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The purpose of this thesis is to point out some of the problems
which may occur while attempting to solve a polynomial equation on the
microcomputer.

- Specifically, programs are given which will solve polynomial
equations of degree four or less using the formulas. Since it is not
possible to solve a polynomial equation of degree five or more using a
formula, programs are also given for Newton's, the secant, and the
bisection methods.

Solutions obtained by using these programs are given. Illustra-
tions of some of the things which may cause problems are also given.
Specifically, these include multiple roots, reducing the polynomial, and
the order in which the roots are found. Problems encountered in getting

the program itself to work are also discussed.
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CHAPTER 1

INTRODUCTION

Polynomial equations and their roots have been of interest to
mathematicians for centuries. Through the years, many diverse methods
for finding the roots of polynomial equations have been developed.

While newer methods are constantly being sought, older methods are also
being adapted to take advantage of the latest tools acquired through the
technological advances of society.

One of the latest tools to be thus acquired is the microcomputer.
The microcomputer can make calculations exceedingly fast. For this
reason it is especially useful in those methods which require many
complicated or repetitive calculations.

However, the microcomputer is not without disadvantages. Before
it can be used to find the roots of a polynomial equation, a program must
be written. It must also be checked as to the accuracy of the solutions
obtained thereby. But this is only the beginning of the problems which
may be encountered when working with the microcomputer.

Representation error will occur whenever a repeating decimal or
irrational number is used. Round-off will also occur frequently in any
method used on the microcomputer. Additional representation error will
be incurred by the microcomputer when the machine changes the base ten
number entered and displayed to the base two number it performs the
calculations with, and back again. This error will be especially

noticeable when working with decimals.



However, before discussing any specific method for solving
nolynomial equations, a brief review of several fundamental concepts
essential for any methed used to find the roots will be outlined.

The basis for solving any pclynomial equation is the Fundamental
Theorem of Algebra. This theorem was first proven by Gauss, circa 1800
(for a proof see [8, p. 414]). The Fundamental Theorem of Algebra
states that every polynomial equation, P(x) = 0, of degree n 2 1 has at
least one root. While this theorem does not solve the equation, it does
guarantee that the polynomial equation has a root.

Using the Fundamental Theorem, it can easily be shown that a
polynomial equation of degree n will have exactly n roots. By the
Fundamental Theorem, the polynomial equation will have at least one
root. Let this root be r1. If ry is a root, then X=r, is a factor of

the polynomial. A reduced equation may be obtained by dividing the

polynomial by x-r Then, according to the Fundamental Theorem, this

1°
reduced equation must also have at least one root. By repeating the
above process, the existence of n roots can be shown.

Polynomial equations of degree four or less may be solved by
using a formula. However, no formula exists for solving a polynomial
equation of degree five or more. Furthermore, it is impossible to find
a general formula for solving these polynomial equations. This conjec-
ture was finally proven by Abel in 1824, [3, p. 555].

The above fundamental concepts, then, are the basis for solving
polynomial equations of degree five or more. Many methods are available
for use in solving these equations. Newton's method, the bisection

method, and the secant method will be discussed in this thesis. These

methods are all iterative in nature. Thus, the accuracy of the answer
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is highly dependent upon the accuracy of the machine. While some methods
are self-correcting, there is a limit to how much error can be compen-
sated for. A small error introduced at the beginning, such as entering
one of the coefficients incorrectly, or early in the procedure, such as
reducing an equation by an inaccurate representation of a rcot, may
greatly affect the roots of the polynomial equation. It may, in fact,
cﬁange the equation so much that the roots of the original equation and
of the inaccurate equation are entirely different.

The purpose of this thesis, then, is not to offer methods for
solving polynomial equations, but to point out some of the problems
which may occur when adapting commonly used methods to the microcomputer.
By knowing where to look for error, it is hoped the reader will be more
conscientious when using any method on the microcomputer. Some sugges-
tions for circumventing these problems will also be offered.

Programs written in conjunction with this paper are in Applesoft,
and are designed to execute on an Apple II Plus microcomputer. Some
minor modifications may be necessary for them to executé on a different
microcomputer.

For the purposes of this thesis, a polynomial will be denoted as:
P{x) =ax +a_ .x + ... +a (a_ £ 0)
n n

where the coefficients are known real numbers, and n is the degree of

the equation.



CHAPTER II
POLYNOMIAL EQUATIONS OF DEGREE £ 4

Polynomial equations of degree one are also called linear
equations. These equations have the general form of a)x +ag = 0, and

are trivial to solve. Program 2.1 will solve equations of this type.
PROGRAM 2.1

19 REM #%% DEGREE 1 *x#

ég HOE ‘

38 FRINT "THIS PROGRAM WILL FIND THE ROOT OF R"

48 PRINT “POLYNOMIAL EQUATION OF D "

Eg ERINT EGREE 1

G RINT “THE GENERAL FORM OF THIS TYPE "

78 PRINT “EQUATION 1S AIX + A8 = g FEOF

BO FPRINT .

98 PRINT "2 s Sk nsrteenseses F ¥ %Y
foo TEabT." FEEERFFAREFFEEFRREEE
116 IMPUT "ENMTER AL ;A1

1?8 INPUT “ENTER R@ “;R©

138 HOME

14@ R= -RB - Rt

15@ ?gIﬁT "THE ROOT OF THE EQUATION "A1"Y + "AB" = @
168 PRINT R

1786  EHO

Polynomial equations of degree two are more commonly referred
to as quadratic equations. These equations have the general form of
a x2 + a,x +a, = 0. Quadratic equations are routinely solved by using

2 1 0~

the quadratic formula, which is as follows:




There are, however, two forms of the quadratic formula.

is shown above.

Form 1

Form 2 is obtained from Form ! by multiplying the

numerator and the denominator of Form 1 by the conjugate of the numer-

ator.

Form 2 is given below:

a1 = l«a2a0

The two forms of the quadratic formula, therefore, are equivalent

and should yield the same roots.

as is illustrated by Table 2.1.

Equation
x2 + 40x + 400

%% + 5x - 1000

x2 + 400x + 400

1Ox2 - 100x + 10

x  + 500x + 500

X+ 1000x + 1

X+ 10000x + 1

10000x - 1

ke
+

~
+

1000x + .0O1

(1.E-5)%° 4 (1.E+6)x + .025

Unfortunately, this is not the case,

TABLE 2.1

Form 1

=20
-20

29.2214439
-34.2214439

-1.00251248
~398.997488

9.89897949
0.101020513

-1.00200787
-498.997992

-9.99701675 E~4
-999.999

-9.78186727 E-5
-9999.9999

1.0189414 E-4
~-10000.0001

-7.23637641 E-7
-1000

51.0215759
-1 E+11

Form 2

=20
=20

29.2214439
~34.2214438

-1.00251258
-398.997526

9.89897959
0.101020514

-~1.00200804
-498.998078

~1.000001 E-3
-1000.29841

-1.00000001 E-4
-10222.997

9.9999999 E-5
-9814.10705

-1 E-6
-1381.90711

48.9988785
-2.5 E-8
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The roots generated from the last equation are not even close to
being the same, especially when one notices the positive 11 exponent
obtained by Form 1 and the negative 8 exponent obtained by Form 2.
It is therefore necessary to know which of the two methods will
yield the more accurate answer. Table 2.2 lists the actual roots, and

the roots obtained by using both Form 1 and Form 2.

TABLE 2.2
Actual Roots Form 1 Form 2
.5, -1000 .500000267, -1000 +5, -999.999467
-.5, ~1000 -.49999969, ~1000 -.5, =-1000.00062
-.01, -10000 -9.99775529 E-3, -10000 -.01, =10002.2452
-1000, -1000 -1000, -1000 -1000, -1000
-1 E-5, =1 E+5 5.23924828 E-5, -1 E+5 -1 E-5, 19086.7076
-1 E-6, -1 E+6 5.102157596 E-4, -1 E+6 -1 E-6, 1959.95514
10000, -1 E~4 10000, -1.01752579 E-4 9827.76071, -1 E-4
1000, 1 1000, .999999654 1000.00035, 1
1000, -.5 1000, -.500000267 999.997467, -.5

Both forms appear to yield results with approximately the same
degree of accuracy. However, it can be observed that each method will
yield a more accurate result for one root than for the other root. It
can also be observed that the more accurate root for Form 1 is not the

more accurate root for Form 2, and vice versa. Further investigation

reveals the more accurate root is obtained when -a, and \/a]2 - laaza0

have the same sign. Thus, by checking the sign of g part of each form

may be used to improve the accuracy of the answer. In the case of
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complex roots, only Form 1 is used since it is much easier to work with.

Program 2.2 will calculate the roots of a quadratic equation.

output from this program is given in Table 2.3.

PROGRAM 2.2

18 FREM »x#x DECREE 2z ¥»%

28  HOME

33 PRINT "THIS PROGRAM WILL FIMD THE ROOTS OF R®
48 PRINT "POLYMOMIAL EQUATION OF DEGREE 2"

36 PRINT

60 PRINT "THE GEMERAL FORM OF THIS TYPE OF"

78 PRINT "EQUATION IS R2X~2 + AlX + AO = @*

e8  FRIMT

G0 PRIMT "SEessdsdiidimehthrtteri et aeeids 605 enss
169 PRINT

110 INFUT "ENTER A2 "3fZ

1z INPUT "ENTER A1 "3RL

138  INFUT "ENTER A8 ";R0

149 HOME

156 REM *¥x EURLUATE THE DISCRIMINATE
1B D =Rl * A1l -4 * A2 * AB

1vg IF O < 6 THEH 340

180 REM *#¥ CALCULATE REAL ROOTS

186 0 = SOR <0

88 REM #*¥» CHECK IF M1 IS POSITIVE OUR HEGRTIUE
218 IF A1 > 8 THEN 278

20 REM  #%* Al 1S HEGRTIMVE

230 Rl = ¢ - Al + DY 7 (2 ¥ A2D

cdB Re =2 * RB ~ C - A1 + O

258 GOTO z9@

b REM #¥* Al IS POSITIVE

2O Rl =(C - Al - D) 7 (2 % A2

288 Re =2 # @@ 7~ C -~ A1 - D

288 PRINT "THE ROOTS OF THE EQURTICON "

283 PRINT Az"We2 + "AL"X + "AB" = @ ARE"

218 FPRINT Ri;" AND ";R2

2B GOTC 424

33@ REM #%x CRLCULATE COMPLEX ROQTS

36 D= SQR ¢ - D>

358 R3 = - AL ~ (2 % R

3B R4 =0 7 (2 % A2

376 PRINT "THERE GRE NO RERL ROOTS TO THE EQUATION"
280 FPRINT A2"%~2 + "R1"¥X + "Ra" = @"

3598 PRINT
486 PRINT "THE COMPLEX ROOTS ARE “;R3:;" + ";R4;"1"
418 PRINT “AND ";R3;" - “;R4s"I"

428 END

Sample



TABLE 2.3
Equation Roots
x2 + 2% + 1 -1 -1
x° + 10000x + 1 ~9999.9999 ~1.00000001 E-4
x° + 5% = 1000 -34.2214439 29.2214439
2 + 100000x -~ 1 -100000 1 E-5
x° + 1000x + 0.001 -1000 -1 E-6
(1.E-5)x° + (1.E+6)x + .025 -1 B+l -2.5 E-8

No improvement was obtained in the case of the last equation
listed in Table 2.3. However, it should be noted that neither Form 1
nor Form 2 yielded satisfactory answers when solving this equation.
Nor will satisfactory results be obtained whenever a1z;>4a2ao, due to
round-off error in the machine.

Polynomial equations of degree three are also called cubic

equations. These equations have the general form of

x2 + a,x + a5, = 0., Cubic equations can be solved by using the

X + a 1 0°

3 2

cubic formula. This formula is not as well known as the quadratic

formula. The three roots can be obtained by substituting the values for

into

a, 3 2 3
X =y = 337 In order to solve for y, let A = - % + %;‘+ 27 and
3
2 3
2 3 a a 2a a.a a
B = 3M//— % - /-%r + g7 where p = El -2 > and q = 2 3 2 ; + Eg
3 3a 27a 3a

3 3 3

~
u
LY
+
N
«
'
I

[9%)

A development of these formulas may be found in [2, pp. 115-127].



Program 2.3 will find the roots of a cubic equation.

follows the program, and summarizes some sample output.

PROGRAM 2.3

10
Yal5)
B
L 13
58
15}
72
{5
i 15]
168
116
120
130
148
15%
166
179

189
189
209
¢l

Pl s
239
<49
56
269
ey
288
298
306
Jla
Yal5)
338
344
258
366

';i—l

388

384

REF 2 0% UUGREE 2 %%%
HOME
FRINT "THIS FROGRAM WILL FINMD THE ROOTS OF A"
$E§n¥ "POLYMOMIAL EQUATION OF DEGREE 2"
FRIMT “"THE GENERAL FORM OF TH1S TYPE OF "
PRINT "EQUATION IS AZX~3 + A2X~2 + RiX + RG = Q"
FRINT
FRINT "% 3% ed bt i X 53X i d s e a R e 156X 5 2 %45 E %"
PRINT
IMFUT "EMTER A3 ":A3
INPUT “ENTER H2 ";R2
IMFUT "EMTER A1 ";RAL
INFUT "EHTER ARG ";AQ
HOME -
P=HA 7~ A ~ CAZ * AZ) 7 (3 * A3 * AD)
a=2*ﬁz*n**n’/<2?*n3*n3*q7)~a¢*
#1 2 (3 % A2 3) + FHO 7 A2
REM *%# CRLCULRTE THE DISCRIHINRTE
D=0*G-4+P*sPxPrz
IF RBS ¢D)» < 1E - 16 THEN D a
g%n #%%¥ CHECK FOR Z REAL,2 EQURL:OR COMPLEX RO
ik
OM ¢ SGH (DY + 23 GOTO “'56;556‘.780
REM *x% 3 REAL UNEQUAL ROOTS
REt  **x DB
REM #¥% COMPUTE SGUARE ROCT OF DISCRIMIMATE
DS = SOR ¢ ~ O
REM #%¥ COMPUTE A RMD E
REM +#%% FIRST CHECK IF Q=0
IF ¢ 4 > 6 THEH 288
R=D0S ~ <y ~ 2)
BE= -H
REM *x% CALCULRTE THREE ¥°S
Y1 =9
Y2 = (H - B> *# SER (3) ~ 2
V‘}z__v.'lﬂ
G070 659
REM #%% Q<6

REM #x¥ CALCULATE A AND B USING OE MOIVRE’S THEQ

Gz = ~ 0 ¢
3 = SOR (@2 * @2 + DS = DS
At X
- ATNCC » SGR ¢ - C* C+ 120+ 1.5766
ga=T~3
= CY + Z.89439513

Table 2.4

9



PROGRAM 2.3 (continued)

458
443
476
440
430
Sta
S1@
Yils|
529
94a
956
St9
578
286
598
Lo
613
Goa
638
G49
59
669
678
(4315}
6396
sl
10
vee
73a
744
V58
768
\ (’U
739
iy

808

2347
¥’
538
840
358
86y
cod
sl
86y
310
3z2a
33
948
Chels]

C? = (o + 4, 188?8828
= @3 ~ <t 2 D)
PEH **+ CALCULATE 3 ¥°S
Y1 ¥ 03 # COS ¢Ced
e * Q23 ¥ COS ¢C3»
Y3 ¥ 03 % (0S5 (C?)
GOTU €54
REM *xx 2 EQUARL ROOTS
REM +%% D=9
REH **x CRLCULATE R AND B
= -Q7¢
G3 = ABS (w2
H=G3 ~Ct » 32
IFr @2 = ~ Q3 THEM R = - §{
E=H
REtH . #%¥ CALCULKTE 3 ¥’S
Yi=A+8B
Y2= -<{R+B) 2
Y3 = ¥2
REM #¥» CARLCULARTE THREE RERL ROOTS
Vl - R2 7 (3 * A2
- A2 7 (3 ¥ A3
R3 ?3 - R2 7 (3 % R3)
FEM #*%x PRINT RESULTS
PRINT “THE ROUOTS OF THE EQURTION®
PRINT
PRINT R3I"%~3 + "R2"%+Z + "AL"Y + "RQ" = @"
FRINT
PRIMT "RRE "iR13", "3RZ;", RND ";R3
GOTO 1620
REM *»% 2 COMPLEX ROCTS
REH =% D>06
REM #%% CRLCULRTE R RANU E
0S = SOER <D
= - 2+ 05
= -2 - DS
(3 = HEBES
= HBS {

LTI
mihne

X
n
i 0 u

~ §3 THEN A
- Q5 THEN B
REM xx# CALCULATE 3
YI1=H+B
Yo = - (R+EB) -, &
Y3 =(H - B> % SGR (3) - 2
REM x** CALCULATE REAL PART
Rl =¥l - A2 7 (2 % A3)
R = ¥2 — Az ~ (3 % A3)
REM #*%#% PRINT ANSKERS

-

m

Q 3

N "
hu >

‘S

- H H

PRINT "THE EQURTION “A3"X~3 + “A2"¥~Z + "RI"X + ©

HGH - all

10
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PROGRAM 2.3 (continued)

9E@  FRINT “HAS TWO IMAGINARY ROOTS®

979  PRINT

308 FRINT “I1TS ONE REAL ROGT 1S ";Ri
933  PRINT

1836 FRINT "ITS THO COMPLER ROUTS ARE"
1810 PRINT R2" + “¥3"1 AND "R2" - "y3u]»

18286 ENMD
TABLE 2.4
Equation Actual Roots Computed Roots
x3 + 4x2 + 5x + 2 - -2
-1 -0.999999999
-1 -0.999999999
x3 + 6x2 + 11x + 6 <2 -2
-1 -1
-3 -3
x3 + 6x2 + 12x + 8 -2 =2
-2 -2
=2 -2
3 2
XT + 2% -5x -6 -2 -1.99999859
=3 ~3.00000217
3 2
X" =2X =X+ 2 2 1.99999859
i -1.00000072
1 1.00000222
x3 + x2 + X + 1 -1 -1
i i
-i -i

Polynomial equations of degree four are also called quartic, or

biquadratic, equations. These equations have the general form of

4 3 2
a,X + a,X° + a,Xx + a.x + a

4 3 ) 1 o = 0. Quartic equations may be solved by
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using the quartic formula. The four roots of the quartic equation may

a
be found from the following equations: x = - 1% + g ¥ g and
2
a a
.. 3_R+E U A -
X =~ =573 where R = \// Z a, +y. If R = 0 then

2 2
333 > 333 >
D = e 2a2 + 24y -4a0 and E = - 2a2 -2./y —Aao.

3332 > Qa3a2 - 8a1 - a33
If R # 0 then D = e R~ - 2a2 + IR and

3a32 > Aa3a2 - 8a1 333
E = e R~ - 2a2 - iR . In both cases, y is any

root of the following resolvent cubic equation.

3 2 2 )
YT - ayy o+ taBa1 - ﬁao)y - agag + hazao -a, = 0

A development of these formulas may be found in [2, pp. 128-131].
Program 2.4 will find the roots of a quartir equation. Table

2.5 follows the program, and summarizes some sample output.

PROGRAM 2.4

18 REHW #¥¥ DEGREE 4 #%%

28 HOME

38  FRINT "THIS PROGRAM WILL FIND THE ROOTS OF R™
46 PRINT "POLYNOMIAL EGUARTICM OF DEGREE 4"

38 FRINT

68 FRINT “THE GEMERAL FORM OF THIS TYPE

7@ FRINT “OF EQUARTIONM IS"

B8 FRINT "RdMad + AZKAZ + RAZH¥~2 + FIX + AG = g°
98 PRINWT

108 FRINT s s s i R r R kS SR R R R AR R LR AR EN
118 PRINT '

i2e [MFUT "EMTER R4 YA

138 IHPUT “ENTER (i3 “;B



PROGRAM 2.4 (continued)

198 INPUT “ENTER A2 “sC
158 INFUT "ENTER RL "D
{68 INFUT "EMTER A8 ";E

178 HOHE

6@ RS =B ~ R
13 BS =C - A
288 C8S =0 ~ A
216 08 = E »~ R

B REM  #%% CALCULATE FLQ.R OF RESOLUENT CUEBIC
238 P = -~ B9

248 U = A9 % CY ~ 4 ¥ 09

SO0 R = -~ A9 * A9 ¥ 03 + 4 % BY # 09 - C9 # C3
<O MEH  w#e SOLVE RESOLVENT CUBIC

2@ Rl =@ - PP o2

B Bl = (2 4 P Y P s P - 9%P %G+ 27 %Ry~ 07
290 D1 =Bl * Bl ~ 4 + |l * AL » @1 ~ 27

SO0 IF ABS <01) < 1E - 16 THEM D1 = ©

219 ¥ = SGH D1y + 2

28 ON W GUTO 23206,466,55@

328 IF Bf < > B THEN 39@

248 B2 = SUR 1 - D1

208 HZ = AZ ~ '1 3

“b@ Be = - HZ

3B K1l = B

468 6O0TO €50

398 R3 = - Bl ~ 2

408 B3 = SOR © - 1)

418 R4 = SOR (A3 # A3 + B3 % B
429 C1 = A3 7 R4

456 T = - ATHCCL / SGR ¢ - Cl # C1 + 1)) + 1.570%
49 CB = T ~ 2

408 R4 = 4 - (1~ 3

468 X1 = 2 + R4 % LDS (Ca:>
478 uaTO U\J‘J
489 A2 = - BL ~ 2

4590 A4 = HBC CH3)

o908 HZ = A4 ~ (1~ 33

318 IF A4 = - R3 THEM AZ = - @2
928 B2 = Az

03B w1l = A2 + BZ

549 GOTO E50

598 HZ = - Bl ~ 2 + SGR (D1)

968 B3 = - Bl ~ 2 - SOR (D1

a°6 B4 = HBS (A3

388 A2 = R ~ (1~ 3

93¢ IF B3 = - A4 THEN P2 = - {2
508 B4 = HBS (B3

Blg B2 = B4 - (1~ 3

B2g IF B3 = - B4 THEM B2 = - B2
628 x1 = A2 + b

b4d REM #%x ¥ 15 ROOT OF RESOLVENT CUBIC
BB ¥ = ¥l - F ~ 32
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PROGRAM ¢.4 (continued)

3 Rl

REH  ##¥ CALCULATE MALUE COF R
9=RA3 *A9 v 4 ~ B + ¥
IF HES (RS C IE - S THEH R3 = @
9 = SGR (Ra)
FEH *x% PRINT HERDINGS
FRINT "THE ROOTS OF THE EQURTIOM®
FRINT Rs"¥aq 4+ ";B5"MA3 + "50:"%~2 + ";0:"% + “;E
i" - E‘H
PRINT "ARE ";
REM *#% CHECK IF R=8
IF B8 = @ THEN 1@86
FEM #%% R{28
REM %% CALCULARTE O AND E
Bl = 3 %R *# B9 7 4 - RI 4RI -2 # PBY + 04 % A3
BO - @ 2 CO - H3 * A9 ¥ [W3) ~ (4 % Ry
£l = 3« A9 ¥ A9 /4 - RY * RY ~ 2 + BY - (4 % {9 #
Bd - 8 % CY ~ A9 # A9 » A3) 7 (4 ¥ RI)
[F 01 { & THEH 586

J Dl = SER 01O

REM  #%% CRALCULRTE 2 RERL ROOTS

Rl = -~RA3 /4 +R3I /7 2+D1 72
R = -A8 » 4 +RY 2-D01 72
FRINT R13"s "Re:","

GOTO 33@

RCH *#x CALCULATE 2 COMPLEX ROOTS
01 SGR ¢ ~ D1)
- H3 7~ 4 +RY 72

88 R2 = Df - 2

380

1686
1g1@
igza
19320
1648
1650
1688
1870
10&@
1898
11e6

1119

120

FRINT Ris" + "3R2;"1,"
PRINT Ris" - ";R2;"],"
IF E1 < @ THEN 1018

El = SGR <E1)

REM #¥% CALCULATE 2 MORE RERL ROCTS

PZ= -~-RI/4-R8/72+El /2

K4 = - HS 4 -R9 » 2 ~E1 72
FREINT R3;", AND "3R4
GOTO 1628
FEM  #%% CALCULATE 2 MORE COMFLEX ROOTS
El = SOR ¢ - E1)
R3 ~A3 74 -RG 2
R4 = E1 ~ 2
FRINT R3:" + ";R4;"1, @NO®
PRINT R3;5" - "“;R4;"I"
GOTG 1526
REM *%¥ R=@
IF? %% -4 % D8 < 9 THEN 1416
REM **+ CALCULATE D AND E
Ol =3 * RO * A9 ~ 4 - 2 ¥ B3 + 2 % SER (Y 4§ -
4 « 095
El =3 A9 *RY 4 -2 3 B3 -2 % SOR (Y =4 -
4 = 09)
(F 01 < & THENM 1206



I'HOGRAM 2.4 (continued)

113

1130
1156
1166
1176
1156
1136
1264
1210
1228
1236
12408
1256
12€8

1276,

1286
123y
1390
13108
1320
1336
1348
1356
13665
1376
1350
1336
1400
1416
1426
1436
1448
1458

1460
1479
1486
1498
1584
1518
1528
15368
15406
1558
1566
157@
1556
1558
168G
i61Q
162y

REH =x% CRLCULATE 2 REARL ROQOTS
Ul = SR iDl)
Rl =

-0 7 4+ 01 7
Re = -~ A3 » 4 - 01 .
PRINT R1:", ";R2
GOTO 1256

REM ##x CHALCULATE 2 COMPLEX ROOTS

-
-
F 2

01 = S@R ¢ - D1)
Rt = - @3~ 4
R2 = D1 ~ 2
PRINT R1:" + ";RZ:"1,"
PRINT R1;" - ";R2;"1,"

IF E1l < B THEN 1336

REH *#% CALCULATE 2 MORE RERL ROOTS
El = SR (ELD
R3 "ﬂgf"'l"*’EI/E
g WY 4 - Rl 22
PRIMT R3:", RNOD "iRd4

GOTO 1sz6

REM #%% CALCULATE 2 MORE COMPLEY ROOTS
El = SGR ¢ - Ei)
R3= - H3 7 4
R4 = E1 7~ 2

FRINMT R35" + ";R4;"1, AND"

PRINT R3:" - ";R4;"I"

GOTC 1626

REM *¥% CALCULATE 4 COMPLEX ROOTS
REM *#% USE DE MOIVRE‘S THEOREM

mol

Ul =3 A9 xRS » 4 - 2 * BS

El =2 % SOR Y - Y %Y 4+ 4 % D3

RS = GSUR (B! * 01 + E1 * E1)

Cl =01 7~ RS

TI = - HIH(Cl » SER ¢ - Ct * (L1 + 13> + 1.570
T(.. = 6.2831853 - T1

C2 =T1 ~ 2

£3 = T2 Va

RS uQR (RSJ

Ol = RS ¥ COS (C2)
D2 = RS ¥ SIN (C22
El = RS ¥ CO5 (C3»
E2 = RS ¥ SIN (C3>
Rl = -R9 74 +D1 2
F2= -R3 ~4-0D1 -2
Re= ~H3 ~ 34 +EL1 ~2
Ré = - H3 4 -EL 72

FRINT R1:" + s 2",
PRINT R2;" - ;D2 + 2;"1,"
FRINT R35" + /s 25"1, GND"
FRINT R4;" ~ “E2 ~ 2;"]"

END
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TABLE 2.5
Equation Actual Roots Computed Roots
x4 + 4x3 + 6x2 + 4x + 1 -1 -1
] =1
-1 -1
-1 -1
X' + Bx5 + 24x° + 32x + 16 v .
-2 -2
-2 -2
-2 -2
xq + 5x3 + 9x2 + X + 2 -1 -1
=1 =1
-1 -1
-2 -2
4 3 2
X + 10x™ + 35x + 50x + 24 -1 -0.99999991
-2 -2.00000027
~3 -2.99999973
=4 -4,00000009
x* - 5%% 4 4 2 2.00000012
-2 -2.00000012
1 0.999999768
-1 -0.999999768
XL.-" 1 1
-1 -1

-i -i



CHAPTER III

POLYNOMIAL EQUATIONS OF DEGREE 2> 5

As stated previously, no formula exists for solving polynomials
of degree five or more. The roots of these polynomial equations are
often found through the use of some iterative method. When using any
iterative method, it will be necessary to frequently evaluate the poly-
nomial. There are at least four possible ways to evaluate a polynomialj;
evaluation with exponents, evaluation without exponents, factored form,
and synthetic substitution. Thus, to determine the beaf way to evaluate
a polynomial, several polynomials were evaluated using these four
methods, and their results were compared.

Except for the cases in which multiple roots were involved, all
methods gave similar results. In the cases of multiple roots, evaluation
of the polynomial in factored form was clearly better. However, this is
not a viable choice. The next best method was a tie between evaluation
without exponents and synthetic substitution. Synthetic substitution
was chosen because it requires fewer multiplications for the same
accuracy of the evaluation. Program 3.1 will evaluate a polynomial
using synthetic substitution.

The n roots of the n-th degree polynomial equation may be real
or complex in nature. Complex roots, however, will always occur in
pairs. Thus, if a + bl is a root, then its conjugate, a - bi, is also a
root. Therefore, any odd degree polynomial equation will contain at

least one real root. Since an even degree polynomial may contain no

17
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PROGRAM 3.1

AB RLM 3% SYHTHETIC SUBSTITUTION *%x
28 REM #x¥ A(X) = COEFFICIENTS OF FOLYNOMIAL

58 REM  ##% % = URLUE OF POLYNOMIAL
40 R%H **% R = UALUE POLYNOMIAL IS BEING EVALURTED A
o3 HOME

66 FRINT "THIS FROGRAM USES SYNTHETIC SUBSTITUION"
76 PRINT “TO EUALUATE R POLYNOMIAL" .
0 PRINT
36 FRINT "ENTER THE DEGREE OF THE EQUATION
108 INPUT "(MAXIMUM DEGREE 1S 165 "IN
116 FRINT
126 &g?ﬂT**?HEHEER THE COEFFICIENTS
3 T OEFFICIENT OF THE X~N TERM 15 ACH)"
146 FOR % = H TO @ STEP - 1 TR 1S AP
158 PRINT “ENTER RC"%")";
168 IHPUT " ¥5@E(R)
176 NEXT X
186 PRINT
198 INFUT "ENTER THE UALUE TO BE SUBSTITUTED ;R
208 REM *#x EUALUATE THE POLYNOMIAL
C18 Y = ACH) xR
226 FOR X =N -1 T0 1 STEP - 1
238 ¥ = (Y + R(XY) * R
238 NEXT %
256 ¥ = Y + ACBY
B8 PRINT
278 PRINT "F("R") = "y
286 END

real rool., it is most beneficial to know some additional inlormatijon
about the nature of the roots. Descartes' Rule of Signs will provide
this information.

Descartes' Rule of Signs may be used to determine the maximum
number of positive and negative real roots. The maximum number of
positive real roots of the polynomial equation, P(x) = 0, may not exceed
the number of variations in sign of the polynomial. Likewise, the max-
imum number of negative real roots may not exceed the number of

variations in sign of P{(-x).



19

A polynomial equation with a, = 0 will have zero as one of its

rools. The minimum number of complex roots of a polynomial equation may

be determined by subtracting the maximum number of positive real roots,

the maximum number of negative real roots, and the number of zeroes from

the degree n of the polynomial. Program 3.2 will determine the nature

of the roots using Descartes' Rule of Signs.

PROGRAM 3.2

149
159
166
ive
180
158
204
219
&2

230
a1
290
2eu
27a
2ea
29d

3¢
318

320
336
340
354
360

3y

REM ##x RULE OF SIGNS *¥%

REM ¥#% QACX) = COEFFICIENTS OF POLYNOMIAL
REM ##x RF = NUMBER OF POSITIVE ROOTS

REM **% RN = MUMBER OF NEGRTIVE ROOTS

FEM *+xx RZ = HUMBER OF ZERC ROOTS

REM =*## S = SIGN OF THE TERM

HOME

FRINT "THIS PROGRAM USES DESCARTES” RULE OF”
PRINT “SIGNS TO DETERMINE THE MRXIMUM NUMBER"

SRiNT "OF POSITIVE, MEGRTIVE, ANOD Z2ERO ROOTS"
RINT

PRINT "ENTER THE DEGREE OF THE FOLYMMIAL"

INPUT "“C(MRXIMUM DEGREE IS 18> "N

PRINT

PRIE; "THE COEFFICIENT OF THE X~M TERH IS A(N)"
PRI

REM *#% ENTER THE COEFFICIENTS

FOR X = N TO @ STEP - 1

PRINT "EMTER RAC"3RX3")";

INPUT “ "5R(x)

HEXT «

REM *»¥ CALCULATE NUMBER OF POSITIVE ROOTS
FF = @

FREH  »#% DETERMINE SIGH OF FIRST TERH
S = GGH (AN

FOR X =H - 1T09 STEP -1

REM #%% CHECK TO SEE IF COEFFICIENMT IS ZERD

IF SGH (HCX2> = 8 THEM 350

REM +*%% CHECK TO SEE IF THE SIGN OF THE COEFFICI
ERT 1S5 DIFFERENT FROM PREVIGUS TERM

IF & = 56N (R(X)) THEN 3508

REH *xx IF SIGM IS DIFFEREMT, ROD 1 TO MUMBER OF

FOSITIVE ROOTS
RF = RF + 1

REM *x% RESET UALUE OF SIGN
S = OGN (R(KI)
MNEXT X
FN = @
REM #=x¥ CHECK IF ODD OR EVEM OUDEGREE FOLYMOMIAL
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FROGRAM 3.2 (continued)

366 IF (N~ 2) = INT <N ~ 2) THEN 420

238 REM %% IF M IS ODO. CHRANGE SIGN OF FIRST TERHM

488 & = S6H ¢ - RN

416  GUTO 436

4280 & = S6H CACHI

438 FOR W = (M - 1) TO B8 STEF - 1

448 IF SGN (RA(K))> = @ THEN S&@

458 REH #%# CHECK IF EXPOMENT 1S EVEN OR OOD

460 IF (X ~ 2) = INT KX 7 2) THEH 530

47@  REM x#x IF ENPOMENT 15 ODD, CHAMGE SIGN OF TERM

480 IF & = SGN ¢ - R(X)>)> THEN S&8

498 REM #xx IF SIGN 1S OIFFERENT FROM PREVIOUS TERM.
HDC 1 TO HEGRTIVE ROCTS

o0d RM = RH + 1

918 S = SGN ¢ - ALK

928 GUTU SE@

98 IF S = GGN (ACK)? THEN S66

948 RM = RN + 1

S0 § = SGH (X))

068  NEXT X

ard REM ##% CALCULATE MUMBER OF 2ERC ROOTS

o680 RZ = @

208 FOR K =6 TO N

8O0 IF ACKX> ¢ > @ THEM 64¢

&ld RZ = RZ + 1§

BZ@ MEKT X

636 REM *»x PRINT OUT RESULTS

B48 FRINT :

51 SRINT "THE MAXIMUM NUMBER OF POSITIVE ROOTS 1S “R

bed  PRINT
Er8  PRINT "THE MAXIMUM NUMBER OF MEGATIVE ROOTS IS “R
H

@ PRINT
B9  FRINT "THERE ARE "RZ" ZERC ROOTS*
88 END

Most of the iterative methods require that an initial approxima-
tion be supplied. This requires some knowledge as to the graph of the
polynomial. From this graph an approximation to the root can be made.

There are methods for calculating the upper and lower bounds of
the interval which contains the real roots of the polynomial eqguation.
By knowing the bounds of this region, the section of the graph which

should be studied will also be known, and thus an approximation of the
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root can be made. One such methcd, described in [7, p. 300], for find-

ing the upper and lower bounds (UB and LB, respectively) is as follows:

UB =
LB = ~UB

If, according to Descartes' Rule of Signs, there are no positive
real roots, then UB = 0. Likewise, if there are no negative real roots,
then LB = 0. Program 3.3 uses this method to calculate the upper and

lower bounds.

PHUGHHM Jad

10 REM  #¥» LIMITS #%»

280 REM %% ACX> = COEFFICIENTS OF POLYNOMIAL
380 REM #x» RF = MUMBER OF POSITIVE ROCTS

48 REM #+x RN NUMBER OF NEGATIVE ROOTS

o8 REM ¥ LL = LOMER LIMIT

60 REM #%% UL UPPER LIMIT

8 HOME

B PRINT "THIS PROGRAM FINOS THE INTERURL. HHICH"
398 PRINT “COMTAINS ALL POSSIBLE REAL ROOTS OF THE"
188 PRINT "POLYMNOMIGL"

118@ PRINT

1cs  PRINT "EMTER THE DEGREE OF THE FOLYHMIALY
138 INFUT "(HMAXIMUM DEGREE 15 187 “;N

1483 FRINT

108 PRINT “THE COEFFICIEMNT OF THE A~MTH TERM®
168 PRIMT "IS5 R(HO"

ida PRINT

188 REM ++% ENTER COEFFICIENTS

199 FOR % = N TO @ STEP -~ 1

cH8  FPRINT “"ENTER RCM5%:3"0";

218  INPUT " “;RCK)

228 MERT =

¢33 REM x%* DETERMIMNE RP

248 S = SGH CACHI)

S8 RF = @

b8 FOR W = <H - 13 TO @ STEP -~ |

£c8  IF SGN <A(KI» = @ THEN 318

<88 IF 5 = &SGH (H{KH3) THEMN 216

298 RF = RP + 1

08 5 = SBN CRCY

318 HEXT ¥

nnn

)
.
s



FROGRAM 3.3 (continued)

Sck HEM %% DETERMINE UPPER LIMIT
230 UL = ¢

246 IF RP = 8 THEN 400

Jo# FOR R =@ TO N

b6 UL = UL + [BS (R(X))

wid MHERT w

_J‘:H UL = U'L. /" H\ “.:'

296 REM ##x DETERMIHE RM

LI}

G2 RN =
416 IF (M T3 = INT (M » 2) THEN 440
428 T o= SN ¢~ RCNDD

430 GOUTO 458

448 © = SGM (RCHIY

498 FOR X = (H - 1) TO0 9 uTEF - §

468 IF SGN (ACZ)» = @ THEN 550

78  IF W 2 23 = INT (i 2 2) THEN S26
480 IF S = SGH ¢ - A(XY» THEN 558
408 RN = RN + 1

9ga g = ( - H(R)2

aleé GOTO

e IF S SGM CACKRI) THEN S50

o938 EM = RH + 1

348 S = ..:GN CHCXD S

998 NERT

o6l REM ##3% OETERMIME LOMER LIMIT

a8 LL = ¢

o0 IF MM = @ THEM S&o

990 FOR % = @ TO H

BOB LL = LL + RABS (ACK))

B18 HNEXT X

B2 LL = -~ LL ~ R(HD

838 REM #%x ROUND LIMITS TO MEXT INTEGER
648 IF UL = INT (UL)> THEN €66

BSB UL = INT <UL) + 1

BEE LL = INT (LLJ

6780 REM #%% PRINT RESULTS

600 FRINT "THE LOMER LIMIT 1S “;lL

698 PRIMT "THE UPPER LIMIT IS ";UL

f8@ END

The roots--especially the complex roots--of a polynomial of
degree five or more may be found by repeatedly approximating the root
and reducing the polynomial until a polynomial of degree four is
obtained. This polynomial may then be solved by using the guartic
formula. Program 3.4 will reduce a given polynomial by using synthetic

division.
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PROGRAM 3.4

10 REM  »#x SYNTHETIC DIVISIOH s#%
20 REM  #x% ACX) = COEFFICIENTS OF POL'YNOMIAL
S0 REM  #¥» B(X) = COEFFICIENTS OF REDUCED POLYHOMIAL

8 REM #%%# R = POLYNOMIAL WILL BE DIVIDED BY (X-R)
56 REM ®¥¥ Rl = REMAIMODER
B8 HOME
78 FRINT "ENTER THE DEGREE OF THE EGUATION TG BE™
88 IHPUT “REDUCED <(MAXIMUM 1G) ";H
38 PRINT
168 REM xx% ENTER COEFFICIENTS OF POLYMOMIAL
118 FRINT "THE COEFFICIENT OF THE X~N TERM 15 R(N)"
128 FRINT
136 FOR X = H TO © STEP - 1
148 FRINT "ENTER R{"X“)";
158 IHFUT " "SR
168 HEKT X
178 FRINT
18&  PRINT "THE POLYHOMIAL 1S TO BE UIVIDED BY ¢(%-R)>*
188 INFUT "EMTER R ";R
e Rl = @
£18 REM #i3x REOUCE THE POLYMOMIML
228 BN - 1) = ACH)
¢ FOR < =N~ 1T01 STEP -t
299 BCX - 1) = Bi) *# R + ACK)
esd  HERT »
c6@ PREM *x¥ CALCULATE REMAINDER
278 Rl = BC@) # R + R(B)
¢BB8 REM ##x PRINT OUT REDUCED POLYNOMIRL

2898 PRINT
08 PRINT "THE REDUCED PULVNGHIRL 1"
316 PRINT

28 IF W = 2 THEN 370

i i

333 IF N =1 THEN 388

344 FOR W = H - 1 TG > STEP - 1

398 PRINT BCXK); "k~ K R

S5 MEXT »

378 PRINT BCid + ";

388  FRINT Bla>

438 REM #x% CHECK TO SEE IF THERE 1S R REMAIMDER
408 IF R1 = @ THEN 423

1@ FRINT

$28 FRIWT "THERE IS A REMRINDER OF “;Ri
438 ENOD

Newton's method requires the use of the first derivative.

Program 3.5 will compute the coefficients of the first derivative.
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PROGRAM 3.5

iy
208
38
48
al
(<5}
V0
415!
30
19
119
29
1383
149
150
ie@
1ve
168

1498
%1%
c1e
Pl
238
ed49
25a
2o
278
by
290
309
316
Rl
238
34

REH  »#3 DERIUATIVE ***
REM #¥#£ R(K) =
REM #x% B(X) = COEFFICIENTS OF DERIURTIUVE
HOME

FRINT “THIS FROGRAM WILL FIND THE FIRST"
FRINT "OERIURTIVE"

FRINT

FRINT "ENTER THE DEGREE OF THE POLYHOMIAL"
INPUT "(MAXIMUM DEGREE IS 187 "iH

= COEFFICIENTS OF POLYNOMIAL

FRIMT

FRINT "THE COEFFICIEMT OF THE X~M TERM IS RCMY
FRINT

REM %% ENTER COEFFICIENTS

FOR ¥ = N TO & STEF -1

FRINT "ENTER RC"R"DY;

INPUT " "GRACKD

HEXT X

REM #x% COMPUTE THE COEFFICIEMTS OF THE UDERIVATI
VE

FOR X =M TO 1t STEP - 1

BCK — 1) = ACRKY * A

NERT =

REM %% FRINT OUT THE FIRST DERIVATIUVE
FRINT

FRIMT "THE DERIUATIVE IS "

PRINT

IF i = 2 THEM 320

"o

IF N = 1 THEN 330

IF M = 6 THEN 346

FOR % = N -1 TO 2 STEF - 1
FRINT BOX"HA"K" + "5

NERT & |

FRINT BCLOYS + “;

PRINT B(®)

END



CHAPTER IV
NEWTON'S METHOD

Newton's method is an iterative method for solving non-linear
equations. In order to find the root of a polynomial equation, P(x) = 0,
it is necessary to find a value r such that P(r) = 0. This is done by
approximating the function P with the tangent line of the function at
X = r . The point, Pest! where the tangent line intersects the x-axis

k

is used as the next approximation of the root r of P.

b

When Newton's method is applied to polynomials, it yields the

following formula for calculating successive approximations to the root:

Pre1 = T = P(rk)/P'(rk)

where r is the current approximation, and ST is the successive

approximation.

25
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The following theorem, given in [1, p. 54], is often given in

conjunction with Newton's method,

THEOREM
Assume f(x), f'(x), and f"{x) are continuous for all x in some

neighborhood of r, and assume f(r}) = 0, £'(r) # 0. Then if o is chosen

sufficiently close to r, the iterates r l(}: 0, will converge to r.

k!

Moreover,

Limit  “Tks1  £(r)

k —o= 2f' (r)

(r‘-rk)2

proving Lhat the ileratesz are quadratlcally convergent.

One dlsadvantage to using Newton's method is that it requires
the use of the first derivative. However, for a polynomial the first
derivative is easy to evaluate.

One advantage to Newton's method is that, once ry becomes suffic-
iently close to r, it is quadratically convergent. However, in the case
of multiple roots, that is, when f'(r) = 0, this is not necessarily true.
In general, it is not known a priori if multiple roots are present.

Some of the problems that may occur when multiple roots are present will,
therefore, be illustrated later in this chapter.

But no matter what the nature of the roots, it should be pointed
out that the real numbers are continuous; that is, between any two real
numbers there exists another real number. The floating-point numbers
used by the microcomputer, however, are granular; that is, between any
two floating-point numbers there does not necessarily exist another
floating-point number. Therefore, as soon as the error in Newton's

method approaches the distance between nearby floating-point numbers,



27
the granular structure of the floating=-point number system prevents the
continued use of the algorithm [5, p. 158].

tThe formula used for finding the successive approximations to

the root is used repeatedly, then, until r becomes sufficlently close

k+1

to the root. The usual point of termination is when Irk+] - rl<E

There may exist, however, cases where

Mol =~ Tk < € but lrk” - r'H[e.

Program 4.1 will find a root of a polynomial equation using

Newton's method. Table 4.1 summarizes some of the results obtained by

using Program 4.1.

PROGRAM 4.1

18 REM  #%% MEUTON %%

c¥ REM ##%# R = CURRENT RPPROUXIMATIOM

30 REM == Ri FCw)

40 REH «%% R2 FrewD

30 BREH  =ax R3 HEH AFPROXIMATION

B8 REM ##% Ry = F(4)

‘8 REM  #3% BXA) = F/(RX)

g REM #%+ 1 = ITERATION MUMBER

4G HOME

168 FRINT "THIS PROGRAM WILL FIND THE ROCT OF R"
118 PRINT "POLYNOMIAL USING NEWTON‘S METHOD"
128 FRINT

138 FRINT "ENTER THE DEGREE OF THE POLYMOMIAL®
148 INPUT "(HMAXIMUM DEGREE 1S 18) “;N

15@  FRINT

166 REM sxx EMTER THE COEFFICIEMTS

1v8 PRINT "THE COEFFICIENT OF THE A~NTH TERM"
1886 FRINT "15 RCN)"

198 PRIHT

cB8 FOR & =MW TO 8 STEP - 1

219 PRINT "ENTER AC & o

cea IHPUT " "SRCH)

23 NERT X

adqgt PRINT

cod  INFUT "ENTER THE IMITIAL GUESS ";K

268 REM ##* ZEND GUTPUT TO PRINTER

&8 FR# 1

B8 REM *¥* PRINT EQUATION AND HERCINGS
238  PRINT TRBC 1BI:" “;

68 FOR X =M 70 2 STEP - 1

318 PRINT R\n)."”»” K"+

o3 MERT w

338 FRIMT RACLI:YE + ;A8

<0
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PROGRAM 4.1 (cont inued)

3446
350
368
RS
Gk
2215
36
418
48
439
4449
¢ 5
£331%]

458
430
s8a

aea

a3

adu

550

ata

3va

oEd

14539
{5151%)
2018
cBz2B
2830
p{sETs!
2588
2518
Pbe Y5
2536
2040
2550
b 5]
3880
3610
S0z6
3036
SE406
858
S0E8
2070
sggg

[

I

FRINT

FRINT "ITT MO."," RCOT" »" FCaA

FRIMT
=1

REM  *x5 CHLCULATE FIRST DERIVATIVE
GOSUE 2600

REM ##% CALCULATE FUH)

GOSUE 25a0

Bl =%
REM *#% CALCULATE F (M)
GOSUB 38ve

Re = ¢
REM  *» CHLCULATE NEW ARPFROXIMATION

470 F3 = R - Rl 7 R2

REHM ##% CALCULATE CLOSEMESS OF RMSHER

IF RB3 (RZ - R) < 1E - €& THEN 560

REM *%% CALCULATE F(¥) OF NEW APPROXIMATION
918 R = R3
GOSUE 2506

PRINT ©
=1 +1

GOTO 42@

FREINT

"IIRJY

PRINT "THE ROOT 1S “iR3

FR# ©
ENHD

REM #xx CALCULRTE FIRST DERIVATIVE

FOR & =

HTO 1 STEP -1

BCH - 10 = R(KEY ¥ |

NEAT &
RETURN

KEM *¥* CALCULATE F(X)
Y = ACH) ¢ R

FOR %1 =M -1 701 STEP - 1
Y= (Y + ACK¥L1))Y # R

HEXT il

Yo=Y+ AdB)

RETURN

REM #xx CALCULATE F/ (¥
IF M = 1 THEN 3879

¥ = B
IF N =
FOR »1

2

1> * R
THEN 3678
H~-2T01 STEF -1t

Yo=Y+ BOK1)) % R

HeRT ¥

Y= N o+ BOOD

RETURN
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TABLE 4.1
Init. No. of Actual Computed

Equation Approx. Iter. Root Root
W o2% x4 2 0 1 > 2

o e 0 4 -1 "

i = 3% -1 4 ~0.8660254  -0.866025404
3 >
v o+ 6 + 11X + 6 0 6 -1 -1

3 2
X0 4 hxS + Sx + 2 0 17 -1 -1.00000405
e 4+ 3x° + 3 + 1 0 37 -1 -1.00040349
xq + 'IOx3 + 35x2 + 50x + 24 0 6 -1 -1
. [{ 2
Bx" - 8x° 4+ 1 -1 3 -0.9238795  -0.923879532
4paxS 4 6x° + bx + 1 0 19 -1 -0.995481137
16x° - 20x° + 5x -1 3 -0.9510565  -0.951056516
7 + 15%° & B5%° 4 22Bx°
+ 276x + 120 0 6 -1 -1
%2 + 5x" + 10x° + 10x°
+ By + 0 32 -1 -1.00110733

While Newton's method works quite well when the rcots are dis-
tinct, the number of iterations required when multiple roots are present
increases dramatically. The accuracy of the answer also diminishes
considerably. 1In order to learn more about why this occurs, the value
of each approximaticn and of the function after each iteration was

3

studied. Table 4.2 summarizes the results for P(x) = (x+1)7,

P(x) = (x+1)", and P(x) = (x+1)°.
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TABLE 4.2

P(x) = (x+1)°

Lteration No. Root Pix)

1 -0,333333333 0.296296296

2 -0.555555556 0.0877914955

3 -0.703703704 0.0260122947

18 -0.999380235 6.98491931 E-10
19 ~-0.999986051 4.65661287 E-10
20 -1.49998605 ~-0.124989538
21 -1.33332404 -0.0370339374
35 -1.00109883 -9.31322575 E-10
36 -1.0008417 -9.31322575 E=-10
37 -1.00040349 0

P(x) = (xe1)”

Iteration No. Root P(x)
1 -0.25 0.31640625
2 -0.4375 0.100112915
3 -0.578125 0.031676352
17 -0.99237465 3.02679837 E-§
18 -0.994079792 1.16415322 E-9

19 . -0.995481137 0
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TABLE 4.2 (continued)

P(x) = (x+1)°
[loration Noo Root, Plx)

| -0.2 0.32768

2 -0. 26 0.107374183

3 -0.488 0.0351843718

19 ~0.984748639 1.39698386 E-9
20 -0.989921053 -2.32830644 E-9
21 -0.945278196 4.,9173332 E-T7
22 -0.956246206 1.5925616 E-7
30 ~0.986248407 6.98491931 E-10
31 -0.990237769 4.65661287 E-10
32 -1.00110733 0

A closer look at the approximations reveals a "jump" at approxi-
mately the 20th iteration. This is especially noticeable for odd-degree
polynomizls.  In order to understand more clearly what was happening at
this point, the values of P'{x) were also printed. Table 4.3 summarizes

3 5

the results for P(x) = (x+1)7, P(x)} = (x+1)h, and P(x) = (x+1)".

TABLE 4.3

P(x) = (x+1)3

iteration No. Root P(x) Ptix)
1 -0.333333333 1 3
2 -0.555555556 0.296296296 133333333
~0.703703704 0.0877914955 0.592592592



[teration No.
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37

Lteration No.

1

2

17
18

19

TABLE 4.3 (continued)

P(x) = (x+1)3 (continued)

Root

-0.49913802 !5
-0.999986051
~1.49998605
-1.33332404
~1.00109883
-1.0008417

-1.00040349

P(x)

Root,

-0.25
=0.4375

~-0.578125

-0.99237465
-0.994079792

-0.995481137

P(x)

1. 16415327 E-9
6.98491931 E~10
4.65661287 E-10

-0.124989538

-5.58793545 E-Y
-9.31322575 E-10

-9.31322575 E-10

= (x+1)h

P(x)

1

0.31640625
0.100112915
9.54605639 E-9
3.02679837 E-9

1.16415322 E-9

3°

Pti{x)

e

3.0267987%7 =6
1.15297735 -6
9.31322575 E-10
0.749958155

8.9257950¢ E-6
3.62191349 E-6

2.12527812 E-6

4

1.6875

0.711914063

4.,00841236 E~6
1.77510083 E-6

8.30739737 E-7
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TABLE 4.3 (continued)

P(x) = (x+1)5

teration No, Root Pix) P'(x)

1 ~0.2 L 5

2 -0.36 0.32768 2.048

3 -0.488 0.107374183 0.8388608

19 ~-0.984748639 1.86264515 E-9 5.81145287 E-7
20 -0.989921053 1.39698386 E-9 2.70083547 E~7
21 -0.945278196  -2.32830644 E-9 5.21540642 E-8
22 ~0.956246206 4.9173832 E-7 4.48338688 E-5
30 -0.98624840°7 1.86264515 E-9 4.90562449 E-7
31 =0.990237769 6.98491931 E-10 1.75088644 E-7
32 ~1.00110733 4.65661287 E~10 4.28408384 E-&

A look at the values for P(x) and P'(x}) in the region of the
" jump" shows that P(x) and P'(x) are approximately equal to zero. In
lact, at the point x = r, P(x) = P'{x) = 0. Since Newton's method also
involves the quotient P(x)/P'(x), round-off error becomes especially
important in the region around the root. Graphing P(x), P'(x), and the
quotient reveals that in the region around the root, P(x) = O,
P'(x) 220, P(x)/P'(x) =~ 0. Thus, the method used to evaluate the
functions becomes highly critical as x — r. Graphs 4.1, 4.2, and 4.3

illustrate this fact for P(x) = (x+1)3, P(x) = (x+1)4, and P(x) = (x+1)5.



GRAPH 4.1

Pi{x) = (x+1)3
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P'{x)

P(x}/P'(x)
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GRAPH 4.2

P(x) = (x¢1)"
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GRAPH 4.3

Flx) = (x+1)
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Close inspection of the values of P(x) and P'(x) as listed in
Table 4.3 reveal that normally P(x) < P'(x). However, in the region of
the "jump" P({x) = P'(x}. In order to accomplish this, the value of
P'(Q) decreased greatly; that is, P'(rk+1)<!P'(rk). Program 4:1 was
modified to check for a significant decrease in the value of P'(x}.
This is especially critical in the case of P(x} = (x+1)3, the value of
the root was much closer to the actual root before the "jump," than at
the end of the program. Program 4.2 shows the revised version of

Program 4.1. Table 4.4 summarizes some sample output from this program.

PROGRAM 4.2

iU BEH ey HEWTOH REVISED %%

2B REM  *xx R = UHLUE USED IH SUBROUTIHES
a8 REM ¥Er RA IUFFEHT AFFECHIMATION

EYE| REHM 3% R r\ Gl

S8 REM wer RA Frgin

EE REM %% R4 HEW AFFPROSIMATION

MO REM ¥sx [g FEEVIOUS F{W)

cd REM #¥x RE = FREVIOUS APFROXIMATION

A3 REH =xx FOHy = Rl

{88 REM  %#% B(X) = F (¥

y REM  #%x [ = (TERATIOW MUNMBER

HOME

FREINT "THIS PROGRAM WILL FIND THE ROCT OF &"
FRIMT "POLYNOMIAL USIMG MEHTON-RAPHSOMY
CRINT

oo g

RV M

T T T YT
SO P s B e ]

N L T o = SN .
[l e B apcll I SN P N

K- PRINT "EMTER THE DEGREE OF THE FOLYHOMIAL”
B3 INFUT “(MAKIMUM DEGREE 15 1&) ";H
s FRINT

19a REM sex ENTER THE COEFFICIEMTS

cdd  FRINT “THE COEFFICIENT OF THE HaMTH TEEH“

218 PRINT 1S WM
2 PRINYT
EJE CUR R o= M TO 8 STERP -
4” FRIMNT "EMTER A "®mav;
SOt [HPFUT " "SRG
e HEST =
_.-l PRLAT
ol IHPFUT "ENTER THE IHITIAL GUESS ";R1
298 REM  x<x SEMD OUTFUT TO FRINTER
S SRE L
si REM xx¥ PRIMD EQUATICON HMHD HEADTNGS
228 FRINT  TRE. 1@3;" “;
ol FUR OB o= HoT0 o STERP - o
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PROCGRAM 4.7 (continued)

348 PRINT ACAI"SEA";5%:" + ¥;

258 MEWT %

360 PRIMT ACL15:"8 + ";R(8)

3ra  PRIMT

82 PRINT "ITT HMO."," ROOT" 4 * FCRo"

398 FRINT

88 1 = 1 -

+18 KREM #*#x CALCULATE FIRST DERIVATIVE

424 GOSUE 200w

+28  REM  *%* CRLCULATE F¢)

448 R = Ri

498  GOSUB 2586

468 Rz = Y

478 REM  #%» CRLCULATE F ¢y

458 . GOSUE Zves

09 R3 = Y

8@ REM  »»x CHLCULATE HEW RFPROMIMATION

918 R4 = Rl - R2 ~ R3

Jel REM  #%¥ CALCULRTE CLOSENESS OF RHSHER

933 K = Rd

348 IF ABS (R4 - R1y <4 iE - & THENM 64@

338 IF AES (RS ~ {8@) > RBS (R2)Y THEM R = RE: GOTO
(1%

368 RS = R3

“'d RE = kg

sBd  FEM  #x% CRLCULATE F(k) OF MEW HPPROYINATION

998 Rl = R¢

88 GOSUE Z5e@

E19 PRINT "  "I,R,Y

Bed 1 =1 + 1

B30 GOTO 45a

E4E FRINT

Bud  FRIMC "THE ROUT (% "R

Led  FRE © :

100 L .

cbug  REM  »%3» CALCULATE FIKST DERIVRTIVE

2018 FOR X = M TO STEP -~ 8

U2 BOX - 10 = Ay % 3

2838 NERT ¥

<046 RETURH ‘

coB8  REM  #%x CRLCULRTE FoWo

2518 Y = AiNY ¥ R

€028 FOR ®W1 =N -1 701 STEP - 1

2538 Y = 04 + AlSLyY 2 R

25948 HEXT w1

2958 ¥ = ¥+ Rlgo

2588 RETURM

0o REHM  =x

a1 IF M =

aHZY Y = BN

3838 IF H =

R T N ~ L] L0
Sk it Lty n“‘ol

c

CALCULATE F7¢R)
THEN 2670

13 % R

THEH 2676

HN-2Tot 3TEF - 1

[ O I i 4
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PROGRAM 4.2 (continued)

3058 ¥ = (¥ + B(XL1)) % R
SUE0 MENT A1

IA76 Y o= Y o+ BUOD

3030 RETURN

TABLE 4.4
Init. No. of Actual Computed

Equation Approx. Iter. Root Root
x3 - 2x% - x + 2 0 ! 2 2
x3 + 2x2 - 5x - 6 0 4 =1 -1
4> - A -1 4 0.8660254  -0.866025404
x3 + 6x2 + 1lx + 6 0 6 . -1 =1

3 L2 . .
X7 o+ 4 + By '+ /¢ 0 17 -1 =1.0000040%,

3 2
X7 + 3x 0+ 3x + 1 0 19 -1 -0.999986051
x4 + 1Ox3 + 35x2 + 50x + 24 0 6 -1 -1

4 2
8x =~ 8Bx + 1 -1 3 -0.9238795 -0.923879532
4 3 2
X o+ 4x7 + 6X + 4x + 1 0 19 -1 -0.995481137
16%° - 20x° + 5x -1 3 -0.9516565 -0.951056516
‘xs + 15xQ + 85x3 + 225x2

+ 274x + 120 0 6 -1 -1
%2 + 5% « 10%° + 10x°
+ 5x + 1 0 32 -1 -1.00110733

The next step is to reduce the polynomial equation to see if the
root found is a multiple root. Program 4.3 shows 6nly the modification

made in Program 4.2.
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PROGRAM 4.3

165
4E8E
5K
sea
EVE
E20
(35151
Fas
718
Fig=d5]
]
740
fie 4]
o
|'. ;.‘E‘
/8a
g%
{55}
s 15

2ele
2220
2ot
2249
3588
3510
2520
3536
2540
3558
3560
3378
2556
2580
3709
arig
Vel
3729
CRE TS|
3759
N e
377a

REH  yxs RIS IS HULTIFLICITY
R9 = 4
FRINT "THE ROOT IS "iR
F9 = R3 + 1
I B9 = H THEM &08
REM #*% REDUCE POLYMHOMIAL
Hl = N
GOSUR Z50d
REM +%> CHECK TO SEE IF MULTIFLE ROOT
GOSUB 378
IF HBG <%) » 1E - 9 THEM 730
PRIMT
FRINT R:" 1% A HMULTIFLE ROCT™
F3 = R3 + 1
I[F 73 = M THEN Goe
GOTO Voa
FRINT Rs" 1% HOT A MULTIPLE ROOT"
FR# ©
REM *x* GET UP COEFFICIEMTS FOR REDUCED FOLYHON
IAL
FOR W = 0 TO W
CCvd = Ak
MERT &
RETURH
REM #%* REOUCE POLYMOMIAL
DML - 10 = C(NL)
FOR ¥1 = M1 - 1 7O 1 STEF - 1
OCKL - 1) = DCKELY 2 R + CCKLD
HEAT ¥1
Nl =Nl -1
FOR ¥1 = @ TC Hi
Ciihly = DiKLD
HEXT ¥1
RETURM
REM  ##% CALCULRTE F(X» FOR REDUCED POLYMOMIAL
Y = C(N1J> % R
IF M1 = 1 THEM 2766
FOR K1 = N1 - 1 7O 1 STEP - 1
=Y+ CALD) % R
NEXT 1
Y=+ C(ED
RETURH

Table 4.5 summarizes the results obtained from using this modi-

fication. As can be easily observed, the results were anything but

spectacular.



41

TABLE 4.5
Equation Root Multiplicity
(x+1)3 -0.999986051 2
(x+1)° (x+2) ~1.00000405 !
(x41)" -0.995481137 !
(x¢1)7 (x+2) ~0.999161488 :
(x+1)° -1.00110733 2

Program 4.2 was further modified to first reduce the equation,
and then to ask for a new initial approximation. Newton's method is
subsequently applied to this reduced equation. Reduction of the poly-
nomial continues until a reduced equation of degree 2 is obtained,
whereupon the quadratic formula is used to obtain the remaining two
roots. Program 4.4 will find all real roots of the polynomial equation.
Since some of the real roots of the original equation may not be roots
of the reduced equation due to error introduced while reducing the
polynomial, Descartes' Rule of Signs is also incorporated into Program
4.4. After each reduction a check 1s made to determine whether or not
there are still real roots. If there are no longer any real roots, the
process is terminated, unless the equation is of degree 2. Table 4.6

follows, and summarizes some of the results obtained from Program 4.4.

PROGRAM 4.4

16 REM ¥k MEWTON WITH QURD »#%

EQ REM ### R = UALUE USED IN SUBROUTINES
o0 REM %% R1 = CURRENT APPROIMATION

42 REM *#% RZ = F(¥)

38 FEM %%% RZ = F"O)

§B REM %% R4 = NEW RPPRONIMRTIOM

'8 REM #¥% RS = PREVIOUS DIFFERENCE

38 REM #%¢ R9 = NUMBER OF ROOTS FOUND

48 REH  #%y QCR) = FURD

By
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PKOGRAM 4.4 (continued)

la@
119
129
154
1483
159
16
1V
168
189
<09
¢l
228
236

248

FEM #%#% B(X) = F(¥

REM  #x% COXD REBUCED FOLYHOMIAL

REM #¥% I = ITERRTIDH NUMBER

REM #¥% RP = NUMBER OF POSITIVE ROUTS

FEM #x% RN = NUMBER OF MEGRTIVE ROGTS

REHM =*x% RZ = HUMBER OF ZERO ROOTS

REM *x% § = SIGHN OF THE TERM

HOHE

PRINT "THIS PROGRAM WILL FIND THE ROOT OF R®
PRINT "POLYNOMIAL USING NEWTON-RRPHSOM"
FRINT

FREINT "IT WILL ALSO REDUCE THE EGURTION EEFCRE"
FRINT "FINDIHG THE MEXT ROOT"

PRINT

FRINT "ENTER THE DEGREE GF THE POLYNOMIAL®
INFUT "(HAXIMUM DEGREE IS 1@) "N

FRINT

REM »#% EMTER THE COEFFICIEMTS

FRINT "THE COEFFICIEMT OF THE XANTH TERM"
FRINT "1& RCH O

FRINT

FOR % = H T0 8 STEP - 1

PRINT "ENTER HO"K" )5

INPUT " YR(N)

NEXT #

FEINT
RS = B
NI = H

REH ##% SET UP COEFFICIEMTS FOR REOUCED POLYNOMI
AL ' '
GOSUB 2206

REM *xx CHECK FOR REAL RCOTS

GOSUE 4084

IF RF + RM + RZ = 68 THEN PRINT "THERE ARE MO RER

L ROOTS": GOTO 1499

INFUT "ENTER THE IMITIRL GUESS ";Ri

REH #%% SEND OUTFUT TO PRINTER

FR# 1

REM *»* PRINT EQURTICOM RMD HERDINMGS
GOSUE 2866

REM ##x REMOUE ZERQ ROGCTS FROM EQUATION
IF RZ = 3 THEN 548

IF RZ > @ THEM GOSUE 3860

GOSUE 2809

{F N1 = 2 THEN S58

GOTO 458

FRIMT “ITT MO."," rOOT" ," Fiwon
FRINT .

I1 =1

REM **% CALCULATE FIRST DERIVATIVE

GOSUE 2166

FEM  *x% CRLCULATE F()
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PROGRAM 4.4 (continued)

630
L1e
62
B398
648
6549
AR
678
Eee

sbd
§7d
s8u
838
309
J1e
329
936
RE1%]
3o
9e6
47d
960
358
18806
1618
1929
1838
1840
1858
16858
1676
1629
1636
118y
111a

E =R1
GOSLE 2500
R = ¥
REM =% CHLCULRTE F/(¥)
GOSUE 2608
RS =Y
FEM  #¥* CALCULATE HEM APFROYIMATION
R4 = Rl - R2 ~ RZ
REM *** CALCULATE CLOSEMESS OF AMSHER
R = Fg
IF HBS (R4 - R1) < 1E - & THEM £68
IF RBS (RS ~ 188> > RES (R3) THEN R4 = RE: GOTO
cas

RS = R3
R = R4

REH ¥#% CHLCULRATE FCX)> OF NEW AFFROXIMATION
Rl = R4

GOSUB 2566
FRINT " "I,R,Y

[ =1+1

GOTO e2@

FRINT

PRINT "THE ROGT IS "R
PRINT

FRINT

REM *#% REDUCE FOLYMOMIAL
GOsuUB 3508
IF Hl = & THEN 346
REM *#% CHECK FOR NEXT ROOT
FR% @
HOME
GOSUE zoze
RS = @
RE = @
GOTU <6
GOSUE @86
REM  #x% EURLURTE THE DISCRIMIMRTE
D=0CC1) # Cl1) - 4 % X2) % (B
IF D < 8 THEM 1138
REM **% CALCULATE REAL ROOTS
0D = 5GR (D>
FEH #xx CHECK IF Rl IS FOSITIVE OR NEGRTIVE
IF Ci1)> > @ THEN 1978
REM  ##x C(1)> IS NEGRTIVE
Rl = ¢ - Cl1) + D007 (2 % {2
Re = 2 % 08 » ¢ -~ 1) +
GOTO 1838
REM  #xx CC1) 15 POSITIVE
RI = C - C{1y - D) 7 (2 % CC2yd
Re = 2 # CLBY »~ ¢ - CCLy -
FRINT “THE ROCGTS ARRE "Ri
FRINT "AND YRZ
GATCO 1180
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PRROGRAM 4.4 {continued)

1120
11306
1140
115a
1186
1176
1156
19393
g 515}
20810
<Bze
2039
<040
il e 5
206y
<19
2116
e126
2128
2140
Fp S|

2210
c228
S|
2240
paa)i 1%
2519
<528
2930
£346
2556
<569
RIVIATE
2810
S0z
2039
3046
3858
JUEE
3a7g
06
3580
2314
3524
35320
3540
3558
Chal=is]
2579
5950
2598
SUae

ReEM  x¥x CALCULRTE COMPLEX ROOTS
= SGR C -~ DO

K3 - Q1) ~ K2 % 2»

Rd =0 » (2 # C(2))

FEINT “THE COMPLEY ROOTS ARE “;R3:" + "iR4;"1"
FRIMT "AND "3R3;" - ";R4;"1"

FR& @

EHD

REM #¥x% PRINT EQUATICON

PRINT TREC 1@02:" “;

FOR % = N1 TO 2 STEF - 1

PRINT CCKI3"RA"K:" + 5

HEXT ¥

FEINT CCL3s™a v "50C@)

PRINT

REM ¥ CHLCULHATE FIRST DERIURTIVE

FOR ¥ = M1 TO 1 STEP - 1

Blwl - 1) = Cky % ¥

HEXT X

RETURN

REM  #%x¥ GET UP COEFFICIENTS FOR REDUCED POLYMOHM

IAL
9 TO N

(W

(1]

FOR &« =
CliHy = R

HESRT =

RETURN

REM *xx CRLCWATE F(¥)
W = CCH) ¥ R

FOR A1 = N1 -~ 1 TO 1 STEP -1
Y =Y + Cnulr) # K

HEAT 1
Y=Y+ C(ag>

FETURN

FEM  #x% CRLCULATE F“(¥%)

IF M1 = | THEN 3076

Wo=BML - 1) % R

IF N1 = 2 THEN 2070

FOR X1 = M1 - 2 TO 1 STEF - 1
Y = (Y +B(K®L») # R

NEXT 1
Y=Y + B(@

RETURN

REH #x» REDUCE FOLYNOMIAL
DCNL - 1) = C{N1)

FOR %1 =Nl - 1 TO 1 STEF - 1
DCRYL - 1) = DXKL)Y # R + COMLD

HERT 1
Ml = N1 - 1

rOFR X1 =8 TO NI
Clkl) = OCXL )

NEAT W1

RETURH

REM  ##» REDUCE IF ZERO ROOTS
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PROGRAM 4.4 (continued)

Jgle
J628
3830
J646
3856
L0y
3670
RIS
+8ug
4618
4320
4030
4848
4658
4866
497a

4880
4830

+1ag
4118
41208
4130
4140
41506
41€0
4178

4150
4196
4208
416
4228
4236
4240
4258

4268
4270

4268
4298
43206
4316
4320
4336
4340
4350
4360
4378
4780

TO Hi

FOR X2 = 1
Cigd -~ 1) = Cln2)

REKT X2

Nl = Nl - 1
R = RZ - 1

FRINT "THE ROOT 1S @"

PRINT

RETURN

REWM *¥% CALCULATE NUMBER OF FOSITIUE ROOTS
RF = ©

REM *%» DETERMINE SI1GH OF FIRST TERM
=  SGH (CiM1O>
FOR B2 = MHl - 1 TO B STEP - 1
REM %% CHECK TO SEE IF COEFFICIENT IS ZERO
IF  3GN (C{X2)) = 6 THEN 4136
REM *#% CHECK TO SEE IF THE SIGN OF THE COEFFIC
IENT IS DIFFERENT FROM PREVIOUS TERM
IF S = 86N (C(X2>) THEN 41329
REM *x% IF SIGN IS DIFFERENT, ADD 1 TO NUMBER O
F FOSITIVE ROOTS
RP = RP + 1
REM *¥¥ RESET VALUE OF SIGN
S = SBN (CCRZ) '
NERT X2

S

RH = @

REM #¥x CHECK IF ODD OR EVEN DEGREE POLYNOMIAL
IF (H1 ~ 2) = INT (N1 ~ 2) THEN 4208
REH *%% IF N1 IS 0OOD. CHANSE SIGN OF FIRST TERM

S = 8GN ¢ - C(N1)
GOTO 4218
S = S6N (C(N1)>
FOR W2 = Nl - 1 TO @ STEF - 1
IF  SGN (C(X2)> = @ THEN 4340
REM »xx CHECK IF EXPONENT IS EVEN CR OODD
IF CA2 » 2) = INT (K2 7 2> THEN 4316
REM  *xx IF EWPONENT IS 00D, CHRNGE SIGN OF TERM

IF S = SG6N ( - C(X2)) THEN 4346
REHM #xx IF SIGN IS OIFFERENT FROM PREVIOUS TERM
» ABO 1 TO HEGATIVE ROOTS
FN = RH{ + 1
S = S6N ¢ - C(KZ))

GOTO 4346

IF S = SGN (CUXZ)) THEN 4346
RN = RN + 1
S = SGN (ClHzm

NEST X2

REM #¥x COUMT HUMBER OF ZERO ROOTS
RZ = 9

FOR X2 = 8 TO Nt

IF CCXay < » @ THEM 4410



PROGRAM 4.4 (continued)

4398 RZ = RZ + 1
4408 NEXT X2

4418 RETURN
TABLE 4.6
Eqnat&gl Eﬁg&
N x + ox & ¥ 0
:-((4 + 2x3 + x2 0
x3 + 2x2 + X 0
x2 + 2X + 1 -1, =1
2) x5 - 13x3 + 36x 0
xq - 13x2 + 36 2
x3 + 2x2 - 9x - 18 -3
x2 -x =6 3, -2
3) x5 + 15x4 + 85x3 + 225x2 + 274x -1
+ 120
4 3 2
x + 14x7 + T1x + 154x + 120 -2.00000001
x>+ 12x° + 47x + 59.9999998 . =2.99999998
2

b
+

9.00000003x + 20.0000001 -5.00000004, =-3.99999998
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TABLE 4.6 (continued)

Equation ﬁoot
§) e BK o e e W s B 1 -1.00110733
4 3 2
x' + 3.99889267x> + 5.99667923x
+ 3.99668045x + 0.998593891 -1.00010715
3 2
X~ + 2.99878552x + 2.99757239x
+ 0.998786873 -0.999210898
x° + 1.99957462% + 0.99957564 -0.99978731 + 9.86997169 E-4i

-0.99978731 - 9.86997169 E-4i

3] 3

5) 16x° - 20x~ + 5x 0
4 2
16x - 20X + 5 -0.951056516
3 2
16x~ - 15.2169043x" - 5.52786405x
+ 5.25731112 -0.587785252
16x2 - 24,6214683x + 8.94427191 0.951056517, 0.587785252

Again, in the cases involving multiple roots, the results were
less than ideal. It is therefore suggested that whenever a multiple
root is suspected, an alternate method be used. Sevebal alternate
methods will be discussed in the next chapter.

Table 4.7 compares the roots obtained by uéing the depressed
equation and the roots obtained by using the original equation each
time. The roots are listed in the order found, with the same initial

approximation being given to find each root.



48

TABLE 4.7

Init.
Equation Approx. Roots-Depressed  Roots-Original
16x° - 20> + 5x 0 0 0

5
+ 274x + 120

5
+ 144x + 720

X+ 5x4 - 25x3 -

x> + 15x" + 85x° + 225x°

125x2

-1
-0.7
0.5

0.9

2.9

3.9

-0.951056516

-0.587785252

0.587785252 -

0.951056517

-5.0000001

=3.99999993
-2.99999997
-2.00000007

-0.999999969

~5.0000001

-3.99999988

-3.00000012
2.99999988

4.00000011

-0.9510565 16
-0.587785252
0.587785252

0.951056516

~5.0000001
-3.99999997
-3.00000009
-2

=1

-5.0000001
-4.00000007
-3

3

4.00000012

The roots obtained by using the original equation were only

slightly better than those obtained by using the depressed equation.

However, the three equations illustrated have five distinct roots. Had

nultiple roots been involved, the original equation would have produced

much better results, especially if the multiple root were found first.

Approximately the same number of iterations were required whether using

the original equation or the depressed equation.

An alternative method
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might be to ccembine the two; that is, use the depressed equation until

P(x) , then finish with the original equation.

This might be

especially helpful when working with higher degree equations.

Table 4.8 compares the values of the roots computed by using the

depressed equation when the roots are found in ascending order and in

descending order.

TABLE 4.8

Init.

Equation Approx.

Roots
Ascending

16x5 = 2Ox3 + 5x -1

x5 + 15xq + 85x3 + 225)(2

+ 279x + 120 -6

x5 + SXQ - 25x3 - 125x2

+ l44x + 720 -6

The values for the roots are comparable.

0
~0.951056516
-0.587785252

0.587785252

0.951056517

-5.00000018
~3.9999995

-3.00000088
-1.99999937

-1.00000016

5

=4,00000009

-2.99999994
2.99999993

4.00000005

Init.
Approx.

Roots
Descending

1

0
~0.951056517
-0.587785252

0.587785252

0.951056516

~5.00000004
-3.99999998
-2.99999998
-2.00000001

-1

-5

-4

-3.00000001
3

4

However, the roots

found in descending order are slightly more accurate than those found in
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ascending order. Thus, when uaing a depressed eguation, the order of
finding roots should be taken into consideration.

Conte [4, pp. 66-73] provides an alternate algorithm for finding
the roots of a polyncmial equation using Newton's method. With the
coefficients of the polynomial P(x) stored in @y @p g0 ¢ - sy Ag,

Conte first stores the coefficients obtained through synthetic division
. 4 b

by x-2 in bn’ b The remainder is stored in bO' Thus,

i
P(x) = aqlx)(x-z) + bO’ where q(x) is the quotient polynomial. When

n-1'

X = 2, P(2) = bO'

" The first derivative of P(x) is also required for Newton's
method. 1f P{x) = q(x)(x~z) + bO' then P'{x) = q{x)(1) + q'(x}(x-2z).
fgain, it x = z, P'(z) = qflz).

Conte employs the following algorithm:

Let z=x,b =a,c =0b
n

for k=zn=1, . . ., 1, do:

Let bk =a, + zb
Let Ck = b, + Zc

Let b, = a

0 - zb1

0

The value of P(z) 1s now stored in bO’ and the value of P'(z) 1s stored

in ¢, Thus, xm+1 = Xy - bo/c1.

Program 4.5 finds the roots using Conte's algorithm. Table 4.9
summarizes some sample output for Newton's method and Conte's algorithm.
It should be noted, however, that the two methods are mathematically
cquivalent. The only difference is the order in which the calculations

are performed.



PROGRAM 4.5

ig -

28
34
48
S0
(517
78
59
36
ie2
118
126
13a
148
158
6@
178
168
150
a5
cle
220

23

240
2549
268
278
<88
280
300
J1e
328
330
349
K]
Jea
37
380
338
403
410
420
438
440
458
469
470
48@
480
580
S1@
520

B(ND

REM #x% NEWTON CCONTE) #¥x
REM *%% RCHD FCR)
REM ##x B(X) = CONTE’S BCX)
FEH #%x C(X) = CONTE’S C<¥)
REM ##» & = INITIAL APPROXIMATION
REM =#& Z1 = SUCCESSIVE APPROXIMRTION
FEM =%xx 1 = ITERATION NUMBER-
HOME
PRINT "THIS PROGRRM WILL FIND THE ROOTS oF A
PRINT "POLYNOMIAL EQUATION BY USING CONTE’S"
FRIMNT "WERSION OF NEWTON’S METHOD“
PRINT
PRINT "ENTER THE DEGREE OF THE POLYNOMIML™
12?0T "CMRXIMUM DEGREE IS 18> ";N
PRINT
FRIMT “THE COEFFICIENT OF THE XANTH TERM"
PRINT "IS AC(N)"
PRINT
REM #¥%¥ EMTER THE COEFFICIENTS
FOR X = N TO @ STEP - 1§
PRINT "ENTER RC™"X")";
JNPUT " “R0K)
HERT X
PRINT
I =1
INFUT "ENTER THE INITIAL GUESS *;2
REM *#% SEND OUTPUT TO PRINTER
FE# 1
REH %% PRINT EQURTIGN
PRINT "TABC 183" “;
FOR X = N TO 2 STEP -
PRINT RCXI"KAUKY & v;
NEXT 4 ,
PRINT R(1)"% + “A(B)
PRINT
PRINT "IT #",» ROCT"
PRINT
REM %x¥ CONTE’S ALGORITHM
RIND
BC(H)
=N-1T01 STEP - |
RCK) + 2 ¥ BCK + 1)
BCRKY + 2 ¥ (K + 1)

CiHD
FOR
BCKD
CLKD
NERT K
BC@> = AKBY + 2 % B(L)
21 = 2 - B{B) 7 C(1)
IF RBS (21 - 2) < 1E - 6 THEN 528
PRINT " "1,21
I=1+1
2 =21
GOTO 39a@
PRINT

W
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PROGRAM 4.5 (continued)

438 PRINT "THE ROOT 1S "2t

S48 FR& 6
558 END
TABLE 4.9
No. of No. of

Eguation Iter. Newton Iter. Conte
x> - 2x% - 442 1 2 1 2
x3 + 2x2 - 5% - 6 4 -1 4 -1
4x> - 3x 4 -0.866025404 4 -0.866025404
x>+ 652+ 11x + 6 6 = 6 -1
X7 & 45° & 5% % P 17 -1.00000405 16 -0.999978767
x>+ 3% + 3 + 1 37 -1.00040349 19 -0.999530169
x* 4 10x> + 35x° + 50x + 24 6 -1 6 -1
8x" - 8x° + 1 3 -0.923879532 3 -0.923879533
4 3 2
%+ 4% + 6x° + bx + 1 19 -0.995481137 18 ~0.994617309
16x° - 20x> + 5x 3 ~0.951056516 3 -0.951056516
xs + 15xa + 85x3 + 225x2

+ 274x + 120 6 -1 6 -0.99999984 1
x> + 5% + 10x° + 10x°

+ 5% + 1 32 -1.00110733 20 -0.986005838

Except for the cases involving multiple roots, there is no
appreciable difference in either the number of iterations or the
calculated value of the root. Where multiple roots are involved,
Conte's method required fewer iterations, but Newéon’s method provided

the most accurate answer.



CHAP'TER V
ALTERNATIVES TO NEWTON'S METHOD

Since Newton's method does not work well when multiple roots are
present, alternative methods were sought. One such method is the bi-
section method. The bisection method is probably one of the oldest
iterative meﬁhods in existence. Briefly, an interval is found such that
X< X< Xy and that f‘(x1)f‘(x2) < 0. That is, at one boundary of the
interval f(x) is positive, and at the other boundary f(x).is negative.

This interval is then bisected to find x = (x1+x2)/2. Ir f(x3) = 0,

g+ %3
then x3 is a root. Otherwise, the boundaries are changed by moving x3

to x, if f(x1) has the same sign as f(x3), or to x

1 if f(x2) has the

2
same sign as f(x3). This procedure is repeated until f(x3) = 0, or
rather f(x3)( € . The function f must be continuous on the interval
[xy0 %51

The bisection method, however, is not without problems. When

evaluating the polynomial, if r, is sufficiently close to the root,

3
P{r3) will occasionally have the wrong sign. That iz, when r3:=r3
P(r3)::0. However, due to round-off error incurred while evaluating
the polynomial, P(r3) will be positive rather than negative, or vice
versa. This will cause the wrong boundary to be reset. Thus, while
P(r])P(r2)<: 0, r1<:r~<f r, is no longer a true condition. The interval
[r1, rz] no longer contains the root. It will, therefore, be impossible

to obtain a very good approximation to the'root. This is illustrated in

Table 5.1.

53



10

11

12

13

14

P(x)

=-0.9499
-0.995
-0.995
-0.995
-0.995
~-0.995
-0.995
-0.995
-0.991074219
-0.989111328
-0.989111328
-0.989111328
-0.988865967

~-0.988743287

In the first iteration, r

-4.65661287 E-10.

P(r.)

3

Thus, while r

TABLE 5.1

-] x5
*

()1

0.01
-0.4925
-0.74375
-0.869375
~0.9321875
-0.96359375
~0.979296875
-0.987148438
-0.987148438
-0.987148438
-0.988129883
-0.988620606
~-0.988620606

-0.988620606

3

3

indicates it should be to the left.

2

+ 5x4 + 10x3 + 10x~ +

P(r])

-1

=4 GH66H 128
~4.65661287
-4.65661287
-4.65661287
~4.65661287
~4.65661287
~4.65661287
~4.65661287
-2.32830644
-9.31322575
-9.31322575
-9.31322575
~4.65661287

-4.65661287

= 0.995 = r.

5x + 1

=10
E~10
E-10
E-10

E-10

E-10
E-10
E-9
E-10
E-10
E-10
E-10

E-10
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P(r2)

1.0510 1005
1.05101004
0.033665125
1.1048899 E-3
3.80305573 E-5
1.43353827 E-6
6.44940883 E-8
3.7252903 E-9
6.98491931 E-10
6.98491931 E-10
6.98491931 E-10
1.16415322 E-9
4.65661287 E-10
4.65661287 E-15

4.65661287 E~10

However, P(FJ) =

second iteration, therefore, does not contain the root.

this should not happen.

the value of e sufficiently to prevent'P(r3) ~ Qs

is to the right of r, the sign of

The interval used for the

Theoretically,

This error can be compensated for by increasing

There is also a

corresponding loss in the accuracy of the answer as a result of this

compensation.

However, the two-place accuracy with the change is better
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than the one-place accuracy without it. Program 5.1 will find the root
of a polynomial equaticn using the bisection method. Table 5.2 summar-

izes some of the results obtained from Program 5.1. In all cases, r,

and r2 were chosen so that r3 £ r on the first iteration.

PROGRAM 5.1

18 REM #¥» BISECTION x*x

20 REM x¥» R(K) = COEFFICIENTS OF POLYHNOMIRL
39 REH *#x M = DEGREE OF POLYMOMIAL

40 REM #%* LL = LOWER LIMIT

38 REM ¥ UL UPFER LIMIT

66 . REM *x¥* X = MIDDLE VRLUE

O BEM  #%% LE FCLL Y
88 REM *x¥ RB FCUL >
90 REM *¥x MB FCA)

108 REM +#%x R = VUALUE FOR SUBRCUTINE
116 REM  *%% [

ITERATION MUMBER
126 HOME

136 PRINT "THIS PROGRAM USES THE BISECTION METHOD"

148 PRINT "TO FIND THE ROOTS OF R POLYNOMIAL"

158 PRINT ‘

168 PRINT "EHWTER THE DEGREE OF THE POLYNOMIAL"

170 INPUT “"C(MAXIMUM OEGREE IS 10> "“iN

166 PRINT

138 PRINT "THE COEFFICIENT OF THE X~NTH TERM"

28@  PRINT "IS AC(NH"

18 PRINT

228 REM *¥x EMTER COEFFICIENTS

230 FOR X = H TO B STEP - 1

248  PRINT "ENTER AC™:Xi")"s

258  INPUT " ";RCK)D

=68 HERT &«

270  PRINT

£B8d  INPUT "ENTER THE LEFT BOUND OF THE INTERUAL ¥
"ill

£38 FRINT

306 INPUT "EMTER THE RIGHT BOUND OF THE INTERVAL >
"UL

sl REM 2% CHECK TO SEE IF IMTERUAL CONTRINS ROOT

J2e R = LL

238 GOSUB 20006

340 LE = ¢

so8 R = UL

368 GOSUE z@eo

3786 RB = ¥

388 IF SGH (LB - SG6N C(RB2 THEN 436

396 IF ABS (LB> { 1E - 8 THEN R = LL: GOTO 680

406 IF RES (RBY < 1E - 8 THEN R = UL: GOTO E8&6

416 PRINT "INTERURAL DOES NOT CONTRIN A ROOT"

!



PROGRAM 5.1 (continued)

$ed
¢aa
340
454
RIS
470
420
436
S0
510
Gey
Sz8
G968

oog

15070 zZga

REM *#% SENWD QUTFUT TO PRINTER

PR# 1

REM 3% PRINT EQUATION AND HEARDINGS

PRINT TRBC 183" “;

FOR » = M TO 2 STEP - 1

PRINT ACK"E~"K" + Y5

HEXT &

FRINT RCL1O"K ¢ "AKB)

FRINT

")RI t"’ " xT ““ > " i_':UCIT " ‘ " F( >’: ')"

PRINT
=1

I =
REH %% CRLCULATE MIDPOINT OF IMTERUVAL

S6@ K = (LL + UL) ~ 2
576 R = X

Seg
a4a
BO
ela
il
620
e4a
ESH
EEg
E7a
LEa
(PR %
g
i ]
c0ve
2916
20z
2820
U406
2859
P 155

GOSUE 2060
e =%
REM #x# CHECK FOR CLOSENESS OF ROOT
IF ABES (HMB) < 1E - 3 THEN 680
REM #*%% EESET BOUNDS
IF SGH (LE> = SGN (MB> THEN LB
IF SGH (RB?> = GGH (MB> THEH RE
PRINT " "1,R.Y
I1=1+1
5070 See
FRINT
FRINT "THE ROOT IS "R
FR#& v
END
REM #¥x EURLUATE F(R)
¥ = ACH)Y * E
FOR Al =H -1 701 STEP - 1
Y= (Y + RCKLDY)Y *= R
MEAT #i
Y =% + A(BY
RETURM

HME:LL
ME: UL

¥

g

nu
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TABLE 5.2
No. of Actual Computed
Equation Interval Iter. Root Root
o B W D -1.5, =0.4 26 -1 -1
x>+ 2x° - 5x - 6 <1.5, 0.4 29 -1 -1
3
4x7 - 3x -1.0, -0.5 29 -1 -1
x> & 6x° + 11x + 6 -1.5, 0.4 30  -0.8660254  -0.866025404
x3 + 4x2 + 5% + 2 2.5, -1.4 28 -2 -2
3 2
XT o+ 3x + 3x + 1 -1.5, =0.4 9 -1 -0.999414063
xq + ‘IOx3 + 35X2 + 50x
+ 24 -1.5, =0.4 29 -1 =1
4 2 ;
Bx - 8x + 1 -1.0, «0.5 32 -0.92138795 -0.923879533
; . .
X'+ ij + t;x'3 + 4x + 1 {bisection method nol appropriate)
16x° ~ 20x° + 5x -1.0, -0.8 27 -0.9510565  =0.951056516
x5 + 15xq + 85x3
+ 225X + 274x + 120 =-1.5, =0.4 5 -1 -0.984375
xS + qu + 1Ox3 + 10x2
+ 5x + 1 -1.5, =0.4 29 -1 -1

In general, the bisection method requires more iterations than
does Newton's method. It, too, does not work well when multiple roots
are present. In fact, it will not work at all in cases such as
(x+1)q = P(x) where the function only touches, rather than crossés, the
X-axis.

As another illustration of the types of problems which may occur
as a result of round-off error, the following example is given. The

root printed as being used on the 26th, 27th, and 28th iteration in the



equation x3 + hx2

P(x) were -1.86264515 E~9, 4.19095159 E-9, and 0, respectively.

+ 5x + 2 =P(x) was -2.

examples are given in Table 5.3.

Equation
x3 = 2x2 - X+ 2
3

xa'+ ‘IOx3 + 35x2 + 50x + 24

X

5

+ 2x2 -5 -6

+ 1557 + 85%° + 225%°

+ 274x + 120

TABLE 5.3

It. No.

Root

26
27
28

29

26
4
28

29

26
27
28

29

26
27
28

29

=1
-0.999999994

~0.999999998

1

-1
-0.9994999994

-0.999999998

-1

=1
-0.999999994

~-0.999999998

-1

-1
-0.999999994

-0.999999994

=7}
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However, the values printed for

Similar

P(x)
-5.58793545 E-9
3.77185643 E-8
1.25728548 E-8

0

5.58793545 E-9

-3.7252903 E-8

© =1.3038516 E-8

0

-7.4505806 E-9

-+ 3.7252903 E-8

1.49011612 E-8

0

-5.96046448 E-8
©1.49011612 E-7
5.96046448 E-3

0
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TABLE 5.3 (continued)

Equation It. No. Root P{x)

8x" - 8x° + 1 28 -0.923879532  -4.19095159 E-9
29 -0.923879533  5.3551048 E-9
30 . -0.923879533  1.62981451 E-~9
31 -0.923879532  ~1.39698386 E-9
32 -0.923879533  1.62981451 E-9

16x° - 20x> + 5% 26  -0.951056514  3.01151737 E-8
27  -0.951056516  8.85740403 E-9
28 -0.951056516 =3.54296162 E-9
29 -0.951056516  1.77148081 E-9
30 -0.951056516 -3.54296162 E-9

It should be noted, however, that although the final computed
root shown for the fourth and fifth degree Chebyshev polynomial equations
were the same as those obtained by using Newton's method, the procedure
used for the bisection method did not terminate naturally.

The secant method is similar to Newton's method. This method
uses the slope of the line drawn between two points on the graph to
approximate the slope of the tangent line. The general formula is as

follows:

Pee1 = T) = P(rk)/s

where s is the slope of the line and s = [P(Pk) - P(r'k_1)]/(rk - rk_1).
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Program 5.2 will compute the root of a polynomial equation using

the secant method.

PROGRAM ©., 2

L

10 BEM 2% SECAMT #3x

2 REM #%* Rl FIRST RAPFROXIMATION

30 REH #%% RZ = SECOND RPPROXIMATION

44 REM #*xx R3Z = NEW APPROXIMARTION

58 REM x%x Fi FCR1)D

60 REM *¥x F2 = FC(R2>

/8 REM #¥» § = SLOPE

£8 HOME

38 | PRINT "THIS PROGRANM WILL FIMD THE ROOT OF &"
189 PRINT "POLYNOMIRL USING THE SECANT METHOD"
118 PRINT

128  PRINT "ENTER THE DEGREE OF THE POLYNOMIAL®
138 INPUT “C(HMAKIMUM DEGREE IS 18) "N

148 PRINWT

1586 REM *%*% ENTER THE COEFFICIENTS

168 . PRINT "THE COEFFICIENT OF THE XANTH TERM *
178 PRINT "1S ACHO"

188 FPRINT

136 FOR X = NTO © STEP - 1

298 FPRINT "ENTER RC“¥")%;

<18 IHFUT " "GHCR?

228 HEKXT X

<38 PRINT

¢38 PRINT "THE SECANT METHOD REQUIRES TWO IMITIAL®
258 PRINT "APPROXIMATIONS TO THE ROOT"

BB  PRINT

&78  INPUT "ENTER APFROXIMATION #1 ";Ri

280 INPUT "ENTER APPROXIMATION #2 “;R2

296 I = 1t

388 REM *xx SEND OUTPUT TO PRINTER

218 PR#

J2d REM #*x¥ PRINT EGURTION ANG HERDINGS

338 FPRINT TRBC 183" ";

248 FOR n =N TO 2 STEP - 1

358 PRINT R(XHI"KaA"K" + ";

68 HEWY »

378 PRINT RCLO"R + "R(B)

388 PRINT

338 PRINT "IT #","ROOT 1","ROOT 2"

408 PRINT

419 REM xxx EURLURTE F(R1)>

428 R = Rl

38 GOTUB 2066v

448 F1 = ¢

I T [ 1}
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PROGRAM 5.2 (continued)

486 F2 = ¢

488 REH  **¥% CALCULATE SLOPE

o8 S = (F2 - F1)  ¢R2 - R1>

21@ REM #*% CRLCULATE NEW APPROXIMATION
S286 R2 =R1 - F1 » &

2328 REM #*x¥ CHECK FOR CLOSEMESS

948 IF RBS (R3 - R1) < 1E -~ 6 THEN 618
998 REM #%*% RESET R!1 AND Rz

S60 R2 = Rl
576 Rl = R3
588 PRINT " "I,R1.,R2

290 1 =1+ 1

EBd  GOTO 426@

leé  PRINT

B2G  FRINT "THE ROCGT IS "iR3
638 PR# ©

18938 END

<88 REM *%% EURLURTE FC(RD
2818 ¥ = R(HY # R

Bz FOR X =MW -1 T 1 STEP - 1
2038 Y = (Y + A(KI) % R

2848 MNEXKT %

2038 ¥ =Y + ACB)

2656 RETURN

In order to investigate whether the location of the two initial
approximations with respect to the root affects the number of iterations

required to find the root, various approaches with three representative

equations were compared. Table 5.4 summarizes the results.

TABLE 5.4
Pix) = x3 + 6x2 + 11x + 6
No. of Actual Computed
Approx. 1 Approx. 2 _Iter. _Root Root
=4 0 1 -2 -2
-2.9 -1.1 2 -2 -1.99999998
0 A1 9 -1 -1

-4 ‘ -5 9 -3 -3



Approx. 1
-1.4

~-1.6

Approx. 1

TABLE 5.4 (continued)

P(x) =
Approx. 2
0
0
=2.4
0
1
-4
Pi{x) =
Approx. 2
1
-3
0
0
1
-

x3 + hxz + 5% + 2
No. of Actual
Iter.  _Root
19 -1
14 -2
8 -2
1 =1
24 -1
9 -2
x3 + 3x? + 3x + 1
No. of Actual
26 -1
25 =1
26 -1
1 -1
26 -1
28 -1

Computed
Root

-1.00001519
-2
-2.00000004
.
-0.999992713

-2

Computed
Root

-1.00051558
-0.999244997
-0.99964703
=1
-0.999561218

~1.00052643

In general, fewer iterations were required when the two initial

approximations surrounded the root.

ever, this is not a viable choice.

For all practical purposes, how-

But for the purposes of comparison,

the initial approximations given for use in Program 5.2 were the same

as those used in Program 5.1.

from Program 5.2.

Table 5.5 summarizes the results obtained
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TABLE 5.5
No. of Actual Computed

Equation T4 Ty Iter. Root Root
x> - 2x% - x + 2 1.5, =0.4 7 -1 -1.00000003
x>+ 2x° - 5% = 6 1.5, ~0.4 5 -1 -1.00000003
4x> - 3x $8165 0.5 7 -0.8660254  -0.866025404
x>+ 6x° + 11X + 6 SIS, =0.4 14 -1 -1
x> & 4x° +. 5% 408 “2i8, 1.4 23 -1 -0.999998388
%> & 3% + 3k W -1.5, =0.4 20 -1 ~1.00063794
xq + 10x3 + 35x2 + 50x

. 24 -1.5, -0.4 7 -3 -2.99999999
8x" - 8x° + 1 -1.0, =0.5 10 -0.9238795  -0.923879532
x4 + 4x3 + 6x2 + 4x

+ 1 -1.5, 0.4 27 -1 -1.00415797
16x° - 20> + 5x -1.0, -0.8 7 -0.9510565 -0.951056516
x> + 15x° + 85x° + 225x°

+ 274x + 120 -1.5, -0.4 9 -2 -2.00000001
x5 + 5x4 + 1Ox3 + 10x2

+ SX + 1 "1-5, -0.4 18 -1 -1001567717

Again, more iterations are required when multiple roots are
present. The computed root in these cases is not as accurate as when
no multiple roots are present. The secant method has an advantage over
the bisection method in that it can compute the root Qhen the function
does not cross the x-axis.

The secant method does have a disadvantage in that the two

initial approximations submitted cannot also be roots of the eguation.
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Nor can they be values such that P(r1) z P(rz). If this occurs, the
slope will be zero, and the secant method will no longer work.
The last alternative method to be presented is a variation of
Newton's method. This method is provided by Haggerty in [6, p. 101],

and is not dependent upon the multiplicity of the root.

If P(x) = (x-r)"g(x) = 0 (q(r) # 0)
then P'(x) = (x—r)mq'(x) + m(x-r)m-1q(x)
P{x) - (x-r)mq(x)
and Pr{x) ~

e-r1Tq" (x) + mix-r)™ 'q(x)

(x-r)m_1{(x-r)q(x)]

(x-r)m_1[(x-r)q‘(x) + mq(x)]

{x-r)q(x)
(x-r)q'(x) + mq{x)

Setting this equation equal to zero yields x = r as a root. (For
examples of the graph of f{(x) = P(x)/P'(x), the reader is referred
again to Graphs 4.1, 4.2, and 4.3.)

Let F(x) = P(x)/P'(x) then:

P'(x)P'(x) - P(x)P"(x)

Ft{x) =
[P (x)1°

_ P{x)P"(x)
[P (x)1°

L]
—_

Since F(x) has only one root at x = r, F(x) may be substituted for P(x)

in Newton's method. Thus r =

- - F(rk)/F'(rk)

"

where F(r ) = P(r )/P'(r ) and F'(r ) = 1 - P(rk)P"(rk)/[P'(rk)le-
Program 5.3 will compute the root of a polynomial equation using

Haggerty's version of Newton's method. Table 5.5 summarizes some of the

results obtained from Program 5.3.



PROGRAM 5.3

10

P!

30

40

ay

69

g

=14

38

189
11a
128
1356
144
158
iEg
178
158
1898
246
218
&l
238
246
<58
P
278
<ga
238
1S 1%
316
J2a
538
34a
350
e
370
o1
290
409
+16
420
43a
444
45a
468
4¢8
458
80
b1 515
ale

Sy
oLy =t

S20

REH
REM
REH
REM
REM
REM
REH
REH
REH

*¥%¥¥ MNEWTON (HRGGERTY > *#»

*¥% N = DEGREE OF THE POLYNOMIAL

*¥¥% H(R2> = COEFFICIENTS OF POLYHOMIAL
*¥¥ B(¥X) = FIRST DERIVATIVE

%% CC¥? = SECOND DERIVUATIVE

¥¥% R = INITIRL APPROXIMATION
EX%

Ri =
5% R2 = F7CR)
%% R3 = F/(R>

REM #%% R4 = SUCCESSIVE APPROXIMATION

RE

M #%x F = FCR)

REM %% FP = F/(K)

RE

M *x% 1 = ITERATION NUMBER

HOME

R
FR
FR
PR
PF

INT "THIS FROGRAM WILL FIND THE ROOT OF R"
INT "POLYNOMIAL USING HAGGERTY'S VERSION GOF"
INT "MEWTON‘S WETHOD"

INT

INT "ENTER THE DEGREE OF THE POLYMOMIAL"

INPUT "(MAKIMUM DEGREE IS 1G> "N
FRINT

RE
FR
FR
FE
FO
PR

H #x% ENTER COEFFICIENTS

INT "THE COEFFICIENT OF THE XAWTH TERM"
INT "IS RCHO"

INT

F%=NT0O@STEF -1

INT "ENTER RC"X")";

INPUT " "R
NEXT ¥

FR
IH
FR
[ =
RE
PR

INT
PUT "ENTER THE INITIAL GUESS "iR
INT
i
" #%% SEMD OUTPUT TO FRINTER
# 1

REM *%x FRINT EQURTION ANO HEARDINGS

PR

INT TABC 180" ";

FOR X = N TO 2 STEP - 1

PR
HE
FR
FR
FR
FR
RE

INT RCRI"RA"E" + "5

AT X

INT RCLOR + "R(E)

INT

INT "IT &#"," ROOT"

INT

H #x¥ COMPUTE FIRST DERIVATIVE

GOSUB 3000

RE

H *x% COMPUTE SECONO DERIVATIVE

GOSUB 4080

RE

H o =xx EVALURTE FC(RD

GOSUB 2800

(]

on } g
i

- ITI

M +x¥ EVURLUATE F (R>

GOSUE 3568
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PROGRAM 5. 3 (continued)

546
558
SEa
57

50
530
600
610
TR
630
648
50
G
570
GG
B
700
"1k
;o
730

Re = ¥

REM ¥ EURLUATE F““(R>

GOSUB 4508

3 =Y

FEH %% CALCULRTE F AND FP
F =Rl » R2
FP=1=-Rl # RE ~ (R2 * R2)

REM #%# CRALCULATE MEW APPROXIMATIOH
k¢ = R - F ~ FP

REM ##% (HECK FOR CLOSEMESG

IF HES (R4 ~ Fo  IE -~ G THEN 718
K = R4

FRINT " "I,R4

I=1+1

GOSUB Zooe

IF ABS (%) < 1E - € THEW 710

GOTO 518

FRINT

FRINT "THE ROOT 15 "iR4

FR& @

18393 END

cboe REM *xx EVALUATE FCRD

2018 Y = ACN) # R

<8286 FOR W1 =MW -1T01 STEP - 1
2830 Y = (Y + ACKLY) ¥ R

<B48  HEXT w1

cBI@ Y =Y + RIGD

<HLY  RETURN

soad REM *xy CONPUTE FIRST DERIVATIVE
2010 FOR X =H 10 1 STEP -1

SU20 BCH - 1) = RUAS ¥ 4

2038 NEXT K

3840 RETURN

2586 REM =¥* EURLUATE F/C(R)

3518 IF N = 1 THEN 3570

—
DY YEN
e

303

BY=DBN-1) %K

IF N = 2 THEN 357@

3548 FOR %1 =W - 2 T0 1 STEP - 1
3558 ¥ = (Y + BIXID) ¥ R

IG560 NEXT %1

3578 Y = ¥ + BCBO

3558 RETURM

4BE6  REM *¥x COMPUTE SECOND DERIVATIVE
4818 FOR X = N TO 2 STEP - 1

4BZU CH — 23 = BCR - 1) % (X - 1)
4830 NEXT 2

4648 RETURN ,

4568 REM #%% EUALUARTE F°/¢(R3

4518 IF N

= 1 THEM % = 8: RETURN
4528 1F N = & THEN 45€8
4538 ¥ = CCN - 23 * R
#0489 IF W = 3 THEM 4568

4558 FOR X1

H-232T01 STEF -1



PROGRAM 5.3 (continued)

4568 ¥ = (Y + CCR12) ¥ R

4578 NEXT X1
4550 Y = % + C(@)
4598 RETURH

Equation
x3 - 2x2 - X + 2
x3 + 2x2 - 5x - 6
4x3 - 3x

3 2

X~ + 6x + 1lx + 6

x3 + 4x2 + 5x + 2

X~ + 3x2 + 3x + 1

xq + 16)(3

+ 24

+ 35X2 + 50x

8x4 - 8x2 + 1

xA + hx3 + 6x2 + 4x + 1

5 3

16x” - 20x~ + 5x

x5 + 15xQ + 85x3 + 225x2

+ 274x + 120

x5 + 5x4 + 10x

+ 5x + 1

3 + 10x2

TABLE 5.6
Init. No. of
Approx. Iter.

0 5

0 4

-1 4

0 7

0 3

0 1

0 6

-1 4

0 1

-1 4

0 5

0 1

Actual
Root

-1

-0.8660254

-2
~0.9238795
-1

-0.9510365

67

Computed
Root

1.0000001

-1

-0.866025404

=1

-1.00003033

-1

-2.00000036

-0.923879533

-1

-0.9510565 16

-2.00000004

The number of iterations required when multiple roots are

present decreased significantly in Haggerty's version of Newton's method.

In the other cases, Haggerty's version required the same, or perhaps one



additional, number of iterations to find the root.
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The roots obtained

by using Haggerty's method appeared to have the same degree of accuracy

as those obtained by using Newton's method.

For purposes of comparing the results of the four principal

methods discussed, Table 5.7 summarizes the rcsults obtained by using

Newton's, Haggerty's, the secant, and the bisection methods.

Eguation

h 4 3
X 4 Hhx o+ 0% +

10x£ + 5% + 1

x5 + 15x4 + 85x3 +

225x° + 274x + 120

x5 + 5x4 - 25x3 -

125x2 + l44x + 720

16x° - 20x° + Sx

Equation

x5 + qu + 1Ox3 +

1Ox2 + 5x + 1

x5 + 15)(1’ +85x3 +

225x° + 274x + 120
XS + le’ - 25x3 -

125x2 + 1ha4x + 720

16x° - 20x° + 5%

TABLE 5.7
Init. No. of No. of
Approx. Iter. Newton Iter. Haggerty
0 32 -1,00110733 1 -1
0 7 -1 5 ~2.00000004
0 1 =5 7 -3
-1 4 -0.351056516 4 -0.95105616
Init. No. No. of
Approx. Iter. Bisection Iter. Secant
=-1.5, =0.4 5 -0.984375 17 -1.0156771
-1.5, =0.4 29 -1 9 ~-2.00000008
-3.5, 2.4 28 =3 10 -3.00000001
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Although the results will not be presented in this thesis, the
four programs used to generate Table 5.7 were translated into FORTRAN.
The results obtained on the microcomputer were very close (to three

significant figures) to those obtained using FORTRAN in double-precisicun.



CHAPTER VI
SUMMARY

The purpose of this thesis has not been to show how the "tried-
and true" methods of solving polynomial equations may be adapted for use
on the microcomputer. Nor has it been to develop new methods. Rather,
the purpose has been to show that while the methods already in existence
may be adapted, they should not be blindly adapted.

All methods do not work equally well for all types of equations.,
The user should, therefore, be aware of some of the types of equations,
and some of the areas in solving equations in general, in which problems
may occur. With this information, steps can be taken to avoid, or to
compensate for, these problems.

Specifically, programs that will solve polynomial equations of
degree four or less are given. While no formula exists for solving
polynomial equations of degree five or more, there are many iterative
methods available for approximating the roots of these equations.
Programs for solving equations using Newton's, the secant, and the
bisection methods are given.

When using any iterative method, the task of evaluating P(x) is
highly critical. As x — r, the amount of round-off error increases
significantly. Thus, no method is more accurate than its evaluation of'
P(x). Polynomial equaticns which contain multiple roots are especially

difficult to evaluate.
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Polynomials areill-conditioned. That is, a small change in one
of the coefficients may produce a large change in the roots. The
equations illustrated in this thesis are of degree five or less. A
significant amount of change can be detected with these. Higher degree
equations would be affected even more. This is important not'oniy when
working with depressed equations (as illustrated in Table 4.6}, but
also when entering irrational numbers or repeating decimals as co-
efficients.

Other problems may be encountered when solving equations with
six or more complex roots, or when working with equations with complex
coefficients. Although not presented in this thesis, some methods, such
as Muller's, will develop intermediate complex iteratives. Special care
will have to be used to work with these on a microcomputer.

Since programs for iterative methods are normally verified by
using equations with known roots, the user needs to exercise extreme
caution in attempting to find the roots of an equation whose roots are
unknown. Thus, while the user may think the correct roots have been
obtainéd, the error incurred by the machine during the procedure may
have circumvented ever finding the correct roots. Therefore, it is
extremely important for the user to be aware that problems may occur,

and to be conscientious enough to look for them.
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