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Certain numerical analyses primarily concern themselves 

with problems normally found in the subjects classified as 

Linear Algebra and Matrix Theory. One of the problems is 

the determination of the spectrum (set of eigenvalues) and 

the eigenspaces for a square matrix. Considering the matrix 

equation Ax = AX, the problem is to determine those values 

of A for which the equation has a nonzero solution X. These 

values of A are called eigenvalues of A. The problem of 

finding the eigenvalues for A is equivalent to analyzing 

when the square homogeneous linear system (A - AI)X = 0 has 

a nonzero solution X. This can occur when the system has 

infinitely many solutions which is equivalent to this con­

dition: IA - AIl = 0 (called the characteristic equation). 

Therefore one way to determine the spectrum of the matrix is 

to find the roots of the characteristic equation. However 

this method is inherently unstable since very small errors 



in the coefficients of characteristic equation lead to large 

deviations of spectrum of the matrix. Therefore, we try to 

use some strategies to reduce the original matrix to a 

specialized matrix having the same eigenvalues but with more 

accuracy, and less work. 
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Chapter 1 

INTROOUCTI ON 

Since the implementation in 1947 of electronic digital 

computers in obtaining numerical approximations to Poisson's 

partial differential equation, Numerical Linear Algebra has 

come to be recognized as a fairly well defined and active 

discipline of study. In fact, it would be difficult to 

separate the history and development of digital computers 

and Numerical Linear Algebra over the last thirty-five years. 

Computer capabilities advanced during the 1950's and 1960's 

to the extent that it permitted numerical analysts to cor-­

sider new and more complicated problems whose solutions 

could be numerically approximated, or at least investigated. 

It now seems that with the advent of each new generation of 

computers, mathematical physicists feel compelled to offer a 

new set of problems whose level of difficulty exceeds that 

of the problems solved by the previous computer generation. 

Certain numerical analysts primarily concern themselves 

with problems normally found in the subjects classified as 

Linear Algebra and Matrix Theory. We will refer to these 

topics as Numerical Linear Algebraist (NLA). There are 

basically two problems with which the NLA's concern them­

selves; the solution of linear systems of equations and the 
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determination of the spectrum and eigenspaces for a square 

matrix, both of which are related. 

It goes without saying that the NLA should maintain 

some degree of knowledge of the state of the art in computer 

technology and computer capabilities since his research and 

applications should be influenced by such knowledge. 

ANALYZING POSSIBLE SOLUTIONS TO THE LINEAR ALGEBRAIC 

SYSTEM Ax = b. There are many physical problems which when 

modeled by an appropriate mathematical expression leads one 

to consider the solution to a system of m linear equations 

in n unknowns which shall be represented by the matrix 

equation 

Ax = b ( 1. 1 ) 

A shall be called the coefficient matrix and b shall be 

called the constant vector. 

Such linear systems arise in the physical sciences, 

social and behavioral sciences, economics, electrical engi­

neering, structural engineering, operations research, 

computerized image recon~truction, cryptology, and many 

others. 

If the information or data in the problem which gives 

rise to the system Ax = b is excessive, the system may have 

more equations than unknowns. That is, m)n and in this case 

we say that Ax = b is an overdetermined system. If the 

information or data which leads to Ax = b is scarce or insuf­

ficient, on will be less than n, in which case we call Ax = b 
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an underdetermined ~~~. If the constant vector b is 0, 

we shall call the system a homogeneous ~ste~. 

In this section we shall identify the types of solu­

tions that may occur for a given system, depending on 

whether it is homogeneous, overdetermined, underdetermined, 

square (m = n), or nonhomogeneous. 

In order to determine the possible types of solutions 

that a given system may have, we shall assume that the 

reader can reduce the augmented matrix 

B = [A b] ( 1. 2 ) 

to Reduced Echelon Form (R.E.F.). 

Given the system Ax = b, there are only three possible 

types of solutions: A Unique Solution, Infinitely Many 

Solutions, or No Solution. If either of the first cases 

occur, the system is called consistent. In the latter case 

the system is called inconsistent. 

By considering the R.E.F. for each of the six possible 

systems Ax = b that may occur, one can easily determine the 

possible solution sets. These are described in the table on 

page 4. 

Although obtaining the Reduced Echelon Fcrm for the 

augmented matrix B allows one to determine the solution set 

for Ax = b, our study of Numerical Linear Algebra will 

reveal more sophisticated and economical methods for deter­

mining solution sets for Linear Systems. 
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System Ax = b Possible Solution Types 
- --- ----_._----­

Nonhomogeneous A Unique Solution (consistent) 
Square Infinitely Many Solutions (consistent) 

No Solution (inconsistent) 

Nonhomogeneous A Unique Solution (consistent) 
Overdetermined Infinitely Many Solutions (consistent) 

No Solution (inconsistent) 

Nonhomogeneous Infinitely Many Solutions (consistent)
 
Underdetermined No Solution (inconsistent)
 

Homogeneous A Unique Solution (consistent)
 
Square Infinitely Many Solutions (consistent)
 

Homogeneous A Unique Solution (consistent)
 
Overdetermined Infinitely Many Solutions (consistent)
 

Homogeneous Infinitely Many Solutions (consistent)
 
Underdetermined
 

DETERMINING EIGENVALUES AND EIGENVECTORS FOR THE SQUARE 

MATRIX A. The second basic problem which concerns the NLA 

is the algebraic Eigenvalue-Eigenvector Problem. This prob­

lem is very much related to the first basic problem, that of 

solving the system Ax = b. 

The practical importance of the algebraic eigenvalue­

eigenvector problem is revealed by considering a system of 

n first order linear differential equations with constant 

coefficients to be solved simultaneously: 

ui(t) = allu1(t) + a12 u2(t) + a1nun(t) ( 1. 3 ) 

u2(t) = a21 u1(t) + a22 u2(t) + (t)a2n un

u~(t) = anIuI(t) + an2 u2(t) + ... annun(t) 
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In standard form, the system (1.3) may be written as 

du = Au ( 1. 4 ) dt 

where u = (u 1(t),u 2(t), ... , un(t)) T and 

~~ = (ui(t),uz(t), ... ,u~(t))T. By sUbstitution, it is 
Atclear that u = xe is a sol ution only if Ax = AX. Con­

Atversely, if A and x#O satisfy Ax = AX, then u = xe is a 

solution of (1.4). This is the algebraic eigenvalue-eigen­

vector problem: Determine A and x#O such that Ax = AX. 

Suppose A is a real square matrix of order n. Consider 

the matrix equation 

Ax = AX ( 1. 5 ) 

There are two problems we wish to consider in regard to the 

equation (1.5). 

First, determine those values A for which the equation 

(1.5) has a nonzero solution x. These values of A are called 

eigenvalues of A. Second, for eacr. A for which equation 

(1.5) has a nonzero solution, find all the vectors which 

satisfy equation (1.5) for a given A. Each nonzero vector 

X satisfying equation (1.5) for a given eigenvalue A is 

called an eigenvector of A corresponding to A. 

The first problem of finding eigenvalues for A is equiv­

alent to analyzing when the square homogeneous linear system 

(A-A1)x = 0 ( 1. 6 ) 
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has a nonzero solution x. This can occur only when the 

system has infinitely many solutions which is equivalent to 

each of the following conditions: 

R.E.F. of (A-AI) has at least one zero row ( 1. 7 ) 

rank (A-AI) < n ( 1. 8) 

[A-All = 0 (called the characteristic equation) ( 1. 9 ) 

IAI-AI =0 (1.10) 

Example 1: Consider the matrix 
r­

8 2 -2 

3 3 -1 
A = 

24 8 -6 

Using equation (1.10) above, the characteristic equation of 

A is 

A-8 -2 2 

IAI - AI = -3 A-3 1 I = 0 

-24 -8 A+6 
L 

or A3 _ 5A 2 + 8A - 4 = 0 

So the eigenvalues of A are 1 and 2 and o(A) = {1,2l is 

called the spectrum of A. 

The second problem of finding the eigenvectors for A 

corresponding to the eigenvalue AO is equivalent to deter­

mining the solution set for the homogeneous system 

(AOI-Alx=o (1.11) 
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The solution set for (1.11) is the null space N of (AoI - A). 

A reformulation of the Eigenvector Problem is this: for 

each eigenvalue A of A, find a basis B(A ) for the null o o

space N(A o ) for (AoI - A). N(A o ) is called the Eigenspace 

of A corresponding to A and each element of B(A ) is an o o
eigenvector of A corresponding to Ao ' 

Example 2: Consider the matrix A in the earlier example 

where eigenvalues are Al = a and A2 = 2. To find a basis 

B(l) for N(l) we will determine the R.E.F. for the augmented 

matrix [(All - A) 0] corresponding to the system (All - A) 

x = 0: 
-7 -2 2 o (1.12) 

[All - A -] = -3 -2 1 o 

-24 -8 7 o 

Gaussian Elimination reduces the matrix in (1.12) to 

1 0 - 1/4 
I 
0 

0 1 - 1/8 0 

L 
0 0 0 0 

whose general solution is 

r 
x = 1/4z 

y = 1/8z 

z arbitrary 
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That is, 

N{A 1 ) j (2z, z, 8z) I z is real}0 

and a basis for N{A 1 ) is B{A 1 ) ({2, 1,8)) (by choosing0 

z = 1) e = (2, 1, 8) is an eigenvector A corresponding to 

Al = 1. The eigenspace N{A 1 ) is one dimensional and every 

eigenvector corresponding to Al = 1 is a nonzero multiple 

of e. 

To find a basis B(2) for N(2) we shall determine the 

R.E.F. for 

-6 -2 2 ° (l.13) 

[1. 21 - A OJ = -3 -1 1 o 

-24 -8 8 o 

Gaussian Elimination reduces the matrix in (1.13) to 

From this we can determine a basis for N{A 2 = 2) by choosing 

y = 3, z = 0 in one case and y ~ 0, z = 3 in the second. So 

B{A 2 = 2) = (-1, 3, 0), (1, 0, 3) and e 1 = (-I, 3, 0), 

e2 = (I, 0, 3) are eigenvectors of A corresponding to 1. 2 ~ L. 
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The eigenspace N(A Z) is two dimensional and every eigenvector 

corresponding to AZ = Z is a nonzero linear combination of 

e l and e Z' 

In this chapter we have suggested that one way to 

determine the spectrum o(A) of A is to find the roots of the 

characteristic equation C(A) = IAI - AI = O. In fact, 

earlier methods for determining o(a) were based on approxi­

mating roots to C(A) = O. But such methods are inherently 

unstable since very small errors in the coefficients of 

C(A) lead to large deviations in o(A), even though o(A) is 

not particularly sensitive to small changes in the entries of 

A. It then appears that the most practical and effective 

methods for determining o(A) must be more closely related to 

A than to the more distant problem of finding roots to 

C(A) = O. 

In the next chapter we will discuss the rotational tech­

niques suitable for finding all the eigenvalues for reasonable 

matrices. 

A FORTRAN program is presented in the Appendix. This 

program, which uses seven other FORTRAN program segments 

(subroutines), applies some of the method and algorithms 

presented in Chapter 2 to compute the eigenvalues of a square 

real matrix. 



Chapter 2 

EIGENVALUES 

In this chapter we shall deal with methods that can 

produce all the eigenvalues without overmuch bother about 

whether they are large or small or somewhere in between. 

Furthermore, we shall have large matrices in mind so that 

we are talking, typically, about 50 to 100 eigenvalues. 

Since finding all 100 eigenvalues of a 100 x 100 matrix is 

a lot of work, we are going to be continually concerned 

about the efficiency of our algorithm. Further, since large 

matrices require many arithmet1c subtractions, we must worry 

about the stability of the algorithms lest we obtain numeri­

cal results that are, in fact, random numbers instead of 

eigenvalues. 

The perspicacious reader may have noticed a curiocs 

avoidance of the word eigenvector, which is not accidental. 

The algorithms that expediently produce all 100 eigenvalues, 

do not simultaneously find the corresponding eigenvectors, 

and so this calculation follows as nearly separate and 

additional labor. Fortunately, the physical problems that 

lead to large eigenmatrices frequently do not require the 

vectors to be found, so that the postponing (perhaps in­

definitely!) of the topic is not solely due to expedience. 

10
 



11 

THE GRAND STRATEGY. While algorithms for completely 

diagonalizing a general nondefective matrix exist, they 

require far too much computation. The practical strategies 

break the problem into two parts: reducing the original 

matrix to a specialized matrix having many zero elements 

but the same eigenvalues, followed by the finding of the 

eigenvalues for the specialized matrix. These specialized 

matrices are either tridiagonal or Hessenberg, which forms 

are illustrated in Figure 1. The desirability of this dual 

x X X X X X X X X X 
X X X X X X X X X X X 

X X X X X X X X X X 
X X X X X X X X X 

X X X X X X X X 
X X X X X X X 

X X X X X X 
X X X X 

A tridiagonal matrix A Hessenberg matrix 

Figure 1 

strategy becomes apparent if we consider the a~ount of work 

facing a man who would find all the e~genvalues of a large 

general matrix. The problem, by definition, is that of 

finding all the zeros of a high-degree polynomial--a process 

that is necessarily infinite, since there are no explicit 

formulas. Further, any serious manipulation with a general 

matrix, such as multiplication by another matrix, will usu­

ally require kn 3 arithmetic operations, where k depends on 
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the particul ar manipul ation. In contrast, manipulations 

with tridiagonal matrices tend to be proportional to n. 

Hessenberg matrices lie between, usually requiring kn 2 oper­

ations. But we can reduce a general matrix to tridiagonal 

or Hessenberg form in a finite number of arithmetic steps 

(the number of multiplications is close to n3 ). 

Thus the grand strategy is to postpone the infinite 

algorithm until we have reduced our matrix to one of the 

specialized forms--being happier about endlessly iterating 

an algorithm that costs kn multiplications per iteration 

than doing the same with one costing kn 3 . When we consider 

that computing centers are regularly asked to find the eigen­

values of 200 x 200 matrices and larger, we realize that the 

difference between n2 and n3 are startling--not to mention n 

versus n3 ! Only a socially irresponsible man would ignore 

such computational savings. 

The two stages of our eigenvalue strategy are nearly 

independent. We shall discuss them separately. The find­

ing of eigenvalues from tridiagonal or Hessenberg forms 

turns out, not very surprisingly, to be the familiar problem 

of finding the roots of a polynomial. The difficulties are 

already familiar, as are the remedies. Accordingly we shall 

spend most of our time discussing the first stage: The 

reduction of a general matrix to a specialized form while 

carefully preserving the eigenvalues. It is here that the 

crucial questions about computational labor and computational 

stability arise. Often the methods that seem efficient are 
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also unstable and hence ineffective. Since there is a 

variety of algorithms, each having its special utility, with 

no general superior tactic available, we shall be emphasiz­

ing our famil iar theme of suiting the tool to the job. 

THE STANDARD TOOLS. All reductions of general matrices 

may be phrased in terms of similarity transformations. The 

matrix A is said to suffer a similarity transformation if it 

is pre- and postmultiplied by any other matrix and its 

inverse. Thus Band C are similarity transformations of A 

i f 

B ; T- 1AT or C ; TAT- 1 

The only restrictions are the dimensionalities being compat­

ible with the indicated multiplications, plus the existence 

of the inverse of T. Similarity transformations have the 

property of preserving eigenvalues. Starting with the eigen­

problem equation 

Ax ; AX 

where x is an eigenvector of A and A is the corresponding 

eigenvalue we have 

TAx; ATx 

and on defining 

Tx ; y or x T- 1y 

we ge: 

TAT- 1y ; ATT- 1y ; Ay 
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Thus we have the new eigenproblem 

Cy = >.y 

with the new matrix C that is similar to A, new eigenvectors 

y that are simply related to x--but still the same old >.'s. 

The class of similarity transformations is very broad. 

Within it is included a much more restrictive type, the 

orthogonal transformation. Here the transforming matrix T 

is orthogonal, which impl ies that its transpose is al so its 

inverse. We have 

TT ~ T- 1 

and this property is enough to preserve symmetry through the 

similarity transformation. We note that the transpose of 

Cis 

CT = (TATT)T = TATT T 

which, if A ~s symmetric, becomes 

CT 
= TAT T 

= C 

Thus orthogonal transformations preserve both eigenvaluEs 

and symmetry, when the latter exists. They are also extrem­

ely stable. As one might suspect, any transformation that 

has such admirable properties must also suffer some drawbacks. 

Orthogonal transformations tend to require more arithmetic 

than their competitors. Thus we will tend to use them for 
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those matrices that are poorly behaved or when other methods 

happen to fail. 

LR ALGORITHMS 

Barring unfortunate accidents of degeneracy, any matrix 

may be decomposed into the product of a lower unit triangu­

lat matrix and an upper triangular matrix. Symbolically we 

have 

[]->~~
 
where the symbols are meant to convey the presence of l's on 

the principal diagonal of L and no such specialization of R. 

The algorithm effecting such separation is given immediately 

by filling our schematic with components and writing out the 

implied matrix multiplication. It is precisely the Gaussian 

triangularization by elimination of variables, familiar to 

every college student. For stability it is usuqlly necessary 

that row interchanges be performed to bring large pivot ele­

ments to the diagonal. 

If we now reverse the order of our factor matrices and 

remultiply them, we create another square matrix, completing 

one cycle of an iteration. We have 

AS -) LsR then RsL -) A +1 ( 2 . 1 ) s s s

We see that the iteration preserves eigenvalues, for it is a 

similarity transformation: 
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- 1A = R L = L A L stl s s s s s 

It will be proved below that the sequence of As converges 

to upper triangular form, hence reveals the eigenvalues on 

the principal diagonal. A necessary and sufficient corollary 

is the convergence of L to a unit matrix, and it is this s 
fact that will be proved. But first we would examine the 

utility of the algorithm. 

For a general square matrix, symmetric or unsymmetric, 

the separation requires n3/3 multiplications, the recombina­

tion another n3/3. Since the algorithm produces eigenvalues 

it is necessarily infinite, and we have steadily warned 

against engaging in infinite iterations with O(n 3 ) multipli­

cations per iteration. We still do. The LR algorithm is not 

practical for general matrices. But it has modifications 

that are practical with specialized matrices. 

If we write o~t the triangular decomposition algorithm 

2.1 ) we find that triangles of zeros in the lower left 

corner of A are transmitted identically to the same elements 

of L. Likewise, triangles of zeros in the upper right 

corner of A turn up unchanged in R. Further, when Land R 

are remultiplied in the reverse order, our zeros reappear so 

that an original banded matrix A, has its form reproduced in 

A . In particular, tridiagonal and Hessenberg matrices
St1 

keep their tridiagonal and Hessenberg forms under the LR 

algorithm. Since factorization of tridiagonal matrices is 

O(n) and that of Hessenberg O(n 2 ), we just might hope that 
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the LR algorithm would compete effectively for finding 

eigenval ues of these special i zed forms. It will turn out 

that it does but only after elaborating the algorith with a 

number of devices for suppressing roots as they are found, 

accelerating convergence of the iterations, and splitting 

the problem into two or more subproblems whenever possible-­

in short, by using all the tricks that we need for finding 

roots of a high degree polynomial. 

We are now in the position of hoping to use LR on spec­

ialized matrices, since the volume of work is of the right 

order of magnitude. Still the nagging problem of 

interchanges remains. Without interchanges, we know that 

the Gaussian triangular decomposition is unstab"le. With 

interchanges, we seem to risk loss of our specialized forms. 

Trial of a few examples, however, will soon convince the 

sceptical that zeros below the diagonal are preserved by LR 

with interchanges, while zeros above the diagonal are 

gradually lost. Thus Hessenberg form is preserved, though 

tridiagonal is not. Accordingly, we might expect LRwl to be 

useful for unsymmetric matrices that have already been 

reduced to Hessenberg form. 

CHOLESKY OECOMPO~ITION 

For certain kinds of nonsingular symmetric matrices A, 

net only does an LR decomposition exist, but R can be econ­

omically constructed so that A = LR = LL T. However, symmetry 

alone will nvt guarantee the existe~ce of a decomposition of 
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the form LL T• a form known as the Cholesky Decomposition. 

For example. a nonsingular symmetric matrix with a negative 

element in the (1,1) position can not have a Cholesky 

Decomposition. 

It turns out that a Cholesky Decomposition exists for 

positive definite (matrix A is positive definite if for each 

X#D. XTAX)O) matrices and. in particular. the nonsingular 

Gramian matrices (of the form BB T) which arise in least 

squares problems. 

Suppose A is a square matrix of order n and a is a 

subset of S = {1,2 •... • n}. Let B[a] be the submatrix of A 
, 

obtained by deleting row ~ and column ~ of A for each ~ta. 

8[0] is called a Qil~~ submatrix of A for each subset 

a of S. B[o] is the submatrix of A determined by rows ~ 

and columns ~, ~ca. 

Lemma. Each principal submatrix of a positive definite 

matrix is also positive definite. 

Proof. Suppose B[a] is a principal submatrix of A and 

A is positive definite. Assume a contains k elements. Let 

z = (zl.z2 •... 'Zk)T by a nonzero k-vecto~ and define 

x = (x 1 .x 2, .. . xn)T by setting 

x
S . 

= Z if ~ca = (sl.s2' ...• sk) 
~ 

x. = 0 i f ~ta 
~ 
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Since z 1 0, x 1 o. It is clear that xTAx = zTB[o]z and 

since A is positive definite (xTAx>O), so is B[o]. 

From Lemma, we note that the diagonal elements of a 

positive definite matrix must be positive. Furthermore, as 

with Gaussian Elimination, the method requires no partial 

pivoting to determine an LR decomposition for positive defi­

nite matrices. Consequently, if A is positive definite, A 

has an LR decomposition. We need to know that if we assume 

R = LT, then the Gaussian Elimination does not break down 

for positive definite matrices where we do not assume L is 

unit triangular. 

Suppose we seek a lower triangular matrix L = [£~j] 

such that A = LL T and A is positive definite 

2 
£'1 £11£21 £71£31 

£21£71 
2 2

£27+£22 £27£37+£22£32 

A = LLT 
= 1£31£11 £27£31+£22£32 

222
£31+£32+£ 33 

By considering the product matrix LL T we first note that 

L2
11 = all· Since all>O, £11 = !all is well defined. The 

remaining elements in the first column of L and first row of 

LT (which must agree) must satisfy ttl = atl/£ll. Having 

determined the elements in the first column of L (and, hence, 

the first row vf LT), we note that = £~l + £~2 so thata22 
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we must have i 22 = (a 22 - i 2 
21 

~ ) . i 22 is well defined since 

A being positive definite implies the principal minor 

a11 a22 
2- a21 > 0 and, hence, 2

ill a22 - (ll1i21) 
2 > 0 or 

- l~l > o. We now can define the elements in the seconda22 
column of L (and second row of LT) by setting 

t-l- 1 
=i t2 i 22 C

k=lL't1 ltl',,]
 
for each t = 3,4, ... ,no 

It is clear that we can complete the procedure induc­

tively, using the fact that A is positive definite. The 

general algorithm is described below. 

Now, to show that this process can be carried out induc­

tively, assume that each symmetric positive definite matrix 

A of order n - 1 or less has an LR decomposition of the form 

LR = LL T. Suppose that A is a symmetric positive definite 

matrix of order n and write A as 

An-l b 
A = 

bT 
ann 

where A = W is the leading ~rinciple submatrix of ordern_1 

n-1. By Lemma, W is positive definite so that by our hypoth­

esis, W factors into ZZT. Since W is nonsingular, so is Z. 

Therefore, Zc = b is solvable for c. Now for any value of x, 
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[ :T 
0] [zT c] [ W b l 
x . 0 x = bT cTc+x 2 = A 

If ann is set equal to cTc + x2 and the resulting equation 

is solved for x, then the desired LL T factorization of A is 

given above. However, to show that x is real, we take 

determinants of both sides of the matrix equation given 

above to obtain 

det(LLT) = [det(L)]2 = x2[det(Z)]2 = det(A) 

Since A is positive definite, det(A) > O. Hence, x can be 

solved for as real and positive. 

CHOLESKV OECOMPOSITION ALGORITHM. If A is a positive 

definite matrix of order n, then A has the Cholesky Decompo­

sition LL T where L can be obtained as follows: 

Enter the lower triangular portion of A = [a .. ] (diag­
-<'j 

onal elements and below) since these are the only elements 

required in the computation of L. Also, it is possible to 

overwrite A with L. 

[1 ]	 all'" l 11 = /all 

[2]	 Determine the first column of L by setting 

at1 ... l t1 = atl/lll = at1/a for t = 2,3, ... ,n 

[3]	 Set i.. = 2 
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i-1 
[4]	 Set a .. -+-i .. = 

.(..1. .(..1. [a ii ­ ~ ,2"J' 
[5 ] If i < n, go to step 6
 

If i = n, go to step 8
 

i th[6]	 Determine the column of L by setting 

I i-1 
i ..ati-+-i U = .(..(. au	 atka i k] 

-1 L - ~ 
for each t = i + 1, i + 2, ... ,n 

[7]	 Set i = i + 1 and go to step 4. 

[8]	 Procedure is complete and A has been overwritten 

with L. 

Because the Cholesky Decomposition requires only the 

computation of L for the positive definite matrix A, it 1S 

easy to conclude that the amount of arithmetic required is 

approximately half of the amount required for determining 

the general LR decomposition by Gaussian Elimination. 

HOUSEHOLDER REFLECTORS 

For each vector u, the matrix 

T uuH = 1-2 -r	 ( 2 . 2 ) 
u·u 

i s calle d a H0 use hold e r Tran s form a t ion 0 r H0 use hold e r 

Reflector. H is called a "reflector" because H is the non-

singular linear transformation which maps vectors x into 



their reflection about the subspace which is orthogonal to 

u, H maps x into the vector Hx which is the reflection about 

the orthogonal complement of u, namely <U>L (see Figure 2) . 

'" 

( Z • 3 ) 

" 

L~ 
/ 

,.,./'/ 

/ 
// 

,// 

That is, for a given vector 

" " " " " "'­
" " " I 

i 
Figure 2 

u = x ± lixllel 

/,/ 

\-Ix 

23 

.1'" 
<..lD '" '" 

"'­
"'­

"'­

"" " " "'­

In particular, we shall be interested in the case where 

(x l ,x 2 , ... ,w~}T is given and u shall be assigned thex = 

vector value 

the space generated by u in Rn . 



sUbscript of u of H (see Figure 3). 

so that II u II is maximum. 

24 

X,)o 

t/~~~~7 
~/ /// 

.. '/ltO'" y 

= (I,O.O •... ,OlT and the sign is determined by 

the same sign as xl. That is, the sign is chosen 

Figure 3 

/ -,1-'
/ \:::;= 

/ ~ 
I ~' 

/ 

_..-­ ~';'-:'lfxiTc"l-· 

J.. 
ZU} 

With u defined as in (2.3), H u will satisfy Hux = 

±llxllel" That is, Hu maps x into a vector all of whose 

components, except the first. are zero. We shall omit the 

where e l 
choosing 
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For each u, H i s symmetric and orthogonal. For example, 
T T T T T T

if « = 2/u Tu, HT = ( 1 - « uu) = 1 - «(uu) = 1 - «uu 

= H. Furthermore, HTH =HHT=(I - « uu T) (I - « uu T) = 

1 _ 2«uu T + «2 uu TUU T = 

T T T4 uu T4uu T 4uu Tuu 4u(u u)u = I.1 - 1- = 1 - That is,+ T T 2 4 
u u u uu u II u 11 + II u 11 

His orthogonal. 

The usefulness of Householder Reflectors lies in the 

fact that they introduce zeroes into a vector or matrix in 

a manner which is numerically stable. 

Example 1. Consider the vector x = (2,-3,O,6)T where 

I Ixl I = 7. As in (2.3) define u = (2+7, -3,O,6)T = 

(9,-3,O,6)T. Since uTu = 126, according to (2.2) 

1 0 0 0 9/7 - 3/7 0 6/7 

H = 1 - 2-T­
u u 

T uu = 

0 
I 

\ 0 

1 

0 

0 

1 

0 

o I 

- 3/7 

I 0 

1/7 

0 

0 

0 

-2/7 

0 

C 0 0 
IJ l_6/7 -2/7 0 3/7 

-2/7 3/7 0 
--, 

-6/7 

= I 
3/7 

0 

6/7 

6/7 

0 

2/7 

0 

1 

0 

2/7 

3:,J 
Now not e t hat f' ~ = (- 7 , 0 , 0 , 0 )T = - I Ix I leI 
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Theorem. For a given vector x = (x l ,x 2•... ,x )T, if u n

and H are defined as in (2.3) and (2.2), then Hx = ~I Ixl leI. 

2 TProof. Hx = (I -,-- uu 1 x
 
u u
 

2 
= x - uuTx

T(x ~ Ilxlle;) (x ~ Ilxllel) 

2 uuTx= x ­ 2211xl1 ~ 2xjllxll 

I __ (x ±= x - I !x I Ie j ) 
II X11 2 

~ x j I Ix I I 

[txT ~ Ilxlle;)x] 

2(x '1lx1lejl [llxl1 ± xjllxll] 
= x ­ 2IIxl1 ± xjllxll 

= x - (x, Ilxllej) 

= ~ Ilxll!!j 

Since H, as defined in (2.2), required a division by u 
T 

u u = Ilu11 2 , the sign in (2.3) is chosen so that Ilull is 

maximum, which maximizes numerical stability. 

Householder reflectors are primarily used in the alge­

braic eigenvalue problem which we shall discuss later. 

However. they can also be used in solving the linear system 

Ax = b. 
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Example 2. Consider the linear system whose augmented 

matrix is given by 

2 2 2 1 1 

-3 1 -1 2 o 
[a 1 a2 a 3 an b] = 

o 2 o -1 1 
( 2 • 4 ) 

6 1 o 3 o 

i thwhere ai denotes the column of A. We can employ House­

holder Reflectors to find an UTF for (2.4) as follows: 

The first column is the vector x given in Example 1.a1 

Therefore, if T = H is the Householder Reflector defined in
1 

Example 1, then 

_2(- 1 -1 -2I -7 7 

3(2 0 3 
= I 0 7T [A b] = H[A b]1 I 

0 2 0 - 1 1 

L 
0 _6(-1 -2 1 7 

= A( 1 ) a ( 1 ) a ( 1 ) 3 ( 1 ) 
= [ ap) b( 1 )J

2 3 4 

Npw define u and H with respect to all but the first compon­

ent of a~I), namely x = (2,2,-I)T. That is, u = (2+3,2,- lj T 

= (5,2,- lj T and 
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2(- 3 
_2( 

3 
1( 

3 

H1 = I 
2 

- -T­
U U 

T 
uu = 2( 

3 
11( 

15 
2 

(15 

I( 
3 

2 
(15 

14 ( 
15 

Define 
,­

I 0 0 ol II 0 0 0 

0 
:-----------1 I 0 _2( 

3 
2( 

3 
I ( 

3 

T2 = I0 
I 
I , 

H1 = 0 _2( 
3 

11( 
15 

2 
(15 

I 

0 
I 
I 0 1( 

3 
2 

(15 
14( 

15 

so that 

- 7 -1 -1 -2 _2( 
7 

T A(l) 
2 = 

I 

I 

0 

0 

-3 

0 

2( 
3 

4 
- (15 

-1 

_13( 
5 

-
26 

(21 

1( 
3 

0 0 _28( 
15 

9( 
5 

11(
- 21 

= A(2 ) 



A scalin9 of 

Now define u 

components of 

and 

consequently, 

r 
1 0 

0 1 
T3 = I 0 0 

0 0 

and 
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T A(1) yields
2

r 
49 7 7 14 2 

A(2) = 
I 0 

0 

63 

0 

14 

4 

21 

39 

26 

-5 

0 0 196 -189 55 

and H with respect to all but the first two 

-(2) T T' namely x = (4,196). So u = (200.04,196)a 3 

-.99979 ]
H2 = [-.01040' 

-.99979 .020404 

0 0 0 0 0 

0 0 1 1 0I: 
,----- = 
I 
I 

H2 

I 0 0 -.202404 -.99979 
I 
I I I 0 0 -.99979 .020404 

49 7 7 14 2 

26o 63 14 21T -A ( 2 ) = c 
o 0 -196.04 188.16 -54.887 

o 0 0 42.848 6.1212 
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Back-substitution yields the solution 

Tx ~ (0.0, .42857, .14286, -.14286) . 

GIVENS ROTATIONS 

Like Householder Reflections, Givens Rotations are 

orthogonal transformations which introduce zeroes into a 

vector or matrix. 

The idea of computing eigenvalues of a symmetric matrix 

A by first reducing A to tridiagonal form was due to Wallace 

Givens. He used elementary rotation matrices to introduce 

zeroes in the off-tridiagonal positions of A. Givens was 

also responsible for employing and developing the use of 

Sturm Sequences in computing the eigenvalues of the tri­

diagonal matrix A. However, at the present time we shall 

only discuss the "introduction of Zeroes" by Givens Rotations 

and shall deal with the eige~value problem later. 

Suppose x = (x 1,x 2 ' ... ,xnlT is a given vector and 

l<s<t<n. Define the matrix G ~ G(~,s,t) ~ [gij] as follows: 

w ~ / x; + x~ 

1 ifi = j and i,t{s,t} 

xs Iw if i = j = s or i ~ j ~ t 

g .. ~ 1 xt/w if i ~ sand j = t ( 2 . 5 ) 
1 J 

-xt/w if i ~ t and j ~ s 

0 otherwise 



31 

The matrix G(x,s,t) has the following form: 

o 

1 

1 

o o 

o o 

o o 

o 

o 

o 

row s o o X s 
w 

Xt 
w 

o o 

row t o o _X t 
W 

X s 
w 

o o 

o 

o o 

o 

o 

o o 

o 

o 

1 

1 

o 

co 1 . s co 1 . t 

G(X,s,t) has the following properties: 

1.	 G(x,s,t) is a rotation transformation in the s,t plane 

of Rn 

2.	 G(x,s,t) is orthogonal 

3.	 The s component of Gx is w 

4.	 The t component of Gx is 0 

5.	 The component of Gx is xiifi#s,t. 
ThConsequently, G "zeroes" the t component of x while replac­

ing the sTh component with w. 
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Example 3. Suppose we used Givens Rotations to place 

the following matrix in UTF: 

2 6 1 -1 1 2 

o -3 o 5 10 -15 
A = 

o o 1 o 1 o 

o 4 10 -5 20 o 

o o - 1 2 -1 3 

If x = (6,-3,0,4,0)T denotes the second column of A, we need 

to introduce a zero into the (4,2) position of A or the 

t = 4 position of x. We shall choose s = 2, for if we choose 

s = 1, we will destroy one of the zeroes in column one. Let 

w = I (_3)2 + (4)2 = 5. Then 

1 0 0 0 0 

3 40 0 0-S S 
G 0 1 0 0= I 0 

4 30 -5 0 -s 0 

0 0 0 0 1 

2 6 1 -1 1 2 

o 5 8 -7 10 9 

o o 1 o 1 o 

o o -6 -1 -20 12 

GA 

o o - 1 2 - 1 3 
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1 o 2 -3 

o 1 -1 4 
A = 

2 -1 o 3 

-3 4 3 -1 

As we noted, one cannot use the corners of the matrix 

to define a Givens Rotation G which has the property that 

GAG T has zeroes at the corner positions. However, we can 

use rows 1 and 2 (and columns 1 and 2) to annihilate the 

desired elements. We are interested in using a linear comb­

ination of the elements in the (1,4) and (2,4) positions to 

"zero" the (1,4) position: 

w I (_3)2 + (4)2 = 5 

4 3 0 0S S 

3 4 
0 0-S S 

G = 
I 

0 0 1 0 

0 0 0 1 
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As far as obtaining the UTF for a linear system Ax = b, 

Householder Reflectors will accomplish the same thing that 

Givens Rotations will accomplish, but with half the labor. 

So whyconsider Givens Rotations? Although we shall not have 

time to illustrate the fact, Givens Rotations can be 

employed in certain settings of either of the two basic 

problems (Ax = b or Ax = AX), showing a distinct advantage 

over the Householder Reflectors. 

Furthermore, the scheme given in (2.5) is designed to 

Thintroduce a zero in the t component of a given vector x or, 

as demonstrated in Example 3, introduce a zero in the (t,s) 

position of a matrix. However, the matrix G will not intro­

duce zeroes in the "corner positions" (i.e., (t,s), (s,t)) 

for symmetric matrices A by pre and post multiplying A by G 

and GT. Unless a better scheme is found, a second Givens 

Rotation applied to a matrix A may destroy the zero intro­

duced by the first Givens Rotation, particularly if one is 

seeking to tridiagonalize A. A slight modification of the 

scheme (2.5) will lead to a scheme which will annihilate 

symmetric elements of a symmetric matrix. 

We shall ill ustrate the basic procedure through a 

simple example and trust the reader to the task of describ­

ing a general algorithm. 

Example 4. Consider the matrix A below in which we 

plan to introduce zeroes in the (1,4) and (4,1) positions by 

a similarity involving a Givens Rotation: 
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Then 

4 3 0 o I I 1 0 2 -35 5 

3 4 
0 0-5 

GAG T = 
5

I 
0 0 1 0 

0 0 0 1 

4 3 1 05 5 

3 4 -2 5-5 "5" 
= I 

2 -1 0 3 

-3 4 3 -1 

1 o 1 o 

o 1 -2 5 

= 
1 -2 o 3 

o 5 3 -1 

0 1 -1 4 

I GT 

2 -1 0 3 

-3 4 3 -1 

4 
5 

3
-5 0 0 

3 
5 

4 
5 0 0 

0 0 1 0 

0 0 0 1 

In a similar fashion, the (1,3) and (3,1) positions 

could be "zeroed" by a Givens Similarity Rotation by using 

rows (and columns) 2 and 3. Oitto for the (2,4) and (4,2) 

positions. Consequently, the symmetric matrix A above can 

be tridiagonal ized. 



36 

QR DECOMPOSITION 

For each matrix A there is an orthogonal matrix Q and 

an upper trapezoidal matrix R such that A = QR. One can use 

such decompositions for square matrices toconstruct an iter­

ative sequence of matrices whose diagonal elements converged 

to the eigenvalues of the given matrix A. Furthermore, the 

QR decomposition of a matrix can be used in solving least 

squares problems. 

There are several methods which can be used to deter­

mine a QR Decomposition for a given matrix: Gram-Schmidt 

Orthogonalization, Givens Rotations, and Householder Reflec­

tors. We shall employ Householder Reflectors since they 

lead to a simple procedure which is easily explained. 

Suppose A is an mxn matrix and t = minimum {m,n}. Let 

QT = Ht ... HZH 1 denote a product of Householder Reflectors 

such that QT A = R where R is upper trapezoidal: 

QT A R 

= ~ 
Then, since QT is orthogonal, A = QR. If A is square, R is 

square and upper triangular. 
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Example 5. Consider the matrix A 9iven by 

142 7-3 

A = I - 3 0 14 

6 7 7 

For x = (2,-3,6)T, define u = (9,-3,6)T so that 

TH1 = I - + uu 
u u 

2 3 6
-7 7 -7 

3 6 2 
= I 7 7 7 

6 2 3
-7 7 7 

1-7 14 
3 -2 

H1A = 0 0 17 

L 
0 7 1 

For x = (O,7)T, define uT = (7,7) so that 

1 o o 

H2 = o o -1 

o -1 o 
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-7 14 
-3 -z 

HZHI A ~ R ~ 

I 
0 - 7 - I 

0 0 - 1 7 

Consequently 

A ~ QR ~ (H 
I 

H
Z

)R 

~ I 

Z
-7 

3 
7 

6
-7 

6 
7 

Z
-7 

3
-7 

3
-7 

6
-7 

Z-7 I I 

-7 

0 

0 

14 
3 

-7 

0 

-Z 

-1 

- 1 7 

Note, although HI and HZ are orthogonal and symmetric, Q 

need not be symmetric. 

SINGULAR VALUE DECOMPOSITION 

Suppose A is a real m by n matrix and a(G) ~ 

{a l ,aZ'" .,a k} is the set of nonzero non-negative real 

eigenvalues of the gramian matrix G ~ ATA. If si ~ /OJ for 

each i, then there exist orthogonal matrices U and V mxm nxn 
such that 

A ~ U V ( Z . 6 ) [: :] mxn 

where D ~ diag (sl'sZ'" .sk)· 
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The SVD lends nicely to the least squares problem where 

one is primarily concerned with the (usually) inconsistent 

system Ax = b. However, even if the system Ax = b does not 

arise in the context of a least squares problem, but rather 

is a nonsquare or inconsistent system arising from some 

other physical problem, the SVD of A provides a least squares 

solution. That is, if from (2.6) we define 

TAT ~ VT [ : - 1 :] u

nxm 

then AT is called the Moore-Penrose inverse of A and 

X + ATb is the unique vector of smallest norm which mini­o 
mizes the quantity IIAx - b11 2 . Geometrically, X iso 
obtained by first locating the vector Z = Ay in the range of 

A where Ilz-bl1 2 = IIAy - bl1 2 is smallest. Then among the 

vectors in the 

~~ 

Figure 4 
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solution set S of the consistent system Ax = z choose X to o 
be of smallest length. That is, X c S = y + N(A) is the o 

one vector for which IIAx - bl1 2 and IIxol12 are smallest.o 
We shall indicate one method to find the SVD given in 

(2.6). However, although we shall not present the Golub-

Reinsch Algorithm at this time, which employs both Givens 

Rotations and Householder Reflectors, one should know that 

it is one of the best methods which exist for finding the 

SVD. 

Method to find SVD. 

Step 1. Find the nonzero eigenvalues of G = ATA. o(G) = 

{01,02,···.okl where 01 ~ 02 ~ 03 ~ ... ~ ok> O. 

Step 2. Find a complete orthonormal set of eigenvectors for 

G, say (v 1 .v 2 '·· .v k•· ..• v ).n
Step 3. Find the nonzero eigenvalues of H = AA T, a(H) = 

o(G). 
. -1 IStep 4. For each 1 < 1 < k set u· = s. Av. = (oi -1 )Av i · - 1 1 1 

Let {u k+1•... ,urn' be an orthonormal basis for N( H) . 

~~2' De fin e V = [v 1 v2 v3 ... vn] T, U = [u 1 u2 ... urn] 

and D = diag (sl,s2,·.,sk) where si = ~. 

Example 6. Find the SVD for the matrix 

o -2 :]A " [: 3 0 
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The eigenvalues of G = ATA and H = AAT = [5 0] 
o 25 

are 01 = 25 and 02 = 5. A complete set of eigenvectors for 

G can be found by finding a basis for each solution set to 

(AI - G}x = 0 for each A E o(G) = (25, 5, oj. 

For A = 25, the augmented matrix for (251 - G)x = 0 is 

24 o 2 o o 

o 16 o -12 o 

2 o 21 o o 

o -12 o 9 o 

and the corresponding REF is 

1 o o o o 

o 1 o 3
-4 o 

o o 1 o 1 

o o o o o 

so the solution set N(251 - G) has dimension one and vi = 

(0, 
3
4' 0, l)T is a basis element. v1 - ,- vi I I Iv; I I = 

( 3 4
0'5,0'5) 

T 
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- G)x = 0 is 

one and 

= V z / IlvZ11 = 

-G)x = 0 = Gx 

4 

o 

2 

o 

and the corresponding 

1 

0 

0 

0 

For A = 5, the augmented matrix for (51 

o 2 o o 

-4 o -12 o 

o 1 o o 

-12 o -11 o 

REF is 

0 1 
2 0 0 

1 0 0 0 

0 0 1 0 

0 0 0 0 

So the solution set N(51 - G) has dimension 

V z = (-i, v20, 1, O)T is a basis element.
 

-1 I 2 I T
( / 5, 0, / 5, 0) . 

For A = 0, the augmented matrix for (01 

i s 

1 o -2 o o 

o 9 o 12 o 

-2 o 4 o o 

o 12 o 16 o 
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and the corresponding REF is 

1 o -2	 o o 
4o 1 o	 o"1 

o o o o o 

o o o	 o o 

So the solution set N(G) has dimension two and can be 

described as all vectors of the form n = (2z, -t w, z, w)T. 

Choose z, w so that (v), v4} is an orthogonal basis, say 

v3 = (2, 0, 1, O)T and v4 = (0, -4, 0, 3)T. Define v3 = 
Ir Ir T	 4 3(2/.5, 0, 11.5, 0) and v4 = (0, -S' 0, S). 

An orthonormal set of eigenvectors for H= AAT = [5 0]
o 25 

i s 9 i ve n by u1 = ~A (0, ~, 0, t) T = (0, 1) Tan d u2 = 

1 A (-l//S, o. 211r;, 0) T = (_I,o)T. If V = [VI v2 v3 v4 ] T 
= 

Is 
3	 40	 0S	 "5 

-
1
liS 0 2

liS 0
 

,,' U < ['1 ',] < [:
 -:J
2	 10	 01lis lis 

4	 30	 0-s S 



.5.l 0 t­

2_ O 2 

.li 0
f 

.s­ 0 I 

A 
l:
 

= In 

0 

0 

0 0 

0 0 
IA = IV 'ilJOWJiHnJn.:l 

.s-
I 

0 

o 2 
I 

51 

:] 
= uil4l n V 

0 

H
 



Chapter 3 

SUMMARY 

In an attempt to distinguish the general strategies for 

eigenvalues, as well as the peculiar competences of our sev­

eral algorithms, we here tabulate their principal properties, 

placing special emphasis on the amount of work that each 

requires. Generally our measure is the number of multipli­

cations, although we comment additionally if the square-root 

is noticeable. 

The finite part of our strategy, reduction to a special­

ized form, is covered in Table 3.1. 

Table 3.1 

Number of Multipl ications in the Reduction 
to Specialized Form 

Symmetric Nonsymmetric 

General to Banded to General to 
tridiagonal tridiagonal Hessenberg 

lOn'Givens jn ' 4n 2 (m - l/m) 3"+n 2 /2 square roots 

Householder ~nl 5n,
3 +n square roots 3" 

Turning to the infinite strategy that takes a trial 

value and then evaluates the characteristic polynomial to 

45 
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see if it is, indeed, zero there, we find that each evalua­

tion takes the number of multiplications given in Table 3.2. 

The advantage of tridiagonal form is immediate and overwhelm­

ing, but Hessenberg form is not to be disparaged if 

tridiagonal is unavailable. 

Table 3.2 

Number of Multiplications to Evaluate, for One Trial A, 
the Characteristic Polynomial Given as a Determinant 

General determinant n3 /6 

Hessenberg determinant n'/2 

Tridiagonal determinant 2n 

If we contemplate using Newton's method to select our 

next trial A, we need not only the value of the characteris­

tic polynomial but also that of its derivative. Since each 

of these takes about 2n multiplications from tridiagonal 

form and since we might expect perhaps five cycles from 

Newton to liberate one root, we estimate 20n multiplications 

per root. Assuming we want all n roots, this leads to a 

total labor for a genera1 symmetric matrix of 

2-n' + 20 23 n . 

Turning to the alternative infinite strategy of the LR 

family, we find that the efficiency of the several algorithms 

is governed largely by their ability to preserve specialized 

patterns of zeros. Thus LR with interchanges requires fewer 

multiplications than QR, but messes up banded symmetric 
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matrices and is thus not suitable for them. Table 3.3 gives 

the details, showing work load and the properties that are 

preserved. The last column gives the statistics on general 

matrices--emphasizing the unsuitability of this algorithmic 

family for such use. 

Table 3.3
 

Number of Multiplications Per Iteration in the LR Family
 

Symmetric Nonsymmetric 

Banded Tridiagonal Hessenberg General 

QR BS 
3nm 2 

TO 
5n 

H 
4 n 2n'2 

Cholesky BS 
nm 2 

TO 
2(n-1) 

---_._---­

Simple comparisons of arithmetic labor per iteration 

are useful for avoiding gross misapplications of our algor­

ithms, but they should not be pushed too far. Laboratory 

experience shows that eigenvalues of Hessenberg matrices are 

usually produced to some standard accuracy with fewer QR 

iterations than with LR. Thus the QR labor is not four 

times as great, in spite of Table 3.3. 

The problem of finding eigenvectors arises far less 

often than that of finding eigenvalues--and this is perhaps 

fortunate. For the eigenvalue methods that succeed best 

with large matrices do not directly produce the vectors, and 



4B 

thus we must expend considerable additional computational 

energy if we would have our vectors too. As usual, the 

formal statement of the problem is simple enough. We have 

found one (or all) of the eigenvalues, Ai' of the system 

AX. = A. X. , "
 

and we must now solve the linear homogeneous system of 

algebraic equations 

(A - A.I)X. = 0, ,
 

for the corresponding vector Xi' Because of the homogeneity 

we are free to pick the value of one component of Xi and to 

reserve one equation from the system, whereafter we have a 

well-posed problem in linear equation solving. 
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C Main Program: 

DOUBLE PRECISIDN	 A(10,10), T(ID,10), H(10,ID), P(10,10), 
G(10.10), B(10,10). R(10,10). Q(ID.l0), 
QT(ID,10), AB(ID.l0), AT(10.ID), X(10), 
D. AD. TS. SIGN 

C A is the square matrix of order 1'4 whLch is read in. 
C The eigenvalues of A will be returned as the diagonal 
C elements of square array T of order N. The remaining 
C variables H. p. G, •••• SIGN are reqUired by the 
C subroutines which are used. The main subroutLne is 
C SUBROUTINE SYMEIG which handles all the logic involved. 

C Inputting the matrix A: 

READ (5.10) 1'4 
10 FDRMAT (13) 

DO 40 I :: 1. 1'4
 
DO 30 J :: 1. N
 

READ (5.20) A(I.J) 
20 FORMAT (IX, Fl0.5) 
30 CONTINUE 
40 CONTINUE 

C Printing the matrix A: 

DO 60 I :: 1. N 
WRITE (6,50) (A( I ,J), J :: 1. 1'4) 

50 FORMAT (IX. 'I '. 10F13.5, , I') 
60 CONTINUE 

CALL SYMIEG (A, 1'4, T, X, H, P, Q, R, G, QT, AT, B, AB) 

C Printing the eiqenvalues: 

DO 80 I :: 1, 1'4 
WRITE (6.70) I, T(I,I) 

70 FORMAT (IX, 'EIGENVALUE 11'. 13, , :: Fl0.5) 
80 CON TI NUE 

CALL EXIT
 
END
 



C 

C
C
C
C
C
C 

SUBROUTINE SYMIEG(A, N. T, X, H, P, Q, R, G, QT, AT, B, AB) 

A 1S a aqua~e a~~ay of o~de~ N (Real, Double P~ecision).
 
Eigenvalues of A a~e ~etu~ned as the diaqonal elements of
 
ar~ay T of o~der N.
 
The sub~outines which a~e used are the following:
 

P~imary Subroutines:	 TRIHES (T, N, X, H, P) 
QRSYMM (T, N, Q, R, G, QT, p) 

C MATPRD (A, B, AB, 11, 12, 13) 
C 
C Seconda~y Sub~outines: GIVENS (G, N, I, J, XC, YC) 
C
C
 

HOUSER (X, N, L, H) 
TRANSP (A, AT, 11, 12, 13) 

DOUBLE PRECISION A(N,N), 
R(N,N). 

T(N,N), 
G(N,N), 

X(N), H(N,N), P(N,N), Q(N,N), 
QT(N,N), AT(N,N), AT(N,N), 

B(N,N), AB(N,N), D, AD, TS, SIGMA, SIGN 

DO 10 I = 1, N 
DO 10 J = 1, N 

T(I,J) = A(I,J) 
10 CONTINUE 

C P~oduce symmet~ic T~idiaqonal f~om T 

CALL TRIHES(T, N, X. H, P) 

C Implement QR alqo~ithm with Wilkinson shift SIGMA 

M = N ­
D020I=1,M 

J =
 N - I
 

Compa~e off-d1agonal elements to "ze~o" 

50 IF (DABS(T(J+1,J» .LT. 1.D-12) GOTO 20
 

C 

C
C

If T(J+1,J) is close to ze~o, goto 20 fo~ "CONTINUE" 

D = (T(J,J) - T(J+1,J+l»!2.00
 

When D = 0 (Diagonal ente~ies equal) bypass to statement 90
 
to avoid division by ze~o.
 

AD = OABS(O)
 
IF (AD .L T. 1.0-1:!) GOTO 90
 
TS = T(J+1,J)*T(J+1,J)
 
SIGN = 0 ! AD
 
SIGMA = T(J+1,J+1) - SIGN*TS!(AD + DSQRT(O*O + TS»
 
GOTO 60
 

90 SIGMA = T(J,J) - DABS(T(J+1,J»
 

Pe~fo~m Shift: T = T - SIGMA 

60 00 30 L = 1, N
 

C



30 
T(L,L)

CONTINUE 
= T(L,L) + SIGMA 

C Call for QR Decomposition 

'~ 

C 

CALL QRSYMM(T, N, Q, 

Set T = QR + SIGMA 

R, G, QT, P) 

CALL MATPRD(R, Q, T, N, N, N) 

40 

DO 40 L = 1, N 
T(L,L) = T(L,L)

CONTINUE 
+ SIGMA 

GOTO 50 

20 CONTINUE 

RETURN 
END 

/INCLUDE 
/INCLUDE 
/ INCLUDE 

TRIHES 
QRSYMM 
MAT PRD 



SUBROUTINE TRIHES(A, N, X, H, p) 

C This subroutine puts an N by N symmetric matrix Into
 
C Tridiagonal, or an N by N matrix into Upper Hessenberg form.
 
C The calling format is TRIHES(A, N, X, H, Pl.
 
C Thia subroutine usea two other subroutines:
 
CHOUSER( X, N, L, H)
 
C MATPRD(A, B, AB, 11, 12, D)
 
C The Tridiagonal or Upper Hessenberg form will be returned as
 
C the matrix A.
 

DOUBLE PRECISION A(N,N), X(N). H(N,N), P(N,N) 

NM2 = N - 2
 
DO 200 J = 1, NM2
 

L = N - J
 

C Next loop builds the single-dimentioned vector X ~hich equals 
C the Jth column of A to be sent into subroutine HOUSER. 

DO 100 I = 1, N 
XCI) = A(I,J) 

100 CONTINUE 

C The next call statement finds 
C components of the X vector. 

CALL HOUSER (X, N, L, H) 

C The next two call statements 
C and then on the right by the 
C statement above. This zeroes 
C below the main subdiagonal in 
C and also the elements in the 
C superdiagonal in a symmetric 

the HOUSEHOLDER of the last L 

multiply the matrix A on the left 
HOUSHOLDER found in the call 
out the element in the Jth column 

a symmetric nr nonsymmetrlc matriX 
Jth row to the right of the main 
matrIx. 

CALL 
CALL 

MATPRD 
MATPRD 

(H, 
(P, 

A, 
H, 

P, 
A, 

N, 
N, 

N, 
N, 

N) 
N) 

200 CONTINUE 

RETURN 
END 

!INCLUDE HOUSER
 
!INCLUDE MATPRD
 



SUBROUTINE QRSYMM (T, N, Q, R, G, QT, P) 

C Subroutone QRSYMM finds Q, the transpose of GIVENS ROTATIONS,
 
C and R, an upper tringuler matrix, from a given tridLegonal
 
C eymmetric metrix T such that T = QR.
 
C
 
C This subroutine uses subroutLnes GIVENS, MATPRO, TRANSP.
 

DOUBLE PRECISION	 T(N,N), Q(N,N), QT(N,N), G(N,N). P(N,N), 
R(N,N), XC, YC 

C Initializinq QT, product of GIVENS ROTATIONS, as IDENTITY. 

DO 20	 I = 1, N 
D010J=1,N 

QT(I,J) = O.DO 
10 CONT INUE 
20 CONTINUE 

DO 30 I = 1, N 
QT(I,Il = l.DO 

30 CONTINUE 

C XC is the element to be used to zero the element VC Ln theLr 
C respective Ith end Jth position (usinq GIVENS ROTATIONS). 

M = N	 ­
DO 60	 I = 1, M
 

J = I + 1
 
XC=T(I,I)
 
vc = T(J,Il
 

CALL GIVENS (G, N, I, J, XC, VC) 
CALL MATPRD (G, T, R, N, N, N) 

C	 R is stored into T for next multLplicatLon. 

DO 40	 L = 1, N 
DO 40	 K = 1, N 

T(L ,K) = R(L ,K) 
40 CONTINUE 

CALL MATPRD (G, QT, P, N, N, N) 

C	 P is etored beck into QT, the product of GIVENS. 

DO ~o L = 1, N 
DO ~O K = 1, N 

QT(L ,K) = P(L ,K) 
~o CONTINUE 

60 CONT I NUE 

C In solving R = QT*T for T, we must teke the inverse of QT; 
C rather the trsnspose, since QT LS orthogonsl. 
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SUBROUTINE MATPRD(A, B, C, II, [2, 13) 

C A and B are the two matrlces to be multlplLed.
 
C AisI1byI2,
 
C B is 12 by 13,
 
C C ia the product.
 

DOUBLE PRECISION A(I1, 12), B(I2, 13), C(Il, 13) 

DO 300 I = 1, II 
DO 200 J = 1, 13
 

CU,J) = O.
 
DOI00K=I,I2
 

C(I,J) = cU,J) + AU,K)*B(K,J) 

100 CONTINUE 
200 CONTINUE 
300 CON TI NU E 

RE TU RN
 
END
 



SUBROUTINE GIVENS(G, N, I, J, X, Y) 

C This subroutine returns a GIVENS ROTATION which uses the Ith
 
C component X to zero out the Jth component Y.
 
C G is an N by N array.
 
C If Y = 0, then G is returned as Identity.
 
C If X = 0, then G is returned as the permutation matrix Which
 
C premutes rows I and J.
 

DOUBLE PRECISION G(N,N), X, Y, XYLEN 

C	 Set G aa Identity. 

no 10 L = 1, N 
DO 10K = 1, N 

G(L , K) = O. DO 
10 CONTINUE 

DO 20 L = 1, N 
G(L ,L) = 1.00 

20 CONTINUE 

IF (OABS(Y) .LT. 1.0-12) GOTO 100
 
IF (OABS(X) .GT. 1.0-12) GOTO 80
 

C	 Interchange rows I and J of G when X equal 0 and Y not equal O. 

GO ,I) = 0.00 
G(J,J) = 0.00
 
G(J,I) = 1.00
 
G(I,J) = 1.00
 
GOTO 100
 

C	 Compute XYLEN. l~ngth of vector (X,Y). 

80	 XYLEN = OSQRT(X·X + y.y) 

C	 Test fo r J < I. 

IF (J .LT. I) GOTO 90
 
G(I,I)=X/ XYLEN
 
G(J,J) = GO,I)
 
G(I,J) = Y / XYLEN
 
G(J,I) = -GO,J)
 
GOTO 100
 

90	 G(I,J) = Y / XYLEN 
G(J,J) = GO,I) 
G(J,I) = X / XYLEN 
G(I,J) = -G(J,n 

1'00	 RETURN 
END 



SUBROUTINE HOUSER(X , N. l, H) 

C Suhroutine Houser is called to compute Householder Reflector H 
C of order N. 
C l is a number which designates the last I components of the 
C single subscripted variable X of length N on which the 
C Householder Reflector H 15 to be determlned. 

OOUBlE PRECISION X(N), H(N,N) I XlEN, COFF 

C	 Initialize H to b Identity. 

00 10 I = 1 I N
 
00 10 J = 1 I N
 

H(I,J) = 0.00 
10 CONTINUE 

DO 20 I = 1 I N 
H(I,n = 1.00 

20 CONTINUE 

C Compute starting value of component Index for X, namely the 
C Index at which true vector begins. 

NSTART = N - l + 

C	 Compute length of vector X from Nstarl to N 

XlEN = 0.00 

DO 30 I = NSTART, N 
Xl EN = XlEN + X(I)*X(I) 

30 CONTINUE 

C Test Xlen for zero. If zero, send H back as Identtly 

IF (XlEN .l T. 1.0-12) GOTO 100 
XlEN = OSQRT(XlEN) 

C	 Reset component Nstart of X to plus or minus Xlen 

IF (X(NSTART) .GE. 0.00) GOTD 40 

XlEN = -XlEN 
40 X(NSTART) = X(NSTART) + XlEN 

C Now compute coefficient 2 / (UT * U) 

COEF = 0.00 
DO 50 I = NSTART, N 

COEF = COEF + X(I)*X(I) 
50 CONT INUE 

COEF = 2.00 / COEF 

C Now compute final enteries of Reflector H 
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SUBROUTINE TRANSP(A, AT, IR, IC) 

C Thls subroutine will find the Transpose of Matrlx A wlth the 
C number of rows equal to IR and the number of columns equal 
C to IC. The transpose will return as matrix AT. 

DOUBLE PRECISION A(IR, IC), AT(IC, IR) 

DO 20 J = 1, I C
 
DO 10 K = 1, IR
 

AT(J,K) = A(K,J) 
10 CONTINUE 
20 CONTINUE 

RETURN
 
END
 


