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Chapter I 

Introduction 

Fract.l geometry is a new approach to an old category of 

problems which was pioneer.d by Benoit B. Mar.de I bt~ot , a 

mathematician at IBM. Within the past decade, Mandelbrot's 

ideas have been gaining more and more support as new 

applications in a number of the natural sciences are 

investigated. 

This paper will introduce the reader to some of the basic 

ideas and concepts involved in the study of fractal geometry 

.nd will apply these ideas to coastlines. Finally, the paper 
,

will use these ideas to generate some of the fractal patterns 

on the microcomputer. At the present time there are few 

reference books on this subject, and no text books are 

.v.il.ble. The material presented in Mandelbrot's !Q~ E~~£!~! 

§~Qro@!~~ Qf ~~!~~~ (1982) is basically an updated version of 

his 1977 book, E~~£!e!~~ EQ~ro~ gQ~n£~ ~ng Q!ro~na!Qn. The 

former serves .s the primary motivation for this paper. 

E88g18b~ l~ ~8!~B~ 

A fractal may be thought of as a shape whose parts are 

~imilar to each other and have the same degree of complexity 

on many different scales. Many shapes found in nature may be 

described more easily in terms of fractal shapes than in terms 

of stand~rd shapes found in geometry. If a portion of a circle 

or a r&gular polygon is magnified over and over, the resulting 

image tends to straighten out. The earth may be used as an 

.nalo:tgy. It appears to be flat because we see only a small 
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portion on A large scale. The surface of tree bark is very 

rough and crinkled. When tree bark is magnified, the resulting 

surface is Also rough and crinkled. Consider the Jagged line 

representing the vertical cross section of a piece of tree 

bark. When a portion of the cross section is enlarged, the 

result is another crinkled line which represents that portion 

in greater detail. A very Jagged line may be used only as a 

first approximation to the vertical cross section of a piece 

of tree bark because when the Jagged line is magnified, it 

straightens out in the same manner as for a circle. A map of 

an island may be enlarged over and over to produce maps of 

finer and finer detAil; however, the coastline of the island 

generally does not straighten with magnification. If a set of 

maps of a small island were drawn to many different scales, 

each map would reveal different detail, but the overall 

Jagged coastal pattern would be the same. 

The human lung is another shape which is hard for standard 

geometry to describe because it is made up of a complex of 

tubes, air sacks, And blood vessels of many different scales. 

A cloud's shape is determined by a collection of many tiny 

p~rticl&. which make up pillow shapes which make up larger 

pillow shapes which make up still larger pillow shapes. 

Mandelbrot writes, "I claim that many patterns of Nature are 

so irregular and fragmented, that, compared with Euclid--a 

term used ••• to denote all of standard geometry, Nature 

exhibits not simply a higher degree but an altogether 

different level of complexity. The number of distinct scales 
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of length of natural patterns is for all practical purposes 

i nfi ni te" [5, page 1J. 

E8B6Y ~~~!~~!~~2 8~~ 8eeb!~8I!Q~2 QE EB8~I8b ~~Q~~IBY 

The word fractal was coined by Benoit B. Mandelbrot from 

the Latin adjective f~2~~Y~' meaning irregular, and the Latin 

verb f~~ng!!r:!!, which means to break or create irregular 

fragments. The term "fractal" first appeared in Mandelbrot's 

1977 book. 

One of the first applications which led to the development 

of fractal geometry was introduced in 1958 when Mandelbrot 

convinced IBM to halt a multimillion-dollar research project 

aimed at eliminating noise from their systems. Mandelbrot 

showed that noise, i. e. , random fluctuations in signal 

transmission, is impossible to eliminate entirely. He 

described the noise using strange new logic. 

Later, around 1968, Mandelbrot was working on what he 

called the "Joseph effect," a term used to describe the yearly 

water levels of the Nile river. The fluctuations in the water 

levels are very persistent, and records indicate that 

particular water levels have lasted for as long as a thousand 

years. Mandelbrot says, "If you look at a record of the 

Nile's discharges, you don't see little flags that mark the 

beginning or the end of a drought. Each record seems to look 

like random noise superimposed on a background that is also 

noisy. The background seems cyclic, but you can't extrapolate 

from its cycles for predictive purposes. They are not 

p.riodic" [3, page 102J. Because of these features, the Nile 
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only remotely fits statistic.l .nd hydrology taKtbook models. 

M.ndalbrot devised a fr.ct.l model based on data collected by 

the noted niologist H.rold Edwin Hurst. He showed the gr.phs 

generated with his model, .long with graphs m.de from the 

Hurst d.t., to. panel of hydrologists. They were unable to 

distinguish his forgeries from the authentic records of the 

Nile. 

M.ndelbrot .150 used fr.ctals to model stock m.rket 

price.. His artifici.l graphs of cotton prices were miKed 

with authentic graphs as well as graphs produced by other 

computer models. The collection w.s t.ken to ,a prominent 

stockbroker. The stockbroker identified the charts produced by 

the standard models but w.s unable to distinguish the real 

records from M.ndelbrot'& artificial ones. 

Much of Mandelbrot'. earlier work de.lt with computer 

generated co.stlines. He was .ble to model coastlines which 

remarkably resembled .ctual co.sts with. single set of 

equations. By changing. single p.rameter, the model was able 

to gener.te • l.rge spectrum of co.stlines from smooth, 

elongated islands like T.iw.n to. very compleK .rchipelago 

of shapes like the islands found in the Aegean Sea. L.ter, 

the methods were eKtended with the contributions of Richard 

Voss, & physicist .lso at IBM, to gener.ting fract.l mount.ins 

and landsc.pes. The parameter Mandelbrot used in these models 

is called the "fractal dimension" .nd is giving scientists a 

way to describe a compleK phenomenon with a single number [3, 

page 651. 
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Fr.act.al shapes and p.atterns .are being recognized in many 

different natural sciences. For ex.ample, the frequencies of 

word us.age in different l.anguages are largely the same. This 

phenomenon, known .as the "liph Law," is now being understood 

through .a fr.act.al approach to .analysis. 

Fr.actals .are also being used in modeling the vegetation 

patterns of the Okefenokee Swamp in Georgia. The outlines of 

different groves or patches of trees look like coastlines when 

observed from the air. Harold Hastings, Professor of 

mathem.atics .at Hofstra University on Long Isl.and, claims th.at 

cert.ain trees, such.as cypress, .are p.atchier th.an others .and 

may be described in fract.al terms. Noting changes in fractal 

patterns m.ay serve .as .an early-w.arning system for acid rain or 

other h.armful types of pollution [6, page 116J. 

In genetics, fr.actals sugge$t that ~ small .amount of 

genetic code m.ay be responsible for the growth of .a large and 

complex organism, .and minor changes in the code m.ay result in 

glob.al ch.anges to the org.anism • Fr.actals are being used to 

write music, .and the movie industry has invested heavily in 

computer equipment to gener.ate fr.act.al images. Other areas in 

which fractal analysis is being .applied include the clustering 

.and di5tribution of stell.ar matter, turbulence, distribution 

of oil and other n.atur.al resources, cratering of the moon, 

g.ometry of polymers, turbulence, chaos, the occurrence of 

• .arthquakes, the surfaces of met.als, .and meteorology. 



Ch~pter II
 

Dimension
 

The concept of dimension pl~ys ~ vit~l role in the study 

of fr~ct~ls. Dimension is ~n elusive notion which 

historically h~s been used only in ~ v~gue sense. There has 

been no ~ttempt made here to present ~ complete history of 

dimension, for indeed it would be quite lengthy. However, 

.ever~l discoveries made ne~r the turn of the century have 

altered our previous ide~s about geometry ~nd dimension. 

Hurewicz ~nd W~llm~n in their book Qim~n~iQn I!:H~Qr:::t ( 1941> 

write, "The l~ck of ~ precise definition of dimension, however 
~ 

unsatisfactory from ~n esthetic ~nd methodological point of 

vi@w, c~used no difficulty so long as geometry was confined to 

the study of rel~tively simple figures, such as polyhedra ~nd 

mani folds. No doubt could ~rise, in each particul~r case as 

to wh~t dimension to ~ssign to e~ch of these figures. This 

.itu~tion ch~nged r~dic~lly, following the discoveries of 

C~ntor, with the development of point-set theory. This new 

branch of m~thematics tremendously enlarged the domain of what 

could be considered AS geometrical objects and revealed 

complexity never before dre~mt of" [4, page 6]. 

Cantor showed ~ one-to-one correspondence between the 

points of A line ~nd the points in a plane proving that 

dimension c~n be ch~nged by ~ one-to-one tr~nsformation ~nd 

that A pl~ne does not contain more points th~n ~ line. Peano 

put forth A continuous m~pping of ~n interv~l onto the whole 

of a .qu~r., a notion which contradicted the belief th~t the 
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dimension of. space could be defined as the least number of 

continuous real parameters required to describe the space, and 

showed that dimension can be raised by a one-valued continuous 

tra"nsformat ion 1:4, page 4). Mandelbrot recognized that the 

graphs of such functions may be described, or "tamed," through 

a new approach he called fractal geometry. 

In!Yi!iy~ Qim~n§iQn 

There are many ways to define dimension on intuitive 

ground•• We deal with dimension each time we measure an 

obJect. We use units of measure which correspond to the 

dimension of the obJect we are trying to measure._ For example, 

the length of a line may be given in feet Cft>, the area of a 
2 

region in square feet Cft >, and the volume of a solid iYI 

3 
cubic feet Cft >. The exponent in each case is considered to 

be the dimension. 

A more concise, but still intuit ive, definitiorl was 

written by Poincare in 1912 and serves as the introduction to 

~im~n§iQn Ib~Q~Y by Witold Hurewicz and Henry Wallman: " 

if to divide a continuum it suffices to consider as cuts a 

certain number of elements all distinguishable from one 

another, we say that this continuum is of one dimension; if, 

on the contrary, to divide a continuum it is necessary to 

consider as cuts a system of elements themselves forming one 

or several continua, we shall say that this continuum is of 

several dimensions. 

"If to divide a continuum C, cuts which form one or 

several continua of one dimension suffice, we shall say that C 
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is a continuum of two dimensions, if cuts which form one or 

.everal continua of at mo.t two dimensions suffice, we shall 

say that C is a continuum of three dimensions, and so on" [4, 

page 3]. 

To give this idea a sens. of validity, Poincare continues 

by comparing the above definition to that of geometers. 

"Usually they begin by defining surfaces a. the boundaries of 

solids or pieces of space, lines as the boundaries of 

surfaces, points as the boundaries of lines, and they state 

that the same procedure can not be carried further. 

"This is Just the idea given ~bove: to divide space, cuts 

that are called surfac.s are necessary; to divide surfaces, 

cuts that are called lines are necessary; to divide lines, 

cuts that are called points are necessary; we can go no 

further and a point can not be divided, a point not being a 

continuum. Then lines, which can be divided by cuts which are 

not continua, will be continua of one dimension; surfaces, 

which can be divided by continuous cuts of one dimension, will 

be continua of two dimensions; and finally space, which can be 

divided by continuous cuts of two dimensions, will be a 

continuum of three dimensions" [4, page 3]. Euclidean 

geometry is based on these concepts and the mathematics of 

their properties, measurement, and relationships. 

By looking at a fractal shape, the problems involved in 

measuring fractals as opposed to measuring shapes found in 

Euclid.an geometry can be more ea.ily understood. 
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!b~ !~l~Qi~ ~Qkb ~y~~~ 

This curve, otherwise known A. the SnowflAke curve, WAS 

first put forth by the BermAn mathematician Helge Von Koch in 

1904. Mandelbrot recognized this Koch curve as being a classic 

example of a fractAl. The curve is constructed in stages, 

more detAil being Added with each successive stage. In 

generating fractal curves of this type, one begins with an N 

sided poloygon called An initiator. Then each straight 

interval is replaced by a shape called a generator. For the 

triadic Koch curve the initiator (figure 1) is a triangle, N 

with each side having length r1. The generator (figure• 3, 

a) is A broken line made up of four line segments, each having 

length ra, where ra i. SCAled to 1/3 the size of r1. 

Ini t iator I 

I \)

I--- ,., ---1 

generator I - /\r- f"~ i 
. 

~igure 1 "igure 2 

The process proceeds by replAcing the line segment between the 

first and second points of the initiator by the generator as 

shown in figure 3. Next, the line segments between the second 

and third points and between the third and first points are 

replaced by the generator. The second stage is now complete 

and shown in figure 4. To continue the construction, we 
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renumber the points ~nd ~gain repl~ce the line segment between 

the first and second points with the generator, except scaled 

to 1/3 the size of r2, or (1/9) rl, as in figure ~. Next, the 

line segment between the second and third points is replaced, 

and so on, until ~ll the line segments have been replaced. 

After the third st~ge the curve looks like that shown in 

figure 6. 

3 /1 

// 

II) 9 

figure 3 figure 4 figure 5 figure 6 

This process is repeated again and again, stage after 

stage ad infinitum, replacing each interval with a scaled 

generator. When generating this curve on the computer, we are 

restricted by the resolution and the amount of memory 

avai lable. So even with the most powerful equipment, the 

length of the resulting curve becomes only a finite 

approx imat ion. However, theoretically, when one imagines this 

process being repeated over and over without bound, the curve 

becomes infinitely long. However,the area contained by the 

curve is finite. For example, given the initiator with N 

sides equal to 3, each having length rl • 1, we have length L 

• N rl - 3. For the second stage, N - 12 and r2 • 1/3; hence, 
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A 

L - 4. For the third stage, N - 48 and r3 - 1/9, hence, L - 5 

1/3 and so on. The length may be represented by the following 

geometric sequence where n denotes the stage of construction. 

n-2 
3, 4, 5 1/3, ••• , L(n) where L(n) - 4 (4/3) 

since Irl - 4/3 ) 11	 lim L(n) .. 00.
 

n"oo
 

In the construction of the triadic Koch curve, t,ri angu lar 

chunks of additional area are added to the initiator with each 

stage; however, the additional chunks become smaller and 

smaller with each successive stage. For .~ample, let the area 

eontained by the initiator be (fi gure 7). The~ - 1 

additional area obtained in the second stage (figure 8) is 

3/9 since each of the three new triangles are 1/9 the size of 

the initiator. The third stage (figure 9) adds twelve more 

triangles, each 1/9 the size of its predecessor or 1/81 the 

size of the initiator. Hence, the actual area added with this 

stage is 12/81. 

--'A IA -.::­
a - ~.. " 

- .LA - 1/ 
- I"~1- <j 

A=/ 

figure 7	 figure 8 figure 9 
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The area may be represented by the following geometric series. 

Area • 1 + A(n) 

2 3 n-l
 
where A(n) • 3/9 + 12/9 + 48/9 + + 3/9 (4/9)
 

Since Irl • 4/9 < 1, the series converges. Thus, the total 

area is given by A - 1 + lim A(n) - 1 + (3/9) / (9/5) 1.6.E 

n"'oo 

Since the curve enclosing this finite area is infinitely 

long, the length of any portion of the curve is cinfinite. 

Thus, a problem with using standard ideas about dimension and 

geometry as applied to the Koch curve becomes apparent when 

we try to compare the length of one portion of the curve to 

the length of another portion or to the whole. 'Shown below 

are some advanced stages of the triadic Koch curve• 

.......:::/....;.. /.:...
 

;." "/~I 
~".1 '.1/".:<:: ...:.....::::/...?/.. ,:: 1-, :.J.....::::/...<../:. ):: 

'/''/ ,,1 1. /. /'/.
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'/"/ ~'I ',/. 0/,,/ ,,'I ~/. /'/. ,,'I ~I 1''/':,': "::' ...... 
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:.', 
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0/,,/ ~'I ',/. /'/.
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10 
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Ibm eCQel~m ~1~b ~~~~Y~ing E~~£~~l §b~a~§ 

A method in Euclidean geometry used to measure the length 

of A continuous curve F is to partition the curve into 

smaller lengths. Let Pc. P, • •• , P" be n + 1 points in 

2-space. the curve R pas.ing through these points is defined 

as follows. 

R(1) - P. , i - 0 , ... , n I if i ( t ( i + 1, then 
to 

R(t) - ( 1 - t + 1> p., + (t - 1) P . R is cal_led the
i11 

polygonal curve with vertices Po , PI , ... , P,.. 

and is shown in figure 10. The length of polygonal curve 
II-I 

Po , P, , , PI) is defined to be L IPi PLio I I, where 
1.:0 

1Pi. is the distance between points P-i. and P':'fol.P l.-t/ 

Let P - (to, t. ,t,,) be any partition of (a,bJ, that is, 

A - to ( t, ( ( til_I ( t" - b, and let F be a curve in 

:I.-space. The length of F i. the least upper bound (supremum) 

of the lengths of the polygonal curves R(t o ) R(t,) R (t" ) 

for All part it ions P of (a, bJ (fi gure 11). (2, page 7J 

~~. 
Q. Jo F 

figure 10 figure 11 

CAlculus eKtends these ideas and gives us powerful tools 

to use on a large group of shapes provided they are continuous 
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and have a first derivative. For example, notice the 

infinitesimal right triangle (figure 12) with legs having 

lengths Idxl and Idyl and hypoteniae ds. By the Pathagorean 

theorem, 
2 

(ds) • (dx) 
2 2 

+ (dy) • 

2 
Then, ds I: f/( x ) ] d x • _[1 (~:)2]1/2 /1
+ • + 

.' 
Intergration of the differential gives the arc length of the 

graph between points a and b. 

~: 
2", 

Hence, s • ~: ds • / + I: f/( x) ] dx 

1:7, page 356]. 

b a x X+Ax b 

figure 12 

If we try to measure the length of the Koch curve using 

either of these methods, little or no information is gained. 

The length determined by the first method i. infinite. The 

second method cannot even be applied since the Koch curve has 

no derivative. Recall that the derivative of a function at a 

particular point exists if and only if both the one-sided 

!dJC I 
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derivAtives, i. e., from the left And right, e)(ist, And if they 

all hAve the same VAlue. GeometricAlly, the grAph is 

differentiAble At A point if it hAs a tAngent line At that 

point. 

The Koch curve has three points in the first stage of 

construction (figure 1) for which no tangent is defined. In 

the second stAge (figure 4) there are twelve such points, in 

the third stage (figure 6) there Are 48, And s,o on ad 

infi ni tum. It soon becomes evident thAt, because of the Koch 

curve's infinitely spiked nAture, the derivative is undefined 

at every point on the curve. For these and other reAsons this 

shApe and ones like it were considered to be monstrous And 

patholog ical. Other thAn for purely theoretical reasons, very 

little Attention hAs been given these shapes. 

Consider the concepts of unit length, Area, And volume 

using a stAndard line, square, And cube. The line can be 

-
broken into b equAl pArts, eAch having length lIb. Likewise, 

2 
the unit square can be broken into b equal squares with the 

sides of each smaller square having length lIb. The unit cube 
3 

can be broken into b equAl cubes with the sides of each 

smaller cube having length lIb. The e)(ponent on b corresponds 

to the Appropriate dimension d for A pArticulAr shApe. Each 

pArt is deduced from the whole by A similarity, i.e., of ratio 

lId 
r(N) • 1 lb. 1 I N It makes sense, then, to measure 

length in units of feet, Area in sqUAre feet, And volume in 

cubic feet. This process is shown in figure 13. 
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rt ----ll-- L 
V 

.

~ll I I 
L L TI I l$ 

I ..!. _	 r 
o 'i 1 'I 1• LlU 

TI I
I

of • I	 -.--1;":':-_ ...I
Io J	 o .L 1'i	 ~ 

linea <length)	 plane: (area) space: (vol ume) 
.. 

1 2 3 
b -

r - lIb - 1/4 lIb - 1/2 r - lIb - 1/2 

n - b - 4 n - - 4	 n - b 8 

r ­

2 2 3 3 
L - n r - 1 ft L - n r -1 ft L -"n r -1 ft 

figure 13 

In fig ure 14, the same process is used except th.t it is 

Applied to • unit portion of the Koch curve. Note that the 

length of the unit curve turns out to be longer than one unit. 

In fact, a different length is produced for each stage of 

construction. 

r-rjl\
f.·	 I 

o I I 1	 o l ~ j, to r " 1 !. 
i :i' ,'." " 

(N)	 r - 4(1/3) - 1.33 (N) r - 16(1/9) - 1.778 

stage 2 stage 3 

figure 14 
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For the 

which 

produces 

than one. 

How, 

shorter 

if it 

11. 

limiting case we have n. 00, r • 0 , and L(n) • 00, 

has been shown to be the case in the discussion on page 

Since area and volume are zero for a curve, this method 

no new information for any other dimension greater 

then, can we show that a third of the Koch curve is 

in length than the curve taken as a whole? One answer 

is to consider the Koch curve to be a shape which behaves as 

had a dimension somewhere between one and two. 
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~!M!b8BIIY ~!~~~§!Q~ 

An approach to dimension was formulated by Felix Hausdorff 

in 1919, and later A. S. Besicovitch put it into final form. 

The Hausdorff-Besicovitch dimension differs from standard 

dimension in that it may be a fraction. A general reference 

to the Hausdorff dimension is ~~gQQi£ ~nQ InfQ~oo~tiQn 

written by Patrie Billingsley in 1965. The Hausdorff-

Besicovitch dimension will serve to define fractal dimension, 

however, it is hard to handle rigorously. An understanding 

may be reached by considering the equation for unit measurea 
d d 

N r - 1, where N - b subintervals of length r - lib, and d 

is the dimension of the unit shape. The equation is solved for 

d in terms of Nand rl 

d 

N r - 1 

d 
r s liN 

d log(r) • 10g(1/N) 

d = - 10g(N) Ilog(r) 

d s 10g(N) I 10g(1/r). 

The latter form is called the similarity dimension and is 

often used to guess the Hausdorff dimension. The similarity 

dimension is less general than the Hausdorff dimension but 

will suffice for this paper. It is not a new idea but has 

received little attention in geometry courses because, for 

standard shapes, it reduces to the Euclidean dimension 

E; i. e. , one based on intuition. For example, the dimension 
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of a line where N = 4 and r • 1/4 is given by 

d = log(n) I 10g(1/r) = 10g(4) I 10g(4) • 1 the EuclideAn 

dimension of a line. For a plane where N = 4 and r· 1/2, 

the dimension is given by d = 10g(4) I log(2) the• 2, 

Euclidean dimension of a plane. For the Koch curve, however, 

the result is a fraction. In the second stage, N • 4 and 

r = 1/3, then d = 10g(N) I 10g(1/r) = 10g(4) I 10g(3) ~ 1.262. 

Mandelbrot writes, that In general all d-dimensional 

parallelepi peds defined for d ( E (the Eucl idean dimension) 
lId d 

satisfy r(N) = 1 I N thus N r = 1 or equvalently 

d = 10g(N) I 10g(1/r). For nonstandard shapes, such AS the 

Koch curve, the only requirement needed to give the exponent 

of self-similarity formal meaning is that the shape be self­

simi lar, 1. e. , that the whole may be split into N part. 

obtainable from it by a similarity ratio r (followed by 

displacement or by symmetry). The d obtained in this fashion 

always satisfies the inequality 0 i diE [5, page 37J. 

Earlier it was shown how the equation for unit 
d 

measure N r = 1 misbehaved for the Koch curve. It will now be 

applied with the newly found fractal dimension. A unit 

portion of the curve may be subdivided into N subintervals, 

each of length r. The unit Measure in dimension d for any 

stage May now be found, as illustrated in figure 15, where d 

is equal to the actual value 10g(4)/log(3). 
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~- ~ ~ 

= 4 ; r = 1/3 N = 16 r ... 1/9 N .. 64 t"' .. 1/27 

d d d 
(1/3) = 1 16 (1/9) = 1 64 (1/27) - 1 

stage 1 stage 2 stage 3 

figure 15 

is a reliable way to compare one portion of the curve to 

another. For example, in the third stage of construction of 

triadic Koch curve, let a portion equal to 1/3 of the 

curve be of unit measure. The entire curve will then 

a measure of three or three times as large as that 

portion (figure 16). Note that in the following figure, d has 

exact value log (4) / log (3). 

~l ~, 

~ 

N = 16; r'" 1/9 N ... 48 r = 1/9 

d d 
16 {1/9) - 1 48 <1/9) ... 3 

figure 16 
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!QeQbQ§lQ8b Ql~~~21Q~ 

The concepts of dimension discussed thu5 far have been 

metric not ions. Topology defines dimension from a different 

point of view. In general, any set of objects is called a 

topological space if a collection of its subsets are singled 

out so that the collection has the following three properties: 

(1) The whole space and the empty set belong to the 

co 11 ect i on ; (2) The union of any number of sets in the 

collection is also in the collection; (3) The intersection of 

any two sets in the collection is also in the collection. 

Topology extends the word neighborhood to include every open 
~ 

set. The effect of this generalization is to separate the 

notion of neighborhood from the idea of distance. Thus, a 

neighborhood is a collection of neighbors. From this point of 

view, the whole line may be viewed as a system of interlocking 

neighborhoods or open sets. The interlocking neighborhoods on 

the line determine what is called its topological structure. 

Two topological structures are considered to be the same if 

there is a one-to-one correspondence between them that 

preserves the interlocking system. Consider the example of a 

circle which is stretched like a rubber band into a distorted 

shape. Each point of the circle may take up a new position and 

distances between points may change, but the interlocking 

system of open sets remains unchanged [1, page 120]. 

Mandelbrot describes this aspect of topology with the 

following analogy: all pots with two handles are of the" 

same form because, if both are infinitely flexible and 
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compres9ible they can be molded into .ny other continuously 

without tearing any new opening or closing up any old one" [5, 

page 16J. 

A s.tandard arc is a connected set that becomes 

disconnected if any .ingle point is removed. A closed standard 

curve is a connected set that separates into standard arcs if 

two points are removed. The topological dimension Dt given to 

lines, arcs, and curves is one. For this reason the ~och curve 

is considered to have a topological dimension Dt ­ 1. The 

topology dimension is always an integer. 

It was shown earlier that for standard shapes the 

.imilarity dimension d is also an integer equal to the 

Euclidean dimension. However, for nonstandard shapes, d need 

need not be an integer. The Koch curve, for e)(ample, has 

d ~ 1.2618 > Dt - 1. Historically, there has been no term 

to denote these sets whose d is greater than their topological 

dimension. 

~~EI~IIIQ~ QE 8 EB8QI8b 

A fractal is by definition "a set for which the Hausdorff­

Besicovitch dimension strictly e)(ceeds the topological 

dimension" [5, page 15J. In most cases the Hausdorff-

Besicovitch dimension is a fraction; however, it may be an 

integer. Mandelbrot coined "fractal dimension," denoted by D, 

rather than using "fractional dimension" to avoid this 

ambiguity. Thus, when dealing with fractal shapes, the fr.ctal 

dimension D is considered to be synonymous with d, the 

similarity dimension. 



Chapter 3 

§gbE=8~QIQI~g ~Q~~ ~YB~g§ 8~Q ~Q8§Ibl~g§ 

The triadic Koch curve presented earlier is an example of 

a self-avoiding curve. Self-avoiding means that there is no 

overlapping or self-contact in any stage of the construction. 

This is important in defining the fractal dimension D becaus. 

the similarity ratio requires that the whole be divided into 

disJoi nt parts. Coastlines are also self-avoi~ing and 

although coastlines are considerably more complex in their 

construction than the triadic Koch curve there are many 

simi lari ties. The triadic Koch curve, is in manY,ways ill rough 

model of a coastline. 

An analogy describing maps of an island drawn to different 

scales was used in chapter I to illustrate why a standard 

Jagged polygonal line represents a coastline of only a single 

scale. The standard Jagged line will flatten out when it is 

magnified. However, the actual coastline when it is magnified 

or drawn to a larger scale reveals new detail. The Jagged 

polygonal line has a single scale, whereas a coastline has for 

all practical purposes an infinite number of scales. The 

triadic Koch curve also has present an infinite number of 

scales. The triangle having side lengths equal to one, which 

is used as initiator for the triadic Koch curve, has ill single 

sca.le. In the second stage, triangles having side lengths 

equal to 1/3 are piled on, and these triangles hillve a smaller 

scale. In the nth stage, triangles having side lengths equilll 
n-l 

to (1/3) are piled on, and these triangl.s are of 
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increasingly smaller .cale. Thus the fin~l curve h•• pre.ent 

an infinite number of scale. below one. 

Mandelbrot refers to a curve which is gener~tliPd by 

replacing an initiator with an increasingly broken curve ~s • 

"teragon. II The tri~dic Koch curve and a coa.tline are m~d. up 

of irregular teragons of m~ny different .cales. The ter~gon. 

which comprise the tri~dic Koch curve ~re very syst.m~tic in 

their irregularity, more so than a coastline. Thus, for this 

and other reasons, the triadic Koch curve is only a crude 

model of a coastline. 

The gener~l process used in creating the tri~dic Koch 

curve may be used to generate different f~mili.s of Koch 

curves, ~nd hence, of co~st lines. By ch~nging the 

initiator or generator, the ter~gons which determine ~ curve'. 

form ~nd fractal dimension may be changed. The initi~tor m~y 

be ~ny carefully chosen M sided polygon. As the v~lue of M 

increases, the resulting $elf-~voiding curvliPs convergliP to ~ 

circle. 
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QYe~BIC ~Qg~ gYB~~§ 

M.andelbrot gives the tRrm "quadric" to the f.amily of Koch 

curves which uses .a square for .an initiator. Figure 17 shows 

the firgt five teragons of a quadric Koch curve with the 

gener.ator Each of the eight line segments of the-11r. 
generator are scaled to 1/4 the length of the line they are 

replacing. In this case, the number of similar parts is N = 8, 

each part with a similarity ratio of r c 1/4 • The resulting 

fractal dimension is D = 10g(8)/10g(4) = 1. 5. The area 

contained within the curve is constant since the generator 
- , 

removes the same amount of area from the initiator as it adds 

to it. 

Another example of a quadric Koch curve is shown in 

fi gure 18, but, it uses the generator 

This generator is such that N = 18 and the ratio r = 1/6. 

Thus, the fractal dimension D = 10g(18) / 10g(6) ~ 1.6131. 

The area of this curve also remains constant for the same 

reason cited above. 

Notice that the teragons in figures 17 and 18 have the 

same basic shape. The similar overall outlines of these 

quadric Koch curves are due to a property called maximality 

and is based on the fact that the initiator is a square. 

Mandelbrot writes, " Consider all Koch generators that yield 

~elf-avoiding curves are traced on a square lattice made by 

straight lines parallel and perpendicular to [0,1J, and in 
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addition c~n be used with any initi~tor on the .qu~re l~ttic•• 

We denote ~B maximal the gener~tor. th~t attain the highest 

possible value on Nand hence of D. One finds that 
2 2 

Nmax = b I 2 when b is even, while Nmax - (b + 1) I 2 wh.n b 

is odd" [:5,page 52J. Figure 19 illustrates a few of the many 

possible maximal generators. 

JLr­ ~ 
~ 

b - 4 b - 5 b • 6 b • 7 
N - 8 N - 13 N • 18 N - 2S 

figure 19 

Mandelbrot cont i nues, liThe maximal N and the number of 

alternative maximal polygons increase as the value of b 

increases. Generating self-avoiding maximal curves becomes 

increasingly difficult as D approaches 2 and i. not possible 

for D = 211 [: 1, page 52J. Coast lines, however, are far from 

being maximal. 
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MQBs Q~ ~Q8§I~I~s§ 

Another .imil~rity which exists between Koch curves ~nd 

cOAstlines i. the problem encountered in trying to determine 

their length. Methods of measuring co~stlines ~re dependent 

upon ~ y~rd&tick approach. For ex~mple, consider ~ measuring 

device, such ~s ~ divider or ~ y~rd9tick, set equal to ~ 

prescribed length e. The device is w~lked ~long the 

coastline, each new step st~rting where the previous step 

leaves off. The length of the co~stline L(e) is equ~l to the 

number of steps multiplied bye, the length of the measuring 

device. A wheel having circumference e m~y ~l.o be used to 

measure the length of a coastline. The wheel is pushed along 

the coastline within ~ prescribed di.t~nce q which is 

proportion~l to el i.e., the smaller the wheel the closer it 

may come to the coastline. The length L(e) is equ~l to the 

number of revolutions multiplied by the circumference e. The 

length obt~ined by these methods is only ~n ~pproximation. 

When the "yardst ick leY'lgth" e of a measuring device is 

allowed to grow smaller ~nd .m~ller, the co~stlines 

"approximate length" L(e) will grow larger and l~rger without 

bound. 

There are two cutoff scales between which the teragons are 

considered coastlines. Teragons of extreme scales which lie 

outside of this range are of different ch~r~cter. For 

example, the range of scales of interest to ~ physicist is 

much too sm~ll to be of use to a geographer or 

geomorphologist. M~ndelbrot suggests that for co~.tlines, a 
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• 
practical outer cutoff K might be the di~meter of the 

smallest circle encompassing an island ~nd the inner cutoff e 

might be 20 met ers. In the c~.e of the co~st at Chel.ea, 

Mandelbrot points out that ~n intermediate zone in which L(.) 

varies little ~nd is of gre~t pr~ctic~l use is from K • 20 

meters down to e = 20 centimeter•• Below 20 centimeters the 

measurements become ~ffected by the irregularity of the 

stones. The dimension observed between the cutoff .c~les i. 

an "effective dimension." For ex~mple, obJects such as ~ veil, 

a thread, or ~ tiny ball are ~ctu~lly three dimensional. 

However, if they ~re sm~ll enough, physicists will often 

consider them to be "in effect" 2, I, ~nd 0 dimensional, 

respect i vel y. Thus, a coastline may have different fract~l 

dimensions depending upon the scale from which it is viewed. 

Lewis Fry Richardson in 1961 conducted .mpiric~l stud i •• 

rel~ting to the vari~tion of the length L(e) obtained by the 

divider or y~rdstick method ~nd found th~t the polygon~l 

"approximate length" of a coastline L(e) is roughly equ~l to 

1-0 -0 
F e where the number of sides N is ~pproximately F. 

e~ch having length e. The ~pproxim~te length L(e) varies with 

different values of a, whereas the measure F is independent of 

-0 o 
e. Since ~ccording to Rich~rdson N = F • , then F - N • , 

and it follows 
-0 0 

th~t Fee • F. Thus, F, which M~ndelbrot 

calls the "~pproximate me~surR in the dimension 0," is 

independent of e. Actu~l data shows F to vary little with e. 

For comparison, consider a unit portion of the triadic Koch 
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curve (figure 22) whose length ~nd measure in dimension Dean 
1 

be determined eH~ctly. The length L(1/3) - N·s ­ 4/3. Ths 

me~sure in dimension D is given by 
D 

N. - 4 
D 

(1/3) - 1 

where D - 10g(4) / 10g(3). Rich~rdson's equ~tion then become. 
1-D 

L(1/3) - 1 (1/3) - 4/3, which is the v~lue eHpected. For 

re~l coastlines, F cannot be determined eH~ctly because 

coastlines ~re not self-similar in the strict sense. 

Rich~rdson noted that the eHponent D m~y vary depending 

on the cO~5tline chosen, and th~t D may v~ry depending on the 

portion of a coastline chosen, when the portion is considered 

.ep~rately. Rich~rdson compared the lengths of common borders 

between countries by searching encyclopedi~. ~nd noted that 

differences in the lengths reported for the common borders 

between Sp~in ~nd Portugal and between the Netherl~nds ~nd 

Belgium differed as much as 20~. The difference is in p~rt 

due to different v~lues of e. Richardson found th~t the graph 

of the approHim~te total length versus the y~rdstick length e 

for coastlines and for borders between countries did not 

lit~bilize, while for Euclide~n shapes the method converged 

near a well-determined value. Coastline ~nd borderline data, 

which Richardson plotted on double logarithmic p~per, fell on 

a str~ight line of negative slope. The slope of this line may 

be used to estimate the value of 1 - D. The triadic Koch will 

serve again ~s an example. When the points corresponding to 

10g(L(e» and log(e) are plotted, one finds that they lie on ~ 

line having slope of approHimately .262. For eH~mple, L(1/3) ­

16/3, L ( 1/9) = 64/9, and L(1/27) - 256/27. The resulting 
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coordinates (log(r),log(L(r» to three decimal places ar. 

(-.477,.727), (-.954,.852), and (-1.431,.977), respectively. 

Hence, the slope of the line which passes through these points 

is .262. Thus, 1 - D ~ .262 and D ~ 1.262 ~ log(4)/log(3) as 

expected. Richardson found that in general the expected value 

of D for actual coastlines is about 1.2. 

Richardson didn't consider the exponent D to have any 

special significance. However, Mandelbrot ~nterprets 

Richardson'. D as being a fractal dimension. He writes, "The 

Koch D is not an empirical but a mathematical constant. 

Therefore the argument for calling D a dimension becomes even 
... 

more persuasive in the case of the Koch curve than in the case 

of coastlines" [1, page 36J. 
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eg~nQ CYC~g~ 

The Peano curve establishes a continuous correspondence 

between the straight line and the plane. A Peano curve may be 

considered to be a graphical representation of the mapping of 

an interval on to the whole of a square or a region of the 

plane. In this sense, a Peano curve is plane-filling. 

It becomes increasingly difficult to construct .elf­

avoiding curves with fractal dimensions approaching two. When 

o ~ 2, the curve must be viewed differently because 2 is also 

the Euclidean dimension of a plane. In fact, all classical 

definitions produce a dimension of 2 for Peano curves. The 

Peano curve is therefore a strange way of looking at a plane. 

The concept was first written about by Peano in 1890. 

According to Mandelbrot, the first graphical implementation 

appeared in Moore in 1900. The curve is illustrated in figure 

20. The initiator is the unit square. The generator 

-B- is made up of N - 9 parts, each having a similarity 

ratio of r = 1/3. Hence, the fractal dimension 0 • 

10g(9) / 10g(3) = 2. For small values of n, 1. e., the number 

of stages, the resulting curve is a checkerboard or grid 

pattern which becomes increasingly fine, covering more and 

more area as n approaches infinity. When the corners of the 

generator are rouy,ded (figure 21), it is easier to see that 

the finite Peano curve is topologically the same dimension as 

.. line, Le., Dt • 1. Calling the curve a fractal is 

Justified because 2 = 0 ) Dt • 1. 
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In figure 20 the initiator is the unit square, and the 

distance between any of it. parallel lines is one. In the 

second stage of con6truction the initiator is divided into 9 

similar squares with four additional similar squares placed on 

the outside. The side length of each square in the grid is 

reduced from the whole by 1/3. Hence, the distance between 

parallel lines of the resulting grid is 1/3. In the third 

.tage, the previous grid is di vi ded iYlto 117 simi IV squares 

with 20 additional squares placed on the outside. Each square 

is reduced from the squares of the previous stage by a ratio 

of 1/3 or reduced from the whole by A ratio of 1/9. The 

distance between parallel lines of the resulting grid, then, 

is 1/9. The distance between parallel lines of the grid 
n 

produced in the nth stage is 1 / 3 • Thus, the distance 

between two parallel lines approaches zero as n approaches 

infinity. Self-contact then appears to be unavoidable. 

Hence, the limit Peano curve will always fill the plane or at 

least a portion thereof. The actual proofs, Mandelbrot points 

out, are delicate and central to the 1875-1925 crisis in 

mathematics and ~enerated considerable controversy. 

Historically, scientists and mathematicians considered the 

Peano curve to be pathological and "monstrous." Mandelbrot 

wri tes, " Peano curves are far from being mathematical 

monsters with no concrete interpretation. If they fai 1 to 

self-contact, they involve readily feasible and interpretable 

conJugate trees. These trees are good first order models of 

rivers, watersheds, botanical trees, and human vascular 
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systems" 1:1, page 68]. 

The human vascular system in order to supply blood to 

different parts of the body must pass within a small distance 

of avery point of territory it serves. It makes a "plane 

sweeping motion" much like the Peano curve. Likewise, the 

river which completely drains a region is fed by a complex of 

tributaries which are fed by a complex of smaller tributaries 

which are fed by a complex of still smaller tributaries. The 

curve in figure 22 is a Peano curve which has been drawn to 

include each of the previous stages. It is somewhat 

reminiscent of a river with many different tributaries of many 
.... 

different scales. ­
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l;8~IQB ~Y§I 

C.ntor showed a one-to-one correspondence between the 

points of • line and the points of • pl.ne by a process which 

begins with the closed interv.l [0, 1] • The interval i!5 

divided into three subintervals: [0, 113], (1/3,2/3), .nd 

[2/3, 1]. Then, the middle open interval is removed, leaving 

the two subintervals [0,1/3] and [2/3,1]. Likewise, these 

subintervals are each divided into three more subintervals. 
" 

[0, 1/9], (1/9,2/9) , [2/9,1/3], and [2/3,6/9], (6/9,7/9) , 

[7/9,1]; again, the middle open intervals are removed. This 

process continues to infinity, dividing each closed interval 

into three subintervals and removing the middle open interval. 

The result, known .s the Cantor set or Cantor discontinuum, is 

a discontinuous set of infinitely many closed intervals. 

A representation of the first six stages of the Cantor set 

is illustrated in figure 23. The initiator [0,1] and the 

generator have been thickened into rectangles for 

clarity. The number of pieces is called the base b; in this 

case b 3. The number of similar parts is N 2 and the 

similarity ratio is r ~ 1/3. Hence, the fractal dimension D ­

II: II: 

log(2) I 10g(3) or approximately 0.6309. From a topological 

view, the Cantor set is of dimension Dt - 0 because it is not 

a continuum, or in the words of Mandelbrot, " ••• because any 

point is by definition cut from the other points without 

anything having to be removed to cut it. From this view point 

there is no difference between the Cantor set and finite sets 

of points" [1, page 78]. The Cantor set is a fractal because 
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figure 23 

.639 ~ 0 ) Dt - 0. Furthermore, Mandelbrot terms these sets 

"Cantor fr.ctal dusts" as a counterpart to Itfractal curve lt and 

"fractal surface. It 

"Curdling" is the term Mandelbrot gives to the process 

which generates the Cantor set. Consider • round bar of low 

density. The process is said to curdle the matter out of the 

middle third and into the outer thirds without changing their 

posit ion. The outer thirds are c.lled "precurds," and the 
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process leaves each precurd mora dense th~n before. The 

process continues with the middle thirds of these b~rs 

curdling into their outer thirds, making four thinner precurds 

each having a greater density than they had previously. The 

curdling is repe~ted ~d infinitum until there ~re infinitely 

many, infinitely thin, ~nd infinitely dense precurds. The 

limit Aet is then c~lled a "curd," ~nd the space outside the 

curd is called "whey." 

By using different rules for the curdling process, 

different fractal dimensions may be achieved such that 

o < D < 1. For example consider ~ Cantor dust with the 

generator In this case, N - 3, r - 1/5, ~nd D = 
log (3) / log (5) '" • 6826. This generator, "'--1 is such 

th~t N = 2 ~nd r = 1/4. Hence, the fr~ctal dimension is 

log(2) / log(4) - .5. 
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§1§MB bQQE§ 

A large island is generally surrounded by smaller 

islands the number of which varies from a few to a multitude. 

The sizes of the surrounding islands are an important 

geographic characteristic. If large rock piles off shore are 

included in the count of surrounding islands along with 

individual rocks exposed above the surface or small scale 

patches of exposed surface which are isolated from the,'" main 

shore by even the smallest amounts of water, then the total 

number of smaller islands which makes up the coastal form of 

the initial island tends to infinity. 

The Koch process may be utilized to generate Koch fractal 

counterparts to the Cantor dust. For example, the generator 

o
. . n . . . . is made up of similar parts eachN • 16 

having a similarity ratio of r .. liB. The fractal dimension 

for the curve (figure ) is D" log(16) I log (B) - 4/3. The 

main generator is actually made up of two smaller generators. 

A coastline generator and an island generator. The coastline 

generAtor connects the points [0,lJ And is made up of N' .. 10 

line segments. The island generator is the loop made up of 

N - N' .. 6 line segments and "seeds" new islands. In order to 

generate fractals consistent with coastlines, the generator 

is chosen such that N' (N. The dimension of the island 

generator is D' • log(N') I log(l/r) which gives the coastline 

dimension of the individual islands. The dimension D ­

log(N) I log(l/r) is a measure of all the coastlines of all 
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III 

the islands taken together. The cumulAtive coastline, not 

being connected, is not itself a curve but an infinite sum of 

loops. Hence, Mandltlbrot propos.s for it the term " s igmA­

loop. II 

EB8QI8b Q!~~~§!Q~ 8§ e M~e§YB~ QE EB8§~~~IeI!Q~ 

The dimension 0 may measure fragmentation alone. The curve 

o
 
produced by the generator (figure 24) has 

dimensions N ... 16, N' = 8, and r = 1/8. The dimensions are 

0' log(8) / log(8) "'" 1, and 0 = log(16) / log(8) "'" 1 1/3. 

In this case, the dimen.ion 0' . is the same as the Euclidean 

dimension of line; thus, 0' is not a mea.ure of irregularity. 

Hence, 0 is a measure of fragmentation alone. When 0' ) 1, 0' 

is a measure of irregularity, and 0 is a measure of both 

irregularity and fragmentation. Note that if the corners of 

the generator are rounded, then the curve will no longer be 

wi thout tangents. Therefore, fract a 1s are not always 

nonrltctifiable. 
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C~8~~~ 8~Q B8~QQ~ EB8~I8k§ 

Figure 25 shows four stages of a quadric Koch curve with a 

poorly chosen generator; ~s a result, the curve overlaps. 

,-OOi r°:! 
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figure 25 

The curve in figure 26 is due to a bug in the program written 

to generate the curve shown in figure 17. The curve is 

somewhat smoother and the overall pattern is less regular or 

structured. The generator and rules of placement ~re the same 

~s in figure 17; however, as it turns out, the generator 

actually dr~wn on the printer or screen is The/lr. 
curve in figure 27 is the result of careless programming; the 

teragons are not self-avoiding. The curves presented in the 
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last three figures have resulted merely by chance. If nothing 

else, these curves help to illustrate the power of the 

recursive method used to generate them, which Mandelbrot 

believes to be a clue to understanding many phenomena in 

nature. 

Chance plays a vital role in the study of fractals, not 

the chance demonstrated by the curves mentioned above, but 

chance which has a statistical basis. Mandelbrot points out 

that "Although the basic fractal themes involve exclusively 

deterministic constructions, the full meaning and practical 

relevance of these themes are not apparent until one tackles 

random fractals" [5, page 200J. 

A stratified fractal is constructed by the superposition 

of layers, each involving finer detail. The easiest way to 

generate a random stratified fractal is to use different 

generators in different stages of the construction. For 

example, figure 28 illustrates a random Koch coastline where 

the generator used to construct the sigma loop in figure 24 is 

alternated at random with the generator used in figure 18. A 

model of a coastline may be improved by using a more complex 

deterministic Algorithm. However, a curve generated in this 

manner is not a practical model because coastlines are molded 

through the years by many different forces all of which would 

be impossible to account for in a deterministic fashion. 

Hence, this method is of limited scope. 
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figure 28 

Th. r.cursive methods used in this p~per may be used with 

probability theory to invoke elements of chance. However, the 

rules th~t generate ~ccept~ble rAndom curves are difficult to 

describe. Fr~ct~ls which ~re generated by changing the 

shapes, si zes, ~nd the order of a curve's parts, without 

h~ving to inspect e~rlier loops, involve a nonconstr~ined form 

of ch~nce. Constr~ined chance refers to a construction in 

which the l~ter st~ge5 of ~ curve or coastline are constrained 

by the outcome of earlier stages. Mandelbrot and others have 

created fr~ct~l im~ges which look like photogr~ph5 of actu~l 

i.l~nd. ~nd mount~ins. Mandelbrot's mountains and coastlines 

involve prob~bilistic complications but ~re modeled in ~ first 

approximation by fr~ct~l surfaces ruled by Brownian chance. 



Chapter 4 

cg~eY!~B B~CB~8IIg~§ 

The triadic Koch curve was presented earlier in arl 

algorithmic manner. The construction began with an initiator, 

each interval of which was replaced by a scaled generator. 

The points were renumbered and the process repeated again and 

aga i n. This is an iterative method which may be implemented 

nicely in the programming language Pascal. 

Pascal allows us to build a linked list of nodes 

dynamically; i. e. , memory for storage is allocated during 

execution of a program. Thus, the programmer qoes not need 

to dimension an array to some maximum number beforehand. The 

nodes in this program are record variables defined to have 

three different fields: an x-field, a y-field, and a next­

address field. The x and y fields are used to store the 

coordinates of a point. In Pascal the method of access to a 

node is through a pointer. A pointer may be thought of as the 

address of the portion in memory allocated to a node. LIST is 

a pointer set equal to the address of the first node. The 

next-address fields associated with each node are also 

pointers which point to the following node in the list. NIL 

is a special pointer which signifies the end of a list. 

The program begins by generating a linked list of nodes 

corresponding to the three vertex points of the initiator and 

drawing the initial triangle. Then it begins the iterative 

process of calculating new points or generating new nodes 

which correspond to the scaled generator. Three such points 
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are generated for each pair of points already in the list. 

The three new nodes are then inserted into the list between 

the pair of nodes from which they were generated. With each 

iteration the resulting figure is drawn, adding more and more 

detail to the curve. 

Points and nodes are declared as follows 

type nodeptr'" Anodetype 

nodetype ~ record 
<~. 

x c= integer 

y := integer 

next := nodeptr 

end ; 

var p, list, k : nodeptr ., . 

The preceding statements have defined p, LIST, and k 

to be pointers; they point to variables of type nodetype. 

Here is an example of how the different fields of a node may 

be accRBsed. A call to the standard function GETNODE, 

p .= GETNODE, will allocate a new memory space with the above 

specifications and place the address of that location in p. 

Then, the x-field of this node may be set equal to 5 by the 

statement pA. X The next-address field is set equal.""' 5. 

to the value of the pointer q by the statement pA. next : = q. 

Another standard procedure, INSAFTER (x, y) , will call 

GETNODE to create a new node, set the information fields equal 

to x and y, and then insert this new node into the list after 

the node pointed to by p. The function GET NODE and procedure 



51 

INSAFTER are pre.ented below. A convenient reference covering 

this material i. chapter five in Q~~~ §~~y~ty~~! Y~ing e~~~~l 

written by Aaron M. Tenenbaum and Moshe J. Augenstein in 1981. 

function GET NODE I nodeptr ; 

var p I nodeptr; 

begin 
new(p), {creats new node and sets p equal to its address} 
get node IE p 

end { function getnode } ; 

procedure INSAFTER(plnodeptr, Xlinteger; V~integer) 

var qlnodeptr 

begin
 
if p - nil
 
then writeln('error void insertion')
 
el.e begin
 

p 1- get node
 
p".X I- X ,
 
q". V 1- V ;
 
q".next I- p".next
 
p".next 1= q
 

end ;
 
end { procedure insafter}
 

The main loop responsible for expanding the list 1s as 

follows 1 

P 1- 1 i st , 

whi le p". next 0 ni 1 
do	 begin
 

k ~ .. p". next ,
 
findpts(p".X,p".V,k".X,k".V)
 
p 1= k 

end {while•• do begin} ; 

find pt s ( p". X, p". V, 1 i s t ". x, list A. y) ; • 
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The variable LIST in this program will always point to the 

first node in the list. Then, the first statement above sets 

the pointer p equal to the address of the first node in the 

list. The statement, while pA.next () nil, checks for the end 

of the list, at which time control Jumps out of the loop. The 

first time through the loop, the pointer k is set equal to the 

address of the second node in the list. The procedure FINDPTS 

accepts the coordinates stored in the first two nod~s of the 

list and calculates the coordinates of three new points. 

Then, it calls INSAFTER which creates three new nodes and 

inserts them between the nodes pointed to by p and k. Next, 

the pointer p is set equal to the address of the second node 

and the process is repeated. The pointer k is set to the 

address of the third node; FINDPTS inserts three new points 

into the list, and 50 on, until the last node is detected. 

Finally, a call to FINDPTS outside the WHILE loop will insert 

three new points between the last and first nodes of the list. 

The schematic in figure 29 depicts a call to the procedure 

findpts given the coordinates of points 1 and 2. The 

coordinates of points 2, 3, and 4 are calculated and placed 

into nodes. The nodes are then inserted into the list. 
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list--.. ~ ~nil 

before 

• 
4 

1 3 5 2 

li.t- [0-.. m~ Q:]--~ m---.- nil 

after 

figure 29 

The new points found by the procedure must be placed on 

the outside of the curve. The symmetry involved is such thilt 

the line segment between any pair of successive points, in 

ilny given stage of construction, may be placed into one of six 

different ciltegorie•• For example, the line segment between 

two successive points, (x,y) and (kx,ky), may be designated as 

being horizontal to the right, horizontal to the left, up to 

the right, down to the right, up to the left, or down to the 

left; i. e. , ER, EL, UR, DR, UL, DL, respectively. Figure 30 

shows the line segment, its designation, and the condition to 

test for. Note the y coordinate axis is inverted when 

graphing on the computer. Because the screen i. defined to 

have its origin at the upper left corner, the positive Y axis 

run. down from that point. 
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(kx, ky) 

• 
(x,y) 

• 
(kx, ky) (kx, ky) (x,y) 

/
(x,y) 

ER EL UR 
x ( kx x ) kx x ( kx 

and and and 
y • ky y = ky y ) ky 

(x,y) (kx, ky) (x,y) 

\ \ /

(kxky) (x,y) (kx,ky)"" 

DR UL DL 
x ( kx x ) kx x ) kx
 

and and and
 
y ( ky Y ) ky Y ( ky
 

figure 30 

The procedure FINDPTS uses two functions to determine the 

condition of a line. PLINE returns either the character "u", 

"d" , or "e" depending on whether the line is up, down, or 

horizontal. The function DISTANCE returns either "I" or "r" 

for left or right. Consider the following example. Assume 

that the line segment between the points (x,y) and (kx,ky) is 

up and to the right. Then the points xl, yl, x2, y2, x3, and 

y3 may be calculated by the method in figure 31. The same 

general method is used for the five other cases involved. 

Recall that the y axis is inverted when in graph mode. 
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dx .. I x - kx 

dy I Y - ky:::I 

•,kY
xl II: x + (1/3) dx 

1,2 !yl ... Y - (1/3) dy dy 

x3= x + (2/3) dx 
•I 

yl •
y3 = y - (2/3) dy 

x2 .. )( +-------------~---------

X kx 
y2 ... y3 

~dX~ 

figure 31 

The procedure responsible for drawing the curve is PDRAW. 

Given ~ linked list of points, PDRAW merely connects the 

points in an iterative manner, where the statement 

draw(x,y,kx,ky,color) draws a line from the point whose 

coordin~tes are (x, y) to the point whose coordinates are 

(k,x,ky) in the color designated by an integer between 1 and 3. 

The progr~m in its entirety is now presented. 

program KOCH(input,output) 

{ purpose - to draw consecutive stages of the triadic} 
{ Koch curve. } 

type nodeptr ... Anodetype
 
nodetype .. record
 

x I integer ;
 
y : integer ; 
next : nodeptr
 

end, ;
 

var p, list, k I nodeptr 
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i, xl,yl,x,y I integer 
r 1 real , 

color I integer , 
linecolor 1 integer, 
backcolor integer , 

palt integer , 
stage char , 
num integer 

function GETNODE I nodeptr;
 
var p I nodeptr
 
begin
 

new (p) ;
 
get nc.de : = p
 

end { function getnode } ;
 

procedure INSAFTER(plnodeptr; x:integer; y:integer)
 
var q : nodeptr ,
 
begin
 
if p .. nil
 
then writeln('error void insertion')
 
else begin
 

q := getnode
 
qA. X 1= x ;
 
qA. y := y;
 

qA.next := PA.next
 
pA. next := q ;
 

end;
 
end { procedure insafter }
 

procedure PDRAW(colorlinteger) 
begin
 

p :.. 1 i!'it ,
 
wh i Ie pA. next 0 ni 1
 

do begin
 
K := pA.next;
 
draw(pA.x,pA.y,kA.x,kA.y,color)
 
p 1= pA.next
 

end ;
 
draw (pA. x, pA. y, 1 i.t A• x, 1 ist A• y, color) ,
 

end {procedure pdraw};
 

procedure FINDPTS(pxlinteger, pylinteger, kkx:integer; 
kky: integer) 

var	 x,y,kx,ky,xl,yl,x2,y2,x3,y3 I integer,
 
dx,dy I real,
 
pl,di : char;
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function PLINE I char; 
begin 

if ky < Y
 
then pline := 'u'
 
else if ky > Y
 

then pline 1= 'd'
 
else pI i ne : = 'e'
 

end { function pline };
 

function DIRECTION I char; 
begin 

if x < kx
 
then direction := 'r'
 
else direction := '1'
 

end { function direction }; 

begin { procedure findpts } 

x := px ;
 
y 1= py ;
 
kx := kkx ,
 
ky := kky ;
 
dx := abs Ckx-x)
 
dy := absCky-y)
 

pI := pline ;
 
di direction
== 
if Cpl • , u' ) and Cd i - , r' ) 

then begin 
x1 lIZ x + roundC0.3333 * dx) ; 
y1 := y - roundC0.3333 * dy) ; 
x3 1= x + roundC0.6666 * dx) ; 
y3 := y - roundC0.6666 * dy) , 
x2 := x ; 
y2 := y3 

end 
else if Cpl = 'u') and Cd i • , 1 ' ) 

then begin 
x1 := x - roundC0.3333 * dx) , 
y1 1= Y - roundC0.3333 * dy) , 
x3 1= x - roundC0.6666 * dx) ; 
y3 .-= y - roundC0.6666 * dy) ; 
x2 1= kx ; 
y2 1= y1 

end 

else if Cpl" 'd') and Cdi" 'r') 
then begin 

x1 IC x + roundC0.3333 * dx) 
y1 1= Y + roundC0.3333 * dy) 
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x3 a= x + round(0.G6G6 * dx) I
 
y3 .= y + round(0.G666 * dy) I
 
x2 :m kx I
 
y2 1= yl
 

end 

else if (pI = 'd') and (d i • , I ' ) 
then begin
 

xl 1= x - round (0. 3333 * dx) I
 
yl a= y + round (0. 3333 * dy) I
 
x3 x - round (0. G666 * dx) I
 
y3 .""'a= y + round (0. 6666 * dy) .,
 
x2 1= x I
 
y2 a= y3
 

end 
" 

else i f ( pI" 'e') and (d i .. 'r') 
then begin
 

xl a= x + round (0. 3333 * dx) ;
 
yl a'" y ;
 
x3 I- x + round (0. G666 * dx)
 
y3 :- y ;
 
x2 1= round(x + dx/2) ;
 
y2 1= Y - round (sqrt (dx*dx/9 - dx*dx/36»
 

end 

else begin
 
xl 1= x round C0. 3333 * dx)
 
yl 1= Y
 
x3 := x roundC0.6666 * dx)
 
y3 := y
 
x2 1= X roundCdx/2) ;
 
y2 :c y + roundCsqrtCdx*dx/9 - dx*dx/36»
 

end I 

insafterCp,x3,y3)
 
insafterCp,x2,y2)
 
insafterCp,xl,yl)
 

end {procedure findpts } I 
begin { * * * program KOCH * * * } 

writelnC'would you like each successive stage to be');
 
writelnC'drawn on the previous stage Y or N ');
 
readlnCstage)
 
writeln;
 
writelnC' enter the X, Y coordinates for the lower left
 

vertex' ) 
readlnCx,y) 
writeln; 
writelnC'enter the distance between two of the initiators 

vertexes' ) 
readlnCr) 
writeln; 
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I 

writeln('how many stages? 1-5) ;
 
readln(num);
 
clrscr;
 

list := getnode { initialize linked list}
 
1 ist"'. X := )( ;
 
listA.y := y ;
 
list"'.ne)(t :=nil
 
p : = 1 ist 

)(1 := round()( + r) { puts the points of the initiator} 
y1 := y ; { into the linked list } 
insafter(p, )(1,y1>; 

)(1 := round()( + r/2) I
 
y1 := y - round( sqrt(r*r - r*r/4»
 
insafter(p,)(1,y1) ;
 
writeln('how many stages would you like')
 
readln(numstg)
 

backcolor := 0
 
pa 1t := 3
 
graph mode ;
 
graphbackground(backcolor)
 
color := 2 ;
 

pdraw(color) 

for i 1= 1 to num
 
do begin
 

if color 3II: 

then color ICl 0;
 
color 1= color + 1
 

P I" list; 

whi Ie p"'. ne)(t <> ni 1 
do begin 

k fa: pA.ne)(t ; 
findpts(pA.)(,pA.y,kA.)(,kA.y) 
p 1= k ; 

end ;
 
findpts (pA.)(, pA. y, 1 ist A.)(, 1 ist A• y)
 

readln ; 

i fISt age - 'W'
 
then graphmode
 

pdraw(color)
 

end ; 

end {program Koch } • 
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The	 programs which generate the quadric Koch curve. in 

figures 17 and 18 .re simil.r to the preceding progr.m. The 

only changes made were to the code responsible for the 

initiator and to the procedure FINDPTS. The initiator i. 

changed from a triangle to a square. The procedure FINDPTS 

uses the following numbering system corresponding to the 

generatorc 

;l, 3 

The procedure for the curve in figure 17 
1/ '7 1<'1..IX 

$ c.. 

is as folloWSJ 

procedure FINDPTS(pxcinteger; py:integer; kkxlinteger; 
kky:integer; alt:char) 

var	 x,y,x1,y1,x2,y2,x3,y3,kx,ky: integer
 
x4,y4,x5,yS,x6,y6,x7,y7 cinteger ;
 
dx,dy : real;
 
pI, d i c ch a r ;
 

function PLINE : char 
begin
 

If ky ( y
 
then p line 'u'
I II: 

else if ky ) Y
 
then pline :- 'd'
 
else pline 1= '.'
 

end	 {function pline} 

function direction I char; 
begin
 

if x ( kx
 
then direction c= 'r'
 
else direction :- 'I'
 

end { function direction} 

begin 

X :-' px ;
 
y := pY ;
 
kx II: kkx
 
ky ;= kky
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dx 1= abs(kx-x) 
dy 1= abs(ky-y) 

pI p= PLINE ; 
di := direction 

if pI I:: , u' 
then begin 

xl 1-= )( 

yl 1- Y - round (0. 25 * dy) 
x2 .- x - round (0. 25 * dy) 
y2 : .. yl ;
 
x3 := x2 ;
 
y3 := y - round(0.5 * dy)

x4 := )( .,
 
y4 := y3 ;
 
x5 := )( + round(0.25 * dy)
 
y5 := y4 ;
 
x6 := x5 ;
 
y6 := y - round(0.75 * dy)
 
x7 := )( ;
 
y7 ... y6 .,
 

end 

else if pI .., , d' 
then begin 

xl III: x ; 
yl := y + round(0.25 * dy) 
x2 1= x + round (0. 25 * dy) 
y2 .= yl ; 
x3 1= x2 J 
y3 .= y + round(0.5 * dy) 
x4 :== )( ; 
y4 t= y3 ;
 
x5 .= x - round(0.25 * dy)
 
y5 := y4 ;
 
x6 := x5 ;
 
y6 1= Y + round (0. 75 * dy)
 
x7 1- x ;
 
y7 .- y6 ;
 

end 

else if (pI • , e' ) ~nd (d i -, r' ) 
then begin 

xl : .. x + round (0. 25 * dx)
 
yl := y ;
 
x2 III: xl ;
 
y2 t= y - round (0. 25 * d x) ;
 
x3 1= x + round(0.5 * dx) ;
 
y3 := y2 ;
 
x4 := x3 .,
 
y4 1= Y ;
 
x5 1= x4 ;
 
y5 II:: Y + round (0. 25 * dx)
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K6 •• K + roundC0.75 * dx)
 
y6 .- y5 ;
 
x7 := x6
 
y7 .= Y J 

end
 
else if Cpl = 'e') and Cdi - '1')
 

then begin
 
xl := x - roundC0.25 * dx)
 
yl .'"= Y ;
 
x2 I = xl;
 
y2 .= y + roundC0.25 * dx)
 
K3 := x - roundC0.5 * dx)
 
y3 .'"" y2 ;
K4 1= x3 ;
 
y4 : = y ;
 
K5 1= x4 ;
 
y5 .= Y - roundC0.25 * dx)
 
K6 1= K - roundC0.75 * dx)
 
y6 := y5 ;
 
x7 : = x6 ;
 
y7 .= Y ;
 

end ; 

INSAFTERCp,x7,Y7) ;
 
I NSAFTER Cp, x6, Y6) ;
 
INSAFTER (p, x5, Y5) ;
 
INSAFTER Cp, x4, Y4) ;
 
INSAFTERCp,x3,Y3)
 
INSAFTERCp,x2,Y2) ;
 

if alt = 'y'
 
then INSAFTERCp,K,Y)
 
else INSAFTERCp,Kl,Yl)
 

end { function findpts }; 

To produce the program for the Peano curve Cfigure 20) 

only change$ to the procedure FINDPTS are needed. The 

numbering of the generator is such that two points are 

• •JJ. 

riumbered twice: . The 
J( ItS" tJ,8 b 

"
• •

7 

Peano curve with rounded corners Cfigure 21) uses the same 

generator and numbering scheme as above. Hence, the procedure 
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FINDPTS for the two programs are the same; however, 

Modification of the procedure PDRAW is required. Th. 

following example shows the figure which is actually drawn on 

the screen. The generator is shown as black dots and the . 
result of PDRAW is shown as a curve: -B-

The procedure FINDPTS and PDRAW are as follows~ 

procedure FINDPTS(px:integer; py:integer; kkx:integer; kky: 
integer) 

var x,y,xl,yl,x2,y2,x3,y3,kx,ky integer ; 
x4,y4,x5,y5,x6,y6,x7,y7,x8,y8 ~integer ; 
dx.dy ~ real; 
pl,di : char; 

function PLINE ~ char 
begin 

If ky ( Y
 
then pline .= 'u'
 
else if ky > Y
 

then pline := 'd'
 
else pline .- 'e'
 

end {function pline}
 

function direction: char
 
begin
 

if x ( kx
 
then direction ~= 'r'
 
else direction := '1'
 

end { function direction} 

begin { function findpts } 

X : '" px ;
 
y ~= pY ;
 
kx : &: kkx ;
 
ky ::: kky ;
 
dx :Ie: abs(kx-x)
 
dy ~= abs(ky-y)
 

pI &:: PLINE ;
 
d i : = direct ion
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if pI - , u' 
then begin 

xl .... x
 
yl .- Y - round (0. 3333 * dy) ,
 
x2 &-= x - round(0.3333 * dy) I
 
y2 &= yl .,
 
x3 .-= x2 I
 
y3 &= Y - round (0. 6666 * dy)
 
x4 &= x ,
 
y4 &= y3 I
 
x5 .= xl I
 
y5 1= yl
 
x6 .= x +

I 
round (0. 3333 * dy) ,
 

y6 .= yl ; 
x7 .= x6
 
y7 1= y3
 
x8 1= x4
 
y8 1= y4 I
 

end 

else if pI •	 'd' 
then	 begin
 

xl := )(
 I 
yl &... Y + round (0. 3333 * dy) ; 
x2 I" x - round (0. 3333 * dy) 
y2 := yl ;
 
x3 1= x2 I
 
y3 .= Y + round (0. 6666 * dy)
 
x4 &= x
 I
 
y4 &= y3 I
 
x:5 &= xl ;.y5 &= yl , 
x6 &= x + round (0. 3333 * dy) 
y6 1= yl 
x7 := x6 , 
y7 &= y3 I 
x8 &= x4 I 
y8 &= y4 

end 
else if (pI • 'e') ;and (d i • , r' ) 

then begin 
xl &- x + round (0. 3333 * dx) ; 
yl ;.-= Y 
x2 p= xl I
 
y2 &= Y - round (0. 3333 * dx)
 
x3 := x + round (0. 6606 * dx)
 
y3 := y2 I
 
x4 := x3 I
 
y4 := y ;
 
x5 := xl ;
 
y5 &= yl ;
 
xo := xl ,
 
yo := y + round (0. 3333 * dx) I
 
x7 ..-- x4 I
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y7 1- y6 , 
><8 I" ><4 , 
y8 I" y4 , 

end 

else if (pI • 'liP') ~nd (d i • '1')
then begin 

><1 ID >< - round(0.3333 * d><) 
yl Y ,•~D 

><2 := ><1 I 
y2 := y - round (0. 3333 * d><) ,
 
><3 1= >< - round (0. 6666 * d><) ,
 
y3 1= y2 ,
 
><4 := ><3
 
y4 := y ., I
 
><5 1= ><1
 ,I y5 := yl
 
><6 := ><1 ;
 
y6 1= Y + round (0. 3333 * d><) ;
 
><7 1= ><4 ,
 
y7 1= y6 ;
 
><8 1= ><4 ,
 
y8 1= y4 I
 

end I 

INSAFTER(p,><S,Y8)
 
INSAFTER(p,><7,Y7)
 
INSAFTER(p,><6,Y6)
 
INSAFTER(p,><S,Y5)
 
INSAFTER(p,><4,Y4)
 
INSAFTER(p,><3,Y3)
 
INSAFTER(p,><2,Y2)
 
INSAFTER(p,><l,Yl)
 

end { function findpts }; 
procedure PDRAW(colorlinteger) , 
v~r i,><,y,k><,ky,d><,dy I integer 

pl,di I char I 

function PLINE I char; 
begin 

If ky ( p"'.y
 
then pline 1- 'u'
 
else if ky ) p"'.y
 

then pline 1= 'd'
 
else pline I- 'e'
 

end {function pline}
 

function direction I char 
begin 

if p"'. >< ( k><
 
then direction 1- 'r'
 
else direction I- '1'
 

end { function direction} ; 



66 

begin { procedure pdraw } 

p Ie list ,
 
X := p"".x ,
 
y 1= p"".Y ;
 
kx :-- p"".next"".x
 
ky :a: p"". next"". y ,
 
dx := abs(kx-x) ;
 
dy := abs(ky-y) ,
 
if dx 0
... 

then dx := dy
 
else dy :- dx
 

whi le p"". next () ni 1 
do begin 

pI : III PLINE ,
 
d i : = direct ion
 
if (pl = 'u')
 

then begin 
draw(x,y,kx,ky+round(dy*0.25),color); 
x : .. kx , 
y :~ ky + round (dy*0. 25) 

end; 
if (pl == 'd') 

theYI beg i n 
draw(x,y,kx,ky-round(dy*0.25),color) ; 
x : = kx ; 
y := ky - round(dy*0.25) 

end; 

i f (pl. 'e') and (d i·' r' ) 
then begin 

draw(x,y,kx-round(dx*0.25),ky,color); 
x := kx - round(dx*0.25) 
y := ky 
end ; 

if (pl = 'e') and (di == '1') 
then begin 

draw(x,y,kx+round(dx*0.25),ky,color) , 
x := kx + round(dx*0.25) , 
y := ky 

end 

for i := 1 to 14
 
do if p"".next () nil
 

then begin
 

if (i/2 () round(i/2»
 
then begin
 

p : = p"". next ,
 
kx :e p"". next"". x
 
ky := p"".next"".y
 

end 
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pl ... PLINE ;
 
di J= direction,
 

if (pI = 'u') 
then begin 

draw(x,y-round(dy*0.25),kx,ky+round(dy*0.25) 
,color) ; 

X J = kx ; 
Y .- ky + round(dy*0.25); 

end 

else i f ( pI = 'd') 
then begin 

draw(x,y+round(dy*0.25),kx,ky-round(dy 
*0.25),color); 

x := kx 
y := ky round (dy*0. 25) 

end 

else if (pI = 'e') and (di = 'r') 
then begin 

draw(x,y,kx-round(dx*0.25),ky,color); 
x := kx - round(dx*0.25) 
y := ky 

end
 
else begin
 

dr~w(x,y,kx-round(dx*0.25),ky,color); 

x .= kx - round(dx*0.25) ;
 
y 1= ky
 

end ;
 
end ;
 

P 1= p next ;
 
kx := p next"'. x
 
ky := p next ...... y
 

if p ...... next 0 nil 
then begin 

r 

if (pI = 'u') 
then begin
 

draw(x,y-round(dy*0.25),kx,ky,color)
 
x 1= kx I
 
y J= ky
 

end; 

if (pI = 'd') 
then begin 

draw(x,y+round(dy*0.2S),kx,ky,color) 
x 1= kx 
y Je ky 

end; 

if (pI 'e') and (di = 'r')Ill: 
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then begin 
dr.w(x+round(dx*0.2S),y,kx,ky,color)
 
x 1- kx ,
 
y := ky
 

end; 

i f ( P 1 - 'e') oil nd (d i - '1') 
then begin 

droilw(x-round(dx*0.2S),y,kx,ky,color) 
x 1- kx , 
Y I"'" ky 

end, 

P I" p"".next , 
kx :- p"".next"'.x 
ky 1= p"".next"'.y I 

end ; {if then begin} 
end; 

draw(x,y, list"'. x, list"".y,color); 

end {procedure PDRAW}; 
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