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A specific type of mathematical construct, 
called a finite simple group, is the subject of 
this paper. The information presented attempts to 
be comprehensive in the fact that it covers a 
broad range of topics connected to finite simple 
groups. A historical overview is given along with 
a survey of both past and present research. The 
direction and purpose of this research is 
explained in addition to mentioning those papers 
of key significance. 

Simplicity, the special property possessed by 
all finite simple groups, is given a concrete 
foundation through definitions and frequent 
comparisons with the prime numbers. Each of the 
four types of finite simple groups are discussed 
within the limitations of the length of the paper 
and the technical knowledge of the author. 

Since all finite simple groups are now 
known, they can be used to construct any finite 
group imaginable. This fundamental nature of 
finite simple groups is justified in this thesis 
with major theorems and examples. Miscellaneous 
facts, uniquely associated with finite simple 
groups, serves as a conclusion. 
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Chapter I
 

INTRODUCTION
 

It is natural for the human mind to impose a 

hierarchial structure on real world phenomena. Organizing 

chaotic perceptions is generally the purpose of such 

ordering schemes. For instance, processes are designed so 

that from a beginning point there occurs a step-by-step 

progression to completion. Likewise, most objects are built 

up in layers from an underlying framework, as in the 

construction of a house or an automobile. With a world view 

such as this, there are numerous areas of concern. The 

focus, however, is often the beginning point and its basic 

components. Whether it is biologists studying the genetic 

code of life or physicists in pursuit of subatomic 

particles, no one is immune from the desire to both know and 

understand fundamental structures. Contrary to Gestalt 

philosophy, the whole is frequently perceived as the sum of 

its parts. This implies both knowing the parts and how they 

interact. 

Mathematicians are especially prone to this perspective 

due to the logical and axiomatic nature of their subject. 

Finite groups are mathematical constructs not immune from 

this point of view. A lengthy search has been conducted for 

the building blocks of finite groups with the outcome being 

what are called finite simple groups. Four types of finite 

simple groups have been uncovered. These categories are 

cyclic groups of prime order, alternating groups, groups of 
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Lie type (pronounced Lee), and sporadic groups. 

Another separate but related part-whole relationship 

arises from the role played by prime numbers in the set of 

positive integers. Almost everyone knows what it means for 

a positive integer to be prime since all of us, at one time 

or another, sat in elementary school studying factor trees. 

It is an intuitive concept that feels right. Finite 

simple groups can be viewed like prime numbers with a 

resemblance in both definition and purpose. 

The area of finite simple groups has generated an 

enormous amount of research over the past thirty years. 

During this time, experts have been concerned with both the 

discovery of new finite simple groups and with what has 

grown to be called the Classification Theorem. In February 

1981 the uni~ueness of the last finite simple group, a 

member of the sporadic category, was confirmed by a 

mathematician named Simon Norton. Conse~uently, a milestone 

had been reached, since the entire substructure of finite 

groups, at that point, could be considered known and 

describable. 

It is the intention of this thesis to explore three 

major areas. First, the author will review both past and 

present finite simple group research. Secondly, the various 

types of finite simple groups will be explained. Finally, 

the importance of finite simple groups to the general field 

of finite group theory will be demonstrated. Misee llaneous 

subjects, of special interest to finite simple groups, will 
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conclude the paper. 

Although there exist infinite simple groups, only 

finite simple groups and finite groups will be considered in 

this thesis. Therefore, the phrases "group" and "simple 

group" should be understood to mean the finite case. 

Dates of events are troublesome in the field of mathe­

matics. Theoretically, discovery occurs the instant a math­

ematician proves an unproven theorem or finds an unknown 

entity. Often, however, this date is not recorded. Any­

where from one to three years can pass before the new result 

is published in a mathematical journal. This date of publi­

cation is recorded and available to any interested person. 

So frequently a publication date is substituted for a ques­

tionable discovery date, and this convention will be 

followed in this thesis when necessary. 

Notation, Definitions, and Theorems 

Notation in this paper is standard for the topics 

involved. In several instances, it is defined as it is 

initially used, but knowledge of general group theoretical 

concepts is assumed to be known. The following list of 

notational explanations, definitions, and theorems should be 

fami liar. They are presented here, however, for review and 

reference. 

Notation 
The ring of integers modulo n is denoted Zn. 

Notation 
Let N be a normal subgroup of G. The factor group 

formed by all cosets of N in G is indicated by G/N. 
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Definition 
The order of G, denoted IGI, is the number of elements 

in G. 

Definition 
Two groups G and H are isomorphic, denoted G/VH, if 

there is an isomorphism f: G ~ H. 

Definition 
The center of a group G is the set of c in G such 

that cx ~ xc for all x in G. 

Definition 
If a, b are elements of G, the commutator of a and b 

is the element a- 1 b- 1 ab. The commutator subgroup of G is 
the subgroup of G generated by all the commutators in G. 

Definition 
Let H1, H2' ••• ' Hn be nonempty subsets of a group G. 

Then H1H2'-' Hn ~ {h1h2'" h n : h1E. H1, h2€.H2, •• ·, h n 6.H n l. 

Definition 
A subgroup N of a group G is a normal subgroup of G 

if and only if g-1Ng = N for all g in G. 

Definition 
Let N be norma 1 in G. The map f: G -7 G/N is called 

the natural map. 

Theorem (Lagrange's Theorem) 
If S is a subgroup of a finite group G, then 

[G:S] = IGI/lsi where [G:S] is the number of right cosets of 
S in G. 

Theorem (Correspondence Theorem) 
Let K be a normal subgroup of G and let f: G -4 G/K 

be the natural map; f defines a one-to-one correspondence 
between the set of those subgroups of G containing K and the 
set of all subgroups of G/K. If the subgroup of G/K 
corresponding to the subgroup S of G is denoted S*, then 

(i) S* = S/K = f(s); 
(ii) S is normal in G if and only if S* is normal in G/K. 

Theorem (External Direct Product) 
If G1, G2' •.• ' Gn are groups, the set of elements 

(x1, x2,··., x n ) with xi in Gi for i ~ 1, ••• ,n 
form a g r 0 u p Gun d e r the 0 per a t ion 
(x1, x2,···, x n )(Y1. y2.···. Yn) = (x1Y1. x2y2.···. xnYn), 
where Yi is also in Gi and xiYi denotes the product in Gi. 

The group G is called the external direct product of 
the Gi and this is expressed as G = G1 x G2 X·" x Gn . 
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Theorem (Internal Direct Product) 
Let Gi be normal subgroups of G, 1 < i < n, which 

satisfy the following conditions: 
(a)	 G = G1 G2'" Gn · 
(b) Gin (G1G2'" Gi-1Gi+1'" Gn ) = lel, 1 < i < n. 

Then it follows that 
(i)	 Each x in G has a unique representation of the form 

x = x1x2'" x n with xi in Gi, 1 .s. i .s. n. 
(ii)	 The mapping f(x)= (x1, x2, ... , x n ) of G into 

G1 x G2 x '" x Gn is an isomorphism. 

Under	 these criteria, G is called the internal direct 

product of its normal subgroups Gi, < i < n. I t is 

customary to abandon the above isomorphism and write this 

fact as G = G1 x G2 x'·' x Gn . When direct product is used 

in this paper, the point of view is internal. 



Chapter II
 

A HISTORICAL PERSPECTIVE
 

Early Beginnings 

The abstract concept of a group was introduced into 

mathematics during the nineteenth century. Although no 

individual is solely responsible for its development, 

Evariste Galois is credited with beginning the field of 

group theory since he was the first to apply groups towards 

the study of algebraic problems. His work led to a proof of 

the insolvability of fifth degree polynomials and to the 

name "group." So the concept of a simple group is not new 

to mathematics. In fact, infinitely many simple groups, 

primarily the alternating groups of degree greater than or 

equal to five and the cyclic groups of prime order, have 

been known to exist for over one hundred years. Likewise, 

most of the simp le groups of Lie type were known well before 

Chevalley's systematic and unifying treatment of them in a 

journal article published in 1955. Around 1860 a mathema­

tician named Emile Mathieu discovered the first five simple 

groups belonging to a new and unusual category now called 

sporadic. But until the 1940s, when Richard Brauer entered 

the field, this academic area was incomplete and suffered 

from neglect. 

Two factors share responsibility for this inattention. 

First, there were inadequate techniques available to study 

subgroup structures from which new simple groups might be 

constructed. Secondly, the enumeration of all simple groups 
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was viewed as an impossible task. Mathematicians would have 

to search through an infinite number of groups in order to 

classify the ones that were simple. Pioneers such as Brauer 

solved the first problem by developing novel methods of 

analyzing the relationships between a group and its special 

types of subgroups. These techniques form the basis of 

what is presently called "local group-theoretic analysis" 

[11, p. 11 J. The second problem was simplified by the 

monumental paper entitled "Solvability of Groups of Odd 

Order" written by John Thompson and Walter Feit in 1963. By 

proving William Burnside's conjecture that all finite groups 

of odd order are solvable, these mathematicians narrowed the 

search for simple groups to those groups having an even 

number of elements. The proof of their theorem "required a 

full 255-page issue of the Pacific Journal ~ Mathematics" 

forshadowing the length of future investigation [11, p. 1 J. 

Soon thereafter, research into simple groups increased 

dramatically. The amount of time and labor invested in 

their discovery is staggering. "This unprecedented group 

effort, which has been described as a mathematical 

equivalent of the Manhattan project, has been carried out 

primarily by finite-group theorists in the U.S., Britain and 

West Germany" [13, p. 84J. Mathematicians Michio Suzuki and 

Rimhak Ree completed the list of groups of Lie type when 

they stumbled across several unrecognized exceptions. 

Sporadic simple groups, a category which had been dormant 

for one hundred years since Mathieu's work, were revived 



when a new group was discovered by Zvonimir Janko in 1966. 

During the next ten years, twenty additional sporadic groups 

were uncovered, the last one being the Fischer-Griess group 

F1 whose uniqueness was established in 1981. Not 

surprisingly, the focal point of this inquiry was the 

sporadic simple groups. Unlike the other categories of 

simple groups, sporadic groups were difficult to discover 

due to their ambiguous structures. 

Experts did not expect their search to end so quickly. 

Mathematicians constantly debated whether a complete list or 

catalogue of all simple groups was feasible. Although 

intuition implied this should be the case, the sporadic 

category kept producing groups that created havoc and doubt. 

This is exemplified in a speech given by Richard Brauer at a 

meeting of the American Mathematical Society in 1976. There 

he stated, "The crux of the matter then is the question: 

'Are there finitely many or infinitely many sporadic 

groups?'" [3, p. 22J. His death in 1977 was unfortunate. 

This pioneer did not live to see the full classification of 

all finite simple groups of which only twenty-six are 

sporadic. 

Classification Theorem 

Finite simple group research can be divided into two 

separate but interdependent areas. Discovery of new simple 

groups constitutes the first. It is a several-step process 

beginning when a mathematical expert obtains evidence indi­

eating a new simple group might exist. Next, in order to 
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substantiate its existence, the simple group must be 

constructed. For some groups this stage was accomplished by 

hand, while others required the assistance of a computer. 

The last stage of discovery involves proving the 

existence of the simple group to be unique. Occasionally 

these steps occurred concurrently due to the brillant 

insight of one mathematician. On the other hand, discovery 
~ 

was often attributable to a team effort prevailing after I
l' 
l, 

several years of research. For example, evidence pointing t 

to the existence of the Fischer-Griess sporadic simple group 

F1 was simultaneously realized by Robert Griess and Bernd 

Fischer in 1974. Griess constructed the group by hand in 

1 980. Uniqueness of F1 was established in two stages by 

John Thompson in 1979 and Simon Norton in 1981. Thus, 

discovery of the elusive simple group F1 required 

approximately seven years. Searching for simple groups was 

not always this successful. More often than not, a step of 

the discovery process would lead to a contradiction 

rendering a suspected group nonexistant. 

Classification is the second category. Generally 

speaking, classifying a collection of objects refers to 

finding a single global explanation for their existence. 

This was achieved on a local and specific level throughout 

the busy research years when mathematicians determined every 

simple group satisfying various properties. For instance, 

all simple groups having order of the form paqbrc with p, q, 

r primes and p < q < r are known [11 p. 2 ] • This 
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description classifies a special subset of simple groups. In 

a similar but more global manner, the Classification Theorem 

classifies all simple groups by asserting that everyone of 

them has been realized and can be described. At the outset 

of the simple group odyssey, this goal was not specifically 

delineated. Instead, repeated applications of the 

previously mentioned discovery process gradually spawned 

this theorem. It is not a theorem in the the usual 

mathematical sense, since its proof is scattered across 

approximately 500 journal articles [12, p. 31J. When 

combined, these papers form a verification of the 

Classification Theorem that is around 15,000 pages 

long [12, p. 55J. 

Informally, the Classification Theorem asserts that 

every finite group is on a completely specified list. 

Stated more rigorously: 

CLASSIFICATION THEOREM. Every finite simple group is 

isomorphic to one of the following: 

1.	 A cyclic group of prime order; 

2.	 An alternating group; 

3.	 A member of one of sixteen infinite families of 

groups of Lie type; 

4.	 One of twenty-six sporadic groups. [12, p. 3J 

Presently, the direction of study has shifted from 

finding and constructing new simple groups to refining the 

C1 a 8 s i f i cat ion The 0 rem. Since it is a first in mathematical 

history, the classification proof has received mixed reviews 
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from the mathematics community. It is inaccessible to most 

mathematicians due to its length and complicated 

intertwining of journal articles. Many feel the extreme 

size is enough to discredit the proof since " the 

possibility of an apparently 'local' error having 'global' 

implications is ever present" [12, p. 53J. Consequently, 

they support an untried approach to the classification ~I 
~ ! 

prob 1 em. Others, such as Daniel Gorenstein, Richard Lyons, 

and Ronald Soloman, view the overall direction of the proof 

as valid. Currently, these three men are working together 

giving the proof "major surgery," to use Gorenstein's own 

words [12, p. 55J. They have devised an outline for a 

condensed proof which, when completed, should be roughly 
",. 

3,000 pages long. For a detailed treatment of this outline 
I 

see [12, pp. 53-93J. Only the passage of time and further 

research can determine whether this reduction in length and 

in-depth reanalysis will increase the appeal and acceptance 

of the Classification Theorem's proof. 



Chapter III
 

THE NATURE OF FINITE SIMPLE GROUPS
 

Before the general relationship between finite groups 

and finite simple groups can be presented, it is important 

to look specifically at what it means for a group to be 

simple. Understanding the parts is a prerequisite to 

comprehending any part-whole relationship. 

General Description 

Definition 
A group G is simple if and only if it contains no 

proper normal subgroups and G~ tel. 

The similarity between this definition and that of a 

prime number should be noted. A positive integer p i= 1 is 

called prime if its only positive divisors are the trivial 

divisors 1 and p. Likewise, a group G is simple if its only 

normal subgroups are the identity subgroup and the whole 

group G. Corresponding to the fact that 1 is not prime is 

the fact that the identity subgroup tel is not simple. 

Thus, a simple definition for a simple group has been 

established, but this is where the simplicity ends. As a 

whole, these groups are not simple in the uncomplicated or 

elementary sense. Their structures are exceedingly complex 

and their elements intricately interrelated. It is now time 

to describe the four categories of finite simple groups. 

Cyclic Groups Q! Prime Order 

Before giving a definition, the following notation is 

needed. If g6.G, let [gJ denote the set of all powers of g. 
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Definition 
A group G is cyclic if G = [gJ for some g G. 

Thus, a cyclic group of prime order is a cyclic group G 

such that IGI = p where p is a prime number. A group of 

this type will be expressed as Cpo 

Theorem 
Every group of prime order is simple. 

Proof. Let G be a group such that IGI = p with p a prime 

number. Then G is cyclic. Let H be a subgroup of G. By 

Lagrange's Theorem, IHI divides IGI so that I HI divides p. 

Then IHI or IHI = p implying H 1e } or H = G. 

Therefore, G has no proper normal subgroups and must be 

simple. 

Cyclic groups of this type are the only "simple" simple 

groups. Their internal structures are orderly and 

predictable. Also, this class of simple groups is unique 

among the others for the following properties they satisfy. 

Cyclic groups of prime order are the only simple groups with 

odd order. Consequently, they are the only simple groups 

which are solvable. Below is a theorem which explains the 

last of their special attributes. 

Theorem 
The only simple abelian groups are the cyclic 

groups of prime order. 

Proof. Let G be an abelian simple group with IGI > 1. 

Th e nthere e xis t s g E. G wit h g =I=- e. Let H = [gJ. Now G = H 

since any subgroup of an abelian group is normal. Hence, G 

is a cyclic group. Assume the order of G is composite. 

is, IGI = n where n = mp for some prime p. Then 
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e = gn = gmp = (g m ) p. Let K [ g m ] • It follows that 

IKI = p < n. Thus, K is a proper normal subgroup of G. 

This contradicts G being simple. Therefore, G is a cyclic 

group of prime order. 

Clearly, alternating groups, groups of Lie type, and 

sporadic groups do not satisfy the commutative property. 

Alternating Groups 

Alternating subgroups of symmetric groups are the 

second most familiar category of simple groups after the 

well known cyclic groups of prime order. They are defined 

as follows. 

Definition 
For every positive integer n, the group Sn of all the 

permutations on X n = {1, 2, ••• ,n} is called the 
symmetric group on Xn . The alternating group, denoted by 
An' is the set of all even permutations in Sn' 

Theorem 
If n ~ 5, then An is a simple group. 

For a proof of this theorem using conjugates and 

centralizers see [17, pp. 44-46]. 

A few comments concerning this theorem are in o rd e r. 

The groups A1 = {(1)} and A2 {(1)}, both the trivial 

identity group, are not simple. But simplicity is found in 

A3 = {(1), (123), (132)} since it is isomorphic to C3' The 

group A4 is not simple. I t has N {(1), (12)(34), 

(13)(24), (14)(23)l as a proper normal subgroup. So the 

above theorem is not entirely accurate. Justification for 

it in this form, however, can be given. When n > 5, 

An have similar nonabelian structures causing them to 
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form a family of simple groups. If < n < 4, the An are 

inconsequential, for their random natures force either 

multiple representation or nonsimplicity. 

Since Isnl = n! implies IAnl = n!/2, these alternating 

groups are inordinately large. This is attributable to the 

rapidly increasing values of factorials. But the group A5, 

possessing 60 elements, is the smallest nonabelian simple 

group. 

Symmetric groups and their corresponding alternating 

subgroups are important to the concept of solvability and 

its connection to simplicity. This will be covered more 

fully in chapter five. 

Groups ~ Lie ~ 

Groups of Lie type, unlike other simple groups, possess 

appealing algebraic structures. The sixteen infinite 

families of groups under the Lie label originate from what 

are called Lie groups. Sophus Lie, a Norwegian 

mathematician, developed Lie groups in an effort "•.• to 

explain why certain elementary differential equations could 

be solved, whereas others could not be" [20, p. 205J. Each 

Lie group is infinite and can be represented by matrices 

whose entries are taken from the field of complex numbers. 

Due to this fact, several Lie groups are equivalent to the 

classical matrix groups. These are the linear groups An' 

the symplectic groups en, and the orthogonal groups B n and 

They comprise four infinite families of Lie groups. 

exceptional Lie groups G2, F4, E6, E7, and Ea, which 

II 
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possess no classical analogues, complete the list. It is 

customary for simple group theorists to use the same 

notation for the alternating groups and the linear Lie 

group s. Generally, the context will determine which type of 

group is being discussed. 

Lie groups are not simple but have finite versions, 

called groups of Lie type, which are simple. Groups of Lie 

type exist as derivatives of their corresponding parent Lie 

groups by using matrices over finite fields. So there is a 

key difference between Lie groups and groups of Lie type 

~,apparent amid the confusing terminology. The former are 

infinite groups over the complex field, while the latter are 

finite simple groups over finite fields. 

A method will be given below for constructing the 

simple groups of Lie type corresponding to the linear family 

An. Throughout this discussion, GF(q) will represent a 

finite field with q elements. A basic theorem about finite 

fields forces q to have the form pm where p is a prime 

number and m is a positive integer. 

Definition 
The general linear group GL(n,q) is the multiplicative 

group of all nonsingular n x n matrices over GF(q). 

Recall that a matrix ha ving an inverse is said 

to be nonsingu lar. Furthermore, it can be shown that 

IGL(n,q)/ = (qn _ 1)(qn _ q) ••• (qn _ qn-1). 

Definition 
The special linear group SL(n,q) is the multiplicative 

group of n x n matrices over GF(q) having determinant 1. 

Unless n = 2 and q < 3, SL(n,q) is the commutator 
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subgroup of GL(n,q). Let Zo denote the center of SL(n,q). 

Then Zo consists of the group of scalar matrices, that is, 

each scalar k E.GF(q) with k n = is multiplied by the 

identity matrix to form elements in ZOo Also, Izol = d 

where d is the greatest common divisor of nand q - 1. It 

will be expressed throughout the rest of this paper as 

gcd(n,q-1 ). 

Definition 
The projective linear group PSL(n,q) is the group 

SL(n,q)/Zo· 

It can be demonstrated that if d gcd(n,q-1 ) 

then /PSL(n,q)1 (qn _ 1 )(qn _ q).1f (qn _ qn-1) 

d(q-1) 

n 
Simplifying gives IPSL(n,q)1 = 1/d qn(n-1 )/2 'TI(qi - 1). 

i=2 

Except when n = 2 and q ~ 3, PSL(n,q) is simple for 

all n > 2. It is also the finite analogue of the Lie group 

family Am for m n - 1. 

What follows is an elementary example of the group 

PSL(2,3). Although it is not simple, it provides insight 

into the structure of these groups. 

To begin, it is necessary to define the finite field 

from which all subsequent matrices will be composed. 

GF(3) 

Z3 = 1o, 1, 2) 

There are 3 4 = 81 2 x 2 matrices constructable in Z3' 

but only IGL(2,3)1 (3 2 1 )(3 2 - 3) = 48 of them possess 



--------------------------

--------------------------

------------

18 

an inverse or, equivalently, have a nonzero determinant. 

Moreover, the reader should remember that addition and 

multiplication are performed using modu lar ari thme ti c. 

GL(2,3) 

;1 01 10 11 12 01 10 21 :1 11 11 11 fo 11 11 0;
 
Lo 1J , L1 oj , Lo 2J , L2 oj , U oj , Lo 1J , L1 1J , L1 1J ,
 

;1 1; 11 11 :2 1; :1 2; :2 2; 12 21 :0 21 :2 0; II'
IL1 2J , L2 1J , L1 1...1 , 11 1J , 12 oj , Lo 2J , L2 2J , L2 2J , " L L :ll 

~Iill 

$;2 2; ;2 21 11 21 12 11 ;0 11 [""0 11 :0 11 ;0 11
12 1 12 I 1 ~ 
L 1...1 , L1 2J , L 2.] , L2 2J , L1 2J , L2 1J , L2 0-, , L2 2J , ll, 

;1 01 :1 01 11 01 ["1 01 ;1 21 r1 21 :1 21 i1 21
 
L1 2J , 12 1J , Lo 2J , L2 2J , Lo 1j, U OJ, Lo 2J , L2 oj ,
 L 

:2 11 :2 11 12 11 ;2 11 ["0 2; ;0 21 :0 21 10 21 
10 ILo 1J , L1 oj , L 2...1 , L2 OJ , L1 2J , L2 1J , L1 oj , L1 1J ,
 

;2 01 :2 0; 12 01 12 01 11 11 ;1 11 :-2 2; ;2 21
 
2.J , 12 1j, Lo 1J , L1 1J , Lo 2J , L2 OJ, Lo 1j, L1 ojU I

L 

Now collect those matrices in G1(2,3) that have 

determinant 1 and form the group below. 

SL(2,3) 

f1 01 r2 01 11 11 11 01 :2 21 12 ol ;2 21 :1 2;
 
Lo 1J , Lo 2J , Lo 1J , U 1j, Lo 2J , '2L.: 2J , 1

L2 1J , L2 2J '
 

11 11 12 1; 11 01 :0 1; :0 11 10 11 :2 01 ;0 2; 
U 1j, L.: oj ,
 

;0 21 10 21 ;1 21 11 21 12 11 :2 11 :1 11 :2 21
 

L1 2J , '2 1J , L2 1J , L2 L2 2J , U 2J , L1 2J , 

U oj , U 1j, U oj , Lo 1...11, 12 oj , Lo 2J , L2 oj , L1 oJ,L 

The center of 31(2,3) is needed next and will contain 

two elements since Izol = gcd(2,2) = 2. 

Zo 

11 0; 12 01 
Lo 1J , Lo 2J 
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The simp 1 e group that is being built as a factor 

group, PSL(2,3), will now be represented. It can be shown 

to have twelve elements, each one of which is a coset. 

PSL(2,3) 

[""1
Lo 

01 
1J ZO 

[""2 
Lo 

;l-------{~~-;l--~;-;i~-

2J ZO = Lo 1J, Lo 2JJ (order 1 ) 

i2 21 
L2 1J ZO 

[""1
L1 

11 
2J ZO = 

S[""2
lL2 

21 
1J, 

[""1 1lZ 
U 2Jj (order 2 ) 

11 
IL2 

21 
I2..1 Z 

0 

i2 11
L1 1J ZO = 

S[""1 ii
(J2 2J, 

i2 11}
L1, 1J (order 2) 

io 1i 
L2 oj Zo 

io 21 
U oj Zo = 

fio n 
(L2 oJ, 

[""0 211. 
U oJj (order 2) 

i1 11 
Lo 1J Z0 

[""2 2i 
Lo 2J ZO = 

[11 1l 
1JO 1J, 

i2 2i} 
Lo 2J (order 3) 

11 01 
U 1j Zo 

12 ol 
L2 2J Z 0 = 

fi1 01 
(J1 1J, 

[""2 011 
L2 2J5 (order 3) 

[""1
L2 

01 
1J ZO 

i2 oi 
L1 2J ZO = 

fl1 
LL2 

01 
1J, 

[""2
L1 

ol~ 
2Jj (order 3 ) 

io 11 10 21 Sio 1l io 2i1 
L2 1J Z 0 L1 2J ZO = lL2 1J, U 2J) (order 3) 

[""0
L2 

11 
2J ZO 

10 21 
L1 1J ZO = 

)[""0 11 
(J2 2J, 

[""0
L1 

21~ 
1Jj (order 3 ) 

[""1
L1 

21 
oj Zo 

12 11 
L2 oj Z 0 = 

)[""1 21
lU OJ, 

12 11(
L2 oj5 (order 3) 

11 
Lo 

21 
1j Zo 

;2 11 
Lo 2J ZO = 

J[""1 21 
(j.O 1J, 

12 
Lo 

11~ 
2J) (order 3 ) 

[""1
L2 

1l 
oj Zo 

12 21 
L1 oj Zo = 

[[""1
lL2 

11 
oj, 

[""2 21~ 
L10J) (order 3) 

Using the formula (aZo)(bZ o ) (ab)Zo for the product 

of cosets, it is possible to find the order of each element 

in PSL(2,3). These orders are specified next to the 

elements listed above. Now there exist five nonisomorphic 
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groups of order twelve which are C12 = C3 x C4, C6 x C2, the 

dihedral group D6, the quaternion group Q6, and the 

alternating group A4. Since A4 is the only one of the five 

that contains eight elements of order three, PSL(2,3) must 

be isomorphic to A4. 

For all of the classical Lie groups, the procedure 

exposed here of finding the commutator subgroup G* then 111 
·~il 
II'" 
iI~" 

obtaining the center C of G* yields a family of simple 
~hll 

!l 
l~ 
I' 

groups G*/C most of the time [16, p. 696J. This gives, 01." 

~il 
ItIl" 
IIlIIIhowever, only fi ve fami lies of simp Ie groups of Lie type 
iii" 

11~'iwhich include the linear groups An(q); the symplectic groups ~, 
I:! 
~'Cn(q); the orthogonal groups Bn(q), Dn(q), and 2D n (q); and 
III~~Il, 

...
the	 uni tary groups 2A n (q). 

The remaining simple groups of Lie type are also 

derived from the Lie groups but necessitate an application 

of modified techniques. This was done by Claude Chevalley, 

and his procedures produced most of the previously described 

classical groups along with several original families corre­

lating to the exceptional Lie groups. These newer simple 

groups of Lie type are denoted by G2(q), F4(q), E6(q), 

E7(q), and E8(q)· Accuracy demands, however, that Leonard 

Dickson be given credit for his independent construction of 

G2(q) and E6(q) before Chevalley. Variations on Cheval ley's 

work by Robert Steinberg produced the simple families 3D4(q) 

and 2E6(q). In 1960 Michio Suzuki constructed a family of 

simple groups outside the realm of general Lie theory and at 

first believed it was sporadic. Later Rimhak Ree 
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demonstrated that when n is odd and q = 2 n , 3 n , and 2 n , 

respectively, the three simple families B2(2 n ), G2(3n), and 

F4(2 n ) acquire extra characteristics not explainable by Lie 

theory. He used this knowledge to construct the last three 

families of simple groups of Lie type: 2B2(2n), 2G2(3n), 

and 2F4(2n) of which 2B2(2n) was the group disclosed by 

Suzuki. Important information concerning the simple groups 

of Lie type is summarized in Table I - page 22. It is 

borrowed from [16, p. 708J. 

t1H: I~' 

It-~. 

1::1 
~: 
11 

Jtt\I:~ 

'" 
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Table 1. Simple Group:! of Lie Type* 

Lie 
Notation 

Nama or 
Discoverer Order d 

P.rr-1 (q) PsL(n,q) (~2) 
n 

1/d qn(n-1)/2 TI(qi-1) 
i=2 

gcd(n,q-1) 

2An-1(q) 

Cn(q) 

Bn(q) 

%(q) 

2%(q) 

3D4(q) 

PSU(n,q) (I0) 

PSp(2n,q) (n~2) 

pm(2n+1,q) (n2!) 

PSO(2n,q,+) (~4) 

PSO(2n,q,-) (~4) 

Steinberg 

n 
1/d qn(n-1 )/2 f1'(qL(-1 )i) 

i=2 
2 n 

1/d qn .,-((q2i-1) 
i=1 

2 n 
1/d qn lI/(q2L1) 

i=1 
n-1 

1/d qn(n-1) (qD...1) T((q2i-1) 
i=1 
n-1 

1/d qn(n-1) (qIlt 1) 'T1'(q2i-1) 
i=1 

q12(q8-+q4+1 )(q6-1 ) (q2..1 ) 

gcrl (n,q+1) 

gcd(2,q-1 ) 

gcd(2,q-1) 

gcd(4,qD...1) 

gcrl(4,qIlt1 ) 

trj'l 

~::iil 
~'ilill, 
ll: 

FJi 
~'~i 

'I, 
1~'1 

'il 

~ 

111,,_ 

11"' 
0'., 
~~"i 
~111'j 

lii!"• 
0, 

~(q) Dickson q6(q6_1)(q2_1) 

F4(q) Crevdlley q24(q12..1 )(q8-1 ) (q6_1)(q2..1) 

E(;(q) Dickson 1/d q36(q12_1 )(q9-1 )(q8_1 )(q6-1 )(q5-1 )(q2-1) gcd(3,q-1) 

2E(;(q) 

m-,(q) 

Fe(q) 

Steinberg 

Chevalley 

Chevalley 

1/d q36(q12..1 )(q9+1 )(q8-1 )(q6_ 1)(q5+ 1)(q2_1) 

1l 1/ d q63([8_U(q14_1 )(q12..1 )(q10_1 )(q8-1 ) 
(q6-1 )(q 1) 

TIq14)(q::D_1) (q24_1 )(~-1 )(q18_1 )(q14_1) 
(q12..1)(q8_1)(q2..1) 

gcd(3,q+ 1) 

gcd(2,q-1) 

2~(q) Suzuki (q=22n+1) q2(q4 1)(q-1) 

~(q) Roo (q=~n+1) q3(q3+1)(q-1) 

2F4(q) Roo (q=22n+1) q12(q~1 ) (q4-1) (q3+1 ) (q-1) 

* Here q is an arbitrary pCMer of an arbitmry priIIB unless otherwise specified.
** The symbol 11, without indices, means to find the product of all quantities after it. 

All groups above are nonabelian simple groups except: 
(a) PSL(2,2), PSL(2,3), PSU(3,2), and 2~(2) are solvable. 
(b) PSp(4,2), ~(2), and 2F4(2) all have a simple COIJIlDxtator sulgroup of index two. 
(c) 2~(3) has a simple cormD.ltator rn.bgroup of index three. 
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It is worthwhile to pause and observe an interesting 

fact apparent in the above table. Although Cn(q) and Bn(q) 

are distinct families, their order formulas are identical. 

In other words, for n > 3 and q:::J=. 2 a , the corresponding 

groups in Cn(q) and Bn(q) possess the same order but are not 

isomorphic. This situation proves an important theorem 

about simple groups: that there exist infinitely many 

nonisomorphic simple groups having the same number of 

elements. 

Since there are only twenty-six sporadic groups and one 

~IW 

infinite family each of the cyclic and alternating groups, ~': 
\ill"., 
,'~
jl';\the sixteen infinite families of groups of Lie type dominate ., -\, 

" 

the simp Ie groups. Consequently, the most common simple 

group is a group of Lie type. 

Sporadic Groups 

There is nothing of a general nature to be stated about 

sporadic groups. They are sometimes characterized as 

" the simple groups which are neither of prime order, 

nor alternating groups, nor of Lie type" [3, p. 24J. 

William Burnside was the first individual to refer to them 

as sporadic (see [4, p. 504J). The twenty-six groups in 

this category have dissimilar structures causing the 

collection to resemble a miscellaneous account. Hence, no 

single definition can be furnished to explain their 

existence. Some collections of two or three sporadic groups 

originate out of a single context. For examp Ie, the three 

Conway sporadic groups .1, .2, and .3 were discovered from 
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the 24-dimensional Leech lattice. Yet this occasional 

bonding is not enough to overcome the fact that each one is 

a distinct type of simple group. 

Sophisticated characterizations of the sporadic groups, 

although beyond the scope of this paper, consist of 

des c rib i n g e a c h one o f the m i n d i v i d u all y 

(see [11, pp. 78-134J). Uncomplex examples are furnished by 

the Mathieu groups M11 and M12 which are represented next as 

permutation groups. 

Let A, B, and C be the following permutations:
 
A = (1 2345678 910 11)
 

~, 'l

B = (564 10)(11 837) ... 
C = (112)(211)(36)(48)(59)(710). .'"'. 

Then M11 = <A,B> and M12 = <A,B,C>. [11, p. 79J 

Here <A,B> is the subgroup of S11 generated by the 

permutations A and B, and <A,B,C> is the subgroup of S12 

generated by the permutations A, B, and C. It should be 

mentioned that other descriptions of the Mathieu groups 

exist, and this multirepresentation is typical of most 

sporadic groups. In the following table, each sporadic 

group is listed along with its order, original founder, and 

approximate year of discovery. In those instances where the 

efforts of several mathematicians were required for 

discovery, the group was named after the individual who 

found the initial evidence for the group. The years 

provided in the table are not publication dates, but are 

actual discovery dates again based on the initial evidence 

concept. They are borrowed from a journal article written 

by Arunas Rudvalis [16, p. 709], the discoverer of the 
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sporadic group Ru, who can be considered a reliable source 

for this information. 

Table II. Sporadic Simple Groups 

Name Order Discoverer Date
 

M11 7,920 Emile Mathieu 1861
 
M12 95,040 Emile Mathieu 1861
 
M22 443,520 Emile Mathieu 1873
 
M23 10,200,960 Emile Mathieu 1873
 
M24 244,823,040 Emile Mathieu 1873
 
J1 175,560 Zvonimir Janko 1965
 
J2 604,800 Zvonimir Janko 1 967
 
J3 50,232,960 Zvonimir Janko 1968
 
J4 -8.7 x 10 1 9 Zvonimir Janko 1975
 
HS 44,352,000 Donald Higman, Charles Sims 1967
 
Mc 898,128,000 John McLaughlin 1 968
 
Suz -4.5 x 10 11 Michio Suzuki 1968
 
Ru -1.5x10 11 Arunas Rudvalis 1 972
 
He - 4 x 109 Dieter Held 1968
 
Ly -5 x 10 16 Richard Lyons 1970
 
ON -4.6 x 10 11 Michael O'Nan 1973
 
• 1 -4 x 1018 John Conway 1968 
.2 -4 x 10 1 3 John Conway 1968 
.3 -5 x 10 11 John Conway 1968 
M(22) -6.5 x 10 1 3 Bernd Fischer 1969 
M(23) -4 x 1018 Bernd Fischer 1969 
M(24)' * -1.3 x 1024 Bernd Fischer 1969 
F1 -8 x 1053 Bernd Fischer, Robert Griess 1974 
F2 -4 x 1033 Bernd Fischer 1973 
F3 -9 x 10 16 John Thompson 1974 
F5 -2.7 x 10 14 Koichiro Harada 1974 

*M(24)' is the commutator subgroup of index 2 in M(24). 

An examination of the table reveals that overall, the 

orders of sporadic groups are large. The smallest one is 

M11 which has 7,920 elements. Occupying the opposite end of 

the size continuum is the group F1 whose order is 

approximately 1054. Due to its massive size, it was 

originally named the "monster." The next largest group F2, 

having order of roughly 10 33 , was also initially called a 
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jesting name, that of "baby monster." 

This size issue contributed to the problematic discov­

of sporadic groups. The techniques available to study 

simple groups, before the famous Feit-Thompson paper, were 

only effective for small groups. Hence, before new sporadic 

groups could be discovered, new methods had to be developed. 

In addition, since each sporadic group is unlike any of the 

others, discovery of one did not imply discovery of all. 

Every group was an individual project. A comparison with 

the other types of simple groups highlights this problem. 

The cyclic groups, alternating groups, and groups of Lie 
",.
,, '··'1'" 

type form eighteen families of simple groups. Even though :1 
there exist infinitely many groups in each family, there 

are also small ones to examine from which properties and 

patterns for the whole set can be inferred. At this time, 

the sporadic groups do not exhibit any kind of family struc­

tur e. Instead, they are a random set of unrelated groups 

collected together under the label sporadic. 

It is interesting to examine the literature published 

in the early 1910s. Doubt as to whether there was a finite 

or infinite number of sporadic groups is prevalent. 

Mathematicians were concerned that a new, unpredictable, and 

irregular family of simple groups was unfolding which could 

defy description. Such a situation would have halted the 

whole classification project. Again Richard Brauer aptly 

described this climate when he stated "•.. it is quite 

possible that we have an infinite sequence lG n } with the 
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orders IGn I strict ly increasing and tha t infini te ly often; 

entirely new types of groups occur in our sequence (or, as 

some peop 1 e say, new , mons t'ers appear )" [3, p. 22-23J. This 

suspicion, of course, turned out to be false since only 

twenty-six sporadic groups have been proven to exist. 

Necessity of computer assistance further emphasizes the 

complications involved in sporadic group disclosure. The !_I 
1~1ll1 

!t 
groups J3' J4' He, 1y, ON, F2, F3' F5, and Ru required 

computer calculations to establish their existence. A 

mathematician named Charles Sims was a key figure in 

evolving computer algorithms capable of constructing groups, 

and shares responsibility for the existence of 1y, ON, and 

F2' Currently, however, only the three groups 1y, ON, and 

J4 depend on the computer for their livelihood. During the 

past several years, hand constructions have been derived for 

the others. This is due in part to the noncomputer 

construction of the "monster" by Robert Griess as "a group 

of rotations of a symmetric object in a space of 196,883 

dimensions" [7J. Since a number of the twenty-six sporadic 

groups are known to be embedded one way or another in F1, 

their constructions follow easily from Griess' work. It is 

remarkable that a group so large could be built by hand when 

much smaller groups required computer aid. This 

accomplishment stimulated Griess to rename F1 the "friendly 

giant. " 

Connections between certain sporadic groups and groups 

of 1ie type have been uncovered. Others, specifically the 
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Mathieu groups M23 and M24' are related to codes used in 

reconstructing messages distorted by noise. A majority of 

the twenty-six sporadic groups are embedded in the group F1' 

Conway's group .1, or both. These observations imply that 

sporadic groups may not be as random as they appear. An 

undetected family structure might exist causing these 

mysterious tricksters to one day yield a unifying common 

denominator. 



Chapter IV
 

THE IMPORTANCE OF FINITE SIMPLE GROUPS
 

This chapter will demonstrate the significance of 

simple groups in addition to showing the fundamental 

position they occupy in the whole spectrum of group theory. 

The recent flurry of research activity has not been 

theoretical playtime. Simple groups are important. They 

are the fundamental particles of groups, and this fact will 

be substantiated below. Finite groups will be divided into 

two categories for examination: those that are abelian and 

those that lack the commutative property. This division is 

necessary since each case entails unique and notable 

features. 

Finite Abelian Groups 

Knowing that a group is abelian simplifies the 

investigation of properties in question. Even though it 

lacks generalization potential, it is often best to start 

with the specific. Before giving the major theorems, two 

introductory definitions are needed. 

Definition 
Let p be a prime number. A group G is a p-group in 

case every element in G has order a power of p. 

Definition 
A primary cyclic group is a cyclic group of order pn 

with p a prime number and n > 1. 

Primary cyclic groups are merely cyclic p-groups 

singled out for special emphasis. Undoubtedly, they are 

crucial to this section. The connection between simple 
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groups and finite abelian groups will be presented in an 

important theorem known as the Fundamental Theorem of 

Finite Abelian Groups. Understanding its meaning and 

proof, however, requires some preparatory work. 

Theorem 
If G 

where, for 
each pi is 
p-groups. 

is an abelian group of order p1 k1 p2 k2 ... prkr 

i = 1, ••• ,r, each ki is a positive integer and 
a prime number, then G is the direct product of 

Proof. The internal direct product theorem forms 

the basis for this proof. For < i < r, define 

Gpi !xEc G : order of x is a power of pi}. Each p-group 

closed 

Gpi is 

subset of 

a normal 

the abelian group G. 

subgroup of G since it is a nonempty and 
'.'11 

I. Show G = Gp 1 Gp2 •• , Gpr ' 

Let gE G with g =I=­ e and let the order of 

n divides I G I , n = p1j1 p 2j2 ••• prjr where 0 

g be 

< j i 

n. Since 

< ki for 

< i < r. Let ni n/piji for < i < r. Then 

gcd(n1 ,n2, ••• ,nr) = 1. So there exist integers mi such 

that n1m1 + n2m2 + ... + nrmr 1. This gives, 

g = g1 = g(n1m1 + n2m2 + ... + nrmr) = gn1m1 g n2m2,.. gnrmr. 

Examination of the general term gnimi reveals that 

( 
\Piji

gnimi) = 
( ji
gnipi mi) = gnmi (gn)mi e mi = e. 

Hence, gnimi has order a power of the prime pi which means 

g nimi'-:'G .c;; pl for 1 < i < r. __ Therefore, G = Gp1Gp2'" Gpr ' 

II. Show Gpin (G p 1 Gp 2'" Gp (i-1)G p (i+1)'" Gpr ) = ! e}. 

Let xE, Gpin(Gp1Gp2'" G p (i-1)G p (i+1) ••• Gpr )' Then 

xE.Gpi and xE.G p 1 Gp2·" Gp (i-1)G p (i+1)'" Gpr ' It follows 
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a 
that xPi e for some a. At the same time, for 

< j < rand j 4= i, x =lIxj with xj E: Gpj and xjpj
tj 

= e -

for positive integers t j. Let s = lIpjtj for 1 < j < r 

and j =1= i. Then XS = ('Tl'xj) s = e. Since gcd(pia,s) = 1 , 

there exist integers c and d such that piac + sd = 1. Thus, 

x = x 1 = x(piac + sd) = (xPia)C(xS)d = eCe d = e. 

Therefore, Gpin (G p 1 Gp2'" Gp (i-1 )G p (i+1 ) ••• Gpr ) = te}. 

Since the hypothesis of the internal direct product have 

bee n sat i s fie d , i t can b e con c 1 u d e d t hat 

G = Gp 1 x Gp 2 x .. ·x Gpr ' 

It is seen that any finite abelian group G can be 

factored into the direct product of p-groups unless G itself 

is already a p-group. The prime numbers around which these 

p-groups are constructed are those that divide the order of 

G. Since e may be the only element in G having order a 

power of the prime p, that is, /el pO = 1, a p-group 

can be the identity group. The term factored is intended 

throughout this chapter to have the group theory meaning of 

direct product not the customary connotation of factoring a 

number. An example will clarify the technicalities of the 

p-group theorem. 

Let C12 = t e, a, a 2 , a 3 , a 4 , a 5 , a 6 , a 7 , as , a 9 , a 10 , a 1 1 } . 
I I I I I I I I I I I I 
I I I I I I I I I I I I 

order 1 1 2 6 4 3 1 2 2 1 2 3 4 6 1 2 

Since 12 223, only two p-groups can be formed. They are 

G2 = te, a 3 , a 6 , a 9 } and G3 = te, a 4 , as}. According to the 

theorem, C12 = G2 x G3' 
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This illustration emphasizes the fact that not all 

elements in a group G need necessarily belong to a p-group. 

It is as if the elements in G pass through p-group filters 

with some being selected for emphasis and others being 

discarded. The special elements, bonded together by the 

common prime they share, are assembled into p-groups. 

Those that are rejected have composite order and can be 

generated by elements in the various p-groups. At this 

point it may be unclear as to why the emphasis has been 

placed on p-groups when the goal is to arrive at a 

factorization of G into primary cyclic groups. Going 

directly to the primary cyclic groups is more difficult than 

arriving at them through p-groups. Conceptually, the 

elements of G are filtered in two stages: first into p-

groups and then the p-groups divided into primary cyclic 

groups. Preparation for the major theorem of this section 

is now complete. 

Fundamental Theorem of Finite Abelian Groups 
Every finite abelian group is a direct product of 

primary cyclic subgroups. 

Proof. Due to the previous theorem, it is sufficient to 

consider p-groups only. Let M be a p-group and let a E. M 

such that the order of a, denoted pm, is maximal. The group 

A = [a] is cyclic with IAI = pm. Al s 0, let blSM with b not 

in A and define B = [b]. Since b ¢ A, BnA = Ie}. The 

group B is normal in M so M/B is a group with the coset aB 

as an element. 
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I.	 Show the order of aB is equal to the order of a. 

Let Z = order of aBo Since the order of a is pm, 

m m m m 
(aB)P = (aP ) (BP ) = (aP )B = eB = B. Thus Z divides pm. 

A 1 so, since acaB and (aB)Z = B, then aZE.B. But a to any 

power belongs to A. Hence, a Z E. An B { e } which implies 

that a Z = e. But pm is the smallest positive integer for 

which this relationship holds for a. Thus pm divides z. 

Therefore, Z = pm, which means the order of aB is equal to 

the order of a. From this it can be concluded that aB is of 

maximal order in M/B and CaB] generates a cyclic group. 

II.	 Show M is the direct product of primary cyclic 
subgroups. 

The proof will be completed by induction on n, where 

IMI = pn. If n M is cyclic of prime order. Assume 

the hypothesis is true if I HI = pk with k < n. When 

IMI = pn, the order of M/B < pn. So the induction 

hypothesis applies to M/B giving M/B CaB] x T where T is a 

subgroup of M/B. Since B is normal in M, the natural map 

from M to M/B can be formed. By the correspondence theorem, 

there exists a subgroup Q of M such that Q~ Q/B = T. Also 

due to previous work, A is mapped to CaB]. Therefore, 

M = A x Q where Q is the direct product of primary cyclic 

groups by the induction hypothesis. 

Although this theorem yields an astonishing result, 

that any finite abelian group can be represented as the 

direct product of primary cyclic groups, it does not address 

the issue of uniqueness. Are there several ways to factor 
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an abelian group or just one? It is implied by the theorem 

that if G is a primary cyclic group of order pn with n > 1, 

such as Cs, it cannot be factored. All other finite abelian 

groups can be factored in only one way as the following 

theorem indica tes. 

Theorem 
If a finite abelian group G is the direct Iii 

product of primary cyclic groups in two ways, 
G = A1 x A2 X'" x Ar = B1 x B2 x''· x Bs , then the number of 
factors is the same in both cases, r = s, and the orders of 
A1, ... ,A r are the same as those of B1, ••• ,B s in some 
arrangement. 

At this time it is worthwhile to reintroduce the 

correspondence between simple groups and prime numbers with 

a fact from number theory. It has a striking resemblance 

to the topics currently under investigation. 

Fundamental Theorem of Arithmetic I 
Every positive integer n > 1 can be written as 

n = p1 a1 p2 a2 ". pr ar , where, for i = 1,2, ... ,r, each ai is a 
positive integer and each pi is a prime, with 
p1 < p2 <".< pro If n has two representations, 
n = p1 a1 p2 a2 ", prar = q 1 b1 q2 b2 ... qs bs, then r = s, and the 
pi ai are the same as the qjbj except, possibly, for 
their order of appearance. 

Now the technicalities of procedure will be addressed. 

A common method used to find the unique factorization of a 

group G is based on the following concept. If an abelian 

group G is not a primary cyclic group and N is a normal 

subgroup of G, then G = N x GIN. This is derived from the 

fact that G contains a subgroup isomorphic to GIN. 

Factoring the group C6 will demonstrate this technique. 
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Let C6 = { e, a, a 2 , a 3 , a 4 , a.J
r: 

i
) 

.
 

Let N = { e , a 3 };-VC2·
 

Then GIN = N = a 3 }
te,
aN = a, a 4 } rv C3. 

a 2 N = {a 2 , a 5 } 

So that C6 = C2 x C3· 

The group C30 serves as a second example. It has a 

normal subgroup C2, and performing the above process obtains 

C30 C2 x C15. Repeating the procedure on C15 yields 

C30 = C2 x C3 x C5 as the final factorization of C30 into 

primary cyc lic groups. Dep end ing on whi ch no rma 1 subgroup 

of C30 was initially selected, the first factoring stage 

could produce C30 = C2 x C15 = C5 x C6 = C3 x C10 as three 

ways to write C30 as a direct product. They are not, 

however, factorizations which satisfy the primary cyclic 

group standard. This criterion is what connects the 

Fundamental Theorem of Finite Abelian Groups to the topic of 

this paper: finite simple groups. I f all finite 

commutative groups could be written as the direct product of 

simple groups, then the analogy between prime numbers and 

simple groups would be complete. This is not the case, 

however, and the factorization C40 C5 x Cs serves as a 

counterexample. Primary cyclic groups of order pn are the 

problem. When n = 1 they are simple, but if n > 1, they are 

no t. Therefore, only some finite abelian groups factor into 

the direct product of simple groups. A stronger assertion 

is impossible, and this leaves the sought after analogy 

between prime numbers and simple groups in a state of 
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imperfection. Finite nonabelian groups will be enlisted to 

resolve these difficulties. 

Finite Nonabelian Groups 

As alluded to earlier, the goal is to establish a 

theory for finite groups analogous to the Fundamental 

Theorem of Arithmetic which utilizes simple groups as basic 

building blocks. Exploring finite abelian groups produced 

results towards this end, but limitations prevented an 

absolute correspondence. It is desired to replace this 

slight similarity with something more concrete. Properties , 
II 

~ possessed by finite nonabelian groups, when the commutative 
~ 
I~ 
~property is not under assumption, will accomplish this ~Ii 

objective. 

If factoring a finite group into simple groups is not 

always guaranteed, then it is best to abandon this concept 

and examine the problem from a different perspective. 

Granted, the Fundamental Theorem of Arithmetic states that 

any positive integer greater than one can be factored into a 

product of prime powers uniquely. The emphasis of this 

theory, however, is on factoring. It can be restated in an 

equivalent form which shifts the focus from factoring to 

collections of prime numbers. 

Fundamental Theorem of Arithmetic II 
For every positive integer n > 1 there is a sequence 

n = nO > n1 > rr. > n r -1 > n r = 1 such that eRch ni/ni+1 is a 
prime, and the collectiOn of primes which so occur and their 
multiplicities are uniquely determined by n up to 
reordering [16, p. 693J. 

In a sense, the approach is backwards. Instead of 



37 

beginning with a positive integer and factoring it into 

prime numbers, a set of prime numbers is selected and 

multiplied to form a positive integer. Thus, through 

collections of prime numbers, it is possible to obtain or 

survey all positive integers. If positive integers were 

difficult to identify, then this tool would be 

indispensable. Since they can be easily listed, the theorem 

appears trivial. For more complex mathematical entities 

like finite 

small part In this situation, 

groups, however, it is realistic to know only 

of the whole collection. a 

a 

:f 

~ 

One does 

which allowed a 

primitive elements, would be extremely useful. 

mathematician to acquire all finite groups from some type of 

theorem such as that given above, 
" ~ 
~,

• 
l~ I 
'" :11 1 

It has, notexist and is called the Jordan-Holder theorem. 

surprisingly, simple groups as its basic building blocks. 

I 

~'II 
, 

I 

The following derivation is meant to formally establish this 

assertion. 

To begin, a special type of subgroup needs to be 

defined. Let N be a normal subgroup of a group G. The 

subgroup N is called a maximal normal subgroup of G if K is 

any other normal subgroup of G containing N, then K = N or 

K = G. A composition series is another necessary concept. 

Definition 
A composition 

G = Go 7:) G1::;)'" => Gn 
subgroup of Gi' 

series of 
tel with 

G is a 
Gi+1 

chain of subgroups 
a maxima 1 no rma 1 

The resemblance between a composition series and the 

sequence of integers defined in the second Fundamental 

Theorem of Arithmetic should be apparent. It can be shown 
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that every finite group possesses a composition series which 

is necessary if the assertion under demonstration is to have 

any value. Consider the group C30 for an illustration of a 

composition series. Since normality is automatic, the 

construction is simplified. Using this particular group 

offers a comparison with the abelian example of C30. 

Composition Series of C30
 
C30:?C15"::> C5::;) te}
 

An attempted correspondence with the second Fundamental
 
ii

Theorem of Arithmetic suggests an approach to a composition .1 
I'

series through its factor groups Gi/Gi+1. They are 
, 
;constructed next for the composition series of C30. 
t:, 
::11 
1"lrGO/G1 C30/ C1 5'"" C2 til' 

'IiG1/ G2 C1 5/ C5"" C3 
I'il 

11"'.' .,
G2/ G3 C5/ te }rvC 5 .."' 

':,11 

As suspected, these factor groups are simple. A 

theorem can be stated to formalize this observation. 

Theorem 
Let G be a finite group and G = GO:;) Gr:::>··· ::JG r = t e} 

be any composition series of G. Then the factor groups 
Gi/Gi+1 are simple for i = 1, ••• ,r-1. 

Proof. Assume that for some i, 1 .s. i .s. r-1, Gi/Gi+1 is 

not simple. Then there exists a proper normal subgroup Hi* 

of Gi/Gi+1. Since Gi+1 is a normal subgroup of Gi' it is 

possible to define f: Gi ~ Gi/Gi+1 as the natural map. 

From the correspondence theorem, there exists a subgroup Hi 

of Gi with Hi normal in Gi and Gi:::>Hi=>Gi+1. The group Hi 

contradicts Gi+1 being a maximal normal subgroup of Gi· 

Therefore, Gi/Gi+1 is simple. 



39 

The Gi/Gi+1 are called the composition factors of G. 

Results from this discussion are summarized in a theory 

which is the analogue for finite groups of the Fundamental 

Theorem of Arithmetic. 

Jordan-Holder Theorem 
Every finite group G has a composition series 

G = GO=' G1===' ••• ,::)G r = ! e} such that each factor group 
Gi/Gi+1 is a simple group, and the collection of associated 
simple groups is unique up to reordering. ,I 

" 

A composition series of C30, different from the one J 
",t 

given previously, is C30=,C6::;:lC3:::>!e}. But the factor	 i 
~. 

• 
groups C30/C6"" C5, C6/C3""C2, and C3/! e} ,vC3 are identical r 
to those found before. Thus, the same collection of simple	 , 

I 
f.: 
Icomposition factors are obtained regardless of how the 
::11 

iii
composition series for a finite group is constructed. 

Ii 
I~ ,, III 

1Ie.~Sets of prime numbers are combined by the operation of '" " ton 
I:,~ 

multiplication to produce positive integers. Therefore, to 

finalize the analogy between simple groups and prime 

numbers, an operation must be demonstrated that will combine 

a collection of simple groups into a finite group. It seems 

intuitively correct to use direct product as the desired 

group operation. This is, however, a solution which is too 

simplistic. The circumstances surrounding the group 

operation are more complicated and ambiguous than the clear-

cut process of multiplying prime numbers. To fully 

comprehend it, the idea of extensions must be introduced. 

Definition 
If K and Q are groups, an extension of K by Q is a 

group G such that: 
(i) G contains K as a normal subgroup; 

( i i) G/K-v Q. 
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Given two groups K and Q, a search is conducted for a 

group G such that K is normal in G and G/K is isomorphic to 

Q. This is known as Holder's Extension Problem. 

Extensions form a complex area that deviates too far 

from the purpose of this chapter for a detailed explanation. 

A general exposure, however, is sufficient. The direct 

product of K and Q is always one way to form an extension of 

K by Q. Finding the semidirect product of two groups is a 

more useful extension. Recall an automorphism is an 

isomorphism from a group to itself. A special mapping f, 

called an inner automorphism, is defined for a fixed g in a 

group G as f(x) = g-1 xg for all x in G. It is now possible 

to explain the semidirect product in which automorphisms 

playa vital role. 

Theorem 
Given two groups Q and K and for every element q in Q 

an automorphism of K, f(k) = kq for all k in K, such that 
(kq1)q2 = kq1q2 with q1 and q2 in Q. Then the symbols 
(q, k),q6 Q and kE.K form a group under the product rule 
(q1, k1)(q2, k2) = (q1q2, k1q 2 k2), called the semidirect 
product of K by Q. 

Elements in a semidirect product group are the same as 

those in an external direct product group, ordered pairs, 

but their operations are different. Automorphisms are used 

in finding the semidirect product of two elements. It is 

seen that for each q in Q, an automorphism of the group K is 

constructed. In the given product rule, k1q2 means the 

image of k1 under the automorphism of K associated with the 

element q2 in Q. Any automorphism possessed by the group K 

can be selected. For a variety of reasons related to 
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extensions, however, inner automorphisms of K induced by 

elements in Q are used. 

The semidirect product of C3 by C2 will be found. 

Elements in these groups will be represented as permutations 

to enhance the discussion. 

Let K = C3 = ((1), (123), (132)} and Q = C2 ((1), (12)}. 

There will be two inner automorphisms of K since there J

·•are two elements in Q. •., 
ii 
"~ 

k f(1 )(k) 

(1) ---> (1)-1(1)(1) = (1) 

(123) ---> (1)-1(123)(1) ( 1 23) 

(132) ---> (1)-1(132)(1) ( 1 32) 

II, 

'.
" I, 

"

,',1'k f(12)(k) ·,1' 

(1) ---> (12)-1 (1 )(12) = (1) 

(123) ---> (12)-1(123)(12) ( 1 32) 

(132) ---> (12)-1(132)(12) ( 1 23) 

Six ordered pairs (q, k) with q e C2 and k €,C3 form this 

semidirect product group. It is either C6 or 33 depending 

on whether the operation is commutative. The following two 

products will settle this question. 

(( 1 2 ), (1 23 ))(( 1 2 ), (1 32)) = (( 1 2 ) ( 1 2 ), (1 23 ) ( 1 2 ) ( 1 32 ))
 

since f(12)((123)) = (132), then
 

(( 1 2 ), (1 23 ))(( 1 2 ), (1 32)) = (( 1 ), (1 32 ) ( 1 32 ))
 

= (( 1 ), (1 2 3 ))
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Also, 

( 1 2 ), (1 32 ))( 1 2 ), (1 23)) = ( 1 2 ) ( 1 2 ), (1 32) ( 1 2) ( 1 23)) 

since f(12)«132)) = (123), then 

(12), (132))(12), (123)) = (1), (123)(123)) 

=(1), (13 2 )) 

Seeing that (12), (123))(12), (132)) does not equal 

(12), (132))(12), (123)), the group under consideration is 

not abelian. Hence, S3 is the semidirect product of C3 by 

C2, and this is often written as C3 xf C2 = S3. When 

compared with the fact that C6 is the direct product of C3 

and C2, it can be concluded that both C6 and S3 are 

extensions of C3 by C2. Unlike multiplication of prime 

numbers, an extension G of K by Q is not uniquely determined 

by the groups K and Q. 

Extensions have been thoroughly covered in the 

literature, and a more detailed discussion is found in 

[17, pp. 127-147J. All extensions G of K by Q can be 

constructed even though it is frequently a tedious 

undertaking. For what follows, it is satisfactory to know 

that extensions are a way to obtain possibly more than one 

bigger group from smaller groups with direct products and 

semidirect products being specific examples. Clearly, this 

summary describes a group operation. Although its 

properties differ somewhat from those of multiplication, it 

may be safely concluded that the group operation has been 

found and is embodied in extensions. 

It is now time to discover how extensions relate to 
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simple groups and the Jordan-Holder theorem. This will tie 

together several different topics that may appear at this 

point to be unrelated. Beginning with a set of simple groups 

Q1, Q2, ., Qr, it is desired to find the group or 

groups they determine. The Jordan-Holder theorem guarantees 

that any obtainable G has a composition series 

G = G(::::>G2=:>··· :::;>G r = tel with simple composition factors 

isomorphic to the Qi. Thus, with a slight abuse of 

terminology, GO/G1 = Q1, G1/ G2 = Q2, ••• , Gr -1/ G r = Qr· 

Recovering G from the set of simple groups begins with 

finding Gr -1 from Qr. It is an easy process, since Gr = tel 

forces Gr -1 = Gr-1/tel = Gr-1/Gr = Qr. The second step 

consists of using the group Gr -1 from the first stage and 

Qr-1 to determine the group Gr -2. Due to the relationships 

Gr-2/Gr-1 = Qr -1 and Gr -1 = Qr' it is possible to recapture 

Gr -2 through the application of extensions. All extensions 

G r _ 2 0 f Q r by Qr _ 1 are com put ed, c a u sin g 0 n e 0 r m0 reg r 0 ups 

to be produced for Gr -2. Next, in order to get the various 

groups represented by Gr -3' extensions are calculated from 

Gr-3/Gr-2 = Qr-2 for every group Gr -2 found in the second 

phase. Reapplications of this procedure occur, each time 

climbing up the composition series, until all G = GO are 

obtained. Consequently, it is possible to acquire at least 

one group G from any given collection of simple groups. In 

a sense, the groups Gi/Gi+1 are factors of G. 

An example will serve to clarify this process. Let 

Q1 C2 and Q2 C 3 . At least one finite group G is 
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determined by these simple groups and will now be 

recaptured. Since there are only two composition factors, G 

has G = Go::>G(~le} as a composition series. From the 

relationships GO/G1 = C2 and G1/1 e } = C3, it is auto­

matically known that G1 = C3' Thus, G = GO will 

originate from GO/C3 = C2 by finding all extensions of C3 

by C2' Results from previous examples will be used to 

reduce the work involved. The direct product of C3 and C2, 

which has been shown to be C6, constitutes the first 

extension group. Next, the semidirect product of C3 by C2 

is found. Due to an earlier outcome, this produces S3 as 

the second extension group. No other extensions are 

possible since there are only two groups of order six. 

Therefore, the finite groups C6 and 33 are obtained from the 

simple groups C2 and C3' 

There is a drastic difference in complexity between a 

positive integer and a finite group. Yet there is a method 

for acquiring finite groups from simple groups similar to 

the way the Fundamental Theorem of Arithmetic produces 

positive integers from prime numbers. This situation, which 

appears trivial for positive integers, is remarkable for 

finite groups. It is largely due to the fact that all 

finite simple groups are known, or more formally, the 

Classification Theorem. If some simple groups were not 

known, then a number of finite groups, those that had the 

missing simple groups in their composition series, would not 

be constructable. The probability of being able to describe 
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these finite groups would be minimal. Only a complete list 

of simple groups can be used to make a complete catalogue of 

finite groups. Thus, finite simple groups are truly the 

basic building blocks of finite groups. The motivation for 

the time and effort invested in their discovery should now 

be evident. 



Chapter V
 

SOLVABLE GROUPS AND OTHER TOPICS
 

This chapter will explore subjects of special interest 

to simple groups and then conclude the paper with a summary. 

Solvability ~ it Relates ~ Simplicity 

There is a distinctive type of group, called solvable, 

which is inversely associated with finite simple groups. 

Recall the previously mentioned Feit-Thompson theorem which 

asserts that all finite groups of odd order are solvable. 

This result is equivalent to stating that all finite simple 

groups, except those which are cyclic, have even order. 

Clearly, the concepts of simplicity and solvability are 

related in a somewhat mutually exclusive manner. Explaining 

this connection is the purpose of this section. Further 

applications for the Jordan-Holder theorem and composition 

series are also offered. Before a comparison can occur, it 

is necessary to define what it means for a group to be 

solvable. 

Definition 
A finite group is solvable if and only if it has a 

composition series with cyclic factor groups of prime order. 

This definition indicates the property of solvability 

is determined solely by a group's composition factors. They 

must all be simple cyclic groups. When combined with the 

method for constructing finite groups outlined in the 

preceding section, it is possible to specifically obtain or 

access a subset of all finite groups, finite solvable 
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groups. If Q1, Q2, Q r are chosen to be cyclic 

groups of prime order, then the application of extensions 

and the Jordan-Holder theorem produces one or more finite 

solvable groups for G = GO. 

The chief relationship between simple groups and 

solvable groups is addressed by the next theorem. 

Theorem 
Let G be a finite simple group whose order is not 

prime. Then G is not solvable. 

Proof. Let G be a simple group whose order is not prime. 

Then G::>te} is the only composition series for G. and 

G/te} is the only composition factor. It follows that 

IG/te}1 I G I which is not a prime number. Therefore, G is 

not solvable. 

According to the theorem, a group whose order is not 

prime cannot be both simple and solvable. This concept, 

once Feit and Thompson established Burnside's conjecture as 

fact, offered a more precise characterization of simple 

groups. If a noncyclic group is simple and has an odd 

number of elements, then due to Feit and Thompson's result, 

it must also be solvable. The above theorem is contradicted 

by this reasoning. Consequently, in order to avoid 

possessing the property of solvability, a noncyclic simple 

group must contain an even number of elements. As noted 

before, this knowledge assisted immensely in the search for 

simple groups. 

Clearly, alternating groups, groups of Lie type, and 

sporadic groups are not solvable. But cyclic groups of 
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prime order are solvable. This is due to the fact that 

solvability is a characteristic of all cyclic groups and 

explains why cyclic simple groups have been excluded from 

the above assertions. Since they are the only groups being 

both simple and solvable, cyclic groups of prime order are 

stubborn exceptions to the rule. Hence, a way to indicate a 

group is not simple, in almost all instances, is to call it 

solvable. 

There are two examples which further characterize the 

relationship between the two topics under comparison. 

First, consider the symmetric group S4. A composition 

series for this group is 

S4:::> A4::::> Klein 4-group:::>C2=> 1(1)}, 

where 
the Klein 4-group I (1 ) , (12)(34), (13)(24), (14)(23)} 

and 
C2 \( 1 ) , (12)(34)}. 

The factor groups C2, C3, C2, and C2 are all cyclic of prime 

order. Thus, S4 is a solvable group. Secondly, note the 

symmetric group S5. One composition series of S5 is 

S5=> A5::> \(1 )}. The composition factors are C2 and A5 of 

which A5 is not cyclic. Hence, S5 is not solvable. Notice 

how the simplicity of the alternating groups effects the 

solvability of the symmetric groups. Since A4 is not 

simple, it has a proper normal subgroup which follows it in 

the composition series of S4. Due to the simplicity of A5, 

however, it is impossible to find a proper normal subgroup 

of A5 to insert between A5 and 1(1)} in the composition 

series of S5. Consequently, S5 has A5 as a noncyclic 
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composition factor. These results can be generalized as 

follows. 

Theorem 
If n ~ 5, then Sn is not solvable. 

Proof. Since An is a normal subgroup of Sn' one 

composi tion series for Sn is Sn:::> An ~ {e}. The factor groups 

C2/V Sn/An and An /'\/ An/{el are unique by the Jordan-Holder 

theorem. If n > 5, then An is not cyclic. Therefore, Sn is 

not solvable. 

Although this result appears to be no more significant 

than any other, it is partly responsible for the birth of 

group theory. Galois used the presence or absence of 

solvability, specifically in symmetric groups, to determine 

whether the roots of a polynomial equation could be 

expressed in terms of its coefficients using only addition, 

subtraction, multiplication, division, and extraction of 

roots. Curiously enough, simple groups are found embedded in 

another important segment of group theory. 

Simple Facts 

Now that all simple groups are known, the time has 

arrived for mathematicians to explore the ramifications. 

There are long-standing conjectures about both simple groups 

and related areas that are either instantly proven by the 

classification or should be verifiable. For the next 

several years, the effects of the Classification Theorem 

will be explored in such diverse fields as "finite group 
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theory, number theory, finite geometry, and infinite groups" 

[11, p. 57J. 

What follows are several interesting theorems and a 

conjecture all pertaining to simple groups. Since three of 

the four types of simple groups possess quite complex 

structures, these shared relationships are surprising. They 

are stated without comment or proof. 

Theorem 
If G is a simple group of even order (not 2), then 12, 

16, or 56 divides the order of G. 

Theorem 
The outer automorphism group of every simple group is 

solvable. 

Theorem 
Let f: G ~ H be a nontrivial homomorphism; that is, f 

does not send every element into one. If G is simple, then 
f is one-to-one. 

Theorem 
Let Pr(G) denote the probability that two elements 

selected at random (with replacement) from a group G are 
commutative. If G is a nonabelian simple group, then 
Pr(G) ~ 1/12, with equalit~ for the alternating group on 
five letters. [14, p. 1033J 

Conjecture 
Every simple group can be generated by two elements. 

Also, isomorphisms exist among the different categories 

of simple groups, with one being between the groups A5 and 

PSL(2,4). 

Simple group study is definitely not over. Future 

applications of simple groups and the probable new knowledge 

surrounding them, in all likelihood, will be an exciting 

area of research. 
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Conclusion 

Finite simple groups have been explored in detail by 

this paper. Historical and mathematical information has 

been presented from both specific and general points of 

view. Beginning with an elementary definition, the topic of 

this paper escalated in complexity. Hence, quite a simple 

versus complex paradox surrounds finite simple groups. 

Perhaps the best recapitulation is a song borrowed from the 

Nove mb e r 1 97 3 iss u e 0 f the Amer i can ~~!.!!.e mat i ~l ~~ nthlz. 

It was "found scrawled on a library table in Eckhart Library 

a t the U. of Chicago; author unknown, o r in 

hiding" [19, p. 1028]. The loops referred to in the song 

are cyclic groups of prime order. 

(Sung to the tune of "Sweet Betsy from Pike") 

What are the orders of all simple groups?
 
I speak of the honest ones, not of the loops.
 
It seems that old Burnside their orders has guessed
 
Except for the cyclic ones, even the rest.
 

Groups made up with permutes will produce some more:
 
For An is simple, if n exceeds 4.
 
Then, there was Sir Matthew who came into view
 
Exhibiting groups of an order quite new.
 

Still others have come on to study this thing.
 
Of Artin and Chevalley now we shall sing.
 
With matrices finite they made quite a list
 
The question is: Could there be others they've missed?
 

Suzuki and Ree then maintained it's the case
 
That these methods had not reached the end of the chase.
 
They wrote down some matrices, just four by four,
 
That made up a simple group. Why not make more?
 

And then came the opus of Thompson and Feit
 
Which shed on the problem remarkable light.
 
A group, when the order won't factor by two
 
Is cyclic or solvable. That's what is true.
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Suzuki and Ree had caused eyebrows to raise,
 
But the theoreticians they just couldn't faze.
 
Their groups were not new: if you added a twist,
 
You could get them from old ones with a flick
 

of the wrist. 

Still, some hardy souls felt a thorn in their side.
 
For the five groups of Mathieu all reason defied;
 
Not An, not twisted, and not Chevalley,
 
They called them sporadic and filed them away.
 

Are Mathieu groups creatures of heaven or hell?
 
Zvonimir Janko determined to tell.
 
He found out that nobody wanted to know:
 
The masters had missed 1 7 5 5 6 o.
 

The floodgates were opened! New groups were the rage!
 
(And twelve or more sprouted, to greet the new age.)
 
By Janko and Conway and Fischer and Held
 
McLaughlin, Suzuki, and Higman, and Sims.
 

No doubt you noted the last lines don't rhyme.
 
Well, that is, quite simply, a sign of the time.
 
There's chaos, not order, among simple groups;
 
And maybe we'd better go back to the loops. [19, p. 1028J
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