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CHAPTER 1

INTRODUCTION

Statisticians are often confronted with the estimation
of unknown parameters. The process of estimating such a
parameter is not, by far, unique. Many times the job of the
statistician is to find a method that gives a reasonable
estimate of the parameter.

The purpose of this thesis is to investigate methods
that estimate the radius R of a circle when observing n
points that lie on the circle. Chapter 1 will discuss the
underlying assumptions of the model and provide meaningful
applications. Methods for =estimating the radius of the
circle by averaging the radii of known circles are given in
Chapter 2. On the other hand, Chapter 3 deals with the
radius of <curvature to determine an estimate for R. In
Chapter 4 the writer will look at the minimization of the
sum of squared residuals to aid in estimating the radius.
The feasibility and comparisons of methods through computer
simulations will be discussed in Chapter 5. Chapter 6 will
include a summary of the thesis and final comments about

estimating parameters.

Statement of the Problem and Assumptions

As with any statistical model the underlying assump-
tions must be known. The problem is to estimate the radius
R of a circle when given n (n > 3) data points that lie on

a semi-circle but are measured with error. Let the points
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have coordinates (xi’Yi)' The Yi's are assumed to be

measured with negligible error. However, the Xi 's are

from a random variable and measured with error Ei. The

error term is a random variable that is normally
. . . . 2

distributed with zero mean and unknown variance 0°. As can be

1
seen from ILLUSTRATION 1, R = [(X;- h -€;)%+ (¥, - k)*]?

where (h, k) is the unknown center of the circle.

ILLUSTRATION 1



Throughout this paper when conditions are imposed on
the n observed points, the assumption is made that Xi < 0
(i=1, 2, ..., n). However, if some of the observed values
for X; are positive, then these results would apply after a

translation or rotation of axes.

Applications

A statistician is generally concerned with summarizing
data. With the assumption that the observations come from
a semi-circle, one such way of summarizing the data is to
estimate its radius. In the medical field a researcher may
be interested in the change of the curvature of a woman's
lower back during pregnancy. Observations can be taken with
a measuring device. If the values of Y are measured with
negligible error, then the researcher can use the methods
discussed in this thesis, to estimate the radius of the
circle from which the observations are assumed to be taken.
The estimate of R can provide an indication of the change in
curvature; as R decreases the curvature would increase.
Looking at this illustration, a variety of other ©possible
applications can be seen. For instance, taking observations
from a fixed circular arch one could estimate the radius of
the <circle from which the arch originated. Within the
reader's surroundings, there are many possible applications
for estimating the radius of a circle from which n points

are observed.



CHAPTER 2

CIRCUMSCRIBED CIRCLE

From geometry, one knows that three noncollinear
points determine a circle, better known as the circumscribed
circle of the triangle formed by the three noncollinear
points. Taking n (n > 3) observations the method to be
discussed in this chapter will involve averaging the Ri 's
(i =1,2,...,t), where each Ri is the radius of the circum-
scribed circle associated with a single combination of three
noncollinear points and t < Cj. The discussion of why
t < ,C3 and some basic assumptions will be considered later.
The writer will first look at two approaches for finding
the radius of the <circumscribed circle, one being an
algebraic/geometric approach, and the other using systems of

equations and matrix theory.

The Algebraic/Geometric Approach

Given three noncollinear points, say N(x1 ,y1 ),

Q(x,,y,) and P(x;,y;), calculate the midpoint of line seg-

ment NQ, also denoted as NQ, and the slope associated with
— + +
Q. The midpoint M1 = (2 5 X2 1 7 Y2 y and the slope
m; = %f;;iA. Having these two pieces of information one can
- X3

then <calculate the equation of the line that is perpen-
dicular to NQ and passes through the midpoint Ml. Using the

point-slope formula, the equation of the line is

Y1 * yo. _ X1 - Xp _xy t+oxo
(y ) (x )
2 Y2 - Y1 2



Thus,
y =2z X2 5, x2 - xf _ y1+y and hence
Y2 -1 2(yz - y1) 2 ’
X - %y, (xF v yd) - (xf ¢ yi)
Y2 = nN1 2(y2 - y1) . (Eq. 2.1)
Similarly, using-ag
_Xa - x3y, (G ¢y - (¢ yd)

T ys - Y2 2(ys - y2) ) (Eq. 2.2)
Since N, Q, and P are noncollinear, the slope of Eq. 2.1
does not equal the slope of Eq. 2.2 thus the two lines must

intersect at some point, say C(h, k) where

he(ys = y2)[(x3+y2) - (xEeyD)]+ (ya-y2) [(XE+¥8) = (XB+¥D)] gy 5 3y
2[(x2 - x1)(ys - y2) + (x3 - x2)(y1 - y2)] N

and

Cx2 - xa)[(x3 + ¥y - (xEeyD ]+ (xo - x))[(x3 +¥3) - (x3 +yH)]
k= 2[(y, - ¥ (x, - x5) + (¥; - ¥,)(x, - x;)] (Eq. 2.4)

Point C is the center of the circumscribed circle of tri-
angle NQP. To find the radius of the circumscribed circle
one may use the distance formula, d(P,, P,) = [(x, - x;)% +
(y, - v,) ]% where P (x,, y,) and P,(x,, vy, ). Thus the
radius of a circumscribed circle
R =d(C, T) = [(x - h)z + (y - k)2]3 (Eq. 2.5)
where T is either N, Q, or P.

For the geometer the following is a proof that three
noncollinear points must lie on a circle. Illustration 2 is

to graphically aid in the proof.
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ILLUSTRATION 2
Proof

Given three noncollinear points N, Q, and P. Construct
the perpendicular bisectors of ﬁa and 65. Since N, Q, and P
are noncollinear the perpendicular bisectors must meet at a
point, say C. Furthermore, by the definition of a perpendi-
cular bisector, the bisector must pass through the midpoint
of the line segment, for Ea name the midpoint M; and for QP
name it M, . Also, K1, K2, <3, and <4 are right angles.
Thus, <1 = <2 and <3 = <4. NM, = M, Q and QM, = MzP by the
definition of a midpoint. By the reflexive property of
equality M;C = M;C and M,C = M,C. Hence, by the side-angle-
side theorem AI = AII and AIII = AIV. Thus NC = QC and QC =

PC, since —corresponding parts of congruent triangles are

congruent. Therefore, NC = QC = PC which implies that
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points N, ' Q, and P lie on a circle whose center is C and
whose radius can be taken as NC, QC, or 56.
The following is an example of the method described

above. Given points N(-2, 2), Q(0, 0) and P(2, 2). First

calculate m and M ,
0 -2 _ _ _ =2 +0 2+ 0, _
mo= 3 5 = -1 and M, = ( 7 > ) = (-1, 1)
and m_ and M,,
2 -0 0 + 2 0 + 2
m, = 53— = 1 and M, = ( > , > ) = (1, 1),

Next find the equations of the perpendicular bisectors of NQ
and QP. The equation of the perpindicular bisector of W@ is

(y - 1) = 1(x + 1) ==> y = x + 2
and the equation of the perpendicular bisector of 6? is

(y - 1) = -1(x - 1) ==> y = =X + 2

Solving the two equations by addition, the solution is
the ordered pair (0, 2). One knows from the previous
discussion that (0, 2) is the center of the circumscribed
circle of triangle NQP. Now all that is needed is to find
the radius, thus R = d(C, Q) = [(0 - 0)% + (0 - 2)%21% = 2,

However, there is no need to go through all the work
mentioned above since Eq. 2.3 and Eq. 2.4 have been derived
to find the abscissa and ordinate of the center. All that
is needed is to compute the center and then calculate the
radius. This is easily illustrated by using Eq. 2.3, Eq.
2.4 and Eq. 2.5 and the points previously used. Let C(h, k)

be the center of the circumscribed circle.



From Eq. 2.3

o= £2- 0)[(0% +02) - ((-2)2 + (2)*)]+(2-0)[22+22) = (02 +0?%)]
2[(0 + 2)(2 -~ 0) + (2 -0)C2 - )]

2(-8) + 2(8)
2(8)

= 0
From Eq. 2.4

k = 0-2)[(0% +0%) - ((-2)2+2%)T+(0+2)[(2%2+22) - (0% + 02)]
2[(0 = 2)(0 = 2) + (2 - 0)(0 + 2)] ‘

2(-8) + 2(8)
2(8)

= 2
Hence, the center is (0, 2).
From Eq. 2.5
R =d(C, Q) = [(0 - 0P + (0 -2r]%=2
Thus through this example one can see that all that is
needed is to calculate the center from Eq. 2.3 and Eq. 2.4,

and then calculate R by equation Eq. 2.5.

Using Systems of Equation and Matrix Theory.

In many algebra and geometry books the general equation
of a circle is given in the following form,

xZ 4+ y2 + cx + dy + e = 0 where ¢, d, e € Reals.
Given three noncollinear points (xl, yl), (xz, yz), and

(xa, y3) one can set up a system of three equations with

three unknown. The system of equations would be as follows

x2 + yf + cx + dy, + e =0 X ¢+ yld + e

-X2 - 2
1 1 yl

2 2
x;, +y; + ¢cx, + dy, + e

OV mw(x,Cc + y,d + € 2 y§

n
i
b
|

L]
I
>
N
1

2 2 2
X3 + y3 + cxy + dy, + e 0 xgc + y.d + e 2 y3



Using Guassian elemination on the following matrix,

Xp ¥ 1 (-x1- yD)
Xq Yo 1 (—Xﬁ- Y%)
X3 Y, 1 —xi— Y§)

one can determine the parameters ¢, d and e.

After computing the parameters, one can then use com-
pleting the square to convert the general equation into the
form, (x - h)? + (y - k)2 = R?2, where (h, k) is the center

of the <circle and R is the radius. Thus the equation is

c? + d? - 4e

(x + %)2 + (y + %)2 Hence,

4
2 2 2 2
c” + 44 = be gy [e # g - 4e]? (Eq. 2.6)

R =

The following is an example of the above method using
points (-2, 2), (0, 0) and (2, 2). The system of equations
would be:

4 + 4 - 2¢c + 2d + e 0 -2¢c + 2d + e

0 + 0 - 0c + 0d + e 0)w={ Oc + 0d + e

4 + 4 + 2¢c + 2d + e

0 2c + 2d + e

The matrix associated with this system of equations would

be:
-2 2 1 -8 1 0 0 0
0 0 1 0 - 0 1 0 -4
2 2 1 -8 0 0 1 0
Thus ¢ = 0, d = -4, e = 0.

2
Hence, by Eq. 2.6 R = [02+ ('42 - 4(0L]i = [4]i = 2.
In the following sections of this chapter a discussion

of two approaches dealing with the Ri's to estimate R will
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be presented.

Estimating R by Finding the Mean of the Rj's

Taking any set of three noncollinear points one <can
obtain an equation of a circle, thus, the radius R of the

circle can be calculated. Therefore, given n (n > 3) points

one can calculate at most nC3 R i's. The reason for
emphasizing finding at most nC3 Ri's is that there may be
combinations of three points that are <collinear. Having

calculated all possible Ri one can then calculate the mean

of the R i's to be used as an estimate of R, that 1is,

A o
R = R /t where t is the number of R 's and t ¢ C_.

i=11 i — n 3
Example

Assume n = 4 and the following points are observed

A(-4.27, 9), B(-12.59, 3), C(-10.32, -3), and D(-4.49, -9).
Using ABC as a combination of three points R, = 6.95755.

For the combination ABD R,

9.00521. Likewise, ACD yields
R, = 9.52693. R, = 18.2247 when using BCD as a combination
of three points. Therefore,

R= * R /4 = 10.9286.
i=1 i

Finding R by Restricting the Selection of Points

In the previous, method all possible combinations of
three points were considered in calculating the Rjy's except
when the three points were <collinear. However, in the
following method some <conditions will be ©placed on the

selection of points that are used to determine R. Again,
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any combination of three points must be noncollinear. Fur-
thermore, assuming Y, > y, > Yy, then X, > X, and X, > X, -
Any other combination of three points will not be considered
because they do not conform to the known orientation of the
circle. As in the previous method R =.§1R /t where t < C

n 3

but in this method one is concerned only with the R ;'s

that are obtained with the combination of three points

meeting the conditions imposed.

Example
Assume n = 4 and the observed points are those in the
previous example. Notice that the combination BCD does not

meet the stated conditions, thus BCD is not used in the

calculations of R. Nevertheless, ABC, ABD, and ACD are

used 1in calculating R. For the combination ABC R, =
6.95755. Using ABD R, = 9.00521. R; = 9.52693 when using
ACD as a combination of three points. Thus, R = '§1R1/3 =
8.49656.

As can be seen by the two previous examples that both

methods yield different estimates of R. The question be-
comes what method should be used. This question is not
easily answered. If the investigator knows something about

the orientation of the curve from which the n points are
observed, then the second method may be more appropriate.
If nothing is known about the curve, a further investigation
is needed to determine which method is appropriate. In

Chapter 5, the usefulness of these methods will be discussed
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as well as a comparison of these methods to the other

methods mentioned in Chapter 1.



CHAPTER 3

THE RADIUS OF CURVATURE

Most people are first introduced to the notion of
curvature in a beginning calculus course. In this chapter,
two approaches dealing with conic sections and radii of
curvature at points on the conic sections will be discussed.

Furthermore, examples will be provided to illustrate the use

of these different approaches.

Any set of five points, no three of which are

collinear, determines the equation of a conic section.
dy

Implicitly differentiating this equation to find dx or vy’

2

a7y n :

and gx2= y" one can then use the radius of curvature, p , to
determine R. Observing n points there would be at most

nC5 different equations of conic sections and at most S(nCS)
values for p . A further discussion of this notion will
be involved with the development of the assumptions that are
necessary for this model. However, first, there is a need
to discuss and illustrate how to find the equation of a
conic section given five points no three being collinear.
Secondly, it will be necessary to define curvature and the

radius of curvature, and to derive the equation to calculate

the curvature of any nondegenerate conic section at a known

point.

13
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Finding the Equation of a Conic Section

The general equation of a conic section is
Ax?2 + Bxy + Cy2 + Dx + Ey + F = 0 (Eq 3.1)
Given five points, no three being collinear, one can substi-
tute each point into the general equation resulting in the
following system of equations,
x%A + xlle + y%C + xlD + ylE + F =20
ng + x,y,B + in + x,D + yzE + F=20
xiA + xayaB + in + an + yaE + F=20
xiA + xHyQB + in + x“D + y“E + F =20

0

ng + xsysB + in + st + ysE + F
Thus, there are five equations with six unknowns so one of
the unknowns must be assigned some arbitrary value. General-
ly the value of one is used for easier computations.
Provided that the graph of the conic section does not
pass through the origin the constant term F may be assigned
an arbitrary value. However, if the conic section passes
through the origin the assignment of an arbitrary value may
be given to a parameter other than that of the constant term
or the constant term may be assigned the value of =zero. 1If
the <conic does not lie on the origin, the following system

of equations can be used to find the other parameters,

2 B 2 D = -1
xlA + X ¥, + yIC + X + ylE
2 2 = -
sz + xzyzB + y2C + xzD + y2E = -1
2A 4+ B + y2C + D + E = -1
*3 %3V, ¥ *s Y
= -1

2A + B + y2C + D + E
xk x“y“ yu x yu

2 2 = -
st + xsysB + ySC + st + ysE = -1.
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The associated matrix,

X3 19 yi oy, !t
xi XY y: x, ¥, -t
X; X Y, yg L
XXy, i ox, oy, -l
x§ X5 Y5 y§ L

when reduced +to a row echelon matrix will give the values
for the other parameters. An example of how to find the
equation of a conic section given five points, such that no
three are collinear is as follows. Given five ©points, say
(-1, -1), (-1, 1), (2, -1), (2, 0), and (0, 2), the
following system of equations may be obtained:

A+ B+C+ D+ E+F =20

A- B+C- D+ E+F =0

4A - 2B + C + 2D - E+ F =0

4A + 2D + F =20
4C + 2E+ F =0
Assigning F = 1 the associated matrix is:
1 1 1 -1 -1 -] (10000 -
1 -1 1 -1 1 -1 01000 -y&
4 -2 1 2-1-1 ~~|00100 -
4 0 0 2 0 -1 00010 =
0 0 4 0 2 -1 00001 -3
From the row echelon matrix it c;h be seen that when F =1,
A=-=%, B = -+, ¢ = —T;’ D = ié’ and E = 'T%' Thus, the
equation of the conic section is:
-f% x2 -I% Xy - T%yz + T%x - %Ty +1 =0
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or

6x% + xy + 3y%2 - 5x + y - 14

I
o

Curvature

The curvature of a graph can be intuitively considered
as the rate at which the curve bends as one travels along
the curve. At each point on the curve, the numeric value of

curvature, can be calculated. The more the curve bends at a

point the greater the numeric value for <curvature. For
instance, a straight line will have a curvature of zero for
each point on that line, since it does not bend at all.

However, a circle has a uniform rate at which the curve
bends and thus each point on the circle will have the same
curvature . The larger the circle, the less the circle
bends at each point. Consequently, the curvature of a
larger circle is less than that of a smaller circle.

Given an equation of a curve described in terms of
rectangular coordinates and that equation being twice
differentiable, the formula for curvature at a point on the
curve is given by:

K ly"]
[1 4+ (y')? ¥ (Eq 3.2)

Theorem The curvature at any point on a circle of radius r

is 1/r.
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There is no loss in generality in assuming the <circle
has a center at the origin, so the equation x? + y2 = r
will be used. Implicitly differentiating this equation
results in the following equation,
2x*+ 2yy' = 0 => y' = -x/y
Implicitly differentiating y' = -x/y yields:
y' = _(y=xyh = _( - x(-x/y))
y 2 y2
= _ y® + x2
y3
= r2
y3
Substituting into Eq 3.2
—r2
v3 r2 (y2)¥2 r2 1
K= T1T+ (x/yH7I= y3[Ty2 + xZ]v2 = T(rzyw =7t
This leads one to talk about the radius of curvature,
o) The radius of curvature at a point P on a curve is the
radius of a circle that "fits" the curve there better than
any other circle (7,733). The radius of curvature can be
calculated by the following equation,
p = 1/K
provided K # O.
Derivation of the Formulas to Calculate K and P
To derive the formulas for K and one must first
implicitly differentiate Eq 3.1, which yields,

2Ax + By + Bxy' + 2Cyy' + D + Ey!

0

2
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Thus, y’'= _ 2Ax + By + D Eq (3.3)
Bx + 2Cy + E

Implicitly differentiating Eq 3.3 one obtains,

n

y = _ (2A + By')(Bx + 2Cy + E) - (2Ax + By + D)(B + 2Cy')
(Bx + 2Cy + E)?

Substituting y' with _ 2Ax + By + D
Bx + 2Cy + E

(2Ax+Bz+D)’ @Ax+Bz+g
n .12A-B\Bx+2Cy +E/)(Bx+ 2Cy +E) - (2Ax+By + D) (B ~ 2C\Bx + 2Cy + §)]
y (Bx + 2Cy + E)?

which simplifies to:

w_ _ 2A(Bx+2Cy +E)? - 2B(2Ax + By + D) (Bx + 2Cy + E) + 2C(2Ax + By + D) *
y (Bx + 2Cy +E)3

Substituting y! and y” into Eq 3.1 results in finding a

general equation for K, that is,

X = ‘2A(§x+2§y+@2-2B(2Ax+By+Dl(Bx+ZCl+E)+2CQAx+By+D)2
(Bx + 2Cy +E)3
1 + (2Ax + By + D)?-] w2
(Bx + 2Cy + E)?

Thus, K =|2A(Bx +2Cy+E)? - 2B(2Ax + By + D) (Bx + 2Cy + E) + 2C(2Ax + By + D) ?|
[(Bx +2Cy + E) 2+ (2Ax + By + D)2]%¥2

(Eq. 3.4)
Hence, the radius of curvature is given by

[(Bx + 2Cy + E)? + (2Ax + By + D)2]3?
~ |2A(Bx + 2Cy +E)2 - 2B(2Ax + By + D) (Bx+ 2Cy +E) + 2C(2Ax+By +D)?|

(Eq. 3.5)
Using 6x2 4+ xy + 3y2 - 5x+y - 14 = 0, tne

equation from the previous example, K and p can be found

at the point (2, 0). From Eq 3.4

_ [200Q) + 23O + H? - 20RO @ + 1)O) - 5) (D + 23O+ 23)(26)(2) + 1O - H?|
[(1(2) + 2(3)(0) + 1)2 + (2(6)(2) + 1(0) - 5)2]%

= .3035

Thus, p = 1/K = 3.295. However, the method of determing

R in this chapter will only involve p, which means that
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Eq 3.5 can be used to calculate p.

In the next two sections of this

chapter, the

writer will discuss various approaches for estimating R

using p.

Estimating R

Taking combinations of five points, no three being
collinear, one can calculate the equation of a conic sec-
tion. Thus, after obtaining the equation, calculations of
p at each of the five points 1is possible. Given n points
one sections.

can calculate at most nC5 equations of conic

Hence, one has at most 5( _C.) values for p. One approach is
n 5

to calculate the mean of the pij‘s, that is,

R =8 3 o5
R =i=1j£.1pij T

where r < C

nCs ( r is the number of equations

obtained by

combinations of 5 points with the conditions imposed).

Example
Assume n = 6 and the following points are observed
A(-4.29708, 9), B(-10.1553, 6), C(-10.0884, 3),
D(-10.3031, -3), E(-9.10405, -6), and F(-4.24907, -9).
Ci?biﬁiﬁiin Eq.| Pia i Pic Pip PiE PiF
ABCDE 1)[12.595{393.35(154.12|14,533|111.34| -—--
ABCDF 2)1141.37|86.815(76.582(102.56| ---- |148.70
ABCEF 3)157.054168,340|73.799| ---- 143.902(34.061
ABDEF 4)|4.7668[12.683] ---- }15.609|10.577({3.1648
ACDEF 5)|4.9348) ---- 110.891|11.034|8.2651{4.8906
BCDEF 6)| -——- |1013.4[364.5512.0398]2.9421)|291.54
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1) .0127x2%2 - ,00472xy - .000215y2 4+ .227x - .0470y + 1 =0
2) .0207x% -~ .00063xy - .000729y% + .309x - .0023y + 1 =0
3) .0279x2% + .00269xy + .001270y? + .377x + .0119y + 1 =0
4) .1970x2? + .02590xy + .060500y2 + 2.22x + .1120y + 1 = O
5) -.0348x2% + .00265xy - .018900y2 - .274x + .01l4y + 1 =0
6) .0064x%2 + .00841xy + .000243y2 + .164x + .0846y + 1 = 0
Therefore, R = 1 2 p. /30 = 109.346.
i=1j=1 ij

Finding R by Restricting the Selection of Points.

In the previous approach there were no restrictions on

the combinations of five points selected from the n observed

points except that

no three points could be

collinear.

However, in the following method for determining R, some

conditions are needed. First, as before, no three points

can be collinear. > Y

Secondly, assuming Y, > Y, )

> Y, > Y,

then X1 > X2 > X3 and X5 > XH > Xa' No other combination of

five points will not be considered because of the known
orientation of the circle. R = E i p /5r for r < C..
i=1 §=1 ij = n>
Example
Assume n = 6 and A, B, C, D, E, and F are the

points used in the previous example. The following

table provides the combinations of points that satisfied

the given conditions, and the Rﬁ that are associated

with such combinations,

Combination
of points |Eq.|Pia  [PiB Pic Pip PiE Pir
ABDEF 1)[4.7668{12.683| ---- [15.609|10.57713.1648
ACDEF 2)[4.9348] ---- |10.891]11.034(8.2651]|4.8906
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1) .1970x% + .02590xy + .060500y2 + 2.22x + .1120y + 1

]
o

2) -.0348x2 + ,00265xy - .018900y2? - .274x + .0ll4y + 1

|
o

~N

Thus R = & & p /10 = 8.68152.
=1j=1 1j

As can be seen from the examples, the two approaches
can lead to two estimates of R that are drastically differ-
ent., One may ask why the second approach might be wused
instead of the first approach. The reason for wusing the
second approach is that, in general, the investigator knows
the overall shape of the curve from which the n points are
observed, and when the conditions imposed in second example
appear to be reasonable assumptions. However, if nothing is
known about the <curve a further investigation would be

needed to determine which method, if either, is appropriate.

In both methods there appears to be many disadvan-

tages. One such disadvantage is the enormous amount of
effort that is needed to compute R by hand. On the other
hand, with the use of computers, the computations are some-

what effortless after the initial writing of the computer
program. After 1looking at the examples more closely what
appears to happen at many of the points is that the conic

section obtained by these points has a small curvature, thus

resulting in a large radius of curvature. What one would
wish is that the averaging of the ptjwould minimize this
problem. However, the problem does not appear to be

corrected by employing this averaging technigque.
From a computational standpoint, the second approach

generally requires fewer computations, hence making it a
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more attractive approach. Through computer simulations,

questions such as the feasibility of using the radius of

curvature to estimate R and which method is more appropriate

to use, can be answered. These questions will be considered

in some detail in Chapter 5.



In statistics,

minimization of

example, in

minimization

the difference in

able and the predicted value of the dependent variable.

this chapter, the
minimizes the sum
squared residuals
Linssen and
estimator ﬁ for R
at the origin.
measurement error
Square estimator
where (xi,

problem defined

assumptions of knowing the center of the circle,

any made relating

In this chapter,

a way to calculate at most nC

one could then calculate an estimate of R from each

Nevertheless,

that minimizes

further development,

regression analysis one is concerned with

of the squared residual.

yi) is an observed point.

one

the sum of the

CHAPTER 4

THE SQUARED RESIDUALS

one method of estimation is based on the

the sum of the squared residuals. For

the

Where the residual is

the observed value of the dependent vari-

In
author will be looking at an approach that

of the squared residuals. The concept of

will be defined later.

Banens (4,307) suggest a 1least squares

assuming that the center of the circle is

Furthermore, they assume that there 1is

in both the x and y

directions. The Least

~ n
for R is R =ﬁ

R, /n
i=1 1

with Ry = (x2 + y3)?

However, the original

at the beginning of this paper, made no

nor where
to a measurement error in the y direction.
on the other hand, the writer will suggest
3 different centers from which
center,
will only be concerned with the estimate
After

squared residuals.

the residual will be defined.

23
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Finding the Different Centers

In the previous chapter the discussion dealt with
calculating at most nC3 different circles from n points.

Since each <circle has a center, there are at most nC
different centers associated with these circles. This col-
lection of centers may be used to calculate estimates of R.
Using all combinations of three noncollinear points and Egq.
2.3 and Eq. 2.4, one can calculate this set of centers.
Throughout the remainder of this chapter the notation
(hj , kj); i< nC3 has reference to the jth center of the

collection of centers previously defined.

Calculating an Estimate of R

Having found a center (hj’ kj) one could use a method

similar to Linssen and Banens (4,307) to calculate an esti-

mator R* for R. That is, using the jth center,
R*, = g R./n with R = [(x, - h,)2 + ( - ky)21t
j i=11 i i j Yi j .

One would thus have a collection of R*, each being
associated with one of the centers from the set of centers

discussed in the previous section. Therefore, there is at

most C, different R*'s.
n 3

How to Estimate R

A question one might ask is how can this collection of
R*¥'s be used to find a '"good" estimate of R. One approach
may be to <calculate the mean of the R*'s to provide an
estimate of R. However, the author considered a second

approach which minimizes the sum of the squared residuals.
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From this collection of R*¥'s one is only concerned with

n
] =i£1Ri

R = [(xi - hj)2 + (yi - kj)z]i. The R* that minimizes this

the R*.that minimizes % (R, - R*,)*: R* /n  and
d 1{=1 i d

sum of the squared residuals is itself the estimate of R;

that is,ﬁ = R¥,

Example

Assume n = 4 and the following points are observed
A(-3.98, 9), B(-10.04, 3), C(-9.25, -3) and D(-3.34, -9).

Using ABC as a combination of three points the center

—
-
=
—
~
[]

(-2.05592, .999018), R* = & [(x - h )% + (y, -
i=1

y
8.69221, andizl(R - R*l)2 = 2.56983. For the

k »1 /4

1

combination ABD the center (hz, kz) = (-1.15532, 0.0898925),

4
R¥ = 9.17641, and I (R

i=1 1

yields (h,, k,;) = (.0731166, .128759), R*,; = 9.8632, and

- R*,)? = .35165. Likewise, ACD

igl(Ri—R*s )2 = .343348.  For BCD the center (h, , k, ) =
(1.2518, 1.43454), R*u = 10.84, andiil(Ri - R*“)2 = 3.62693.
Thus, R = R*, = 9.8632.

As with most of the approaches mentioned in this paper
the computations by hand are quite extensive. However, the
use of a computer would aid in the tedious computations,
especially for larger values of n. The performance of this
method using computer simulations will be discussed in Chap-
ter 5, along with comparing this method to other methods

previously mentioned.



CHAPTER 5

SIMULATIONS

After building a model, the question becomes how do
the estimators perform. The ideal approach to answering
this question is with sound mathematical proofs, however,
many times the mathematics is very difficult or impossible.

Simulations as defined by Graybeal and Pooch (3,1) is
"the process of designing a computerized model of a system
(or process) and conducting experiments with this model for
the ©purpose either of understanding the behavior of the
system or of evaluating various strategies for the operation
of a system." The traditional model-building approach to
problem solving linked with simulation is a very important
tool. This <chapter will deal with checking the performance

of the estimators previously discussed.

Advantages and Disadvantages

As with any type of modeling, simulations have distinct
advantages and disadvantages. Graybeal and Pooch (3,10)

list the following advantages of simulations,

1.) It permits controlled experimentation. A
simulation experiment can be run a number of
times with varying input parameters to test
the behavior of the system under a variety of
situations and conditions.

2.) It permits time compression. Operation of the
situations and conditions over extended per-
iods of time can be simulated in only minutes
with ultrafast computers.

3.) It permits sensitivity analysis by manipulation
of input variables.

26
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They also 1list the following disadvantages to simula-

tions.

1.) Extensive development time may be encountered.
Most simulation models are quite large and,

like any large programming projects, take
time.

2.) Simulations may become expensive in terms of
computer time.

3.) Hidden <c¢ritical assumptions may cause the
model to diverge from reality.

Simulations have been proven to be an effective
approach to problem solving, but the investigator must be

aware of the disadvantages.

Properties of Estimators

There are a number of desirable properties that any
estimate of a population parameter should have. The
following is a list of such properties.

1.) Unbiasedness - An estimate 6 of a parameter e is

said to be unbiased provided E(8) = o (6,110).

2.) Minimum variance - An estimate g of some parameter

e is said to be a minimum variance &estimate

provided Og < 029* for any other estimate e ¥
(6,115).

3.) Consistency - As the sample size increases, if the
estimate g approaches the value of e , then the

estimate g 1is said to be consistent (6,110).
This list is only some of the properties of estimators.
However, these will be used in this thesis to evaluate the

performance of the approaches previously discussed.
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Simulation Language

The SAS (Stastical Analysis System) was chosen for
writing the simultations due to the flexibility and
simplicity of PROC MATRIX. A representative listing of the
simulation programs are in APPENDIX A, By repeatedly
changing the parameters in the model, an enormous amount of
output 1is generated. For the different simulations, this
output is in tabular form and located in APPENDIX B. The
following section will use partial tables from APPENDIX B to

provide evidence that some of the metods should not be used

to estimate R.

Evaluation of Methods Used to Estimate R.

In the simulations a radius of ten was chosen.
However, if the variance in the error term was three,
equivalent result could be obtained having a radius of one
hundred with the variance in the error term being three
hundred. Throughout the evaluation of the individual

methods, the reader needs to keep in mind that the true

value for R is 10,



ESTIMATE R USING ALL FEASIBLE COMBINATIONS OF FIVE POINTS.

TABLE 1

29

SIMULATION RESULTS USING THE RADIUS OF CURVATURE TO

n = Number Number of Values of
of unique o? § VAR(ﬁ) Simulations Y
== 7 3 951.583 100 *

7 1 1016.32 100 *

7 ) 1043.87 100 *

7 .1 75.9853 100 *

5 1 200.845 100 +

5 .5 36.1984 100 +

5 .1 11,9531 100 +

* y= -9,-6,-3,0,3,6,9

SIMULATION

TABLE 2

+ y= —9,—4.5,0,4-5,9

RESULTS USING THE RADIUS OF CURVATURE TO
ESTIMATE R USING THE IMPOSED CONDITIONS.

n = Number _ R Number of Values of
of ?nique o2 ﬁ VAR(R) [Simulations Y
: ? 3 422.305 100 *
7 1 994.002 100 *
7 .5 565.84 100 *
7 .1 84.816 100 *
5 3 118.68 100 +
5 1 155.002 100 +
5 .5 31.786 100 +
5 .1 11.9531 100 +
= -9, -6, -3, 0, 3, 6, 9 y = -9, -4.5, 0, 4.5,
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The results of the simulations involving curvéture are
listed in detail in TABLE 1 and TABLE 2. Looking at these
tables, it <can be seen that the radius of curvature is a
biased estimator of R. Furthermore, the methods using the
radius of curvature do not improve as the number of unique
y's increase. Thus, there is evidence to suggest a further
study of using the radius of curvature is needed. At the
present time, it appears that using the radius of curvature
to estimate R is inappropriate.
TABLE 3

SIMULATION RESULTS USING THE RADIUS OF ALL POSSIBLE CIRCLES.

n = Number R Number of Values of
of Unique o? ; VAR(R) |Simulations Y
= 7 3 26.5385 100 *
7 1 27.8108 100 *
7 .5 32.0948 100 *
7 .1 13.4527 100 *
4 2 22.3971| 3493.13 1000 %
4 .5 11.9949| 384.459 1000 * %
3 2 10.9975( 8.88369 1000 *%k %
3 1 10.4686 100 ok
3 .5 10.2015] .623521 1000 * 3%k %
3 .1 10.0281 100 ok %
* y = -9, -6, -3, 0, 3, 6, 9
¥ y = -9, -3, 3, 9
¥%% y = -9, 0, 9

A partial listing of the simulations results using the
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mean of radii of all possible circles to estimate R 1is

contained in TABLE 3.

As can be seen from TABLE 3, R 1is

also a biased estimator of R. Nevertheless, if n = 3 and

the spread in y's is equally spaced about zero and close to
the end points of the interval [-10, 10] a reasonable
estimate of R can be achieved provided the variance in the

error terms is small. A somewhat surprising result is that

as the

number of distinct y's increase the bias of the
estimate is not reduced.
TABLE 4
SIMULATION RESULTS USING THE RADIUS OF CIRCLES WHERE

Y, >Y, >Y, AND X, > X, AND X, > X,.
n = Number _ n Number of Values of
of Unique o2 R VAR(R) |Simulations Y
Y's

9 3 8.33541 1000 *

9 2 8.69646| 4.2556 1000 *

9 1 9.30024 1000 *

9 .5 9.59886( 2.95244 1000 *

9 .1 9.94725 1000 *

7 3 9.30576 1000 * %

7 2 9.40000(3.6845 1000 * %

7 1 9.60765 1000 * %

7 <5 9.90503(2.960903 1000 *%

7 .1 9.99178 1000 * %

7 .5 4,.70076( .964667 1000 +%

7 .5 4.08815[3.34535 1000 X *




TABLE 4 CONTINUED
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SIMULATION RESULTS USING THE RADIUS OF CIRCLES WHERE
Y,> Y,> Y,;AND X, > X, AND X > X, .
n = Number Number of Value of
of Unique 0?2 E VAR(ﬁ) Simulations Y
— 7 .5 10.485 1.0197 1000 ++
7 .5 8.02883|14.003 1000 ++*
7 .5 9.1832914.00019 1000 o
5 2 9.75276|3.59142 1000 %ok
5 1 9.77383 1000 *kk
5 .5 9.8997912.727 1000 *kx
5 .1 10.2214 1000 Ak
4 3 10.5384 1000 ook X
4 2 10.2625 |12.8887 1000 %k
4 1 9.82344 1000 ok ook
4 .5 9.69888 |.464514 1000 oAk
4 .1 9.77921 1000 * kR
* y = -8, -6, -4, -2, 0, 2, 4, 6,
** y = -9, -6, -3, 0, 3, 6, 9
+* y =0, 1.75, 3.25, 4.75, 6.9, 8.5, 9.75
+¥* y = -3, -1.25, -.75, 0, 1, 2.75, 3.5
++ y = -9.99, -8.25, -6.95, 0O, 7, 8.75, 9.
++% y = -5.99, -2.25, -1.75, 0, 1, 3.75, 6.
+4**  y = -9,99, -4,25, -2.75, 0, 2, 5.75, 8.
*kx y = -9, -4.,5, 0, 4.5, 9
k%% y = -9, -3, 3, 9
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TABLE 4 provides a representative listing of the

simulation results involving the mean of the radii of

circles with <conditions imposed on the selection of
combinations of points to be used in calculations. It can
be seen that when o2 is small, good estimates of R are

achieved when the spread in y's are equally spaced about
zero and covers the interval [-10, 10]. However, in
general, this method appears to be biased, as can be seen
from TABLE 4. When g2 is large, fair estimates of R are
achieved when n = 7 and the y's are equally spaced about
zero covering the interval [-10, 10]. Thus, there is ev-
idence that the estimator may be biased by the number of
distinct y's, or the spread in y's, or other possible
factors that are not detectible in these simulations.

TABLE 5

SIMULATION RESULTS USING THE RESIDUAL APPROACH.

n = Number _ R Number of Values of
of unique g2 ﬁ VAR(R) |Simulations Y
= 9 2 9.83033 [6.31518 100 *

9 .5 9.88901 |.937487 100 *

7 3 10.3748 100 * %

7 3 10.3429 1000 * %

7 2 10.132 3.51527 100 * %

7 1 10.205 100 * %

7 1 10.045 100 * %

7 .5 10.039 .419528 100 * X




TABLE 5 CONTINUED

SIMULATION RESULTS USING THE RESIDUAL APPROACH.
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n = Number _ " Number of Values of
of unique o] ﬁ VAR(R) |Simulations Y
— 7 .5 10.0044 1000 * %k
7 .1 9.99301 1000 * %k
) 2 10.8199 |8.49873 100 Aok k
5 .5 10.2119 (.513119 100 * 3k
4 2 10.183 6.10877 100 e kokok
4 ) 9.8531 .674463 100 * Kk ok
* y=-8,-6,-4,-2,0,2,4,6,8 * y = -9,-6,-3,0,3,6,9
*¥¥¥ y = -9, -4.5, 0, 4.5, 9 *¥¥¥* y = 9, -3, 3, 9
The results of the simulations involving the
minimization of the sum of the squared residuals are 1listed

in TABLE 5.

approach

the VAR(R) = 3

i=1

where n =

n

7 produces the smallest VAR(ﬁ)

very close to the true value of R.

the method

number of distinct y's appear to bias the

the other methods,

that
y's increases.
A Dbiased

unbiased

estimator.

creates a biased estimate of R.

As can be seen from this table,

provides a reasonable estimate for R.

(Ri - §)2

the

with values

Looking

of

residual

at

=
R

the

These facts suggest that
That 1is,
estimator. L

ike

the residual approach yields an estimator

does not appear to improve as the number

estimator is many times preferable

of

over

distinct

an

If the unbiased estimator has a large

variance and the biased estimator has a very small variance,
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the biased estimator may be prefered over the wunbiased
estimator provided a function can be found to calculate the
bias. Considering the residual approach it would be nice if
the researcher could find a function to calculate the biased
in terms of the number of distinct y's. The researcher
needs to keep in mind that a bias estimator is not always

undesirable.

Comparing Estimators

In this section a comparison between the residual ap-
proach and the method involving the mean of the radii of
circles with conditions imposed on the selection of combina-
tions of ©points to be used in the <calculation will be
discussed. As previously stated, the other three methods do
not appear to produce reasonable estimates of R. First, a
discussion on the comparison of two estimators seem to be in
order. Bratley, Fox, and Schrage (1,27) state that

The observations from which the sample vari-
ance is calculated are often correlated. In such
cases, the usual variance estimators are biased
estimators of the mean squared error, it is not
always the case that the estimator with the small-
est theoretical mean squared error will give the
smallest sample variance in any particular situa-
tion. In general, however, when no better criteri-
on is available we advocate comparison of candidate
estimators using their observed sample variances,
Since the VAR(R) is the only such criterion that has been
calculated for the comparison of models it will be used to
select a model.

From TABLE 4 and TABLE 5 it can be seen that when the

number of distinct y's was 7, both estimators provide a good
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estimate for R. In general, when the variance in the error
term was small, the VAR(ﬁ) was much smaller using the
residual approach, thus making it the ©better method.
However, when the variance in the error term was large the
VAR(ﬁ) for the two estimators were comparable for n = 7 or
9. In this case the value of ? was close to R using the
residual approach. Thus, these simulations suggest that the

residual approach provides a better method for estimating R.



CHAPTER 6

CONCLUSION

In this paper the writer has examined a variety of
methods to estimate the radius of a circle when observing n
points that 1lie on a semi-circle but are measured with
error. Computer simulations were used to check the
performance of each method. The methods involving the
radius of curvature were found to be inappropriate in
estimating R. Furthermore, wusing the mean of the radii of
all possible circles appeared to produce a biased estimator.
However, two methods, one using the mean of the radii of all
possible «circles where <conditions were imposed on the
selection of points to be used in <calculations, and the
other using a residual approach, provided good estimates for
R when the variance in the error term was small., Often when
the variance in the error term was large and the number of
unique vy's were small, no calculations were carried out
because of the conditions imposed. Overall, the evidence
provided by the simulations suggested that the method
involving the minimization of the sum of the squared
residuals yielded the best estimate of those methods
mentioned in this paper. There is one major drawback to all
of the methods presented. Without the use of a computer, the
calculations needed to carry out the estimation of R were
extremely long and tedious. However, with the use of a

computer the <calculations became trival after the initial
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writing of the computer program,

Further Studies

As the researcher seeks answers to the problems that
confronts him, many questions arise that are closely related
to the problem but are not within the scope of this study.
Looking at the residual approach, one such question may be,
what 1is the actual minimum value of the sum of the squared
residuals? Using the centers of all possible circles, can
one calculate another point to be used as the center that
will reduce the sum of the squared residuals? Furthermore,
how does the centers of the centers behave? If the number
of distinct vy's is equal to four, then there are at most
four different centers that can be computed from
combinations of three points. Doing this in an iterative
manner the collection of centers can be seen as a sequence.
The question that follows is, in what <cases does this
sequence converge? If the sequence converges to a point,
does this point when used as the center produce the minimum
valve for the sum of the squared residuals? Another
qQuestion that arises is, can a function of the bias be found
in terms of the factors that bias the estimate (e.g. the
number of distinct y's)?

The above questions deal with possible improvements of
the methods presented in this paper. The next step may be
to backup and look at the experimental design. Before

starting an experiment, the main question is, what is the
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optimal design? Should one take a single observation of x
for each vy, but make several replications, and then average
the results of the replications before estimating the
radius? What number of distinct y's is the best? 1Is there
a need for a large number of distinct y's with each having a
single observation for x or a need for a small number of
unique y's with each having multiple observations of x?
Once the design is chosen, then one can investigate whether
the estimator is consistent. In other words, does the value
of the estimate approach the true value of R as the sample
size 1increase? These questions pose only a handful of
possible avenues for further study.
Sherlock Holmes, a detective with great problem solving

skills, in A Study in Scarlet makes the following statement

which summarizes a problem solving stratagy in both

mathematics and statistics.

In solving a problem of this sort, the grand
thing is to be able to reason backward. That is a very
useful accomplishment, and a very easy one, but people
do not practice it much....Most people, if you describe
a train of events to them, will tell you what the
result would be....There are few people, however, who,
if you told them a result, would be able to evolve from
their own inner consciousness what the steps were which
led up to that result. This power is what I mean when
I talk of reasoning backward.
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USING ALL FEASIBLE COMBINATIONS OF FIVE POINTS

USING THE RADIUS OF CURVATURE

SIMULATION

COMPUTER
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(CONTINUED).
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USING THE RADIUS OF CURVATURE TO

XS4 YSa XY R F J K$

SIMULATION
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USING THE RADIUS OF CURVATURE TO

SIMULATION

COMPUTER
ESTIMATE R USING THE IMPOSED CONDITIONS (CONTINUED).
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SIMULATION USING THE RADIUS OF ALL POSSIBLE

COMPUTER

CIRCLES.
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COMPUTER SIMULATION USING THE RADIUS OF CIRCLES WHERE

Y, >Y,> Y, AND X, > X, AND X, > X,
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COMPUTER SIMULATION USING THE RADIUS OF CIRCLES WHERE
Y » Y2 > Ya’ AND X1 > X2 AND X3 > X2 (CONTINUED).

1

IF ALR(L+1)<>»C € R<>0 TH =

éaprR=U‘( oD TRENC ALREN ALR=ALRIIRS
®

TNR=SUNCALR) 8/NCOLCALR

PRINT SIMR 3 LCALRD3

SUNSep=03

Bo =1 T8 NCOL(ALR);

SUNSaD=SUNSEdHCALREL IV -SINR) #e2s
]

VAR=SUNMS@Da/( NCOL(ALR)=1)3:

BRINT CVARCALG HCOLCALRI=1)S
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COMPUTER SIMULATION USING THE RESIDUAL APPROACH.
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SIMULATION USING THE RESIDUAL APPROACH

COMPUTER
(CONTINUED).
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SIMULATION RESULTS USING THE RADIUS OF CURVATURE TO

APPENDIX B

TABLE 1

50

ESTIMATE R USING ALL FEASIBLE COMBINATIONS OF FIVE POINTS.

n = Number Number of |Values of
of unique c? = ~ Simulations Y
Y's R VAR(R)
7 3 951.583 100 *
7 1 1016.32 100 *
7 .5 1043.87 100 *
7 o1 75.9853 100 *
5 1 200.845 100
5 .5 36.1984 100
5 .1 11.9531 100
y = _9, _6’ _3’ O, 3) 6s 9
y = _9’ _4053 O) 4.5, 9




+ ¥

TABLE 2

SIMULATION RESULTS USING THE RADIUS OF CURVATURE TO
ESTIMATE R USING THE IMPOSED CONDITIONS.

51

n = Number Number of |[Values of
of unique o? = ~ Simulations Y
Y's R VAR(R)
7 3 422.305 100 *
7 1 994,002 100 *
7 .5 565.84 100 *
7 .1 84.816 100 *
5 3 118.68 100 +
5 1 [155.00238 100 +
5 .5 31.786 100 +
5 .1 11.9531 100 +
y = _97 _67 _39 07 3’ 67 9
y = _9’ —4-5, 0, 4.5, 9
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TABLE 3

SIMULATION RESULTS USING THE RADIUS OF ALL POSSIBLE CIRCLES.

n = Number Number of |Values of
of unique o? - R Simulations Y
Y's R VAR(R)
7 3 26.5385 100 *
7 1 27.8108 100 *
7 .5 32.0948 100 *
7 .1 13.4527 100 *
4 2 22.3971 3493.13 1000 * %
4 .5 11.9848 384.459 1000 * %
3 3 12.7617 100 * %k
3 1 10.4686 100 * K
3 .5 10.1964 100 * % &
3 .1 10.0281 100 %k %
3 1 10.4686 100 k%
3 .5 10.0452 100 ¥ %
3 2 10.9975 8.88369 1000 %K
3 .5 10.2015 .623521 1000 * % %
* y = -9, -6, -3, 0, 3, 6, 9
¥ y = -9, -3, 3, 9
*¥*% y = -9, 0, 9
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TABLE 4
SIMULATION RESULTS USING THE RADIUS OF CIRCLES WHERE
Y, > Y, >Y AND X, > X, AND X, > X,.
n = Number Number of |[Values of
of unique c? - . Simulations Y
Y's R VAR(R)
9 3 8.33541 1000 *
9 2 8.7353 5.94636 1000 *
9 2 8.69646 4,2556 1000 *
9 1 9.30024 1000 *
9 .5 9.59886 2.95244 1000 *
9 .5 9.58272 1000 *
9 .1 9.94725 1000 *
7 3 9.55826 100 * ok
7 3 9.30576 1000 * %
7 3 9.32069 1000 * oK
7 2 9.4 3.6845 1000 * %
7 1 9.64991 100 *® %
7 1 9.61095 100 * X
7 1 9.60765 1000 *k
7 ) 9.98138 100 *® %
7 .5 9.92176 1000 *x
7 .5 9.95295 1000 * %
7 .5 9.90503 12.960903 1000 * %
7 .1 10.08 100 * %
7 .1 10.0077 1000 * %
7 .1 9.99178 1000 * %
7 2 4.44426 1.31113 1000 + %
7 .5 4,70076 .964667 1000 +*
7 2 3.02089 .78478 1000 XX




TABLE 4 CONTINUED

SIMULATION RESULTS USING THE RADIUS OF CIRCLES WHERE
Y, > Y, > Y, AND X, > X, AND X, > X_.

54

n = Number Number of [Values of
of unique o? - “ Simulations Y
Y's R VAR(R)
7 .5 4,.08815 3.34535 1000 +%%
7 2 10.813 4,77087 1000 ++
7 .5 10.485 1.01097 1000 ++
7 2 6.65472 7.40619 1000 +4%
7 .5 8.02883 14.003 1000 +4%
7 2 8.5831 3.68755 1000 +4 %%
7 .5 9.18329 4.00019 1000 +4F X
5 3 9.86853 1000 k%
5 2 9.75276 3.59142 1000 * %k %
5 1 9,77383 1000 ¥ %k %k
5 .5 10.496 1000 Fkx
5 .5 9.89979 2.727 1000 * %K
5 .1 10.2214 1000 % %k ¥
4 3 10.5384 1000 ¥ kK
4 2 10.2625 12.8887 1000 * ok %k
4 1 9.82344 1000 %k &k
4 .5 9.7139 1000 TR KK
4 .5 9.69888 464514 1000 ¥ ok %k
4 .1 9.77821 1000 ¥k &k
* y = _8) —6’ "4’ _2’ Os 2’ 49 69 8
* % y = -9, -6, -3, 0, 3, 6, 9
+* y =0, 1.75, 3.25, 4.75, 6.9, 8.5, 9.75
4k ¥ y = -3, -1.25, -.75, 0, 1, 2.75, 3.5
++ y = -9.99, -8.25, -6.95, 0, 7, 8.75, 9.5
+4%* y = -5.99, -2.25, -1.75, 0, 1, 3.75, 6.5
++*¥ y = -9,99, -4.25, -2.75, 0, 2. 5.75, 8.5
¥k y = -9, -4.5, 0, 4.5, 9
¥¥%%  y = _9, _3, 3, 9




TABLE 5

SIMULATION RESULTS USING THE

RESIDUAL APPROACH.
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n = Number Number of [Values of
of unique o? = " Simulations Y
Y's R VAR(R)
9 2 9.83033 6.31518 100 *
9 ) 9.88901 .937487 100 *
7 3 10.6352 100 * %
7 3 10.3748 100 * %
7 3 10.3429 1000 * %
7 2 10.132 3.51527 100 * %
7 1 10.2527 100 * %
7 1 10.205 100 **
7 1 10.045 1000 *k
7 .5 10.1114 100 ¥ %
7 .5 10.039 .419528 100 * %
7 .5 10.1436 100 *®%
7 .5 10.0044 1000 &%
7 .1 10.0434 1000 * ok
7 .1 10.0322 100 * ok
7 .1 9.99301 1000 * %
5 2 10.8199 8.49873 100 * KK
5 .5 10.2119 .513119 100 * kK
4 2 10.183 6.10877 100 * kK
4 .5 9.8531 .674463 100 * Rk ok
* y = -8, -6, -4, -2, 0, 2, 4, 6, 8
* % y = -9, -6, -3, 0, 3, 6, 9
¥*¥*% y = -9, -4.5, 0, 4.5, 9
¥¥*% y = -9, -3, 3, 9




