
5750	117	7410	111	7370	79
6750	90	7420	105	7380	53
5773	107	7430	120	7870	54

7900	75	8350	89	8520	38
7910	84	8370	85	8930	73
7920	78	6380	83	8340	92
7930	79	8390	73	8850	56
7940	67	3400	72	3860	92
7950	55	9410	96	8970	77
7950	70	8420	51	8380	38
7970	80	8430	81	8890	95
7980	63	3440	77	8900	97
7990 h	74	8450	95	8910	105
8000	74	3450	51	8920	- 71
9010	85	8470	7 E	8930	117
8020	94	9490	35	8940	78
8030	53	5490	75	9950	119
8040	59	9500 ·	104	6960	115
8050	78	8510	84	8970	111
8050	66	8520	124	8950	105
8070	79	8530	102	8970	103
5080	30	8540	122	9000	112
8090	92	8550	128		
8100	63	8550	134		
9110	71	8570	127		
5120	52	8580	137		
8130	94	8590	129		
3140	78	8600	122		
8150	59	8510	111		
9160	74	9520	95		
8170	67	9630	100		
8190	93	8540	89		
8190	74	8550	88	•	
8200	81	8650	90		
3210	93	8570	85		
9220	70	8680	71		
3230	95	5590	90		
8240	95	8700	102		
8250	98	8710	89		
8250	132	8720	104		
8270	129	8730	90		
8280	151	8740	92		
8290	145	9750	104		
8360	150	3750	99		
331ú	139	8770	104		
3320	130	3730	79		
8330	101	3790	77		
3341)	107	3800	94		
8350	91	8310	74		

APPENDIX G

Space Groups 194 and 225 P6 /mmC and Fm3m 3

\sum_{h}^{5}	3 m	r	No. 225		F	4/m 3	2/m		117 m 3 m	(
					Origin	at cent	ce (m3m)			
mber of yckoff i	positions, notation,		C	o-ordi	nates of	equivale	ent positions	C	onditions limi	tir
point	symmetry		((0,0,0;	; 0, <u>1</u> , <u>1</u>	; 1,0,1	; 1,1;0)+	po	ssible reflect	io
								Genera	l: .	
2	1	$x, y, z; x, \hat{y}, \bar{z}; \bar{x}, \bar{y}, \bar{z}; \bar{x}, \bar{y}, z; \bar{x}, y, z; x, \bar{y}, z; x, y, \bar{z}; x, y, \bar{z}; $,z,x; ,z,x; ,z,x; ,z,x; ,z,x; ,z,x; ,z,x;	x,z,y; $x,\bar{z},\bar{y};$ $\bar{x},z,\bar{y};$ $\bar{x},\bar{z},y;$ $\bar{x},\bar{z},\bar{y};$ $\bar{x},z,y;$ $x,z,\bar{y};$ $x,z,\bar{y};$	y,x,z; y,x,ž; ŷ,x,ž; ŷ,x,z; ŷ,x,z; y,x,z; y,x,z;	z,y,x; z,ŷ,x; ż,y,x; ż,ŷ,x; ż,ŷ,x; z,y,x; z,ŷ,x; z,ŷ,x; z,y,x.	hkl: h hhl: (l Okl: (k	+k,k+l,(l+1 +h=2n); C :,l=2n); C	h) '
					•			Special	: as above, p	, 2 lu
·	k m	x,x,z; x,x,ž; x,x,ž; x.x.z;	<i>z,x,x;</i> x <i>z,</i> x̄,x̄; x <i>z̄,x,</i> x̄; x̄ <i>ī</i> .x̄.x; x̄	(,z,x; (,ź,x; (,z,x;	$\vec{x}, \vec{x}, \vec{z};$ $\vec{x}, x, z;$ $x, \vec{x}, z;$ $x \cdot x \cdot \vec{z};$	<i>ī</i> , <i>x</i> , <i>x</i> ; <i>ī</i> , <i>x</i> , <i>x</i> ; <i>z</i> , <i>x</i> , <i>x</i> ; <i>z</i> . <i>x</i> . <i>x</i> ;	x,z,x; x,z,x; x,z,x; x,z,x;			
	j m	0, y, z; 0, y, z; 0, y, z; 0, y, z;	$z_10,y; y, \bar{z}_10,\bar{y}; \bar{y}, \bar{z}_10,\bar{y}; \bar{y}, \bar{z}, 0,y; y, z, 0,\bar{y}; \bar{y},$, <i>z</i> ,0; , <i>z</i> ,0; , <i>z</i> ,0; , <i>z</i> ,0;	0, <i>z</i> , <i>y</i> ; 0, <i>z</i> , <i>y</i> ; 0, <i>z</i> , <i>y</i> ; 0, <i>z</i> , <i>y</i> ;	y,0,z; ÿ,0,z; y,0,z; ÿ,0,z;	<i>z,y</i> ,0; <i>z̄,ȳ</i> ,0; <i>z̄,y</i> ,0; <i>z</i> , <i>ȳ</i> ,0.	> no extr	a conditions	
. 1	i mm	$\frac{1}{2}, x, x;$ $\frac{1}{2}, \overline{x}, \overline{x};$	$x_{1}\frac{1}{2},x; x$ $\vec{x}_{1}\frac{1}{2},\vec{x}; \vec{x}$	c,x, <u>1</u> ; ?,x, <u>1</u> ;	1,x,x; 1,x,x;	$\bar{x}, \frac{1}{2}, x;$ $x, \frac{1}{2}, \bar{x};$	x,ヹ,½; ヹ,x,╁,			
j	h mm	0,x,x; 0,x,x;	x,0,x; x xੋ,0,x̄; xੋ	r,x;0; ;, x ,0;	0,x,x; 0,x,x;	x,0,x; x,0,x;	x,x,0; x,x,0.			
£	z mm	x, t,t; x,t,t;	t,x,t; t; t,x,t; t;	,‡,x; ,},;	x,2,2; x,2,2;	1,x,1; 1,x,1;	1,2 , <i>x</i> ; 1,7, <i>x</i> .	hkl: h,	(k,l)=2n	
J	r 3m	x,x,x; x̄,x̄,x̄;	x,x,x; x x,x,x; x	ī,x,x; (,x,x;	x,x,x; x,x,x.			} no extra	conditions	
	e 4mm	x,0,0;	0, <i>x</i> ,0; 0,	,0, <i>x</i> ;	<i>\$</i> ,0,0;	0,\$,0;	0,0, <i>x</i> ̄.	J		
ć	t mmm	0,1,1;	1,0,1; 1,	, 1 ,0;	0,1,1;	1,0,1; .	1 , 1 ,0.		(h. l) - 0	
ć	: 43 <i>m</i>	1 , 1 , 1 ;	<u>2, 2, 7</u> ,					$\int n\kappa i; n,$	$(\kappa, I) = 2\pi$	
2	m3m	1,1,2,2.]		
4	a m3m	0,0,0.						ho extra	. conditions	

P(5 ₃ /r	n m	C _{No. 194}	P 63/m 2/m 2/c	6//	118 m m m	Hexagon
D_{6}	h		<u>1</u> + <u>1</u> +	t+ t+	<u>, · · · · · · · · · · · · · · · · · · ·</u>	· •	
ŧ			$ \begin{array}{c} \varphi \stackrel{\bullet}{ \begin{array}{c} \begin{array}{c} 0 \\ \end{array}} \\ \varphi \stackrel{\bullet}{ \begin{array}{c} 0 \\ \end{array}} \\ \varphi \stackrel{\bullet}{ \begin{array}{c} 1 \\ \end{array}} \\ \hline \\ \end{array} \\ \hline \\ \varphi \stackrel{\bullet}{ \begin{array}{c} 1 \\ \end{array}} \\ \hline \\ \end{array} \\ \hline \\ \end{array} \\ \hline \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ \end{array} \\ \hline \\ \end{array} \\ \hline \\ \end{array} \\ \begin{array}{c} 1 \\ \end{array} \\ \hline \\ \end{array} \\ \hline \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ \end{array} \\ \hline \\ \hline \\ \end{array} \\ \hline \\ \end{array} \\ \begin{array}{c} 1 \\ 0 \\ 0 \\ \end{array} \\ \hline \\ \end{array} \\ \begin{array}{c} 1 \\ 0 \\ 0 \\ \end{array} \\ \hline \\ \end{array} \\ \begin{array}{c} 1 \\ 0 \\ 0 \\ 0 \\ \end{array} \\ \hline \\ \end{array} \\ \begin{array}{c} 1 \\ 0 \\ 0 \\ 0 \\ \end{array} \\ \begin{array}{c} 1 \\ 0 \\ 0 \\ \end{array} \\ \end{array} \\ \begin{array}{c} 1 \\ 0 \\ \end{array} \\ \end{array} \\ \begin{array}{c} 1 \\ 0 \\ \end{array} \\ \end{array} \\ \begin{array}{c} 1 \\ 0 \\ \end{array} \\ \end{array} \\ \begin{array}{c} 1 \\ 0 \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 1 \\ 0 \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 1 \\ 0 \\ \end{array} \\ \end{array}$				
				Origin at centre (3m1)			
Numbe Wych and pe	off nota	itions, tion, unctry	Co-orc	linates of equivalent position	5	Conditio possible	as limiting reflections
					G	eneral:	
24	I	I	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$-x, \bar{x}, z; \bar{y}, \bar{x}, z; x, x - y, z; -y, x, \bar{z}; y, x, \bar{z}; \bar{x}, y - x, \bar{z}; z; x - y, x, \frac{1}{2} + z; z; y - x, \bar{x}, \frac{1}{2} - z; z; x - y, \bar{y}, \frac{1}{2} + z; z; y - x, y, \frac{1}{2} - z.$	y–x,y,z; hk x–y,ӯ,ī; hł hh	<i>:il:</i> No co 12 <i>hl: l=2n</i> 10 <i>l:</i> No co	onditions onditions
					Sŗ	ecial: as a	bove, plus
12	k	m	$\begin{array}{cccccccccccccccccccccccccccccccccccc$;,z; \$,2\$,\$; 2x,x,\$; \$,x, ; \$,x,\{+z; ; x,\$,\{-z.	<i>ī</i> ; } no) extra conc	litions
12	j	m	x,y,‡; ÿ,x-y,‡; y- x,ÿ,‡; y,y-x,‡; x-	-x,x, } ; y,x,}; x,x-y,}; -y,x,?; y,x,?; x,y-x,?;	y-x,y, 1; x-y,ÿ, 1 .		
12	I	2	x,0,0; 0,x,0; x,x,0 x,0,0; 0,x,0; x,x,0	$\begin{array}{llllllllllllllllllllllllllllllllllll$	hi	kil: 1–2n	
6	h	mm	x,2x,}; 2x,x,;; x,3	e,}; \$,2\$,}; 2x,x,}; \$,x	, <u>а</u> . по	o extra cono	litions
6	g	2/m	1,0,0; 0,1,0; 1,1,0;	1,0,1; 0,1,1; 1,1,1.	hi	cil: 1–2 n	

- ſ 4 $3m = \frac{1}{2}, \frac{3}{2}, z; = \frac{3}{2}, \frac{1}{2}, \frac{3}{2}; = \frac{3}{2}, \frac{1}{2}, \frac{1}{2}, \frac{3}{2}, \frac{3}{2}$ hkil: If h-k-3n, then l=2n
- $3m \quad 0,0,z; \quad 0,0,\overline{z}; \quad 0,0,\frac{1}{2}+z; \quad 0,0,\frac{1}{2}-z.$ 4 e

hkil: 1–2n

118 6/m m m Hexagonal Hexagonal 6/m m m

 $P 6_{s}/m 2/m 2/c$

•

,

No. 194 $P \frac{6}{6_3} mmc$ D_{6h}^4

2	đ	Gm2	1, 3 ,7;	$\frac{2}{3}, \frac{1}{2}, \frac{1}{4}$.
2	C	6 <i>m</i> 2],§ ,] ;	3 , 1 , 2 .
2	Ь	Gin2	0,0,‡;	0,0,7.
2	a	3m	0,0,0;	0,0,1.

 $\begin{cases} hkil: & \text{If } h-k=3n, \\ & \text{then } l-2n \end{cases}$ hkil: 1–2n