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CHAPTER 1

For a square matrix A the question arises whether or not there is
a nonzero vector x which, on multiplication by A, is transformed into
a multiple of itself. That is, if A is an nxn matrix and R" denotes the
n-~dimensional vector space over the real numbers R, define the linear
transformation L:R" + R by L(x) = Ax for x in R". 4 fairly important
tasi in many applied problems is the seeking of vectors x sucn that x
and L.(x} are parallel. This situaticon occurs in all applications in-
volving vibrations: aerodvnamics, elasticity, nuclear physics, mechznics,
chemical engineering, biology, and differential equations,

Consider a system of n first order linear differential equatioxs

witu constant coefficients to Be selved simultanecusly:

(1.1) ul'(t) allul(t) + alzuz(t) + ...+ a]nun(t)

v —
u, (L) = a21ul(t) + azzuz(t) + ...+ aznun(t)

U -
u (t) = anlul(t) + anzuz(t) + ...+ annun(t)

In standard form, the system (1.1) may be written as

(1.2 du/dt = Au
where ¢ = (ul(t), uz(t), e s un(t))T and du/dt = (ul'(t), uz'(t), e
Xt

un'{t))l. If u = xe is a solution to (1.2), then cu/dt = axe b= Ay



A
and AxeAt = Axe t. Thus, Ax = ix. Conversely, if there exists X and

¥ % 0 such that Ax = Ax, then d/dt(xeAt) = Axekt = Axekt, and we select
u to be xext. The practical importance of studying these particular
transfcrmations is now realized. Determining A and x # 0 which satisfy
Ax = Ax will give rise to a sclution for the system (1.2).

vy

Ve now officially formulate tne algebraic eigenvalue-eigenvector

_—

ororlier. Let A ve a matrix of crder n with complex entries. TFind a

cor-lex muochber 1 such tnat there exists a complex vector x, x # 0, where
Ax = wx. Th2 eigenvalues of A are defined to e those numbers + for

wiltn the eguation A< = Ax has a sclution x # 0. CELach nonzero vector x

1
r
b
I
o
Fh

or @ given eigenvalus * is cazlled an eigenvector of
covresorading to . Tne werd Teigenvalue' is a hvbrid one (Meigen”
. - i 1t +

in Gerzman mesas proper’). LCigenvalues are also called proper values,
characterist - values, and latent values; eigenvectors are correspond-

inglv called proper vectors, etc. In this study the terminology used

wiil be eigenvalue and eigenvector.

'hen determining the values of A for which the equaticn Ax = *x has
ncatrivial solutions, Ax = “X can be written in the equivalent forms:
(1.3 (A - Al)x =0



(1.4) (a11 - ll) a7 ‘e & X
ayy (a22 - 12) . ay X,

. - = Ol
L "y 4h2 e (ann - hn) *n

Tne matrix equation (l.4) represents a homogeneous system of linear alge-
braic equations. An obviecus sclution is the zero vecter. Since this is
seldom of interest, we call x = 0 the trivial solution and seek x # O
sucii that Ax = *X.

hontrivial solutions exist for equations such as (1.4) if, and only
if, the coefficient matrix is singular; in other words, if, and only if,
the determinant of the coefficient matrix vanisines. Since (A - AI) ccn-
tains the parameter *», we can find nonzere vectors to satisfy (1.4) if,
and only if, we can find values of » satisfying det(4 - AI) = D. The

definition of a determinant implies that A satisfies a polvnomial eguation

5 1
(1.3) (2y; = 2p) g fe a1, |
- |
421 (ayy = A0 oen n |
|
F(A) = det(A - AI) = .
4al an2 v (ann = n)




which has exactly n roots Al’ 32, cer An' The equation (1.53) is known

as the characteristic equation of A. The polynomial determined by the

det(A - AL) is the characteristic polynomial of A. Also, the spectrunm

of A is defined as o(A) = {AiAx = Ax for some x # 0}, In other words,

G(A) is the set of distinct roots of the characteristic equation of the
matrix A. Consequently, o(4) does not reveal the multiplicity of each

Toot.

Althougn the algebraic eipenvalue-eigenvector probler cccurs in
many practical situations, the scope cof this studv is limited to present-
ing metucas to determine the spectrum of a real matrix A. ZGeneral pro-
perties ©f eigenvalues are stated ir Chapter II to lav tne groundwerk
for tae studv. EBeliore actuzlly cetermining eigenvalues of the matrix A,
tae usual initial procedure is & reauction step where A is transforned
to a "similar" matrix B which has the sane eigenvalues as A. The mairix
B nhas a simpler structure than A, tnereby reaucing the number of computa-
tions necessarv to determine tue eigenvalues. Reduction metnods are des-
crives in Chapter III. Tre algoritim to actually compute the eigenvalucs,
presented in Chapters IV ans V, is the powerful CR algerithnm of Francis
EB, P 313]. Remenmber, we shall restrict our attention to real square

matrices only.



CHAPTER 11

In order to form a pasis for further study, in this chapter we will
consider some basic eigenvalue properties and also define terminolegy to
be used. Again, this study is restricted to real matrices because compu-
tations for real matrices are simpler than for matrices with complex
entrie:, and results can easily be adapted.

At tnils point we have not vet placed anv restrictions on the struc-
ture of & matrix other than reguiring that it is & real nxn matrix. The
form an eigenvalue takes, given a certain structure for the matrix to
wolcn it is asscciated, is not unexpecteu. For example, we can deternine

waether the eigenvalues of a symmetric matrix are real or complex. Xecall

THENLL. £.1 Tne eigenvalues of & Hermitian matrix are real.
Procf. Llet A be a Hermitian matrix witn tue eigenvalue X. Then there

exists a vector x # C sucir that

(2.2) Ax = AX.

Thus, taxing conjugates and transposing both sides, we have

vaere x* denotes the vector wlose elietents are tinie respective conjugates

. - . . - .
of tne elements of the vector x an: + is the conjupate of . Xecause A

is Tlermitian, the conjugate transpose of 4 is A. Premultiply (2.2) bov

n



x* whicn resulfs in x*Ax = jx*x, Postmultiply (2.3) by x which results
in x*Ax = AXx*x. We find that Ax*x = Ax*x. Since x # 0, x*x > 0 and it
foliows tnat A = x.m
Because the set of symmetric matrices is a subset of the set of

nerrmitian matrices, we now know the rocots of symmetric matrices are real.

Continuing to exanine the structure of eigenvalues under specific
acitions, we consider the relatienship of the eigenvalues of 4 to the
eipervaates of AT or of tae inverse of A, Or the questicn arisss as to

Senvhiues are £Ifccted i1 tne sane ceonstant 1s acdec te each Jdia-

N . o R 3 ~ L ey~ - 44 - = - Fos o
L4 .o I toe metrin A iz nonsingu, voand 1 oM = tnofor o x #

E:j_‘,‘\=\1 \\
Pricl, we Lre given toct Aw = oox for % # 0. If A = U, then A= U

Sirn.c % # ), taen A must be singular, contradicting the hwpothesis.

for., " # 0. Tnen premaltiolication cf Ax = %x oy the inverse of & result:

1

S tAmo= 0 Tiw ooroxo= A w. Taus, (1/32)x = A T x.m

teiLes taat the cmatrix A wnd toe in-erse of 7 hHove recinraceal

vifenVe_ucs.  Iaterestimply, though, the eigenvector of & corresponding

to » Is Lae same as tie eigenvector of & correspondiag to 1/%.

L. To0 205 If taere exists ¢ osuch that Ax o= ix for some x # 0,

Froof. 1) %We are given that Ax = 2x for some x # U.

) . -1 L=l . . s
<) Jssunme that A o= A x for some = # 0. Ihen AA X =
L -1 n n-1, L n-1 0 . . . -
. AT = A L= A = :''x. By mat.a incuction, if A = Ax



for some x ¥ 0, then A% = An-lx for x # 0 for all ratural numbers n.m
Thus, A, the eigenvalue of the matrix A, when squared, becomes the

corresponding eigenvalue of the matrix Az. Again, the eigenvector of A

corresponding to & is the same as the eigenvector of A2 corresponding to

i
s

A5,

THEOREM 2.6 If the matrix A has an eigenvalue } for some x # 1,
then the matrix A + kI has an eigenvalue % + k with corresponding eigen-
vector .

Proof. (A + KId)x = Ax + kIx = 2x + klx = *x + kx = (M + W)=.m

Lote that incrementing each diagonsl element of the matrizx A by the
value of k also increments tre eigenvalues of A by the value k.

A3 srated in Cnapter I, the spectrum of the matrix A does not reveal
tie muitinlicitvy of the eigenvalues of A. Following is tae delinezation
between the algebraic multiplicity and the geometric multiplicity of an
eigenvalue of the matrix A. Tnhe cnaracteristic polvnomial of the matrix
A can be written as a function of E; £(.) = det{(A - 1) which is an uth-
degree pelyvnomial of the form

n( n n-1

{(2.7) fu) = (=1) (¢ + a N + ...+ 0D,

If o(A) = {Al’ ... , A }, tnen f can be represented in the form

k

L]

T
~
Fi~

n

(2.8) FGe) o= (17 = 2076 = 2D

Tie integer 51 is called the alpebraic multirlicity of the eigenvalue



Ai. Along with the zero vector, the eigenvectors (not uniquely deter-
mined) corresponding with the eigenvalue A fill the linear subspace of
eigenvectors associated with A. If x and y are eigenvectors belonging
to the eigenvalue A, then so is every linear combination ax + yy # 0.
The maximum number of linearly independent eigenvectors asscciated with

the eigenvalue X (in other words, the dimensions of the subspace) is the

geometric multiplicicy of the eigenvalue . The geometric multiplicity

of > can also be described as the dimension of the null space of A - ° 1.
Wiuen beginning the process of derermining the spectrum c¢f the matrix

A, we will procuce a matrix B whose elgenvalues are the sawe as A. The

matrix B will take one of two forms. One possibility will be a tridia-

gonel matrix T with tij = 0 if [i-4% » 2. The alternate form that the

v o -

-

matrix B tekes is either a lower Kessenberg matrix H with hi'

1l
<
-
.

j > i+ 2 or an upper liessenberg matrix M with hi' =0 if 1 > 3+ 2.

When every subdiagonal element of an upper HesSsenberg matrix is nonzera,
the matrix is an irreducible llessenberg matrix.

Wwe can write the n eigenvalue equations of the nxn matrix

i
f
n

(2.9) Ax(l) = klx(l)
(D =@
Ax(n) =7 x(n).



(1) - (2) (n)

If X is the matrix whose n columns are x , X 3 see 5 X , then (2.9)

can be written as the single matrix equation

(2.10) AX = XA,

where .. is the diagonal matrix of the eigenvalues of A,

{2.11) A

-

o —
o
L

If the columns of X in (2.10) form a set of n linearly independent

geigenvectors, tnen X is nonsingular and we can write (2.10) as

In crder to proceed with this discussion, we need two definitiens.
The matrix B is said to be similar to the matrix A if, and only if, there
exists a nonsingular matrix P such tnat PAP = B. This is defined as

a similaritv transformation on A.

Producing a matrix b whose eigenvalues are the same as a given matrix

A is accomplisned br a finite nurber of similarity transformations
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-1 . _
(Ai Pi (-1F; o i=1,2,...,k)
. . - -1 - = i
where E = Ak = PAP T, P = PkPk-l “e- ‘2P1. The spectrum of B is, in fact,

the sane as the spectrum of A.

THEOREY 2.13 If A and B are both nxXn matrices with real entries and

. : . . L=l ]
there exists & real, nxn nonsingular matrix P such that PAP = B, tinen

A and b have the same set of eigenvalues.

Proof. 1Llet ' be an eigenvelue of A and x be an assoclated eigenvector
so that Aw = ix, Let v = Px wuich means x = P "y. If we substitute for
. c i -1 - ; . -1 g .
¥, e obrain AP Txv = AT Tv wihich mav be written PAP Ty = FiP Tv o= vl
. N1 . . - . - - - \
Since BPAP = 3, Bv = Jv., Thus, - is an eigenvalue of L. Similariv, let

be an eigenvalue of E and let v be an associated eigenvector so that

Ly = v, Let x = P "y wnhich means y = Px. If we substitute for v, we

. . . . - . -1 -1. .\ .
ootain BPx = Px which may be written P "BPx F "APx = 2Ax. Since A =

s, Ax = ;x., Thus, A 1is an eigenvalue of A. m

It will bhe our geoal in the next three cnapters to show now tc chicose
a matrix b whose eigenvalues are the same as a given dense (relazivelw
few zeros) matrix A. The matrix B shall be selected in such a wayv that
1) the structure of the watrix B is "simpler"” than the structure of the
matriz A (i.e., has a greater nymber of zero entries); 2) the determina-
tion of the eigenvalues of the matrix B is as "simple' as possible {i.e.,
requiresz as few operations as possible) and 3) the eigenvalue problen for

the matrix B is not substantially worse ceonditioned than that for A (i.e.,

small changes in the matrix T do not perturb the eigenvalues of B sub-



11
stantially more than small changes in the matrix A). Chapter III pre-
sents methods for producing the all impertant similar matrix B. The out-
line describing the two-case approach tao cbtaining the eigenvalues for a

sguare matrix, whose presentations are included in Chapters III, IV and

V, mav be illustrated by the following diagram.

real matrixz A

,,/*’/’,

L
>
svommetric matrices nonsvmnetric matrices
!
\
. L
svrmetric, tridiagonal upper Lessenberg matrix
matrix T estained througn obtained through simi-
oouseholder reflectors laritv transformations
!
i
-
gigenvalues determinea cigenvalues geternined
thirougn Ok alpgerithm with through doudle snift OR
a single origin shift (O algoritnm (QR decomposi-
deccmpositions obtained tions obtained using
using Givens rotations, Louseholder reflectors)

origin shift by wilxiuson)



CHAPTER III

Because of the structure of the elgenvalue problem, it might appear
that a good method for finding the eigenvalues of a matrix A would be to
compute the zeros of the characteristic polynomial

n~1

(3.1) det(a - 31) = (=D"HT - a 2" - - a - ag).

n-1

However, if the polvnomial is ill-conditiomed with respect to tuke compu-

tativa of its zeros, the results can pe extremely poor. (onsider the

3.0 PJU(X) = (x-1)(=x=-2)(==3)...(x=-20)

WulBe Zeros are x. = 1, Xy = 2y enn Ry = 20. Im comparison., the

slightlvy perturbed polvnomial Q,,(x) defined by
20

-23_ 19
.3) 0 ) = ) - x
(3.3) 1,5(%) = Py (x)-2
nas onlv ten real zeros. The remaining ten are five complex conjugate

pairs, four of which lie in the complex plane between 1.6 and 2.9 units
awey from the real axis [5, Chapter 2, Scction T].

1t is possible for rounding errors to occur during the computation
of the coefficients Bor 815 +ve s B in (3.1). Thesz computations
mizcat introduce perfurbations in the characteristic polynomial which can,

as seen in Wilkinscn's example, drasticallv alter the results. There-

fore, the procedure for finding the eigenvalues of a square matrix by
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first determining the characteristic polynomial and, subsequently,
determining its zeros is not a viable option.

As stated in Chapters I and 11, the usual initial step for deter-
mining the spectrum of a real, square matrix A is to construct (through
similarity transformations) a matrix B that is similar to A. A natural
way to categorize matrices for tne purpose of finding eigenvalues is ta
group matrices as svmmetric or nonsvometric. Constructing azlgerithms
for computing eizenvalues for symmetric —atrices is a simpler process
than for nonsvmmetric matrices because everv symetric matrix is diagonal-
izable unaer a real orthogonal (AT = A) similaritv transferuation. Tnat
is, for every real syvimetric matrix A there exists a real orthegonal

r.atrix R such tnat

~
2

ja]
e
b
L}
)
]

where the eigenvalues Al’ kz, vee An are real. 1n addition, real sym-
metric matrices are well-cenditioned with respect to computing eigen-—

ralues. In other words, small perturbations in the matrix elements pro-
duce only smzll perturbations in the eigenvalues., Neitner of these facts

holas for an arbitrary nonsymmetric matrix wihich we will consider later.
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In shall denote the identity matrix of order n.
In the process of studying real symmetric matrices, we define a

Householder matrix H. For each vector u we will construct H such that

(3.3 H=1- —%—uuT.
uu
Given that x = (xl,xz,...,xn)T, u shall pe defined a5 the vector u =
X t||d|el where € = (1,0,..., 0) . It 1is valuable to consider the result

when tne vector X is multiplied on the left (transformed) bv E (the
: u

matrix defined in 3.5 as & function of u):

R
, (I - (—= )uuT)x
u i

u u

G
G
e
-
e
I

26 * ||l x # |f|lep

T e e T 2 ey
20 * |[xle;> % = x|l
IR TN T S
L (e e 1
- A = 2l
e [l 4" < =l

2l = = I

(x = ”X“e])

= Ik,

Tnat is, B maps x into a vector all of whose components, except the
u
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. . . s T 2 .
first, are zero. Since H requires a division by u u = “u“ y the sign
is chosen so thatl‘u” is maximum, which maximizes numerical stability.

Using Householder matrices to transform a real symmetric matrix A

to a similar matrix B appears to he useful, However, stability or the
lack of stability must be counsidered. If a transformation by a House-
holder matrix results in a well-congitioned matrix, then we have a method

to be reckeoned with.

TUHEOREM 3.7 If h is defined as above, then i) E = HT and ii) H = H—l.
Proef. i) By cdefinition, HT = (I - ¢ i )nu*)T = IT - (—%F}(UUT)T =
- uu u'u
z- ihf_)uu‘ = H.
u u
. rae 2 T 2
i1) LR = (1 - (—=)uu’) (1 - (—-;—)UUT)
uu u'u
5 /
=1 - (——'L*)uuT + ————j—ﬂu(u,ru)u'I
T T .2
u'u {u u)
4 T 4 T
=T = (—uu’ + {juu
uu uu
=T.
. ; ~1 — - T .~1 - . s X
dence, H = E 7, Therefore, H=h =1 and } is symmetric and ortho-

gonzl . m
As establisned in Chapter 11, pre— and post-pultiplication ol a
, ; L1 . ; . | e s
metrix A by a matrix B and its inverse, respectivelv, (Hal ~) result in
& matrix whvse spectrum is identical to the spectrum of A. Because of

the symnetry of tne matrix A, vhatever zeros are introduced in tie first
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column of Al { A= AO -+ Al - 2 + ... * A = B) will be introduced in-the
first row of Al by the same Householder transformation. By constructing
matrices with the correct dimensions, using the identity matrix, the

zero matrix, and a Householder matrix constructed from the appropriate
vector, we obtain an ortnogonal similarity transformation {a most stable
proceaure) that introduces n-k-1 zercs in th kth rowv andéd n-k-1 zeros in
‘the kth columm of & svmmetric matrix A {i.e., in the off-tridiagonal pes-
itions). Tridiagonalization of tne matrix A is covw leted after n-2 House-

noiuer transfcrmations. This procedure is strongly endorsed by Wilkinson

. 1} - N - o
xn real svmmetric matrix A = Ta , househclcer transforma-—

Given a L ij

o]

ticns to triciagonalize A are constructed in tone feollowring menner. Re-

. - 1
menbering tae syomerr. ol A, let = (a 2’313’814""’aln) . Then uy =
. _ 2 T
(al:: Xy ’al3'dlé""’aln) . Hl is constructed as Hl =1 (uTU )Ulul'
171

The first i tie transfermations will be

: E 11 %1z f13 frs oo aln—i r i ,
L 1 v 812 %22 A3 4 - azni \ 1 E o
I !
-------- domeceme| 1813 %33 833 33, ccc 33, I_______.L_______i
814 T4 P34 P44 0 Pnp l
0 i . ) . ) . 0 5

—

i

|

\

|
L J L= 2u %30 %4n nn L
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12

2n

b3n

. - T
Next, X, (n23,b24,...,b2n) and u

2
pe T - (—

T
)UZUZ'

2n

12

22

23

3n

3n

24
34

44

b
4n

= byl llit g by

4n

4n

2n
in

4n

D
nri

C4n

on

]

The second transformation wil be

e e

17

H, will

<
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In like manner we continue until tridiaponalization is completed after

n-2 Householder transformations. Consider the 4x4 real symmetric matrix

a

[
—
-

We will emplov Householder reflectors to transform A to & tridiageonal
matrix T. To obtain zeros in the last two positiors of the first row

. B T . , T .
anc the first column, let x = (2,6,3) . Thern u = (3,6,3)  and the House-

holder reflector is

1 0 0 o"i
. 2 _6 _3|
=19 -7 -3 7 |
6 3 2
0 -3 ;7 7 :
3 2 6
0o -2 -2 -2
L 7 7 7 J
Thus,
2 -7 0 o
N 163 97 -25
Hyady = | =7 29 49 )
0 iz. .:.3_ '.g.él
49 49 39
0 _2_5. -gci .5_5.
i 49 IRe 59 |
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For the next iteration, let x = ('21. -22 T

_ - T
3 49) . Then u = (4,02387,-0.51020)

and

r 1 0 4] 0 1

H, = 0 1 0 0

|
0O 0 -0.96835 0.24957 \

6 0 0.24937 0.96836
J

Thus, the symmetric, tridiagonal matrix transformed from A is

|2 -7 0 0

H,H AthZ = -7 3.32653 =-2.04427 -=0.0001

1
0 -2.04427 .30711 .89854

o -0.0001 .89844 1.36637

Again, it is the symmetry which permits a symmetric matrix A to be trans-
formed to a tridiagonal matrix by an orthogonal similarity transformation.
Householder transforwations can also te applied to nonsymmetric matrices.
However, rather than obtaining & tridiagonal matrix, one obtains an upper
Hessenberg matrix. But, the required number of multiplications for plac-
ing a nonsyometric matrix in upper Hessenberg form using Householder
transforpations is 5n3/3, as opposed to 5n3/6 multiplications to achieve
the same ferm using elementary similarity transformations. The trade-
off, though, is that elementary similarity trénsformations are not always

stable; pivotal growth is a possibility (although not a high probability).
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Tne choice between the two methods is similar to the cﬁoice between
partial and complete pivoting in Gaussian elimination. The higher rate
of stability comes with complete pivoting, but most choose partial pivot-
ing because the stability factor 1s satisfactory and the number of cal-
cuiations is much less. Concerning elementary similarity transformations,
when pivotal growth deoes not exist and double precision arithmetic is
used, elementéry similarity transformations result in a better rate of
accuracy [5, D. 92&] than do Householder transformatioms. With that in
mind, we now describe the use of elementary similarity transformations
to reduce a nonsymmetric matrix to upper hessenberg form.

We can illustrate the process for nmn = 4 and A, = [aij]' We shall
assume that row and column interchanges are required at each stage of
tne reduction. Thus, suppose \a“li > Ia3l- and |a41| > |aZl|' In this
case we interchange rows 2 and 4 and coluc—ns 2 and 4 by the similarity

. - 7 ! = =
transformation Al 124A112a

[ 1 ¢ 0 D-\ r a

i 7
11 312 213 alaT 10 00 i
O ¢ 0 1 321 855 323 ay, 60 0 0 1 ‘
0 o 1 ¢© a31 a32 333 a34 g 0 1 0 i
I G 1 0 0 11 a,y a8, a,3 8, J i 0 1 0 © ]
[ 1

211 %14 %13 212

= | B4l q44 F43 g2

831 f34 233 3

21 %4 f23 fo2
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Next we annihilate a’

= {aij]. 31 and ail by the similarity transforma-
3 = "-1 =
tion Az MzAlhz
r 1 7 M1 g
l
| 1 al. 0 1 =
% L
j 0 my, 1 | ] 0 -my, 1
' 1
LU om0 1 L0 e 0 1
R il JLO e ]
— L " i g r. . =
31 %12 %33 2q4 %11 o Prs Py
.on H . T - 'l 4 !
fa1 for By fay b Par Pz Py bag i
| i
Y " . N . : -
YR B3 Bag Y Pan 353 Py
I ! |
. ) " , !
L BT |0 bp 43 buy
T = - T -t
whel g m32 331;"’&‘-\:1
m 1

=-a /e

Suppose ibq?l > |b32¥. Then we interchange the last two rows and

AL = 1,41

the last two columns by the similarity transicrmation AL,
- “ 34772734

Tinally, we reduce A] to Hessenberg form by the similaritv transicrmation

-1

423 = .\13.‘\.:‘.'5 =
-~ - r 1 T 1 t 7 -
| ! biy Pl biy bpy | [0
. L] ] 1 ]
3 o b1 Pap Pay by, J o 1
|
i . ] L] ]
| 0 v 1 ' 0 b32 b33 by ‘ c 0 1 |
! ] L] t —_
{_O 0 m,, 1_I _() by, big b&&_ Lc) 0 -z, 1J
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" L1 " "
(.bll bl2 b13 blh

L3} " 1 H
b21 b22 b23 b24 , Where o

0 bllbllbll

= -h? '
43 LIPYAIPE

32 "33 "34
(2} "
0 0 b3 by |
To carry out the reduction, in general, let Al = [aij] and examine the
magnitudes of the elements 321'331""’aill""’anl' Let ail1 be the

element with largest magnitude (the pivot). This means we must inter-
change row 2 with row il and column 2 with column i, by the similarity

transfcerpaticen

Next, we annihilate a.! aél,...,a' with the transformation

31’ nl
: -1
= Yo
A2 ;IzAlhz ,
- -
where 1
0 1
M2 = 0 m32 1
0 o, 5 0 1
0 ™ 0 0 . 1

and o

1
[
- -
~—
W
1y -
—

-
—
(ad
|
(W]
i
=
~—

This completes the first step.
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We begin the kth step (k < n-2) with the matrix

J b
fp f1p o0 b ofp S I
i
1
for Sy or 1 fgy - Eoy
i
1 ]
\! Q £y, oo } fa) S 1
! | l
; } !
[ i
1
\ i -
Lo 0 ST cee £y ,
U S ¥
T ? |
o9 bohere o frn
1 i
\ i '
LY 0 c fo o fleon -=
: !
| )
|
|
i |
i l iy '
o 0 P f |
L ! nK nn o

We select the element with greatest magnitude (the pivot) among the ele-

t . ce f .. is me we 1 i .
ments fk+l,k’ fk+2,x’ s oy This means that we interchange row i

witn row k+l and column i, with columa k+l with the similaritv transforr-

k

ation

A T Ik+l,ikA.ka+.l,ik'

Next, we annihilate £

t ] . . _ A
kt2,k’ fk+3,k’ g fnk with the transformation

—_— » _l )
Ay T "LkHAl:;}Lk-«-.l
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where 1 1
1
» =
a1 Me+2,k+1
M43,k+1
!
i
|
l m o 1
L n,k+1 3
fl
) tk
ans m, ===, (t = k+2,k+3,...,0n).
t,k+1 fk+1,k
In sunrarv, theny,
- -1
; = [ My A .= -7
Herl [‘Ik+llk+l,ikJAk‘-IL&+IIk+l,ikJ > (R =1,2,..0,0-2),

where tne upper Hessenberg matrix An—l is similar to the given matrix Al.

Consider the 4x4 nonsymmetric marrix

We will utilize elementary similarity transformations to transform A

inte an upper Hessenberg matrix., Because 831 > a,,, we intercheape rows

2 ar. 3 and columns 2 and 3 by the similarity transiormation Ijjajqu to
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obtain
r1311-|
A'=a121}.
52122\
1 1 1 1°
L -
Then
~ - e -
1 0 0 0l —]]10901
(. i
catt o 201 G c;:l Al N R Ow{
R J , 1 ii i
A U R N A
I | !l i
Co-L D 1 IR T TR B
L J L .'L J

which results in

r 1 -—% 1 1 |
e le %o
ol—é—l%
o 332

because 11/8 » 19/16, we will not interchange anv rows or columns. Tnen

the final step is
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t o o o7 T71 o o 07
_1 _
Mjat = |0 1 0 0 A, 0 1 0 0
0o o0 1 0 O 0 1 0
-19 19
0 0 > 1_ i _ —0 0 >3 1

to obtain the upper Hessenberg matrix

= =
15 41 ;
= |
Vs o=
9 30 ]
“ 7 1 Y
f

o 11 101 3
o) 44 2 |

-101 -6

0 0 _— —
i 121 11|

When one or more of tne sub-diagonal elements of an upper Hessen-
berg matrix H are zero, it is called a reducible upper Ee¢ssenberg matrix.
bv partitioning the matrix K with respect to the zero subdiagonal elements,
we oDtain a block upper triangular structure where each diagonzl block is
an irreducible Hessenberg matrix. The QR transformation (to be cdiscussed
for Hesscenberg matrices in Chapter V) acts independently on each diagonal
block.

To reiterate, a symmetric matrix A is transformed into a tridiagonal
matrix T through similarity transformations constructed with Householder
reflectors. An arbitrary nonsymmetric matrix B is transforred into an
upper Hessenberg matrix H through elementary similarity transfiormations.
Chapters IV and V present methods for determining the eigenvalues of sym-

metric nmatrices and nonsymmetric matrices, respectively.



CHAPTER IV

In this chapter we shall describe the procedure for éetermining the
elgenvalues for a real, symmetric matrix. The procedure will incor.crate
the QR method, using the Wilkinson origin shift. Through similarity trans-
formations constructed with Householder matrices, a real, symmetric matrix
A has been transformed to a symmetric, tridiagonal matrix T. The QR al-

gorithm, a numerically stable procedure {4], is defined as follows for the

matrix T.

(4.1) T=1, =08
T, =R
T, = 2R,
Ty = Ry

=)
H

L B R L
Lo = B

The product QiRi = Ti is determined by constructing a real orthogonal matrix
Qi and & real upper triangular matrix Ri' This is known as a OR decomposi-
tion of Ti.- Note that T,,, is simply the product R;Q;. Tt can be snoun

IE . 516-5319] that the sequence of matrices {T,} converges to a diagonal
s PP q i 2
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matrix and that all the matrices T, are similar to T. Therefore, the

gequence {Ti} can be employed to determine the eigenvalues of T. Con-
structing QR cdecompositions for the sequence of matrices {Ti} is accomp-
lished through the use of Givens rotations.

As stated abcve, it is imperative that the spectrums of the ma-

. : n ~1
p . ] . ', = J.nh. = L
trices Ti+l and Tl are identical 1f Il QlPl and Qi i then

~T L . . . - ,
G, T, = R,. GSubstituting into T, = R.N, results in
i1 i i+l 11
-1
(2.2 T. = 0_"K.Q..
' ‘ i+l i Tivi
Vorze, 7o, and Ti eére similar matrices. The import of this nrocess is
-1
thet bthe cigenvalues of the matrices :i are, in fact, t.e eigenvaiues of
tae svinetric, tridiagonal wmatrix T.
Tn accelerate the rate of convergence of the sequence 1T.; to a dia-
i
gonal m

strix, we utilize the tecnnique of shifting the crigin. As before,

the svrmetric, tridiagonal matrix is T,, the first metrix in the seguence.

ToE atrix Tl =7 - Cll is puilt by snifting the origin the arount Ty
-

Avtir determining a OR aecomposition of T‘1 = lRl’ we construct the Tatrix

S1 o be tne product Rlﬂl. The second matrix in the secuence {Ii} is con-
structed by shifting the origin back to form tine matrix TZ = Sl + 5,1, In

genera., the QN algeorithw with origin snifts is defined as fullows:
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(4.3) T=T

>
]
—J
1

>
—
1
L
[
m
—

>
ko |
I
fol
8] e
28]
ko
[ o)

X1
[ ]
L}
=
oS
]

3
it
w
+
[
—

Again, it is necessary that the matrix T = Tl and each matrix in the
sequence {Tj} are similar. Theorem 2.6 establishes that if G(Tl) =

{Al’ 12, cen An}’ then 0(T)) = {11-01, l2432, Py ln-Gn}. Recall

~

from (4.2) that the spectrum of S] is identical to the spectrum of Tl'
Because trne origin is shifted to construct matrix T2 from tue matrix §
It n 2. ' L) o= 1{ =0 )40 A=

Theoren 6 establishes that 0(12) {( 1 l) 1 ( 2 2)+02,

1!

(11-:n)+3 b= O(Tl). ln like manner, it can be shown that the eigenvelues
1 it )
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of the matrix T1 are identical to the eigenvalues of each matrix in the
sequence {Tj].

Since equivalent spectrums are assured for the matrices in the
sequence {Ti} developed through the QR algorithm with origin shifts, a
method for determining the amount of the shift is the next step in the

process. Consicer the first marrix in the sequence, the svimetric, tri-

diagonal matrix

- - |
r‘*l "1 ¢ ‘
}31 4y B |
- T l
T 5 pz q3 :
{ t
| .o
| . "n-1
L Dn—l I:‘ﬂ _]
let W = r o £ T = S £n—1 1 . Check the size of ¢.
1 L A
RN S
- " " =" _C-| = r : =
If 7 is "'small”, let W | o F,! A .
b I
| o T 3] o
L J n-2 n-1 J

(vote:; 1f & is "small", tnen one of the eigenvalues of the matrix T is

i

1

apparent. For example, 1f g = and |Bn-1| is less than or equal to

-12
3 12

“n-1

1 , then o is an eigenvalue of the matrix T.) Again, check the size
of g. If 3 is not 'small", then consider T-gI where o is computed to be

the eigenvalue of the matrix W lying closest to 1. Determine 7 as follows:
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1) If a =1, theno = a-|8f.

2y If o # 1, then ¢

(a=-1)/2 ang
_ I~ sign{d) Lz

ST e NoZeZ

This choice for an origin shift is attributed to Wilkinson |6, pp. 507-512

Recall that Givens rotarions are to be used to construct QK decom-
positions for the sequence of matrices that converges to a diagonal matrix.
After the introduction of Wilkinson's origin shift @, to accelerate con-

J

vergence, QR decompositions are determined for the seguence cf matrices

1D

{%.} wiaere T, = T, - o.I.
] ] J ]

Consider the syumetric, tridiagonal metrix

El bl 0]
. - |
1 F2 2 '
= 2 3 .
B |
' l
. * =1
0 3 e |
L n-1 no|
- . . . . 2 " 2
The Givens matrix G1 is constructed using the value wy = El + £y Trnen
the product of G1 and %1 results in the matrix Rl whose first subdiaganal

elemunt is zero.
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Using the value w, = 122 + 622, -the Givens matrix G2 is buiit to zero

out the next sub-diagonal element in Rl'

1 —
| 1
1 = =]
< o (e " (=] L8] ul
{
|
| — -
i { |
' = o]
o o jaw] “ o] W 11
_ —— e
) [
. |
. Ll
* |
| < o o [=]
1
i
[aa TN | ~T
o o [0 “ 8] o Lew]
IIIIIIIIIIIIIII b e ——————
1 f (=] Lo (=] o
i oy | [an]
" “ F (W) “ 11 o o
1 |
I |
\ o~ ]
" " < al “ (] = g
[P S —— I
1 ] od ~r
—) 1 4 (=] "~ " W
31 o = o o©
L ! _! e
oYy ™
I — o W et M
|
1
I o
“ @ “ 3 o
| =
[ i [
] —
h L. _—
1
|
Il_l IIIIIIIIIII “l llllllllllllllllllll [}
b~ e o4 1
o 1&g A
t |
1 !
1 i
“ o4 ~ ' =
4 |
o = _ 7o _ wz.
| ]
1 [
—_———l e~ 1
t t
— | o < “
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We continue to comstruct Givens matrices until the final step wheu, using

_ 2 2
the value wn_l = Rn—l + Bn-l’
Cn-1 Rn-2
— - - | -
! wy X X ] . : 0 0
f \
i . . j
: 0 uz X X . : 0 0
i i
I : !
Liog | 0 ¢ 0w, x | 0 0
i i
i ¢C 0 0 w .o 0
i 4 i
i I
I I r
i - 1 '
I i
1 . . . ]
I I
i . , i
__________ "II'__-_—_""_'"'___ ! _—___...___________________}_..__________
S } }
s - "n-1
b B o 0 0 0 ...l R s
! “n-1 Tn-1 | !
[ i
i y |
T P S f 1
;—wnl wnl 0 0 0 0 ...iB_, o
L ! n-1 “m-1 _ g |
_Lﬁ X X 0 0 07
0 W X x 0 0
0 J w3 x . ] 0
=0 0o 0 w, .. 0 o =R _,

. Also

Note that this process results in an upper trianpular matrix Rn—l

note that the matrix G = Gn—l . G2G1 is ortnogonal since it is the pre-



duct of orthogonal matrices. Finally, note that the matrix G is lower

Hessenberg by observing the following.

r 10 0 0 o ] f 1 0 0 0 oj
l |
Lo 0 0 o 1 0 0 0
[ l
|
I .
K £
¢ 0 10 0 L0 o0 o2 =2 g
| *n-2 -2
; 3 . & %
o 0 o a1 Tmli o, g , —-p=2 m=Z g
| “n-1 “n-1 E } “p-2  “n-2 !
i '
el i ‘
5 I3 :
0 0 g-_Rt mly i, g 0 0 1
L “n-1 LL":1-1 L

%0-1%n-2
Tl 0 0 0 07
§] 1 0 0 0
0] 0 0 G 0
0 4] . X x 0
0 0 X X x
L O 0 X x x|
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n-2

n-1

0]

0

(" 1




The final product to produce the matrix G is

Gn-lcn-ZGn-3"'G2
i !
1 0 0 0 0 0 —
“
5 By
0 X X 0 0 0 | -
T
|
(U x ¥ 0 0 0 0
i |
N O 0 x x 0 | 0
i
b o N 0 ] % X Q! G
L.O ] J X X x-J {— O
G

Lo
—

£

m
—

£

—

37
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The result of these observations is that a QR decomposition for the matrix
T can be defined. Because the matrix G is orthogonal and lower Hessenberg,
we choose Q = GT. Consequently, @ is orthogonal and upper Hessenberg. We
define R = Rn—l’ the upper triangular matrix.

Eariier 1t was established that if %. = (Q.R, and 5, = R.Q., then

J 3] N 373

%j and Sj are similar matrices. Tnerafore, the sequence {Tj} can be em—
ployec to deternine the eigenvalues of T. However, the processes of util-
izing Givens rotations to determine a QR decompeosition for %_ and of util-
izing Wilkinson's origin shift to accelerate the rate of convergence of
the sequence {Tj} also require tuat the matrix R.Qj be svmmetric and tri-
diagonal.

THEORE!I 4.4 If the symmetric matrix T = QR, where Q is orthogonal,
then tne product KQ is symmetric.

T
Proof. Because T is symmetric, T = QR = (QR)T = RTQT. Since 0 =10

0 = (R1gDae = RYqfq) = rT.

-1

L3

Toen (RQ)T = QTRT

= ol = o' =
QT(QR)Q = (QTQ)(RQ) = RQ). Hence, the matrix R is syrmetric.m
TAEOREM 4.5 1If the matrix R is upper triangular and the matrix

is upper liessenberg, then R7] is tridiagonal.

Proof. .jultiplying R and Q results in (for 5x5 matrices)

R Q RQ

x % x x X 1 (% x 0x x x| T x  x z oz 2-1
0 ®x x x X X b X X X X X X z z
0 J  x  x X ¢ x x x x| =0 x x by z .
0 a 0 x x 0 0 x x x 0O 0 x =x 3

Lo 0 o 0 x| O ¢ 0 = =] | O ¢ 0 x x|
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By Theorem 4.4 the matrix RQ is symmetric. Consequently, the triamgular
block of zeros in the lower left-hand corner of RQ has a correspondin,
triangular block of zeros in the upper right-hand corner of RQ. Thus,
RQ is tridiagonal. ®

We now consider a 4x4 real, symmetric matrix

The Q5 algoriths with an origin shift is emploved to determine the spec-
trunm of A, The QR decompositicns are built using Givens rotations and the
origin snifts are chosen according to Wilkinson.

After A is transformed using Householder reflectors, we have

T=1T =
= 0.500000D 01 -0.424264D 01 0.0 0.0 ‘|
|
-0.424264D 01 0.600000D 0l 0.141421D 01 0.0 ]
0.0 0.141421D 01 0.500000D 01 0.0
L 0.9 0.0 0.0 0.200000D 01J

Note that t‘.“3 = t3,4 = . Therefore, ta,a = A = 2 is an eigenvalue of

A. Wilkinscn's cneoice for the first shift o, = 4. A QR deccmpositicen
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for TI - ¢l = QlRl is built using Givens rotations.

Then
T2 = RlQ1 + UlI =

F 0.784211D 01 ~1.382874D 01 0.0 0.0 R
|

| —0.382874D 01 0.317830D 01 ~0.3774143 00 0.0 ‘
. 0.0 -0.377414D 00 0.49795%D 01 0.0 ~
|

0.0 0.0 3.0 0.200000D 01 _

From tne matrix T2, G, is defined as 0.303347L 01. Again, & 0X decomposi-

tion is constructed for T2 - 521 = QzRq. Tiien

0.8436642 01  -0.340972D 01 0.0 0.0
-0.340972D 01 0.2563370 01  -0.498482D-02 0.0
0.0 -0.498462D-02 0.5000000-01 0.0

L 0.0 0.0 0.0 0.200030D 01 |

For appearance sake, the following iterations have zeros imnserted in posi-

tions when the entries become '"small",

0, = 0.500001E 1, T, =



-

0.893270D 01

-0.290974D 01

0.0

0.0

0.928647D 01

-U.243160D 01

0.0

0.0

U.100005D 02

0.174905D-07

0.0

0.0

0.100000D 02

0.0

0.0

~0.290974D 01
0.206730D 01
-0.690428D-08

0.0

C4

-0.243160D 01
0.171353D 01
0.161058D-14

0.0

Jg

-U.174905D-07
0.100000D 01
0.0

0.0

C6

0.0
0.100000D 01

3.0

0.0
-0.690428D~08
0.500000D 01

0.0

= 0.50000GE 01, T5 =

0.0

0.163513D-14

0.500000D 01

0.0

= 0.100000E 01, T, =

6

0.0

0.0

0.500000D 41

0.0.

= 0.100000E 91, T, =

°7

0.0
0.0
0.500000D 01

0.0

(]

o

]

.0

.0

.200000D 01 _

.0

-
S

.0

.200000D 01

.203000D 901

.0 1

.0
.0

5
.200000D 01 J

41
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Thus, o(A) = {10, 1, 5, 2}. Note that the four eigenvalues of A were
determined with six iterations of the QR algorithm with an origin shift
applied to the symmetric, tridiagonal Tl. The QR algorithm takes less

than two iterations per eigenvalue for a tridiagonal matrix [7, P- 230].



CHAPTER V

In Chapter III an arbitrary nonsymmetric matrix B was transformed
into an upper Hessenberg matrix H through elementary similarity trans-
formations. 1In this chapter we shall describe the procedure for deter-
mining the eigenvalues of the upper lessenberg matrix H. The QR algorithm
utilized in producing tne eigenvalues of a real, symmetric matrix will
again be used., when appliec to an uoper Hessenberg matrix ¥, the unmodi-
fies QR algorithm has two possible results. One is convergence to a
Diock upper triangular matrix whese diagonal blocks are at most of order
twl. Tue other possible result is that convergence does not ocecur,. wWith
tne nocification ¢f a single origin shift as cescrioced in Chapter IV, the
R elgecritihm appliec to I requires complex arithmetic vecause the eizen-

£ 4

an upper Hessenberg matrix can be eitner real or complex. Tae

arithmetic, guarantees convergence with ''proper’ strategv, and accelerates
tne rate cof convergernce.

Before confronting the situation of real or complex arithmetic, the
convergence or nonconvergence of tne QR algoritim for o Hessenberg matrix

rust dDe discussed. Tihe OR algorithc is saia to converge for nxn Hessen-—

. ) 1) . A i
berg matrix hl = [hi( )] if the sequence 1Hif, generated by (4.1) and there
referred to as T satisfies h(i) . h(i) + Jas 1 *» o, for j = 2,3,...
i’ 51,5 4,301 ' A
n-1. In other words, the QR algorithm converges if, for each pair oi adja-

cent suvbdiagonal elemeuts of LK., at least one of the entries converges to zerc

1
ote that convergence does not require (but may result in) a tri-
angular matrix wiose eigenvalues are displayed on the diagenal. Tnis form

resul:ts when all of the eigenvalues are real. Bowever, when some of the

elgenviiies are complex, it is sufficient for the seguence of matrices to
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converge to upper block triangular form with 1xl or 2x2 blocks on the
diagonal. We now state necessary and sufficient conditions for conver-
gence.

TEEOREM 5.1 The QR algoritnm applied to an irreducible Hessenberg
matrix H converges if, and only if, among each set of eigenvalues of H
with equal modulus, there are at most two of even algebraic multiplicity
anc twe of odd algebraic muiciplicity.

Procf. See Parlert (1965).

Consequently, given a matrix H with more than two distinct eigen-

values of equal meodulus, the sequence of matrices {Ei} generated bv the

OR algorithm ¢.-es not converge. An example of tnis condition is the matrix

(5.2) )’o \ 1]
= 1 0 0
0 1 0]
whose eigenvalues are 1, w, and w2 where w = exp (2ri/3). 1In other words,

the spectrum of ! is {1, -% +V§y2i, =1 -VE}Zi}, each of whose meribers has
algebraic multiplicity one. Because more than two eigenvalues of equal
modulus have odd algebraic multiplicity, the sequence ol matrices {Mi}
defined bv the QR algorithm does not converge.

The importance of the theorem can be realized when the QR algoritlhm
is applied to real, symmetric matrices. Since the elgenvalues cf real,
symmetric matrices are always real, there can be at most two distinct

eigenvalues of equal modulus, resulting in compliance with the conditions
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for convergence of Theorem 5.1.

Returning to consideration of Hessenberg matrices, we examine an

irreducible, complex,

of equal modulus |ll|

Hessenberg matrix H with four distinct eigenvalues

= IAZI = |A3| = lx4| with multiplicities 4,3,2 and

1, respectively. Since Rl and l3 have even algebraic multiplicity and AZ

and 34 have odd algebraic multiplicity, the QR alporithm will converge

when applied to the matrix H. In fact, the QR alporithm has strong con-

vergence properties when applied to lessenberg matrices. If the basic

QR elgorithm fails to
Tmatrix  the situation
technigue cof shifring

t.at <oes not fulfilil

produce the eigenvalues of an irrecducible Eessenberg
can easily be remedied by the introduction of the
the origin. The matrix H mi : have a sjectrum

the conditiens of Tieorem 5.1. towever, the matrix

fi=ql would have a spectrum for which convergence occurs.

Consicer the first two steps of the QK algorit.um with an origin

snift for an upper hessenberg matrix H.

BE = dl
ll = Hl-qu
Hp = 4Ry

Hz = Hz-qzl
By = Q%
Ha = RyQy + a5l

From (4.2) we know that



46

(5.4) H, = q§H202

= Q;(QyH,Q))Q,

T

H .
(Q;0,) H,(Q;Q))
The result is that H3 can be computed from Hl and the product Qle. How-
ever, we would like to be able to cetermine H3 without constructing the
QR decompositions {or Hl anc Hz. In order to aécomplish this, we need

the following discussion.

Substituting from (5.3) we observe that

(5.3) QyQ ;R = 0y (Hy-q,1)R)
= 0 H Ry -4y

= Q(RQ+qy DRy - g0 Ry

= O XN 9 R - a0k

= (QRp+q QR - 0,00 R

= HQ Ry — 4™ Ry

= (Hl-qZI)QlRl

= (By-q,1) (K -q,1).

Specific choices for the origin shifts 4y and q, will be made later. At
this peint note that if 95 is chosen to be 51 or if a4, and q, are both

real, then the product (Hl_qZI)(Hl-qu) is real. This implies that the

matrices QIQZ and RJR1 are real. Thus, from (5.4) H3 is real., Fealizing
that H2t+1 can be determined by HZt—l as H3 is by ”1' then the sequence
Hl' o, Hyy v is real. Observe that if q, is complex, then the matrix



47

H2 = R1Ql+qu is’ complex. Thus, the sequence H,, H,, Hey <.+ may be com-
plex.

We want ta avoid constructing the matrices H,, H

2’ z‘; H6, P (i.e.,

o~ Fad ~

avold determining the QR decompositions for HZ‘ Ha, Hﬁ, «..) because of
the complex values they possibly contain., Consider the following theorem.

THZOREM 5.6 If the matrix 4 is real and ncansingular, then there

exists a decomposition A = QR for which Q 1s orthogonal and F is upper
triangular. Furthermore, if the diagonal elements of R are real and
pcsitive, tihe decomposition is unique.

Proof. Sec Young-Gr.gory (1273), pp. 921-922.

Thus, to bvpass the composition of QJRl and Qsz and to build 0.0,

1
dlrectly, we determine the product X = (Bl—qu)(H1~qll). I1f 4. g, are

not eigenvalues of Hl, then M is neonsingular. Find the QR decomposition

(5.7) M= (K -q,1)(E-qy 1) = Q)

are rezl and positive and q, = 4 or

~
—
Fuy

where the diagonal elements of 1

4y, 9, are real. Thus, Theorem 5.6 states that 01 = Qle. The result is
9 The matrix H3 is determined from ﬁl and

all computations are accomplished with real arithnetic.

that we can avoid forming L

Ia general, the double shift QR algorithm applied to an upper hes-

senberg matrix H is as follows,
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B =R
~T~ -

H3 - thlql

, ~T >

By = Q3H504

H S T :

2e41 = p-183001%00
where (nzt_l—qt+11)(ﬁzt_lﬂqt1) = Qth.

The unigue decomposition theorem (5.6) provides the basis feor con-

structing tne matrix Ii, in one step of the double snift QR zlgerithr

3
ratner than two steps of the OR algoritam with a single origin shift.
Thecretically, then, we are concerned that M = (El-qzl)(Hl-qu) is non-
singular and that the diagonal elements of the upper triangular K are
real and positive. However, empirically it has been establisned that
checking M for its singularitv or nonsingularity is not a concern. In
fact, a matrix like (5.2) whose eigenvalues cannot be procuced by the QR
algorithm is a rare situation. 1In other words, this alporithm is mcre
powerful than Thecrem 5.6 leads us to believe. Therefore, in practice
we can apply the deuble shift QR algorithm te upper Hessenberg matrices
and, in most cases, successfully obtain the eigenvalues.

We initiate the process of determining eigenvalues cf an upper
Hessenberg matrix H* by considering its subdiagonal elements. A negli-
gible entry on the subdiagonal allows us to decompose H* inte twa upper
Hessenberp matrices which can be operated om independently. After all of

the eigenvalues of the matrix in the lower right-hand corner are deter-



49

mined, we can then continue the process by performing iterations on the

upper matrix. Thus, the matrix H* can be decomposed into

(1

—~
L
~—

e

=™

vhere H(l) is an irreducible, upper Hessenberg matrix. Let H(K) = El(K) =
H, = (n,.3}. Then the matrix
1 ij
- - - "
W : ' ‘}1 { {
R ! S R [
[ j !
154 = : e n 1=I : !
] ! 'n-1,n-1 n-1,n i : ,'
| oy
1 }| 1 | | I
L ! ln,n—l hn,n | = ! B

To choose the origin shifts for the first step of the couble shift QR

algoritim, find c(Y¥) = {01’ 02}. Thnen find the product

(Hl-all)(Hl—azl) =
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h ;= hy, e By by My - by
hy) Y e DR P o) Y e BRI (P
0 hy, ‘e hy, 0 By, e hy_
0 ¢] h -o 0 0 . -
L 1 . on 2 |
r- T
. Xl v v P V_]
Y1 v v v
= i Zl v v W
| 0 v v . v |
_0 -
where = HZ - hy,(u, + Yy + o, o+ h
& ¥1 7911 119 78y Cp%p T 2200
Yy = gyl 4 ngy -0y = ay)
2] = Byohoy-

Note that the product is not a Hessenberg matrix. Consequently,
Givens rotations that were utilized in constructing the QR decomposition
of a symmetric, tridiagonal matrix are not useful, because the number of
multipiications would be too great. Instead, we will determine an ortho-
gonal Q using householder transformations, Furthermore, we will pre-

and post-multiply hl, rather than (Hl-ulI)(H]—an), by Householder matrices
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to build an orthogonal (. When AQ = QH where A 1s nonsingular, Q is
erthogonal and H is irreducible upper Hessenberg, then Q is determined
by its first column [5. P 1783. Because the first Householder matrix
will be built on X1s ¥4 210 the nonzero elements of the first column of
(Hl-ull)(Hl-gzl) , the Q we determine will produce the appropriate Eessen-
berg matrix for the next iteration.
Tnerefore, in practice, we célCUlate only tne first column of the

. . ) T T . :

product (Hl-all)(Hl-&zl). Let s, = (xl, Yo zl) with ”Sl” = cy. Build

the first Householder matrix

r 1
f Rli ‘]
e
P
L1 o3
where R, = I - (2/uTu ) uT ard u, = (x,*c v z 1
‘1 141741 1 1751 Y10 2y -

Recall that a Householder matrix is both orthogonal and symmetric; there-

fore, pre- apd post-multiply Hl by Ul to obtain

SR N R T
I i {
| I !
I ] '
R : 0 X x X : Ry { 0
] ] [
i 0O X x| !
U B, U, = ] =——=- drmemem || mmemee—es = | mmm s b
1 ! 0 0 x!x }
1 ! {
L : o b
0 | Ta-3 . | ' t "n-3
! . . - . !
i ! M
! . . T . !
| r t
t { 1 J
L ! J Lo 0 0y ] L '
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[

Tne next touseholder

where R2 is pased on

Q 0 X
0 0 0
) 0 0

matrix is

I
1
|

0

0]

———— e ——

1
U= %
0
PR PLES
233

0

-
|

x
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™ x X X x X X . xT
X X X X X X . X
0 X X X X X . X
0 X X x X x . X
Uzhzuz = 0 x X X X X . X = H3 = (3hij)'
0 0 0 0] x b b
i
e + = r =q = % I i g 3 e 3 - e
next let 53 -3h32 with “53|| c3. Iiien build a Housenolder matrix
3742
1
3752
L3 based on 53.
4 [ i
T AR N
I ]
= | I
R T I U W N
i [
0 b0 { I .
] | BT

Pre- and post-multiplication by U3 proguces
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X x x X X b3 . X X x|
x x x X X x . X X X
0 X X x X X P X b4 X
0 0 X X X X . e X X X
U. U = “as =H, = .
3 3U3 ¢ 0 X X X X X X X H4 (4hij)
0 0 b x X X x = X
i
L_O 0 o 0 0 0 . U X X
The next to last Householder matrix produces
- . 1
x l
X
x
Vn-2fn-2¥n-2 ~ : = Hy s Gaghyy)
b
X X X b
0 ¢] 0] 0 . 0 x x X
L0 0 a 0 . O X by x|

The final step is to build
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[
I
Tn-2 1
= | e e ———— e e ————
Pn-1 :
IR
i n-l
where R is hased or = h wi = . I
f n-1 " Sn-1 {;-l n—l,n—i} lthllsn—l” “n-1 Tnus
Ln—lhn,n-Z J
; : L R . o
Un—lﬂn—lbn-l h2 » the next upper Hessenberg matrix in the sequence
for B h).
At tpnls point we check the subdiagonal elements of H,(k). 1f non=1
- [ -
is approximately zerc (acceptably small or negligible), o is an eigen-
3
value of Eq(R) (tience, an eigenvalue of H*). Thus, we 'deflate" HZ(R) by
deleting its last row and column and then continue. If hn-l n=2 is approx-
22

imatelv zero, thnen tue eigenvalues of the Z2x2 matrix in the lowver right-

nand corner are a vomplex conjugate pair of eigenvalues of H*. We deflate

(%)

-

" oy aeleting its last twe rows and columns and then continue. If anv

L 5 L (& e . (kS .
otiier subaiagonal elenents of Hq(“) are neglipible, we decompose hz( ) and
“

continue with the upper Hessenberg matrix in the lower right-hand corner.
One complete step of the double shift QR algorithm and corresponding

"checks'" have been delineated. If after ten QR steps, no eigenvalue has

been determine, then the shifts a;s @, are defined by [7, p.362].

| + \h

(5.9) o, + o, = 1.5(lhn Iy,

n~1

aya, = (Jh, 1+ |h

n-1,n~2

)2

n-1,n-2'

instead of being defined as eigenvalues of the lover right-hand 2x2 matrix.

If after twenty iterations, we are still unsuccessful in determining an



eigenvalue, then the definition of (5.9) is again used. After thirty
unsuccessful iterations, we admit failure of convergence.

In Chapter III we obtain, through elementary simijarity transforma-
tions, an upper Hessenberg matrix H from a nonsymmetric matrix B. Now we
can cetermine the spectrum of I using tne double saift QR algorithm with

tne QR decompoesitions constructed using liousenolder reflectors,
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