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Chapter 1
Introduction

Fractal pgeometry is a new approach to an old category of
problems which was pioneered by Bencoit B. Marndelbrot, a
mathematician at IBM. Within the past decade, Mandelbrot's
ideas have been gaining more and more support as new
applications in a number of the natural sciences are
investigated.

This paper will introduce the reader to some of the basic
ideas and concepts involved in the study of fractal geometry
and will apply these ideas to coastlines. Finally, the paper
will use tgese ideas to generate some of the fractal patterns
orn the microcomputer. At the present time there are few

refarence books on this subgect, and no text books are

A fractal may be thought of as a shape whose parts are
eimilar to each other and have the same degree of complexity
on many different scales. Many shapes found in nature may be
described more easily in terms of fractal shapes than in terms
of standard shapes found in geometry. If a portion of a circle
or & regular polygon is magnified over and over, the resulting
image tends to straighten out. The earth may be used as an

analogy. It appears to be flat because we see only a small



portion on a large scale. The surface of tree bark is very
rough and crinkled. When tree bark is mapnified, the resulting
surface is also rough and crinkled. Consider the jagged line
representing the vertical cross section of a piece of tree
bark. When a portion of the cross section is enlarged, the
result is another crinkled line which represents that portion
in greater detail. A very Jagged lirne may be used only as a
first approximation to the vertical cross section of a piece
of tree bark because when the jagged line is magnified, it
straightens out in the same marmer as for a circle. A map of
an island may be enlarged over and over to produce maps of
finer and finer detailj however, the coastline of the island
generally dees not straighten with magnification. If a set of
maps of a small island were drawn to many different scales,
each map would reveal different detail, but the overall
Jagped ccastal pattern would be the same.

The bhuman lung is another shape which is hard %or standard
geometry to describe because it is made up of a complex of
tubes, air sacks, and blood vessels of many different scales.
A cloud’'s shape is determined by a collection of many tiny
particles which make up pillow shapes which make up larger
pillow shapes which make up still larger pillow shapes.
Marndelbrot writes, "I claim that many patterns of Nature are
80 irregular and fragmented, that, compared with Euclid--a
term used ... to denote all of standard geometry, Nature
exhibite not simply & higher degree but an altogether

different level of complexity. The number of distinct scales



of 1length of natural patterns is for all practical purposes

infinite" [35, page 11.

EARLY BEGINNINGS AND APPLICATIONS OF FRACTAL GEOMETRY
The word fractal was coined by Benoit B. Mandelbrot from
the Latin adjective fractus, meaning irregular, and the Latin

verb frangere, which means to break or create irregular
fragments. The term "fractal" first appeared in Mandelbrot's
1977 book.

One of the first applications which led to the development
of fractal geometry was introduced in 1958 when Mandelbrot

convinced IBM to halt a multimillion-dollar research project

aimed at eliminating noise from their gystems. Mandel brot
showed that noise, i.e., random fluctuations in signal
transmission, is impossible to eliminate entirely. He

described the noise using strange new logic.

Later, around 1968, Mandelbrot was working on what he
called the "Joseph effect," a term used to describe the yearly
water levels of the Nile river. The fluctuations in the water
levels are very persistent, and recordse indicate that
particular water levels have lasted for as long as & thousand
years. Mandelbrot says, "If you look at a record of the
Nile's discharges, you don’t see little flags that mark the
beginming or the end of a drought. Each record seems to look
like random noise superimposed on a background that is alsc
noisy. The background seems cyclic, but you can't extrapoclate
from its cycles for predictive purposes. They are not

periodic" (3, page 10621]. Because of these features, the Nile



only remotely fits statistical and hydrology textbook models.
Mandelbrot devised a fractal model based on data collected by
the noted niologist Harold Edwin Hurst. He showed the praphs
generated with his model, along with graphs made from the
Hurst data, to a panel of hydrologists. They were urnable to
distinguish hias forgeries from the authentic records of the
Nile.

Mandelbrot also used fractals to model stock market
prices. His artificial graphs of cotton prices were mixed
with authentic graphs as well as praphs produced by other
computer models. The collection was taken ¢to - a prominent
stockbroker. The stockbroker identified the charts produced by
the standard models but was unable to distinguish the real
records from Mandelbrot’s artificial ones.

Much of Mandelbrot’s earlier work dealt with computer
generated coastlines. He was able to model coastlines which
remarkably resembled actual coasts with a single set of
equations. By changing a single parameter, the model was able
to pgenerate a large spectrum of coastlines from smooth,
elongated islands like Taiwan to a very complex archipelago
of shapes like the islands found in the Regean Sea. Later,
the methods were extended with the contributions of Richard
Voseg, a physicist also at IBM; to generating fractal mountains
and landscapes. The parameter Mandelbrot used in these models
is called the "fractal dimension” and is giving scientists a

way to describe a complex phenomenon with a single number [3,

page 651].



Fractal shapes and patterns are being recognized in many
different natural sciences. For example, the frequencies of
word usage in different languages are largely the same. This
phenomenon, known as the "Ziph Law," 1is now being understood
through a fractal approach to analysis.

Fractals are also being used in modeling the vepgetation
patterns of the Okefenckee Swamp in Georgia. The outlines of
different groves or patches of trees look like coastlines when
observed from the air. Harold Hastings, Professor of
mathematics at Hofstra University on Long Island, claims that
certain trees, such as cypress, are patchier than others and
may be described in fractal terms. Noting changes in fractal
patterns may serve as an early-warning system for acid rain or
other harmful types of pollution [6, page 116].

In penetics, fractals suggest that & small amount of
genetic code may be responsible for the growth of a large and

camplex organiem, and minor changes in the code may result in

global changes to the organism. Fractals are being used ¢to
write music, and the movie industry has invested heavily in
computer equipment to generate fractal images. Other areas in

which fractal analysis is being applied include the clustering

and distribution of stellar matter, turbulence, distribution
of oil and other natural resources, cratering of the moon,
gecometry of polymers, turbulence, chaos, the occurrence of

earthquakes, the surfaces of metals, and meteorology.



Chapter II
Dimension

The concept of dimension plays a vital role in the study
of fractals. Dimension is an elusive notion which
historically has been used only in a vague sense. There has
been no attempt made here to present a complete history of
dimension, for indeed it would be quite lengthy. However,
several discoveries made near the turn of the century have
altered our previous ideas about geometry and dimension.
Hurewicz and Wallman in their book Dimension Theory (1941)
write, "The lack of a precise definition of dimension, however
unsatisfactory from an esthetic and methodological point of
view, caused no difficulty so long as peometry was confined to
the study of relatively simple figures, such as polyhedra and
manifolds. No doubt could arise, in each particular case as
to what dimension to assign to each of these figures. This
situation changed radically, following the discoveries of
Cantor, with the development of point-set theory. This new
branch of mathematics tremendously enlarged the domain of what
could be considered as geometrical objects and revealed
complexity never before dreamt of" [4, page 61].

Cantor showed a one—-to-one correspondence between the
points of a line and the points in a plane proving that
dimension can be changed by a one—-to-one transformation and
that a plane does not contain more points thanm a line. Peano
put forth a continuous mapping of an interval onto the whole

of a square, a notion which contradicted the belief that the



dimension of & space could be defined as the least number of
continuous real parameters required to describe the space, and
showed that dimension can be raised by a one-valued continuous
transformation (4, page 41J. Mandelbrot recognized that the
graphs of such functions may be described, or "tamed," through

a new approach he called fractal geometry.

Intuitive Dimension

Thera are many ways to define dimension on intuitive
grounds. We deal with dimension each time we measure an
object. We use units of measure which correspond to the
dimension of the object we are trying to measure. For example,
the length of a line may be given in feet (ft); the area of a
region in square feet (fte), and the volume of a solid in
cubic feet (ft3). The exponent in each case is considered to
be the dimension.

A more concise, but still intuitive, definition was
written by Poincare in 1912 and serves as the introduction to
Pimension Theory by Witold Hurewicz and Henry Wallman: "asa
if to divide a continuum it suffices to consider as cuts a
certain number of elements all distinguishable from one
another, we say that this continuum is of one dimensiong if,
on the contrary, ¢to divide a continuum it is necessary to
consider as cuts a system of elements themselves forming one
or several continua, we shall say that this continuum is of
several dimensions.

"If to divide a continuum C, cuts which form one or

several continua of one dimension suffice, we shall say that C



is & continuum of two dimensionsj if cuts which form one or
several continua of at most two dimensions suffice, we shall
say that C is a continuum of three dimensionsy; and so on" [4,
page 21.

To pive this idea a sense of validity, Poincare continues
by comparing the above definition to that of peometers.
“Usually they bepin by defining surfaces as the boundaries of
solids or pieces of space, linres as the boundaries of
surfaces, points as the boundaries of lines, and they state
that the same procedure can not be carried further.

"This is Just the idea given above: to divide space, cuts
that are called surfaces are necessaryi to divide surfaces,
cuts that are called lines are necessaryj to divide lines,
cuts that are called points are necessaryjy we can go no
further and a point can not be dividedy, a point not being a
continuum. Then lines, which can be divided by cuts which are
not continua;, will be continua of one dimension; surfaces,
which can be divided by continuocus cuts of one dimension, will
ba continua of two dimensionsj; and finally space, which can be
divided by continuous cuts of two dimensions, will be a
continuum of three dimensions" C4, page 31. Euclidean
geometry is based on these concepts and the mathematics of
their properties, measurement, and relationships.

By looking at a fractal shape, the problems involved in
measuring fractals as opposed to measuring shapes found in

Euclidean geometry can be more easily understood.



The Triadic Koch Cury

This curve, otherwise known as the Snowflake curve, was
first put forth by the German mathematician Helge Von Koch in
1904. Mandelbrot recognized this Koch curve as being a classic
example of a fractal. The curve is constructed in stapges,

more detail being added with each successive stage. In

generating fractal curves of this type, one begins with an N
sided poloygon called an initiator. Then each . straight
interval is replaced by a shape called a generator. For the
triadic Koch curve the initiator (figure 1) is a triangle, N

= 3, with each side having length ri. The generator (figure
2) is a broken line made up of four line segments, each having

length r2, where r2 is scaled to 1/3 the size of ri.

LY
Initiator 1 //////N\\\\\ generator 1 / \
' 3 f"1

F——— rl

figure 1 figure 2

The process proceeds by replacing the line segment between the
first and second points of the initiator by the generator as
shown in figure 3. Next, the line segments between the second
and third points and between the third and first points are
replaced by the generator. The second stage is now complete

and shown in figure 4. To continue the construction, we
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renumber the points and again replace the line segment between
the first and second points with the generator, except scaled
to 1/3 the size of r2z, or (1/9) r1, as in figure 5. Next, the
line segment between the second and third points is replaced,
and so on, until all the line segments have been replaced.
After the third stage the curve looks like that shown in

figure 6.

figure 3 figure 4 figure 5 figure 6

This process is repeated again and apgain, stage after
stage ad infinitum, replacing each interval with a scaled

penerator. When generating this curve on the computer, we are

raestricted by the resoclution and the amount of memory
available. So even with the most powerful equipment, the
length of the resulting curve becomes only a finite

approximation. However, theoretically, when one imagines this
process being repeated over and over without bound, the curve
becomes infinitely long. However, the area contained by the
curve is finite. For example, given the initiator with N
sides equal to 3, each having length r1 = 1, we have length L

= N rl1 = 3, For the second stage, N = 12 and r2 = 1/33 hence,
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L =4, For the third stage, N = 48 and 3 = 1/9; hence, L = 3

1/3 and so on. The length may be represented by the following

geometric sequence where n denotes the stage of construction:
n—2

3, 4, S5 1/3, ..., L(n) where L(n) = 4 (4/3)

since Irl = 4/3 ) 13y 1lim L(n) = oo.
n+o00o

In the construction of the triadic Koch curve, triangular
chunks of additional area are added to the initiator with each
stage; however, the additional chunks become smaller and
smaller with each successive stage. For example, let the area
contained by ¢the initiator be R = 1 (figure 7). The
additional area obtained in the second stage (figure 8) is
3/9 asince each of the three new triangles are 1/9 the size of
the initiator. The third stage (figure 9) adds twelve more
triangles, each 1/9 the size of its predecessor or 1/81 the

size of the initiator. Hence, the actual area added with this

stage is 12/81.

figure 7 figure 8 figure 9
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The area may be represented by the following geometric series:

Area = 1 + A(n)

2 3 n-—1
where RA(n) = 3/9 + 12/9 + 48/9 + ... + 3/9 (4/9 .
Since Ir|l = 4/9 ( 1, the series converges. Thus, the total
area is given by A =1 + 1lim A(n) = 1 + (3/9) / (9/5) = 1.6.
n-=o00
Since the curve enclosing this finite area is infinitely
long, the length of any portion of the curve is _.infinite.
Thus, a problem with using standard ideas about dimension and
geometry as applied to the Koch curve becomes apparent when
we ¢try to compare the length of one portion of the curve to
the length of another portion or to the whole. Shown below
are some advanced stapges of the triadic Koch curve.
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A method in Euclidean geometry used to measure the length
of & continuocus curve F is to partition the curve into
smaller lengths. Let R, , P N A be n + 1 points in

2-space. the curve R passing through these points is defined

as follows:
R(i) = Q . i=0, TE . n g if i (« ¢t « i+ 1, then

R(t) = (1 = ¢t + i) B + (¢t - i) Q*, . R is called the

polygonal curve with vertices F, , P, . - s Pna

and is shown in figure 10. The length of polygonal curve

-
PRs Py «2e 4 P, is defined to be Y IPP, |, where

P, pcﬂ I is the distance between‘A;oints P, and Pgy, -
Let P = (t,,t, 4 «.. ,t,) be any partition of [a,bl, that is,
a=+t ( t (... Ct,, ¢(t, = b, and let F be a curve in
a-space. The length of F is the least upper bound (supremum)
of the lengths of the polygonal curves R(t,) R(t,) ... R(tn)

for all partitions P of [a,b]l] (figure 11). [2, papge 71

PG
(4
R f 4 . 3 e,
+ 4
| a b
figure 10 figure 11

Calculus extends these ideas and gives us powerful tools

to use on a large group of shapes provided they are continuous
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and have a first derivative. For example, notice the
infinitesimal right triangle (figure 12) with 1legs having
lengths Idxl and idy! and hypotenise ds. By the Pathagorean

2 2 2
theorem, (ds) = (dx) + (dy)

i/2

2 2
Then, ds = |1 +(dy) - /1 + LFOGO1 dx.

dx

Intergration of the differential gives the arc length of the

graph between points a and b.

b b ~///7— , a2
Hence, 8 = ds = i + [fF(x)1] dx

7, page 3561.

ds

1dg)
fdx |

a x X+ AX b

figure 12

If we ¢try to measure the length of the Koch curve using
either of these methods, little or nc information is pgained.
The length determined by the first method is infinite. The
second method camot even be applied since the Koch curve has
no derivative. Recall that the derivative of a function at a

particular point exists if and only if both the one-sided



derivatives, i.e., from the left and right, exist, and if they
all have the same value. Geometrically, the graph is
differentiable at a point if it has a tangent line at that
point.

The Koch curve has three points in the first stage of
construction (figure 1) for which no tangent is defined. In

the second stage (figure 4) there are twelve such pointsy in

the ¢third stage (figure 6) there are 48, and so on ad
infinitum, It soon becomes evident that, because of the Koch
curve's infinitely spiked nature, the derivative is undefined

at every point on the curve. For these and other reasons this
shape and ones like it were considered to be monstrous and
pathological. Other than for purely theoretical reasons, very
little attention has been given these shapes.

Consider the concepts of unit lenpgth, area, and volume
using a standard line, square, and cube. The line can be
broken into b equal parts, each having length l/b; Likewise,
the unit square can be broken into b2 equal squares with the
sides of each smaller square having length 1/b. The unit cube
can be broken into b3 equal cubes with the sides of each
smaller cube having length 1/b. The exponent on b corresponds
to the appropriate dimension d for a particular shape. Each

part is deduced from the whole by a similarity, i.e., of ratio

1/d
riN) =1 / b =1 / N » It makes sense, then, to measure

length in units of feet, area in square feet, and volume in

cubic feet. This process is shown in figure 13.
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A4
‘l L
————t—t ! LT
v 3 by 4 J r J g
1 } ,
I o 4 1
lines (length) plane: (area) space: (volume)
i 2 3
n=hb = 4 n=b = 4 n=pH=8
r = 1/b = 1/4 r = i/b = 1/2 r = 1/b = 1/2
2 2 3 3
L=nr = | ft L=nr =1 ft L=npr =1 ft
figure 13

v

In figure 14, the same process is used except that it is
applied to a unit portion of the Koch curve. Note that the
length of the unit curve turns out to be longer than one unit.

In facty, a different length is produced for each stage of

construction.

[ SECE—— ’ .
i L]
o 3 3 1 oy AV F 0!
(N) r = 4(1/3) = 1,33 (N) r = 16(1/9) = 1.778
stage 2 stage 3

figure 14
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For the limiting case we have n = o0, r =+ @, and L(n) = oo,
which has been shown to be the case in the discussion on page
i1. S8ince area and volume are zero for a curve, this method
produces no new information for any other dimension greater
than one.

How, then, can we show that a third of the Koch curve is
shorter in length than the curve taken as a whole? 0One answer
is to consider the Koch curve to be a shape which behaves as

if it had a dimension somewhere between one and two.
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An approach to dimension was formulated by Felix Hausdorff
in 1919, and later A. S. Besicovitch put it into final form.
The Hausdorff-Besicovitch dimension differs from standard
dimension in that it may be a fraction. A general reference
to the Hausdorff dimension is Ergodic and Information
written by Patric Billingsley in 1965. The Hausdorff-—
Besicovitch dimension will serve to define fractal dimensiony
however, it is hard to handle rigorously. An understanding
may be reached by considering the equation for unit measure:
N rd = 1, where N = bd subintervals of length r = 1/b, and d

is the dimension of the unit shape. The equation is solved for

d in terms of N and r:

r = 1/N
d log(r) = log(1/N)
d = — log(N) 7/ log(r)

d = log(N) / log(i/r).

The latter form is called the similarity dimension and is
often used to guess the Hausdorff dimension. The similarity
dimension is less general than the Hausdorff dimension but
will suffice for this paper. It is not a new idea but has
received 1little attention in geometry courses because, for
standard shapes, it reduces to the Euclidean dimension

Es i.e., one based on intuition. For example, the dimension
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of a line where N = 4 and r = 1/4 is pgiven by
d = log(n) / log(1/r) = log(4) / log(4) =1 , the Euclidean
dimension of a line. For a plane where N = 4 and r = 1/2,
the dimension 1is given by d = log(4) / 1log(2) = 2, the
Euclidean dimension of a plane. For the Koch curve, howevenr,
the result is a fraction. In the second stage, N = 4 and
r=1/3, then d = log(N) / log(l/r) = log(4) / log(3) & 1.262.

Mandelbrot writes, that In general all d-dimensional
parallelepipeds defined for d ( E (the Euclidean dimension)
satisfy r(N) =1 / NI/? thus N rd = 1 or equvalently
d = log(N) 7/ log(1/r). For nonstandard shapes, such as the
Koch curve, the only requirement needed to givé the exponent
of self-similarity formal meaning is that the shape be self-
similar, i.e., that the whole may be split into N parts
obtainable from it by a similarity ratio r (followed by
displacement or by symmetry). The d obtained in this fashion
always satisfies the inequality @ ( d ( E [5,page 371.

Earlier it was shown how the equation for unit
measure N rd = 1 misbehaved for the Koch curve. It will now be
applied with the newly found fractal dimension. AR unit
portion of the curve may be subdivided into N subintervals,
each of length r. The unit measure in dimension d for any
stage may now be found, as illustrated in figure 15; where d

is equal to the actual value log(4)/log(3).



2@

/\ oA A

N =4 5 r = 1/3 N=16 535 r = 1/9 N =64 5 r= 1/27
d d d
4 (1/73) = 1 i6e (1/9) = 1 64 (1s/27) = 1
stage 1 stage 2 stage 3
figure 15

This is a reliable way to compare one portion of the curve to
another. For example, in the third stage of construction of
the ¢triadic Koch curve, let a portion equal ta 1/3 of the
entire curve be of unit measure. The entire curve will then
have a measure of three or three times as 1large as that

portion (figure 16). Note that in the following figure, d has

exact value log(4) / log(3).

S

:,,SZ,%. ..

N=16 3 r = 1/9 N =48 3 r = 1/9

d d
16 (1/9) = 1 48 (1/9) = 3

figure 16
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The concepts of dimension discussed thus far have been
metric notions. Topology defines dimension from a different
point of view. In general, any set of objects is called a
topological space if a collection of its subsets are singled
out so that the collection has the following three properties:

(1) The whole space and the empty set belong to the
collection; (2) The union of any number of sets- in the
collection is also in the collectiong (3) The intersection of
any two sets in the collection is also in the collection.

Topology extends the word neighborhood to include every open

set. The effect of this pgeneralization is to separate the
notion of neighborhood from the idea of distance. Thus, a
neighborhood is a collection of neighbors. From this point of

view, the whole line may be viewed as a system of interlocking
neighborhoods or open sets. The interlocking neighborhoods on
the 1line determine what is called its topological structure.
Two topological structures are considered to be the same if
there is a one-to—-one correspondence betweern them that
preserves the interlocking system. Consider the example of a
circle which is stretched like a rubber band into a distorted
shape. Each point of the circle may take up a new position and
distances between points may change, but the interlocking
system of open sets remains unchanged [i, page 1201].
Mandelbrot describes this aspect of topology with the
following analogy: " ... all pots with two handles are of the

same form because, if both are infinitely flexible and
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compressible they can be molded into any other continuously
without tearing any new opening or closing up any old one" L[5,
page 161].

A standard arc 1is a connected set that becomes
disconnected if any single point is removed. A closed standard
curve is a connected set that separates into standard arcs if
two points are removed. The topological dimension Dt given to
lines, arcs, and curves is one. For this reason the Koch curve
ie considered to have a topological dimension Dt = 1. The
topology dimension is always an integer.

It was shown earlier that for standard shapes the
similarity dimension d 1is also an integer equal to the
Euclidean dimension. However, for nonstandard shapes, d need
need not be an intepger. The Koch curve, for example, has
d™~ 1.2618 ) Dt = 1. Historically, there has been no term
to dencote these sets whose d is greater than their topological

dimension.

A fractal is by definition "a set for which the Hausdarff-
Besicovitch dimension strictly exceeds the topological
dimension" s, page 151]. In most cases the Hausdorff-
Besicovitch dimension is a fractionj however, it may be an
integer. Mandelbrot coined '"fractal dimension," denoted by D,
rather than wusing "fractional dimension" ¢to avoid this
ambiguity. Thus, when dealing with fractal shapes, the fractal
dimension D is considered to be synonymous with d, the

similarity dimension.



Chapter 3

The triadic Koch curve presented earlier is an example of
a self-avoiding curve. Self-avoiding means that there is no
overlapping or self-contact in any stage of the construction.
This is important in defining the fractal dimension D because
the similarity ratio requires that the whole be divided into
disjoint parts. Coastlines are also self-avoiding and
although coastlines are considerably more complex in their
construction than the ¢triadic Koch curve there are many
similarities. The triadic Koch curve, is in many. ways a rough
model of a coastline.

An analogy describing maps of an island drawn to different
gcales was used in chapter I to illustrate why a standard
Jagged polygonal line represents a coastline of only a single
scale. The standard jagged line will flatten out when it is
magnified. However, the actual coastline when it is magnified
or drawn to a larger scale reveals new detail. The Jjagged
polygonal line has a single scale, whereas a coastline has for
all practical purposes an infinite number of scales. The
triadic Koch curve also has present an infinite number of
scales. The triangle having side lengths equal to one, which
is used as initiator for the triadic Koch curve, has a gingle
scale. In the second stage, triangles having side lengths
equal to 1/3 are piled on, and these triangles have a smaller
scale. In the nth stage, triangles having side lengths equal

n—1
to (1/73) are piled on, and these triangles are of
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increasingly smaller scale. Thus the final curve has present
an infinite number of scales below one.

Mandelbrot refers to a curve which 1is generated by
replacing an initiator with an increasingly broken curve as a
"teragon." The triadic Koch curve and a coastline are made up
of irregular teragons of many different scales. The teragons
which comprise the triadic Koch curve are very systematic in
their irregularity, more so than a coastline. Thus, for this
and other reasons, the triadic Koch curve is only a crude
model of a coastline.

The general process used in creating the triadic Koch
curve may be used to generate different families of Koch
curves, and hence, of coastlines. By changing the
initiator or generator, the teragons which determine a curve's
form and fractal dimension may be changed. The initiator may
be any carefully chosen M sided polygon. ARs the value of M
increases, the resulting self-avoiding curves converge tco

circle.



QUADRIC KOCH CURVES
Mandelbrot gives the term "quadric" to the family of Koch
curves which uses a square for an initiator. Figure 17 shows

the first five teragons of a quadric Koch curve with the

generator ._I—L_T_.. Each of the eight line segments of the

generator are scaled to 1/4 the length of the line they are
replacing. In this case, the number of similar parts is N = 8,
each part with a similarity ratio of r = 1/4 . The resulting
fractal dimension is D = log{8)/log{4) = 1.5. The area
contained within the curve is constant since the generator
removes the same amount of area from the initiato# as it adds
to it.

Another example of a quadric Koch curve is shown in

figure 18, but, it uses the generator .

This pgenerator is such that N = 18 and the ratio r = 1/6.
Thus, the fractal dimension D = log{(18) / log{(6) ~ 1.6131.
The area of this curve also remains constant for the same
reason cited above.

Notice that ¢the teragons in figures 17 and 18 have the
same basic shape. The similar overall outlines of these
quadric HKoch curves are due to a property called maximality
and is based on the fact that the initiator 1is a square.
Mandelbrot writes, " Consider all Koch generators that yield
sel f-avoiding curves are traced on a square lattice made by

straight 1lines parallel and perpendicular to [0,11], and in
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addition can be used with any initiator on the square lattice.

We denote as maximal the generators that attain the highest

possible value on N and hence of D. One finds ¢that
2 =4

Nmax = b / 2 when b is even, while Nmax = (b + 1) / 2 when b

ie odd" [5, page 521. Figure 19 illustrates a few of the many

possible maximal generators.

- fLo J2 - 45,

b = 4 b =35 b =6 b =7
N =8 N = 13 N = 18 N = 25
figure 19
Mandelbrot continues, "The maximal N and the number of

alternative maximal polygons increase as the value of b
increases. Generating self-avoiding maximal curves becomes
increasingly difficult as D approaches 2 and is not possible

for D = 2" [, page 521. Coastlines, however, are far from

being maximal.
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Another similarity which exists between Koch curves and
coastlines is the problem encountered in trying to determine
their length. Methods of measuring coastlines are dependent
upon a yardstick approach. For example, consider a measuring

device, such as a divider or a yardstick, set equal to a

prescribed length e. The device is walked along the
coastline, each new step starting where the previous step
leaves off. The length of the coastline L{(e) is equal to the

number of steps multiplied by e , the length of the measuring
device. A wheel having circumference e may also be used to
measure the length of a coastline. The wheel is pushed along
the coastline within a prescribed distance q which is
proportional to ej i.e., the smaller the wheel the closer it
may come to the coastline. The length L(e) is equal to the
number of revolutions multiplied by the circumference e. The

length obtained by these methods is only an approximation.

When the "yardstick length" e of a measuring device is
allowed to grow smaller and smaller, the coastlines
"approximate length" Li{e) will gfow larger and larger without
bound.

There are two cutoff scales between which the teragons are

considered coastlines. Teragons of extreme scales which lie
outside of ¢this range are of different character. For
example, the range of scales of interest to a physicist is
much too small to be of use to a geographer or

geomorphologist. Mandelbrot suggests that for coastlines, a
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practical outer cutoff K might be the diameter of the
smallest circle encompassing an island and the inner cutoff e
might be 20 meters. In the case of the coast at Chelsea,
Mandelbrot points out that an intermediate zone in which L {(e)
varies little and is of great practical use is from K = 2@
meters down to e = 20 centimeters. Below 20 centimeters the
measurements become affected by the irregularity of the
stones. The dimension observed between the cutoff scales is
an "effective dimension." For example, objects such as a veil,
a thread, or a tiny ball are actually three dimensional.
However, if they are small enough, physicists will often
consider them to be "in effect" 2, 1, and @ -dimensional,
respectively. Thus, a coastline may have different fractal
dimensions depending upon the scale from which it is viewed.
Lewis Fry Richardson in 1961 conducted empirical studies
relating to the variation of the length L(e) obtained by the
divider or yardsetick method and found that the polygonal
"approximate length" of a coastline L(e) is roughly equal to

i-D -D
F e where the number of sides N is approximately F e ,
each having length e. The approximate length L(e) varies with
different values of e, whereas the measure F is independent of

-D D
e. Since according to Richardson N =F e, then F = N e ,

-D D
and it follows that F e e = F. Thus, F, which Mandelbrot

calls the "approximate measure in the dimension D," is
independent of e. Actual data shows F to vary little with e.

For comparison, consider a unit portion of the triadic Koch
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curve (figure 22) whose length and measure in dimension D can

1
be determined exactly. The length L(1/3) = Ne = 4/3. The

measure in dimension D is given by N eD = 4 (1/3)D = i
where D = log(4) / log(3). Richardson's equation then becomes
L(1/3) = 1 (1/3:_D = 4/3, which is the value expected. For
real coastlines, F cannot be determined exactly because
coastlines are not self-similar in the strict sense.
Richardson noted that the exponent D may vary depending

on the coastline chosen, and that D may vary depending on the
portion of a coastline chosen, when the portion is considered
separately. Richardson compared the lengths of common borders
between countries by searching encyclopedias and noted that
differences in the lengths reported for the common borders
between Spain and Portugal and between the Netherlands and
Belgium differed as much as 2@%. The difference is in part
due to different values of e. Richardson found that the graph
of the approximate total length versus the yardstick length e
for coastlines and for borders between countries did not
stabilize, while for Euclidean shapes the method converged
near a well-determined value. Coastline and borderline data,
which Richardson plotted on double logarithmic paper, fell on
a straight line of negative slope. The slope of this line may
be used to estimate the value of 1 - D. The triadic Koch will
serve again as an example. When the points corresponding to
log(L(e)) and log(e) are plotted, one finds that they lie on a

line having slope of approximately .262. For example, L(1/3) =

16/3, L(1/9) = 64/9, and L(1/27) = 256/27. The resulting
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coordinates (log(r),log(L(r)) ¢to three decimal places are
(—.477,.727), (-.954,.852), and (-1.431,.977), respectively.
Hence, the slope of the line which passes through these points
is .262. Thus, 1 - D ™~ .262 and D ™ 1.262 ™ log(4)/log(3) as
expected. Richardson found that in pgeneral the expected value
of D for actual coastlines is about 1.2.

Richardson didn't consider the exponent D to have any
special significance. However, Mandel brot interprets
Richardson’s D as being a fractal dimension. He writes, "The
Koch D is not an empirical but a mathematical constant.
Therefore the argument for calling D a dimension becomes even
more persuasive in the case of the Koch curve thag in the case

of coastlines" [1, pape 361].
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Peano Curves

The Peano curve establishes a continuous correspondence
between the straight line and the plane. A Peano curve may be
considered to be a graphical representation of the mapping of
an interval on to the whole of a square or a region of the
plane. In this sense, a Peano curve is plane-filling.

It becomes increasingly difficult to construct self-
avoiding curves with fractal dimensions approaching two. When
D =2, the curve must be viewed differently because 2 is also
the Euclidean dimension of a plane. In fact, all classical
definitions produce a dimension of 2 for Peano curves. The
Peano curve is therefore a strange way of lookihg‘at a plane.

The coricept was first written about by Peano in 189Q.
According to Mandelbrot, the first graphical implementation
appeared in Moore in 190@8. The curve is illustrated in figure

20. The initiator is the unit square. The generator

._{E}_. is made up of N = 9 parts, each having a similarity

ratio of r = 1/3. Hence, the fractal dimension D =
log(9) /7 log(3) = 2. For small values of n, i.e., the number
of stages, the resulting curve is a checkerboard or grid
pattern which becomes increasingly fine, covering more and
more area as n approaches infinity. When the corners of the
generator are rournded (figure 21), it is easier to see that
the finite Peanoc curve is topolopically the same dimension as
a line, i.e., Dt = 1., Calling the curve a fractal is

Justified because 2 = D ) Dt = 1.
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In figure 2@ the initiator is the unit square, and the
distance between any of its parailel lines is one. In the
gsecond stage of construction the initiator is divided into 9
similar squares with four addit}onal similar squares placed on
the outside. The side length of each square in the grid is
reduced from the whole by 1/3. Hence, the distance between
parallel lines of the resulting grid is 1/3. In the third
stape, the previous grid is divided into 117 similar squares
with 20 additional squares placed on the outside. Each square
is reduced from the squares of the previous stage by a ratio

of 1/3 or reduced from the whole by a ratio of 1/9. The

distance between parallel lines of the resulting grid, then,

is 1/9. The distance between parallel lines of the grid
n

produced in the nth stage is 1 /7 3 . Thus, the distance

between two parallel lines approaches zero as n approaches
infinity. Self—-contact then appears to be unavoidable.
Hence, the limit Peano curve will always fillrfhe plane or at
least a portion thereof. The actual proofs, Mandelbrot points
out, are delicate and central to the 1875-1925 crisis in
mathematics and generated considerable controversy.
Historically, scientists and mathematicians considered the
Peanc curve to be pathological and "monstrous." Mandelbrot
writes, "... Peano curves are far from being mathematical
monsters with no concrete interpretation. If they fail ¢to
sel f-contact, they involve readily feasible and interpretable
conjugate trees. These trees are good first order models of

rivers, watersheds, botanical trees, and human vascular
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systems" [1, page 681J.

The human vascular system in order to supply blood to
different parts of the body must pass within a small distance
of every point of territory it serves. It makes a "plane
sweeping motion" much like the Peano curve. Likewise, the
river which completely drains a region is fed by a complex of
tributaries which are fed by a complex of smaller tributaries
which are fed by a complex of still smaller tributaries. The
curve 1in figure 22 is a Peano curve which has been drawn to
include each of the previous stapges. It is somewhat
reminiscent of a river with many different tributaries of many

different scales.
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Cantor showed a one-to-one correspondence between the

pointes of a line and the points of a plane by a process which

beginsg with the closed interval [a,11. The interval is
divided into three subintervals: [e,1/731, (1/3,2/3), and
[2s73,11. Then, the middle open interval is removed, leaving

the two subintervals [@,1/3]1 and [2/3,1]. Likewise, these

subintervals are each divided into three more subintervalsn

[@,1/91, (1/9,279), [es9,1/731, and [2/3,6/91], (6/9,7/9),
[7/9,1)3; again, the middle open intervals are removed. This
process continues to infinity, dividing each closed interval

into three subintervals and removing the middle oben interval.
The result, known as the Cantor set or Cantor discontinuum, is
a discontinuous set of infinitely many closed intervals.

A representation of the first six stages of the Cantor set
ie illustrated in figure 23. The initiator [@,1] and the

generator ... . . have been thickened into rectangles for

clarity. The number of pieces is called the base b; in this
case b = 3, The number of similar parts is N = 2 and the
similarity ratio is r = 1/3. Hence, the fractal dimension D =

log(2) /7 1log(3) or approximately @.6309. From a topological
view, the Cantor set is of dimension Dt = @ because it is not
a continuum, or in the words of Mandelbrot, "...because any
point is by definition cut from the other points without
anything having to be removed to cut it. From this view point
there 1is no difference between the Cantor set and finite sets

of points" [1, papge 781]. The Cantor set is a fractal because
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figure 23

.639 ~ D ) Dt = Q. Furthermore, Mandelbrot terms these sets
"Cantor fractal dusts" as a counterpart to "fractal curve" and
"fractal surface."

“"Curdling" is the term Mandelbrot gives to the process
which pgenerates the Cantor set. Consider a round bar of low
density. The process is said to curdle the matter out of the
middle third and into the outer thirds without changing their

position. The outer thirds are called "precurds," and the
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process leaves each precurd more dense than before. The
process continues with the middle ¢thirds of these bars
curdling into their outer thirds, making four thinner precurds
each having a greater density than they had previously. The
curdling is repeated ad infinitum until there are infinitely
many, infinitely thin, and infinitely dense precurds. The
limit set is then called a "curd," and the space outside the
curd is called "whey."

By using different rules for the curdling process,
different fractal dimensions may be achieved such that
@ < D <« 1. For example consider a Cantor dust with the
generator . —— ——. In this case, N = 3, r -‘1/5, and D =
log(3) / log(5) ™~ .6826. This generator, .. . . -~ is such
that N =2 and r = 1/4. Hence, the fractal dimension is

log(2) / log(4) = _ 5.
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g§1GMA LOOPS

A large island is generally surrounded by smaller
islands the number of which varies from a few to a multitude.
The sizes of ¢the surrounding islands are an important
geographic characteristic. If large rock piles off shore are
included in the count of surrounding islands along with
individual rocks exposed above the surface or small scale
patches of exposed surface which are isolated from the main
shore by even the smallest amounts of water, then the total
number of emaller islands which makes up the coastal form of
the initial island tends to infinity.

The Koch process may be utilized to generate Kech fractal

counterparts to the Cantor dust. For example, the generator

B

._ﬁ_L_I—I_‘_4_4_J is made up of N = 16 similar parts each

having a similarity ratio of r = 1/8. The fractal dimension
for the curve (figure ) is D = log(i6) / log(8) = 4/3, The
main generator is actually made up of two smaller generators:
a coastline generator and an island generator. The ccoastline
generator connects the points [0,1] and is made up of N' = 1@
line segments. The island generator is the loop made up of
N - N = 6 line segments and "seeds" new islands. In order to
generate fractals consistent with coastlines, the generator
i# chosen such that N' ( N. The dimension of ¢the island
generator is D' = log(N') / log(1/r) which gives the coastline
dimension of the individual islands. The dimension D =

log (N) / log(i/r) is a measure of all the coastlines of all
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the 1islands taken together. The cumulative coastline, not
being connected, is not itself a curve but an infinite sum of
loops. Hence, Mandelbrot proposes for it the term '"sigma-—

loop. "

The dimension D may measure fragmentation alone. The curve

produced by the generator — . a s (figure 24) has
dimensions N = 16, N' = 8, and r = 1/8. The dimensions are
D' = log(8) / log(8) =1, and D = log(1l6) / log(8) =1 1/3.
In this case, the dimension D'.is the same as tHe Euclidean
dimension of linej thus, D' is not a measure of irregularity.
Hence, D is a measure of fragmentation alone. When D' ) 1, D
is @a measure of irregularity, and D is & measure of both
irregularity and fragmentation. Note that if the corners of
the generator are rounded, then the curve will no longer be

without tangents. Therefore, fractals are not always

nonrectifiable.
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Figure 25 shows four stages of a quadric Koch curve with a

poorly chosen generatorj; as a result, the curve overlaps.

585 651 2087 204 11 s poa e 3 1y

r”" —

povsen ssarnes

N R
| ".'Z.ff]]f.'ﬂff.Jm...-.

vRsR0SBRN 00
04 0301 004 00

bos ovuren 00w | s 4000 004 0l

figure 25

The curve in figure 26 is due to a bug in the program written
to generate the curve shown in figure 17. The curve is
somewhat emoother and the overall pattern is less regular or
structured. The generator and rules of placement are the same

as in figure 17; however, as it turns out, the generator

actually drawn on the printer or screen is //T_I_I_.. The

curve in figure 27 is the result of careless programming; the

teragons are not self-avoiding. The curves presented in the
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last three figures have resulted merely by chance. If nothing
else, these curves help ¢to illustrate the power of the
recursive method used to generate them, which Mandelbrot
believes to be a clue to understanding many phenomena in
nature.

Chance plays a vital role in the study of fractals, riot
the chance demonstrated by the curves mentiorned above, but
chance which has a statistical basis. Mandelbrot points out
that "“Although the basic fractal themes involve exclusively
deterministic constructions, the full meaning and practical
relevance of these themes are not apparent until one tackles
random fractals" [5, page 2001].

A stratified fractal is constructed by the superposition
of layers, each involving finer detail. The easiest way to
penerate a random stratified fractal is to wuse different
penerators in different stages of the constructicon. For
example, figure 28 illustrates a random Koch coastline where
the generator used ta construct the sigma loop in figure 24 is
alternated at random with the generator used in figure 18. A
model of a coastline may be improved by using a more complex
deterministic algorithm. However, a curve generated in this
manner is not a practical model because coastlines are molded
through the years by many different forces all of which would
be impossible to account for in a deterministic fashion.

Hence, this method is of limited scope.
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figure 28

The recursive methods used in this paper may be used with
probability theory to invoke elements of chance. However, the
rules that penerate acceptable random curves are difficult to
describe. Fractals which are generated by changing the
shapes, sizes, and the order of a curve's parts, without
having to inspect earlier loops, involve a nonconstrained form
of chance. Constrained chance refers to a construction in
which the later stages of a curve or coastline are constrained
by the outcome of earlier stapges. Mandelbrot and others have
created fractal images which look like photographs of actual
islands and mountains. Mandelbrot's mountains and coastlines
involve probabilistic complications but are modeled in a first

approximation by fractal surfaces ruled by Brownian chance.



Chapter 4

The triadic Koch curve was presented earlier in an
algorithmic marmner. The construction began with an initiator,
each interval of which was replaced by a scaled generator.
The points were renumbered and the process repeated again and
again. This is an iterative method which may be implemented
nicely in the programming language Pascal.

Pascal allows wus to build a linked 1list of nodes
dynamicallys i.e., memory for storage is allocated during
execution of a program. Thus, the programmer dees not need
to dimension an array to some maximum rnumber beforehand. The
nodes in this program are record variables defined to have
three different fields: an x—-field, a y-field, and a next-
address field. The x and y fields are used to store the
coordinates of a point. In Pascal the method of access to a

node is through a pointer. A pointer may be thought of as the

address of the portion in memory allocated to a node. LIST is
a pointer et equal to the address of the first node. The
next-address fields associated with each node are also
pointers which point to the following node in the list. NIL

is a special pointer which signifies the end of a list.

The program begins by generating a linked list of nodes
corresponding to the three vertex points of the initiator and
drawing the initial triangle. Then it begins the iterative
process of calculating new points or generating new nodes

which correspond to the scaled gererator. Three such points
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are pgenerated for each pair of points already in the list.
The three new nodes are then inserted into the 1list between
the pair of nodes from which they were generated. With each
iteration the resulting figure is drawn, adding more and more
detail to the curve.

Points and nodes are declared as follows :

type nodeptr = “nodetype ;
nodetype = record
X t= integer ;
y &= integer j
next := nodeptr
end 3

var py list, k & nodeptr ; .

The preceding statements have defined p, LIST, and k
to be pointers; they point to variables of type nodetype.
Here is8 an example of how the different fields of a node wmay
be accessed. A call to the standard function GETNODE,
p 1= BETNODE, will allocate a new memory space with the above
specifications and place the address of that location in p.
Then, the x-field of this node may be set equal to 5 by the
statement p~.x 1= BG. The next—address field is set equal
to the value of the pointer q by the statement p~.next := q.

Another standard procedure, INSAFTER(X,y), will call
GETNODE to create a new node, set the information fields equal
to x and vy, and then insert this new node into the list after

the node pointed to by p. The function GETNODE and procedure
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INSRFTER are presented below. A convenient reference covering

this material is chapter five in Data Btructures Using Pascal

R e e e e R e o e

written by Raron M. Tenenbaum and Moshe J. Aupgenstein in 1981.

function GETNODE : nodeptr j
var p 3 nodeptrj

begin
naw(p)j {creats new node and sets p equal to its address}
getnode 1= p

end { function getnode ) ;

procedure INSAFTER(p:nodeptrj X:i:integer; Y:integer) j
var qsnodeptr j

begin

if p = nil

then writeln('error void insertion’)

else begin
p 1= getnode j
pre X 3= X 3
q®.Y =Y 3
q”. next 1= p~.next ;j
pT.next 1= q

end
end { procedure insafterl} j

The main loop responsible for expanding the list is as

follows 13

p 1= list 3

while p~.next ( nil
do begin
k 1= p~.next j
findpts(p™. X, p™. Yo K™ o X k™ Y) g
p 1= kK
end {while..do beginl} j;

Findpts(p~. X, p~. Y, list™. x, list* . y) ;.
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The variable LIST in this program will always point to the
firet node in the list. Then, the first statement above sets
the pointer p equal to the address of the first node in the
list. The statement, while p~.next () nil, checks for the end
of the list, at which time control jumps out of the loop. The
first time through the loop, the pointer k is set equal to the
address of the second node in the list. The procedure FINDPTS
accepts the coordinates stored in the first two nodes of the
list and calculates the coordinates of three new points.
Then, it calls INSAFTER which creates three new nodes and

inserts them between the nodes pointed to by p and k. Next,
the pointer p is set equal to the address of the~second node
and the process is repeated. The pointer k is set to the
address of the third node; FINDPTS inserts three new points
into the list, and so0 on, until the last node is detected.
Finally, a call to FINDPTS outside the WHILE loop will insert
three new points between the last and first nodes of the list.
The schematic in figure 29 depicts a call to the prccedure
findpts given the coordinates of points 1 and 2. The
coordinates of points 2, 3, and 4 are calculated and placed

into nodes. The nodes are then inserted into the list.
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The new points found by the procedure must be placed on
the outside of the curve. The symmetry involved is such that
the 1line segment between any pair of successive points, in
any given stage of construction, may be placed into one of six
different categories. For example, the line segment between
two successive points, (x,y) and (kx,ky), may be designated as
being horizontal to the right, horizontal to the left, up to
the right, down to the right, up to the left, or down to the
left; i.e., ER, EL, URy DR, UL, DL, respectively. Figure 30
shows the line segment, its designation, and the condition to
test for. Note ¢the y coordinate axis is inverted when
graphing on the computer. Because the screen is defined ¢to
have ite origin at the upper left corner, the positive Y axis

runs down from that point.
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The procedure FINDPTS uses two functions to determine the

condition of a line.
*d", or "e" depending on whether the line is
horizontal. The
for left or right.
that the line segment between the points
up and to the right.

y3 may be calculated by the method in figure 31.

general method

is used for the five

function DISTANCE returns either

Consider the following

Then the points x1,

other

PLINE returns either the character "u",

down, or

u 1 L1} or IIY‘II

example. Assume

(kxy kKy) is
y2, x3, and

The same

cases involved.

Recall that the y axis is inverted when in graph mode.



dx = | - kx |

X

dy = | vy - ky |

Ky
X1 = x + (1/3) dx |

yl = vy (1/3) dy

x3= x + (2/3) dx ‘
Y

y3 =y - (2/3) dy

i

a
h
*
-

X2 = X e
ye = y3
' dx

figure 31

The procedure responsible for drawing the curve is PDRRW.
Biven a linked list of points, PDRRW merely conrnects the
points in an iterative manner, where the statement
draw(x, y, kx, ky,color) draws a 1line from the point whose
coordinates are (x,y) to the point whose coordinates are
(kxyky) in the color designated by an integer between 1 and 3.

The program in its entirety is now presented.

program KOCH(input,output) 3

{ purpose — to draw consecutive stages of the triadic %}
{ Koch curve. ¥

type nodeptr = “nodetype ;
nodetype = record

X &t integer j

y & integer ;

next : nodeptr
end 3

var p,list,k t nodeptr j



i, xl,yl,x,y integer 3

H
r 1 real g
color t integer 3}
linecolor t integer j
backcolor 1 integer j
palt 31 integer 3
stage ¢ char 3
num : integer 3}

function GETNODE : nodeptrg
var p & nodeptr
begin
naw(p) 3
getnode := p
end { function getnode 1} j

procedure INSAFTER(p:nodeptr; x:intepger; y:intepger) j
var q : nodeptr j

begin

if p = nil

then writeln(?error void insertion')

else begin

q ¢e= pgetnrnode j
qQt. X 1= X 3
ar.y =Y 3§

q”.next = P~.next j;
p~.next = q

end;
end { procedure insafter »

procedure PDRAW (color:iinteger) 3
begin
p = list j
while p~.next O nil
do begin
K = p~.next;
draw (P, X, p™ea Yy K™ %y k™. y, color) 3
P 1= pt.next ;
end 3
draw(p®. x, p*. y, list . x, list .y, color) j
end {procedure pdrawlj;

procedure FINDPTS(pxtintegery pytintegerj kkx:integer;
kky: integer) ;

var X,y, kx,ky,x1l,yl, x2,y2,x3,y3 : integer j
dx,dy & real j
plydi : char g



function PLINE : char j
begin
if ky ( y
then pline := *u’
else if ky > y
then pline = 'd?
else pline = 'e'
end { function pline };

function DIRECTION 1 char j
begin
if x ¢ kx
then direction = ¢!
else direction = "'1?
end { function direction 2}

begin { procedure findpts 1}
X = px 3
Yy &= py 3§
kx == kkx 3
ky = kky 3
dx = abs (kx—x) 3}
dy = abs(ky-y) j
pl := pline ;
di := direction j
if (pl = "u') and (di = r?)
then begin
x1 1= x + round(@. 3333 * dx)
yl = y — round(@. 3333 % dy)
X3 = x + round(@. 6666 * dx)
y3 = y - round(@.6666 #* dy)
X2 = X 3
y2 1= y3
end
else if (pl = "u') and (di = "1")
then begin
x1 1= % = round(@. 3333 * dx) 3
yl 1= y = round(@. 3333 # dy) 3}
X3 1= X — round(@. 6666 * dx) j
y3 1= y — round(@.6666 * dy) ;

X2 1= KX 3}
ye 1= yl1

else if (pl = 'd') and (di =
then begin

‘r?)

x1 1= x + round (0. 3333 * dx) j
yl 1= y + round(Q. 3333 # dy) 3}

S7
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X3 1= x + round(@. 6666 % dx) j
y3 1= y + round(0. 6666 % dy) 3
X2 1= kx 3}
y2 = yli

end

else if (pl = 'd’) and (di = 1)
then begin

x1 1= x —= round (0. 3333 *# dx) 3}
yl = y + round(0. 3333 # dy) j
X3 1= x — round(@. 6666 * dx) 3}
y3 t= y + round(@. 6666 * dy) }
X2 = x 3}
ye = y3

end

else if (pl = 'e’') and (di = "r?)

then begin

Xl 1= x + round(@. 3333 * dx) 3}

yl ==y 3

x3 1= x + round(@. 6666 * dx) j

y3 =y g

x2 1= round(x + dx/2) 3

y2 = y — round(sqrt (dx*dx/9 — dx#dx/36))

else begin
x1 = x - round(@. 3333 * dx)

yl =y 3

X3 = x — round(@. 6666 * dx) }

y3 = y 3§

X2 = x - round(dx/2) 3

y2 1= y + round(sqrt (dx*#dx/9 - dx#*dx/36)) ;
end 3

insafter(p, x3,y3)
insafter (p, x2,y2)
insafter(p, xi,yl)

end { procedure findpts ¥ j
begin { #* % % program KOCH * ¥ * )

writeln('would you like each successive stage to be’)

writeln('drawn on the previocus stapge Y or N %)

readln(stage) j

writeln;

writeln(' enter the X, Y coordinates for the lower left
vertex?)

readln(x,y) 3
writeln;
writeln(enter the distance between two of the initiators

vertexes') 3
readln(r) 3

writeln;g



writeln('how many stages

initialize linked list }

29

puts the points of the initiator )}

into the linked list

readln (num) j
clrscry
list := getnode ; {
list~. X = x 3
list™.y 1=y 3
list®~. next := nil ;
p = list 3
x1 = round(x + r) j {
yl =y 3 {
insafter(p,xi,y1)}
x1 = round(x + r/2) j
yl = y - round( sqrt(r¥r - r*r/4))
insafter(pyxi,yl) 3

; writeln(*how many stages would you like?)

findpts(p™. %, P Yy K e Xy K™ y)

findpts(p™. X, pT.y,list . x,list". y)

readln(numstg) j
backcolor := @ 3
palt i= 3 3
graphmode 3
graphbackground (backcolor)
color 1= 2 3
pdraw(color) j
for i 1= 1 to num
do bepgin
if color = 3
then color = @
color = color + 1 ;
p 1= list 3
while p~.next () nil
do begin
k = p~.next
p =k j
end ;
readln j
if stage = 'N*
then praphmode j;
pdraw{color) j
end 3
end { program Koch } .

>
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The programs which generate the quadric Koch curves in
figures 17 and 18 are similar to the preceding program. The
only changes made were to the code responsible for the
initiator and to the procedure FINDPTS. The initiator is
changed from a triangle to a square. The procedure FINDPTS

uses the following numbering system corresponding to the

generator:

w

3

X l

. . . The procedure for the curve in figure 17
? KX

e

5 2

is as follows:

procedure FINDPTS(px:integer; py:integer; kkx:tintegersg
kky:integers alt:char) 3

var Kyy,X1l,yl,x2,y2,x3,y3;kx,ky : integer j
XbyYhy X3, Y5, X6, y64, x7,y7 tinteger j
dx,dy : real j
plydi & char j

function PLINE : char j
begin
If ky ( vy
then pline = *u’
else if ky ) y
then pline = 'd*
else pline 1= 'e!
end { function plinel} ;j

function direction : char j
begin
if x ( kx
then direction := 'r?
else direction := '1?
end { function direction } j

begin
X = px 3
Y = pY 3
kx s= kkx 3}

ky = kky 3



dx
dy

pl
di

]

PLINE

[

abs (kx—-x)
1= abs (ky-y)

direction

if pl = Yy

then begin

x1
yi
X2
ye
X3
y3
x4
y4
XD
Yo
xE&
y&
x7
y7
end

RWnnmun i nmunnH

X §
y — round (.25 # dy)
X — round(8.25 * dy)
y1
x2
y — round (8.5 * dy)
X 3
y3 3
X + round (.25 * dy)
yé4
xS
y — round(0.75 * dy)
X
y6 3

else if pl = 'd?
begin

then
x1
yi
X2
ye
X3
y3
x4
Y4
XS
yS
X6
y6
X7
y7

end

B HHHLODBODH

X 3

y + round(@.25 * dy)
X + round(@.25 * dy)
yl 3

X2 3

y + round (0.5 % dy)
X 3
y3
X — round(@.25 * dy)
Y4 3

XS 3§

y + round(0.75 * dy)
X 3

Y6 3

else if (pl = 'e') and (di = "r?)
then begin

x1
yl
X2
ye
x3
y3
x4
y4
XS
yS

=
=
i=
1=
§1i=
1=
=
1=
=

X + round(@.25 * dx)
Y §

x1 3

y — round(@.25 # dx)
X + round(@.5 * dx)
ye 3

X3 3

Y §

x4 3

y + round(@.25 * dx)
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X6 1= x + round(@.73 % dx) 3
yé 1= y5
X7 1= x6
y7 =y
end
else if (pl = *e’) and (di = '1%)
then begin
x1 1= x - round(@.285 %* dx) 3
yl 1=y 3
X2 = x1 3
y2 t= y + round(@.25 % dx) H
X3 = x — round(@.5 * dx) H
y3 = y2 3
X4 1= x3 3§
Y4 1=y 3
X3 1= x4 3
Y5 1= y - round(@.85 % dx)
X6 = x — round (.75 % dx)
y6 = y3 3
X7 1= xb 3}
y7 1=y 3§
end 3§

INSAFTER (p,y x7, Y7)
INSAFTER (p, x6, Y6)
INSAFTER (p, x5, YS)
INSAFTER (p, x4, Y4)
INSAFTER (p, x3, Y3)
INSAFTER (p, x&, Y&)

@9 @8 $t @5 @8 an

if alt = *y?
then INSAFTER(p, X, Y)
else INSAFTER(p, x1,Y1) 3

end { function findpts X;

Te produce the program for the Peanc curve (figure
only changes to the procedure FINDPTS are needed.

numbering of the generator is such that two points

L ] e
a 3
riumbered twice: ° . . > . The
X LS 9,6 kx
® [
4 7

Peano curve with rounded corners (figure 21) uses the

e

ca)

The

are

same

generator and numbering scheme as above. Hence, the procedure
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FINDRTS for the two programs are the samej however,
modification of the procedure PDRAW is required. The
following example shows the figure which is actually drawn on

the screen. The generator is shown as black dots and the

result of PDRAW 1is shown as a curve: .

The procedure FINDPTS and PDRAW are as follows:

procedure FINDPTS(px:integer; py:integer; kkx:integer; kky:
integer) 3

var Kyyy,xl,yl,x2,y2,x3,y3, kx, ky ¢ integer 3}
X4,y4, x5, y5, x6,y6, x7,y7,x8,y8 tinteger ;
dx,dy & real 3j
plydi : char ;

function PLINE : char 3
begin
If ky ( y
then pline 1= "u?
else if ky > y
then pline = 'd’
else pline = '@’
end { function plinel} j

furiction direction : char 3
begin
if x ¢ kx
then direction = 'r?
else direction = '1?
end { function direction } j

begin { function findpts

X 2= px 3}

Y t= pY 3

kx = kkx 3

ky := kky 3}

dx := abs (kx—x) 3}
dy t= abs(ky-y) 3}
pl := PLINE 3

di == direction 3}



if pl = "4?
then begin

x1
yi
Xe
y2
X3
y3
x4
y4
XS
yS
X6
y6
X7
y7
x8
y8
end

1= X 3§
t= y - round(0.3333
t= x - round(@. 3333
1= y1l 3

1= X2

t= y — round(@. 6666
£= X 3§

t= y3 3

2= x1 3

=yl 3

t= X + round(@, 3333
1= yl
1= X6
1= y3
i= X4
1= y4

else if pl = 'd?

then
x1
yl
X2
ye
X3

y8
end

else if (pl = 'e?)

begin
5= X 3§
1= y + round(@. 3333
= x - round(0. 3333
=yl 3

= X2 3}

t= y + round (0. 6666
= X 3

1= y3 3§

t= x1 3

1= yl 3§

t= X + round(0. 3333
:= yi
1= x6
t= y3
1= X4
= y4

then begin
1= X + round(@. 3333 * dx)

x1
yi
X2
ye
X3
y3
x4
Y4
XS
yS
X6
y6
X7

1=y 3
t= x1 3

and (di = "y?)

dy)
dy)

dy)

dy)

dy)
dy)

dy)

dy)

t= y — round(@. 3333 * dx)

y2 3§
X3 3

Y 3§

x1
y1
x1

X4 3

X + round (0. 6666 * dx)

y + round(@. 3333 * dx)
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y7
x8
y8
end

1= y6 j§
1= X4 g
t= y4 3

else if (pl = '@') and (di = *1')
then begin

x1
y1
X2
ye
X3
y3
X4
v4
X9
yS
X6
y6
X7
y7
x8
y8
end j

INSAFTER (p, x8, Y8)
INSAFTER(py, x7,Y7)
INSAFTER (p, x6, Y6)
INSAFTER (p, x5, YS)
INSAFTER (p, x4, Y4)
INSAFTER (p, x3, Y3)
INSAFTER (p, x2, Y2)
INSAFTER (p, x1, Y1)

end { function

1= X — round(@.3333 * dx)
=y 3

x1 3

y — round(@. 3333 % dx)
X = round(@.6666 * dx)
y2 %

x3 %

Y 3

x1 3

yl 3

x1 3

y + round(@. 3333 * dx)
x4
y6
x4
y4

nouwmnuwauwnnma

T SR S0 S8 B8 S @F e

findpts X;

procedure PDRAW(color:integer) j

var 1y XyYy KX
pl,di

function PLINE
begin

s ky,dx,dy : integer j

: char 3

: char 3

If ky ¢ p*.y
then pline 1= 'u?
else if ky ) p*.y
then pline = 'd?
else pline 1= 'g’
end { function plinel} j

function direction : char

begin

if ptox ( kx
then direction 1= "y
else direction 1= 1"
end { function direction }
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begin { procedure pdraw }

p := list 3
X = p~ax }§
Y 5= p~. Y 3
kx = p~.next™.x }§
ky = p~.next®.y

dx := abs (kx—-x) 3
dy 1= abs(ky-y) 1}
if dx = @
then dx 1= dy
else dy 1= dx 3

while p~.next ( nil
do begin

pl 1= PLINE j
di := direction j
if (pl = *u’)
then begin
draw (X, Ys kxy ky+round (dy*@. 25) ,color) ;
X 1= Kx 3§
y 1= ky + round(dy*@.25)
end;
if (pl = 'd")
ther begin
draw (X, ys kx, ky—round (dy*#@. 25) , color) j
x = kx 3
y = ky = round(dy*@.25)
end;

if (pl = 'e') and (di = 'r?)
then begin

draw(x, y, kx—round (dx*@. 25) , ky, color) j

X 3= kx — round(dx#*@.25) ;3

y = Ky
end j§

if (pl = 'e’) and (di = *'17)
then begin

draw(x, y, kx+round (dx#@. 25) , ky, color) j
X 1= kx + round(dx*@.25) 3
y 1= Ky

end ;

for i 2= 1 to 14
do if p~.next (O nil
then begin

if (i/2 ) round(i/2))
then begin
p = pt.next j
kx 1= pt.next™.x 3
ky 1= pt.next™.y
end j
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pl 1= PLINE ;
di 1= direction j

if (pl = Yu?)
then begin
draw (x, y-round (dy*@. 25) , kx, ky+round (dy*@. 25)
ycolor);
X 1= kX 3}
y t= ky + round(dy#*@.253) ;
end

else if (pl = 'd?)
then begin
draw(x, y+round (dy#*@, 25) , kx, ky—round (dy
*#@.25),color)
X

y
end

kx 3
ky = round(dy#*@.25)

else if (pl = 'e?) and (di = "r?)
then begin
draw(x, y, kx—round (dx*#@. 25) , ky, color) j
X = kx = round(dx*@.25) ;
y = ky
end
else begin
draw(x, ¥y, kx—round (dx*@. 25), ky,color) ;
X 1= kx — round(dx#@.25) j
y &= ky
end 3
end 3

p = pT.next j
kx 1= p~.next™.x
ky := p~.next” .y

if p~.next O nil
then begin

if (pl = "u')
then begin
draw(x, y-round (dy+*@. 25) , kx, ky, color) 3
X 1= kx 3§
y 1= ky
ends

if (pl = "d?)
then begin
draw(x, y+round (dy#*@. 23) , kx, ky, color) 3
X 1= kx 3§
y = ky
endj

if (pl = Ye?) and (di = "r?)



end

€8

then begin
draw (x+round (dx*#@. 25), y, kx, Ky, color) }
X 1= Kkx §
y = Ky

end;

if (pl = 'e’) and (di = *17)
then begin
draw (x—round (dx*@. 25) , y, kx, ky,color) ;
X 1= kx }§
y 1= ky
endj

p 1= pt.next j§
kx = pr.next™.x j
ky = p~.next®.y j§
end 3 {if then begin
end;
draw(x,y,list™. x, list*.y,color)

{procedure PDRAWX;
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