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polunomials arz defined axiomatically or algebraically
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equivalence of two links. Using the Linking Number, one
can classify Z-component links into two classes: those that
have Linking Number zero and those that do not. Using
Triple Products one can classify links with 3-components
into two classes: those that have all Triple Products zero
and those that have at least one non-zero Triple Product.
Determining Vanishing Triple Products using the definition
is beyond the scope of this thesis since it requires an
intensive study of Cohomology Group Theory and Lie
Algebras. In this thesis, an algorithm developed by Dr.
Stefanos Gialamas is used, in order to detect vanishing
Triple Products in the complement of a link with
3-components. The algorithm requires a presentation of the
fundamental group of the link (Wirtinger Presentation) and
techniques from the Commutator Calculus and the Fox
Derivatives.
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CHAFPTER O

INTRODUCTION

A. Historical backgroud.

Triple Products on a complement of a link were
introduced by Hiroshi Uehara and W. S. Massey in their
paper entitled “The Jacobi Identity for Whitehead Products”
as higher order cohomology aperation. In 1967, HW. S.
Massey used homology theory to define Triple Products in
his paper “Higher Order Linking Number” presented at the
Conference of Algebraic Topology, University of Illinois at
Chicago, Chicago 1968. David Kraines extended and analyzed
the theory of Triple Products in his paper entitled “Loop
Operations” which was also presented at the same
conference.

A different approach into the study of k-fold products
using Hodge Theory was introduced by John Morgan and Alan
Durfee. Topologists such as Clint McCrory, Larry Lambe,
and Richard Hain also contributed to the study of k-fold
products by using Intersection Theory.

An algebraic approach to determine vanishing Triple
Products was developed by Stefanos Gialamas in his Ph. D.
desertation and later, k-folds Products. Moreover, this
approach was applied to closed braids.

B. The Triple Products.

Let L be a 1link with more than two components. Let

Hi(Ra—L;Z) be the first cohomology group of the complement

3

of the link. Let f.g,hEHi(R ~L;Z) and choose T, a8, and h



one-cocycles such that [Fl=f, [8l=g, and [h)l=h. Choose
one-cochains 0 and @ such that ¥.39=d0 and 9.h=dp.
The tmwo-cucles c=Ffp—-6h represents the element
.9, mentr3-L;2)
which we call the Triple Product of f, a, and h.

C. Purpose of this thesis.

As stated in the abstract, the purpose of this thesis
is not to determine Vanishing Triple Products by using the
definition but to give the algorithm determining vanishing
Triple Products developed by Stefanos Gialamas and apply it
to closed braids and answer the question: Given a closed
braid, determine if all Triple Products vanish?

We are only concerned with closed braids, since all
links are combinatorially equivalent to some closed braids.
If a closed braid has some non-vanishing Triple Product
then the associated link cannot be pulled apart, as in the
case of the Borromean Rings.

In order to use the algorithm, we need some backgroud
on Commutator Calculus and Associate Algebra. Chapter i of
this thesis is written for this purpose. In Chapter 2, we
introduce the notions of links and braids, and we give the
algorithm to find the Fundamental Group of the complement
of a link, and its associated closed braid. The algorithm
to determine vanishing Triple Products is given by Theorem
3.2. He also present some problems and their solutions

concerning Vanishing Triple Products.



CHAPTER 1

COMMUTATOR CALCULUS and ALGEBRA

A. Free Groups.
DEFINITION 1.1.

Let X be an arbitrary nonempty set. A free group on X
is a group F together with a map ¢:X — F such that for
any map 9:X — G where G is any group, there exists a
unique homomorphism f:F —3 G such that the following

diagram commutes

F

P
X f

-]
v
G.

Remark 1.1.
This definition only characterizes a free group. MWe

are yet to show the uniqueness and the existence of such a
group. We are going to denote the free group F on a set X
with respect to the function ¢:X — F by the pair (F,¢).
The following theorem gives another characteristic of
a free group.
THEOREM 1.1. (Uniqueness theorem)
Let (F,p) and (F’,¢') be free groups on the same set X.
Then there exists a unique isomorphism h:F — F* such that

the following diagram is commutative:



Proof.

Since (F,¢) is a free group, then it follows from the
definition that there exists a unique homomorphism
i:F —3 F’ such that jop=¢p".

F

/
X i
N‘
v
F
Similarly, there exists a unique homomorphism k:F' — F
such that kop'=¢.
Fl
Ji//////’
X
)
\

k

4
F

Let h=kej. Consider the following diagram:

F

/ .\

F

Here, i denotes the identity mapping. Moreover,



hog=ko jop=kop’'=p.

iop=p.
Hence, it follows from the unigueness in the Definition 1.1.
that koj=h=i. But, since i is a monomorphism, j is
one-to-one. Similarly, it can be shown that jok=i which
implies that j is also onto. Therefore, j is an
isomorphism.O

Let X be a nonempty (finite or infinite) set of

symbols x;, i€l. HWe think of X as an alphabet and the x;
as letters in the alphabet. MWe shall denote these sumbols

1 1

also by xj and we construct another set X ~ that is

disjoint from X such thathhﬂx_iland denote the elements

-1

;1. i€l (for example take X 1=((x,1);x€X) and

1

of x‘1 by x
identify (x,4) by x~ 7).
DEFINITION 1.2.

A word w in X is a finite sequence of sumbols from

XUX_i, written for convenience in the form
w=xglxg> . . . xgn
where xg.€X, €;=+1, and n20€l. In case n=0 the sequence is

empty and W is called the empty word which will be denoted
by . Two words are said to be equal if and only if they
have the same sumbols in corresponding positions. W is
said to be reduced if it contains no pair of consecutive
suymbols of the form xaix;‘.i or xa_‘."x,;‘..

Let F(X) be the set of all reduced words on X. Let
multiplication be the binary operation on the elements of

F(X) where it is defined to be as follows:

1f Wy and W, are two reduced words where



u1=x:,tx:’2 . x:':, (ej=11)
8 8
u2=xgixaz. .. xgy (8;=%1)

then, the product of Wy and Wo, denoted by WyW3, can be
found by writing Wg immediately followming Wy, i.e.

€4 &3 Ean 83 82 8,
Wy Wy =Xa) Xay - - .xG:xB’;sz. . 'xﬂ:

But, the word on the right may not be reduced if
Xga=Xg ~ - Therefore, we redefine the product of w; and w;
by juxtaposition and (if necessary) carry out certain
cancellations, that is to delete successive pairs of
sumbols with opposite exponent standing next to one
another. Clearly, it can happen that in performing these
cancellations we delete all the sumbols of one of the
factors wy, wy, or both.

The identity element for the multiplication of reduced
words so defined is the emptu mord.

The inverse of wy is

—1__—€a_ —€n-3 —€3
Wy =Xap Xap,y ---Xa,

The proof of the associative law of the multiplication
is a little laborious and will be omitted. Hence, the
following lemma is proved:

LEMMA 1 .1.

F(X) is a group with respect to the operation defined
above.

The following theorem will show that the group F(X) is

the free group on X.



THEOREM 1.2. (Existence theorem)

Let X be a non-empty set and F(X) be the group of all
reduced words on X. Let :X — F(X) be a map defined by
P(x)=x"€F for any x€EX. Then (F,p) is the free group on the
set X.

Proof.

Let G be any group and ¥:X —» G be any function.
Define f: F(X) —4 G as follows:

Let w€F(X). If w is the empty word @, we define
f(w)=1g, otherwise if w is in the form

u=m::x::...xz;
we define
IO CTE TR B | TS0
Let wy and w; be reduced words as defined previously.

Then

& &n & 5
F(w1u2)=f(x¢i. ) .xG:xBi. . .xﬁz)

< (xg T . WCxg, ) M (xg 0. 0 Cxg 2T

=F(my)of(ny).

Therefore, f is a homomorphism. Moreover, fop=p.

To prove the uniqueness of f, let g:F —3) G be an
arbitrary homomorphism such that gop=$. Then, for any
u=x:i...x§;€F(X) we have

g(w)=9(x:i...x::)

={alxg, % gl [9(xg, )
Ha(@ixg, 1™ . [9(Rixg,) 1"

= (xg, 01"t . [ (xq, )15



=[f (xg, 1"t . .[F (xg)T""

=f(w)

Hence g{m)=f(w) which implies that o=f.0
DEFINITION 1.3.

The group F(X) is called the free group on the set X.

As we can see, the free group F(X) does not depend on
the individual properties of the elements of X. The rank
of F(X) is define to be the cardinal number of the set X.
Let us shift our attention back to the map ¢: X —3 F(X)
defined by ¢(x)=x". Since ¢ is one-to-one, we may identify
x with its image ¢(x) in F(X). Having done so, we can
think of X as a subset of F(X) since each element of F(X)
can be written as a product of elements of X. Thus, X
constitutes a generating set for F(X). The group F(X)
sometimes is referred to as the free group generated by X.
EXAMPLE 1.1.

Let X={xi,...,x5]. Let Wy and Wo be two words of the
-1 -1 -1 -1
elements of XUX such that Wy=X4Xp XgXg4Xg4 X3 XgX4 and
W -x—ix_ix x_ix The word is in the reduced form but
2=X4 5 3X4 {- r Hz 1 r uc orm u

Wy is not. u1=xix51x5x1 is the reduced form of w,.
u1u2=x1xEixsxixfix§1x3x;1xi
—1 -1
= Xixz 1314 xi.

1 -1

Wy o = xI xgixzxi and

-1 -1
Nz = Xi 1413 xle.



B. Group Presentation.
DEFINITION 1 .4.

Let G be a group generated by a subset X of G. By a
relation among elements of X, we mean a finite product
Ugup...un of elements of X or their inverses where
Ugjuyz...un=1g.

THEOREM 1 .3. (Nielsen-Schreier)

Any subgroup of a free group is free.
Remark 1.2.

The proof of the above theorem can be found in (9]
page 93.

THEOREM 1.4,

Any group is a homomorphic image of a free group.
Proof.

Let G be any group. Let X be a set of generators of G
(we can take X=G). By the existence theorem, there exists
a free group F(X) with X as its set of generators.
Consider the following diagram:

(X>

X 3¢

-

A
G

f is a unique homomorphism such that
fop=ia(fop ) (x)=Ff(P(x))=i(x)

Moreover,.f is onto. For any 9€G, 9 can be written as a

finite product of elements of X, i.e.

c
9=x¢ixz. . .Xgr where ej=11.



i0

Since P(xgixas. .. xgn)EF(X), f(Pixgixgs.. .xan))=a. Hence
fF(F(X))=G.0

By the Fundamental Theorem of group homomorphism, we
have,
COROLLARY 1.1.

Every group is isomorphic to a factor group of a free

group.

Consider the following diagram:

f:F(X) — G

Iz

F(X)/Ker ¢

Let R be a set of generators of the free group F(X).
Since F(X) is completely determined by X and N(R)qF(X) is
completely determined by R, then the group G=F(X)/N(R) can
be completely described by specifying a set X, whose
elements are called the generators of G and the set R,
whose elements are called the defining relations of G. MWe
denote this by G=(X|R} where G is generated by the set X(CG.
This is the presentation of the group G.

From the above discussion, we can see that given a set
of generators X and a set of relations R among the elements
of X, we can find the group that is presented by {XIR}.

To explain the terminology let r=uyqus...un=1 be a
relation among the generators of G, where uiEXUX_i- Let
F(X) be the free group on the set X and let i:X — F(X) be
an inclusion identity mapping. Next, we will extend i to

-1

X1 by setting itx1)=(i(x))~! vxex. So, i is define as

i{r)=i(ugli(uy). . .ilup)



which is a unique element of F(X).
Let the homomorphism f:F(X) —$ G be onto which
satisfies
f(i(x))=x and
flx1=x"1 wvxex.
Then,
fﬁ(r))=u1u2...un=r=1.
Hence, i(r)€Ker f.
Conversely, let T€EKer f and let
T=i(ugdiluy).. . ilup).
Since T€Ker f, we have f(7)=8. But
f(T)=uquy.. un=1 in G.
Thus, the “reduced” relations among the elements of X and
the elements of the free group F(X) which lie in Ker f are
in one-to-one correspondence.

EXAMPLE 1.2.

Let G={1,a,az) be a group where

- i a a2
1 1 a a?
a a az 1
az az i a

Then, G has a presentation {ala3=1).
Remark 1.3.
Presentation of a group is not unigue.
C. Commutator Subgroup and Group Ring.
DEFINITION 1.5.
The commutator of two elements x and y in a group G is

an expression of the form Ex,gh:xgx-ig_i. If X and Y are

i1



subsets of G then [X,Y] is the subgroup generated by all
elements [x,y] where x€X and y€Y.
DEFINITION 1.6.

The lower central series of a group G is the sequence
(n)

of G (n21) defined inductively by
G(i)=G,
G(n)=[G("—1).G]
nhere Kén_i)xﬂ denotes the n-th commutator subgroup
generated by all commutators [x,yl=xyx ty~1 with xeci" Y
and y€G.
Remark 1.4.
6Py ™6™ . . Moreover, ¢" V6™ is an

abelian group.
DEFINITION 1.7.

A ring is a nonempty set R together with two binary
operations (usually denoted as addition (4) and
multiplication) such that:

(i) (R,4) is an abelian group.
(ii) (ab)e=a(bc) for all a,b,c€R.
(iii) a(b+4c)=ab+tac and (a+b)e=ac+be.
1f in addition:
(iv) ab=ba for all a,b€R,
then R is said to be a commutative ring. [If R contains an
element 1ip such that
(v) 1igpa=aip=a for all a€R,
then R is said to be a ring with identity.
DEFINITION 1.8.

Let R be a ring with identity 1R and G a

12




13

multiplicative group. We define the group ring RG to be

the set of all formal sums

RG={ E rg.g9 | rg€R and rg=0 axcept for finitely many}
a€G

a€G
where the addition in RG is defined by:

[ Z rg.s ] + [g% rg.g ] = gze(;[rg + r’;_,).g

g€G6

and multiplication in RG is define by:-

(%) () - R LE )

Remark 1.95.

RG with these two operations can be shown to form a
ring with identity 1n.1; denoted by 1ips.
EXAMPLE 1.3.

Let Z be the ring of integers and G be any group. Then

the group ring ZG is define as follows:

ZG.—.{E n;9; | nia, giGG}
i

where the summation is a finite sum.

Remark 1.6.

The map i:Z —) ZG defined by itn)=n.15 is a ring
monomorphism. Thus under the identification n=n.15, Z
becomes a subring of the group ring ZG.

Remark 1.7.

The map §:G — ZG given by j(g)=145.9 is a group

monomorphism and under the identification g9=i5.9, G

becomes a subgroup of (ZG,+).



D. Commutator calculus.
Remark 1.8.
Throughout this section, F will denotes the free group
on a non-empty set.
DEFINITION 1.9,
Let G be any group and €:ZG —) Z be defined by

{ Tro-oh-Tre

g€G

It is called the augmentation map.
DEFIMITION 1.10.
A map d:ZG — ZG is called a derivation if
1. d2 + ») = dii) + d)
2. duy) = diew) + Ldw)
where i, v€LG.
THEOREM 1.5.
a) ding) = ndi)
b) dn = 0
¢) da™h = —g7 e
for any n€Z, 9€G, and RELG.
COROLLARY 1.2.
1f 9, h€G, then dgh)=d(g) + gdh).
LEMHA 1.2,
Let F be the free group generated by {a;,az,...,anl.
Then, to each generator a; of F there corresponds a unique
derivation dai:ZF —) ZF, called the derivation with

respect to aj, which has the property that

1 if a;=b

0if ai#b
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PROOF .

The existence of the derivations dai follow from the
following formula:

Let u=uia?uza?. . "'"ka?"k+1 where €¢;=+1 and wWy,....We 4y

are words in F which do not involvae aj. then
k

& & € e.—1)/2
:E: 1 2 i-1 i
dai(ﬂ)= ciuiai Nzai .. .ui_iai uiai .
i=1
HWe can extend the above formula to ZF by defining:

dai@nlﬂ J)=Zn jdal(“J)
3 3

The uniqueness of dai follows from the observation that
the value of any derivation is determined by its values on
the generators of F.O
Remark 1.9.
In the sequal we will use the word derivative in place
of derivation.
DEFINITION 1 _11.
The higher order derivatives are defined inductively
by
daiaz.,.ak00=daiﬁda2...akXHﬂ-
The order of the derivatives is given by the integer k.
DEFINITION 1.12.
The augmented derivatives are defined inductively as
eal(u)=t(dai(u))
and

eai___ak(u)=z(dai,__ak(u))

where w€ZF, and ¢:ZF —9 Z is the augmentation map.



DEFINITION 1.13.

Kk
c.
Let w be a word in F. Hrite w as .l-[ai1 where aiex
i=1

{the set of generators of F) and "i=ii' An occurrence of

the pair x,y cccurs when a;=x, a;=y, i<3. The signed of
€ €;j )
the occurrence ...x "...y ... is defined to be €€ ;-
LEMMA 1.3,
1f w€F and 24,82, . -,8) satisfy ai¢ai+1, i=1,...,k-1

16

then €aja,.. -ak(") is the total number of signed occurrences

of ajap...ap in the word w.
EXAMPLE 1.4.
Let w=x"lyx"luxy. Ccompute dx, dy, dxy, dyx: Oxyx:

dgxg. €x, €y, €xy., and E€xyx-

dx(u)=—x—1—x_1gx_1+x—1gx—1g .
dulw)=x Lty tgx .
dx (W)=dx(d (W)
=—x—1—x*1-x—1gx_1—x_1—x_19x"1+x"19x'"1g .
dyx(W=dy(dx(n)
e '
=x"1gx1

O yx(W)=d x(dy x(W))

=—x-1+x_ ux_

exim)=—1—-141=—1.
Eyiw)=1+1+1=3.

ExyW)=—1—1—-1-1-141=—14.
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Exyx()=1—-1—-1-—-4=-2.
DEFINITION 1.14.
Let X be a non-empty set. A string J on the elements
of X is defined as follows:
J=x¢1x¢2. . . Xap
where for each xq,,Xq,,€X, Xg,#Xa,,- I1f n=0 we have an
empty string, which is also will be denoted by ®. The
length of J, denoted by t{(J), is given by n.
LEMMA 1. 4.
For any string JI=xg,xg,...Xg, and a,b€EZF we have
eftab) = > &gadkylb)
where the sum is taken over all ordered pairs (I,K) where

l=x¢1x¢2. - X -

; and K=x¢jﬂx¢".+2. . .Xg, such that J=IK (the

juxtaposition of strings I and K) including (J,9) and (@,7).
COROLLARY 1.3.

If string 1#® and g€F, then

sl(g“1)=Z(—1)"e.,1(g). eq (@

where the sum is taken over all I,1,...1,=1 with 15;60,
i=1,2,...,k.
LEMHMA 1.3

For A,BEZF,

k
dagaz. .. aAB=2 (1aanz- 2By g8, 8@
)=
+ Adasa,. .. (8).

LEMMA 1.6.

Let gieG(") and 9266(” and let | be a string on

generators of the group G.

(i) If t(1)Ki then efa)=0



i8

(ii) 1f YEmin{i, j} then &l(9192)=&1(91)+¢](92)
(iii) If 1)=i+J and l=1112=l'2l1 where l(li)=l(l'1)=i
and Y1 )=K1%)=j. then
) r r ).
51[91 92]=GI1(91)612(92)—"-11(91)612(92
COROLLARY 1.4,

The element gEG(n)

if and only if f.l(g)=0 for all strings
1 satisfying O<(I)<n.

EXAMPLE 1.9.

1 —1a

Let w=ababa™ b b ta ipa—tbhab 1a~1b~! be an element
of F. Show that NEI'“).
If 1)=1, then
cawl=1+1—-141-1-141-1=0
and sb(w)=1+1—1—1+1+1—1—1=0.
If 41)=2, then e,,,(W=0 and €paw)=0.
If K1)=3, then €L, (W=0 and ¢ (W)=0.

Let I=abab. Then eabab(u)=2.

Since Mababl=4 and e, (WD, by Corollary 1.4, weF ",

Remark 1.10.

The proof of the theorems, corollaries, and lemmas
stated in this section can be found in {41 and [151.

E. Algebras.
DEFINITION 1.15.

A bracket arrangement B" of weight n, is defined
recursively as a certain sequence of asterisks (which act
as place holders) and brackets (which indicate the order in
mhich commutation is performed) in the following manner:

There is only one bracket arrangement of weight one
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si-n).

A bracket arrangement B" of weight n>1 is obtained by
choosing bracket arrangement sk and 3" of weight k and m
~aspectively such that k4+m=n and setting

2"=(3%,s™,
that is, juxtaposing the sequences Sk and 3" and enclosing
the resulting sequence in a pair of brackets.
EXAMPLE 1.6.

According to the dafinition, the only bracket
arrangement of weight two is (k,%) and the bracket
arrangements of weight three are

(E,(%,%)) and ((¥,%) ,¥).
DEFINITION 1.16.

Let G be a group and let ay,...,an be a finite sequence
of elements of G and 3" be the bracket arrangement of
weight n. HWe define the elements

Sn(ai, ...,ap) of G
recursively as folloms:
Sﬁap = ay,

and if n>L and 3"=(3%,3™) then

3Nay, ..., ap=(8Nay,...,a0,3ap ... a0,
We call 3Ma,,....,an) a commutator of weight n on the
components ay,...,an.

DEFINITION 1.17.

Let R be a ring. An R-module is an abelian group A
together with a function RXA — A (the image (r,a) being
denoted by ra) such that for all r,s€R and a,bEA:

(i) r{a4b)=ra+4rb
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(ii) (r+4s)a=ra+tsa
(iii) r(sa)=(rs)a.
If R has an identity element ip and
(iv) 1ipa=a for all a€A,
then A is said to be a unitary R-module.
DEFIMITION 1.418.
Let R be a commutative ring with identity. An algebra
over R (or an R-algebra) A, is a ring A such that
(i) (A,4) is a unitary R-module.
(ii) r{ab)=(ra)b=a(rb) for all r€R and a,b€A.
EXAMPLE 1.7.
Let G be an additive abelian group and Z the ring of

integers. Let ¢ . ZXG — G be defined as
n
¢(n,9)=ng= E g
i=1

for any n€EZ and g9€G. Then for any n,m€Z, and a,b€G,

(i) n(a+b)-Z(a+b)—Za + Zb= na+nb.

i=1

n4m

(ii) (n+m)a=Za—Za + Za—na-l-nb
(iii) r\(ma)_Z(Za) iadnm)a

i=1i=1 i=1

(iv) 1.a=a.

Therefore G is a unitary Z-madule.

(v) n(ab)_Z(ab)={Za]b=(na)b

i=1

n
n(ab)=Z(ab)=aib=a(nb) .
i=1 i

=1



21

Hence, G is a Z-algebra.

THEOREM 1 .6.
Let R be a ring with identity. Let R{x] denote the set
of all sequences of elements of R as follows:
Rix]={(ag.,ay.,- . .)|ai€R and a;=0 except for finitely
many).

a) HRIx] is a ring with addition and multiplication

defined by:
(ag.,ay,-..)+(bg,by,...)=Cap+bg,a3+by,...)
and
(ag,ay,...)bg,by, ... )=(cg,Cq,...),
where

n
Cn= E an_ibi-

i=0

b) If R is commutative then so is R{x].

c) The map R —) H[x] given bu r —3 (r,0,0,...) is a
monomorphism of rings.

DEFINITION 1.19.

The ring R{x] is called the ring of polynomials over R,
and its elements are called polynomials.

We are going to identify R with its isomorphic image
in Rix] and write (r,0,0,...) bu r. HKWe will now explain the
notation R{x] and develop a more familiar notation for
polynomials.

THEOREM 1.7.

Let R be a ring and denote by x the element

(0,1.0,...) of Rixl. Then

a) x"=(D,D,...,D,1R,D,...), where 1R is the (n4+1i)st
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coordinate.

b) 1f r€R, then for each n30, rx"=(0,...,0,r,0,...),
where r is the (n+1i)st coordinate.

c) For every nonzero polunomial f in R{x] there exists
an integer n€N(natural numbers) and elements ag,....,apn€ER
such that F=a0x0+a2x2+...+anx". The integer n and the
elements a; are unique in the sense that

f=bgxD+b,x +. . . +bpx™ (b;ER)
implies m2n; a;=b; for i=1,2,...,n; and b;=0 for n<di<m.
Remark 1._11.

It is convenient to write

F=a0x0+a1x1+a2x2+...+anx"
as
F=a0+a1x1+a2x2+...+anx".
We will call x the indeterminate. Let us extend R[x]
to more than one indeterminate, namely Rlxg4,...,xpnl. For

simplicity, we will only consider the case where n<{eco.

Let N"=NX...XN (n is a positive integer) be the set of
all n-tuples of elements of N.
THEOREM 1.8.

Let R be a ring and denote by Rix4,...,xpl the set of
all functions f:N" —) R such that f(u)#0 for at most a
finite number of elements u of N™.

i) RIxy,....,xpnl is a ring with addition and
multiplication defined by

(f49)(u)=Ff(u)+g9(u) and

(f‘g)(u)=§ £F(v)Ig(w) vv,weEN"
V4RH=u
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where F,gER[xi, ...:Xn] and u€N" .

ii) If R is commutative then so is Rixy,...,xpnl.

iii) The map R — R{xy,...,xn] given by r —3 fr, where
£r(0,...,0)=r and f(u)=0 for all other u€N", is a

monomorphism of rinas.
Remark 1.12.

We can identify R with its homomorphic image in
Rlxy,...,xn] under the mapping described in Theorem 1.8.(iii).

Let n be a positive integer and for each i=i,...,n,
let

e;=(0,...,0,1,0,...,00€N",

where {1 is the i-th coordinate of e;. If keEN", let
kei=(0,...,0,k,0,...,0). Then every element of N may be
written in the form kjejt+kyeqt. . . +knen.

Let us find a more convenient notation for elements of
RIxy,....,xpnl.
THEOREM 1.9.

Let R be a ring with identity and n a positive

integer. For each i=1,...,n let x;€R(xy,...,xn]l be defined

by xi(ei)=1R and xi(u)=0 for use; .
k

i) For each integer kEN, xE(kei)=iR and xi(u)=0 for
u#kei;
ii) For each (ky,...,kn)€EN",

K
xal. . . xah(kye +...+knen)=1g and

. .
xai...x::(u)=0 for usk,;e;+...+knen;

iii)  xtr=rx} for all rerR and all ten;
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iv) For every nonzero polynomial f in R{x,,...,xpl
there exists a unique nonzero elements (ky4.,ky5....,k34),
(kpy,kpps. . 1kppds. .. stkng ko, ... ,knn? of N" and unique
elements ap,ay,...,an of R such that

kyy k kgy k k
+‘=aoxglx22. .- x&,+alx¢:1x¢f. .. xa,,""+a¢xaflx¢:2. .. x¢:"
kKas k k
+. .. +anxal'xay . . . Xap .

Remark 1.13.

If R is a ring with identity, then x4,...,xn are called
indeterminates. The elements ap,ay.,...,an in Theorem 1.9(iv)
are called the coefficients of the polynomial f. A

. ky kg ka . .
poluynomial of the form axg;Xg,..-Xa, is called a monomial.

For convenient, we will omit ¥ that appear with zero

exponent in a monomial, i.e.

ax&lxgz...x&nsa.

Then £ in Theorem 1.9.(iv) can be written as

k k k kg; k k
f=ao+alx¢:*x¢;2...x¢$"+a¢x¢f‘x¢:2...xafn
kps k
+...+anxg Xabt. . .x::".

As we observed from Theorem 1.9.(iv), a poluynomial is a sum
of monomials.
THEOREM 1.10.

Let R be a ring and denote by RI[x]] the set of all

sequences of elements of R, (ag,aq,...,an,...).
i) RI[x]]) is a ring with addition and multiplication
defined by:
(ag,ay,...)+(bg,by, ... )=(ag+bg,a4+by,...) and

(ao,ai,. .. )(bO'bi' N )=(CO'°1" A |
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where
n n
i= k+i=n

ii) The polynomial ring RIx] is a subring of RIIx]].

iii) If R is commutative, then so is RIIx]].
DEFINITION 1.20.

The ring RlIx]] is called the ring of formal power
series over the ring R. If R has an identity, then
x=(0,4Q,0,...)€RI[[x]]) is called an indeterminate or a

variable.

The power series (ao,ai,...)ERﬂk]] is denoted by the
m I3
formal sum E aixl. The elements a; are called coefficients
i=0

and ap is called the constant term.

Remark 1.14.

Let R[[xi,xz,...,xk]] be the set of all formal sums
axxx N
Xelk
where
ANy N Ny
=x¢:x¢2 .. XG. ’
ay=an,an,. ..an,, and
Ie=D=(ng,ny,....n)In;eztuon.

Let us define addition and multiplication, respectively, on
the elements of R[[xi,xz,...,xk]] by

2 ax D bx=> (a+byxt

X€ET) XET, XET,

P PAS PRS

XET, X€ET,
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where

o= z a-,bB.

B EY EDHN

Then Rllxy,x5,...,x,]1] is a ring of formal power series in n
variables with respect to the operations defined above.
Remark 1.15.

Let ZI[xy,...,x, 1] be the ring of formal power series in
k indeterminates. Scalar multiplication in ZI[xy,...,x,]]

is defined as follows:

z(z m)‘x)‘)=z (zmy ) x)‘

2T, XET,

Remark 1.16.

The degree of a nonzero monomial

axzing...x::ER[[xi,xz,,,_,xk]]
is the nonnegative integer ny+n,+...+n,.

Remark 1.17.

Proof of the theorems on ring of polynomials and ring
of formal power series can be found in ([3].
DEFINITION 1.21.

The algebra AZ,n) is the associative Z-algebra of
formal power series in the non-commuting variables
Xg4:---+Xpn. This algebra consists of formal power series in
X4,..-+%Xn With integer coefficients.

Remark 1.18.

The bracket [,]y is defined in the associative algebra
AZ,n) and is called the bracket multiplication or bracket
product. For two elements u and v in A(Z,n) we define

lu,vlg=uv—vu.
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The set of all elements g€A(Z,n) with constant term 1 is

a group under multiplication. If g=1i+h, then
aiot—nehZon3+ . H—0Knks
THEOREM 1 .11
1f AZ,n) is freely generated by x4,....,xXn, then the
elements
ag=1+xp, #=1,2,...,n
of AZ,n) are generators of a free group F(n) of rank n.
Moreover,
a;1=1—xp+x§—...+t—nkx5+...
DEFINITION 1.22.
Let W be a word in the free generators a, of F(n).
Using the mapping aygp —3 1+x,, W can be expressed as an
element of the power series ring AZ,n) in the form

1+uk+uk+1+...+un+... where u, is the non—vanishing

homogeneous component of the lowest positive degree. The

deviation 8(W) of W is defined by

D if W=0

(W)=
D {“k otherwise

DEFINITION 1.23.
The bracket arrangements in A(Z,n) is defined

recursively as follows:

8i(g,)=a, and

n k m

30(91. . .9n)=[30(91. . .gk).30(9k+1. . .gn)]o
where gy,...,9n€A(Z,n) and k+m=n.
EXAMPLE 1.8.

Let gi,gzeA(z,Z). Then,
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sg(gigz)ﬂlgi.9219.[92.91101.
LEMMA 1.8B.
Let U and V be words (non trivial) in the as=1+x,; and
lat 8U)=u;, 8V)=v,.
(i) Then, for all integers k,
sWM=ku;.
(ii) If j<k, then
SUV)=8(VU)=u ;.
(iii) If j=k and uj+vk¢0, then
SUV=B(VU)=u j+vy .
(iv) If j=k and uj+vk=0, then
W=0 or
degree §(UV)=degree 8VU)=j+1.
(v) 1If ujvk—vkuj¢0, then
QU ,VD=u ;v —vyu ;.
(vi) I#f Uij—VkUj=D: then
Ww=wW or
degree 8QU,VD=ji+k+1.
(vii) suTlv=v, . 1151
REMARK 1.19.
Let W be a word in F{(n) under the mapping

F(n) — A(Z,n).

It can be shown that S(N)=uk=2 2;30(ay...,9m) where )\€Z
i

and g4,...,9,€A(Z,n). The weight of the bracket

arrangement Sg(gi...,gm) may or may not be equal to the

degree of the monomial u . The degree of the deviation §W)

is the weight of the bracket arrangement 3@(91...,gm),



i.e., degree &W=m.
EXAMPLE 1.9.

Suppose {xy,....,xn) is a set of free generators of
AZ,5). Then a;=1+x; for i=1,...,3 are the generators for

the free group F(5). Let U=a;ag and V=azazi be words in

the generators of F(5). Find 8UY, 8v9, swuv), sw—lvy,

8(V—1UV), and &IV ,VD. Moreover, find the degree of each

deviation.
1) ajag —F (1+x4Xi+xg)

n =1 Hxy+xz)+x4Xx3.

a Hence, 8(W=x4+xg=uy.

k 2y azlaz!

azl — Axt—x +xZ—. . H-0"xD+.. )

A —xg+xg—. . H-D"xG+. . )
+ (xz—x2x4+x2x§—. . .-{-(—1)"!212+. |

=1+(x2—x4)+(x%—x2x‘)+ ...

Hence, 8(V)=Xxp—x,=v,.
Therefore,
1) 8UH=2x,+xy and degree HUH=1.
2) 8vH=2x,—x, and degree 8(VH)=1.

3) 8(UV)=8(VU)=x1+x3+x2—x4 and degree §{UV)=1.

&) s lvn=x,—x, and degree sUTivu=1.

5) 8V h=x,+x5 and degree (Vv iuw =1,

6) 8qU,VD=(x3+x3)(xo—x4)—(Xxp—x4)(x4+x73)
==xixz—xix4+x3!2—1314—xzx1—1213+x4!1'}'!4!3
={xy,xzloHx 4, x4]oHx3, x2loHx 4 . X5)0.-

Hence, degree 8IU,VD=2



Remark 1.20.
The proof of the theorems, lemmas, and corollaries in
this section can be found in [9] unless specified

ciLnernise.
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CHAPTER 2

LINKS and BRAIDS

A. Links.
DEFINITION 2.1.

A link is a finite collection of disjoint simple
closed curves in 3-dimensional space R3, the individual
simple closed curves being called the components of the
link. A 1link of just one component is a knot.
DEFINITION 2.2.

In Formal Knot Theory, we closely abstract the rope

drawings that represent knots.

O

Figure 2.1
We call the picture on the right as knot diagram. It
contains all necessary information for constructing the
knot out of rope and it presents a specific form for an
embedding of a circle, 51, in R3. To see this embedding,
we must understand that a broken line indicates where one

part of the curve undercrosses the other part.

Figure 2.2
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DEFINITION 2.3.

Two link diagrams, L and L’, are equivalent if there
exists a finite sequence of Reidemeister moves
(R-moves) that transforms the link diagram L into the link

diagram L’ or vice versa.

30 2D -0

3L -DC- 1

Figure 2.3.
For simplicity, we will use the word 1link to denoctes the
link diagram.

EXAMPLE 2.1.

/'\

—>
1

H 1

Figure 2.4.
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Remark 2.1.

A link is split if it is equivalent to a link with
diagram containing two nonempty parts that live in disjoint
neighborhoods.

EXAMPLE 2.2.

Thus

A>p = A&

Figure 2.95.
is a split 1link.

B. Linking Number.

To each crossing in an oriented link, we associate a

sign N such that

Figure 2.6.
DEFINITION 2.4,
Let L=clf be a link of two components. Let alU8 denote
the set of crossings of @ with 8. Then

ek (L)=tkia , 5=} Z ™).
pEalip
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This formula defines the linking number for a given
diagram.

EXAMPLE Z.3.

A

a) q{::><i:<:jj:} tkia ,8)=+2.

f

b) it tkiz ,£)=0.

A

Figure 2.7.
Remark 2.2.

If a 2-component link L splits, then tk(L)=0. The
converse, however, is false as shown in the examples 2Z.3(b)
and 2.3(c).

C. Fundamental Group.

Associated to a link L in R3 is the fundamental group
of the complementary space, R3—L, of the link, and it is
denoted by 11(R3—L). For simplicity, we will denote the

fundamental group of a link L by 11(L). There exists an
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algorithm called the Wirtinger presentation for finding
xg (L)
The Wirtinger Presentation.

This is a procedure for writing down a presentation of
the group of a knot K in R3. given the diagram of the knot.
We labelled each arc in K by &4,...,a8n such that each a; is
assumed connected to &;_4 and Ti1 {mod n) by

undercrossing arcs exactly as pictured below.

x;‘ e Xy

“l
tz, Figure 2.8

We assume for convenience that all ai's are oriented

compatibly with the order of their subscripts. Draw a

passing under each a; in a right-

short arrow labelled x; i

i
left direction. This is supposed to represent a loop in
RB—K where a point % is taken to be the basepoint (best
imagined as the eye of the viewer), and the loop consists
of the oriented triangle from « to the tail of x;, along x;

to the head, thence back to *.

There is a certain relation among the xi's which must

hold. The two possibilities are: oy
A “x
X, Xk —_—
— | — l
"LT T"«‘-ﬂ "iT T"tu
A | | > A4 «; | | > RIPY
Exk - A -
) v
Fi* XgX;=X;41%k XiXpk=XKXji41

Figure 2.9.
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Here &, is the arc passing over the gap from «; to @i 41
(k=i or i+1 is possible). Let r; denote whichever of the
two equations holds. In all, there are exactly n relations
ry:,....rn which may be read off this way. These comprise a

complete set of relations.

THEOREM 2.1.

The group ii(K) is generated by (homotopy classes) x;

and has presentation

'1(L)={xi, ... 2Xn | r‘i,. .. ,r‘n).
Moreover, any one of the r; may be omitted and the above
remains true.[121]

EXAMPLE 2.4.

The Figure-Eight Knot

oyl

Figure 2.10.

For the Figure-Eight knot, we have a presentation with
generators x;, x3, Xxg, X4 and relations

(1) xyxq9=x3X5,

(2) x4xp=Xx3%y4,

(3) xgxy=x4xg4.
We may simplify, using (1) and (3) to eliminate x2=x§1xix3
and x4=xI1x3x1 and substitute into (2) to obtain the

equivalent presentation ti(Figure-eight knot)={xi,x3 I r)



37

where
r: inx3xix§ixixa=x3xI1x3xi.
The argument establishing the Wirtinger presentation

theorem adapts in an obvious manner to links.

EXAMPLE 2.5.
‘X-,, ln

Va / /

Figure 2.11

The trivial 1link (disjoint circles in a plane) of n

components has group

{x4,....xpn | xy=...=xp=1) = Free group of rank n.

EXAMPLE 2.6.

The Borromean Ring.

Yoy

Figure 2.12.

The fundamental group, ti(L), has a presentation
ii(L)={ai,az.a3 | r'i,r‘zl
where
r1={az,[ai,agiﬂ and

r2={a3,[a2,afiﬂ.



D. Braids.

Let o o o o o
z; Z;—y Z; Ziva Ziy2

Y.
e

r 2 r 2
zy zi.y Z Ziss Zis2

._q
N * $

and

0 0 o 0
Zy Z,. Z .ﬂ Z42 Zn

P N
o - .///’ [
zy Ziny Zi  Ziy Ziws Zn

Figure 2.13.

We define the multiplication of o; and oy denoted by G0

20 (1]
.+1 Z;41 Zp
Ui:
Uj-
. s
Zisy ,+1 Zn

Figure 2.14.

by

If j#i or i4+1 then we can use the following diagram to
define u’iu'j
.+1 ; 23+1 22
Zn

z Zzu l,,u

i’

Figure 2.195.

THEOREM 2.2. [Artin,19251

The group x;(Bn) admits a presentation with generators

38
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Cq+-.-.0,_4 and defining relations
Ci0; =00 if |i—j|22, 1€i, i<n-1
Ci0i410i=Ci 41030 44 1€i<n-2.

(Here B denotes braid with n strinags.)
For simplicity, we will use Bn when we mean x4(Bp).
Remark 2.3.
Define
A=(0405.. .0,_4)(0405...0,_2)...(0405)(04).
Then, in Garside's treatment, it is shown that each element
BEB, has a unique normal form:
p=a"P
where m is an integer, and P is a positive word. m is
called the power of 8, and P is the tail of 8.
EXAMPLE 2.7.
Let B=ﬂiozuiu§. Then BE€EB; since 8 is in a normal form

where A=010201, m=1, and P=ﬂ%. The diagram of B8 is as

follows:
i £ =%
:S\\o
2y 2z zZa
Figure 2.16.
Remark 2.4.
2

A k,k)DEZ is a pure braid.
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EXAMPLE 2.8.

B=(v,050,)2€B; is a pure braid.

)

P

/

«

Figure 2.17

Closed braid and Link.

Let L be an oriented link. Choose a point p not on any
strand of L (p can be viewed as the point of intersection
between a line p that is orthogonal to the plane on which
the link LER3 is projected onto). Assign a positive
direction of rotation obout p (consider the right hand rule
being applied to £). An edae ab of L is said to be
positively (resp. negatively) oriented if a radius vector
from p to ab rotates in a positive (resp. negative)
direction about p in going from a to b along ab.

DEFINITION 2.5.

A link L is said to be a closed braid, denoted by L if
all of its edges are positively oriented.
Remark 2.5.

The hejight of a link L, denoted h(L), is the number of
negative edges, and is the measure of how far the link is

from being a closed braid.



EXAMPLE Z.9.

Trefoil knot types.

Figure 2.18.
L is a closed braid since it has height 0. L has
height 4, hence not a closed braid.
Remark 2.6. .
An open braid 8 wmay be used to construct a closed braid
B, by identifying the initial points and end points of each
of the braid strings.

EXAMPLE 2.10.

%

8 ]
Figure 2.19.

THEOREM 2.3.[Alexander]

Every link is combinatorially equivalent to a closed

braid.

Remark 2.7.

For any pure braid BEB,, the closed braid B associated

to 8 is a 1link with n components.

41
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EXAMPLE 2.11.

(K

Figure 2.20.

COROLLARY 2.1.

The braid group B has a faithful representation as a
group of (right) automorphisms of a free group Fp generated
by ag,...,an, of rank n. The representation is induced by
a mapping £ from B, to Aut Fn defined by:

o : aj; ——4-aiai+1a;1
Qjeg —F 35
aj — a; if j##i,i4t.
EXAMPLE 2.12.
Consider Bgz. Let Fg=(a;,ap,ag). Then under the

mapping £ as defined above, Bp has a representation as an

Aut F3 where

0'1 H ai -—) alazafi a;i—é 3135131—1
ap — ag a§1—+ aiagiaiazari
ag — ag a§1-+ agi

oz : a4 — ay ap'o a7t




ap —baza3a51 aii—baiaiiari

33 — 32 351""’ 323513233851

THEOREM Z2.4. [Artin, 19231

Let Fh=(ay,...,an) be a free group of rank n. Let 8
be an endomorphism of Fn. Then BEBLCAut Fp, if and only if
B satisfies the two conditions

1 1<i<n

(a;)8=A;a, iAi—
(ajap...apnB=ajas...an
where (f,y,...,4n) is a permutation of (1,...,n), and
A;=A;jlay,...,an) is a word in the generators of Fp.
EXAMPLE 2.13.
Consider g€B5;. Let B=040, and Fg=(a;,az,a3z). Then
01021 3y — oy ay=agazayt
az — v o Aah=ry(azagaz’)
=aia3aia§1a1azafi
ag — oyloxlag)=o0(az)=a,
ajagag —4 o4lop(ajajzag)=ajazag
Since o405(a5) is not in the form described as in the
theorem above, B€EBnZAut Fg.
THEOREM 2.5. [Artinl
Let B€EBL and suppose that the action on the free group
Fpn is given by the Theorem 2.4. Let 8 be the link
determined by the braid 8. Then the fundamental group
1553-4b of the complement of B8 in 53 admits the
presentation:
generators: ay,...,an

defining relations: aizAi(ai,...,an)a“iAfi(ai,...,an)

43
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where 1<i{n-1 and {; is a permutation of (1,...,n).
HMoreover, every link group admits such a presentation.
EXAMPLE 2.14.

See example 2.6. for the fundamental group of the
Borromean Rings.

Remark 2.8.
Proofs of the theorems and the corollaries in this

section can be found in ([2].



CHAPTER 3

Determining Vanishing Triple Products

DEFINITION 3.1.

Let F be a free group generated by a and let W be a

i:

word on a; (W£@). The weight of W, denoted by w(KW), is

the largest integer n such that HGF(n), but W ﬁF(n+1).
THEOREM 3.1.

Let F be a free group generated by a;,...,ay, and let W
be a word on ag,...,a, (W#0). 1f wll)=n and 8(W)=uy, then

the degree of 8§W) is greater or equal to n.[13]

THEOREM 3.2.
Let BGBk and let G={aﬂrﬂ be the fundamental group of
—1,-—-1

i=ajAjag; A

B, where rj

Then,

(i) If u;=i for some i, w(A;)=2, degree 8§A;) is not
zero, and 8(r;) is not zero, then there exists a non-
vanishing Triple Product.

(ii) If i=i; for some i, wA;) is the same for all i
and «A;)>2, then all Triple Products vanish.

(iii) For every Wer‘3’

NN where N is the normal
subgroup generated by the generators of G, there are
integers k,p, and (ngqy,Ngp,...,Nq), (Npq,Np5,....,05,.),
(npi'an""'npk) such that

S GRS G RO
for jy,ig,...,J €{1,...,5) where s is the number of

generators of G. 1+ ui¢i for all i,(dAp is the same for
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all i, and

p

Z(ni 1+ . -+n; klﬁ(ai)—s(aui));&o,

i=1
then all Triple Products vanish.[16]

PROBLEM 1.

Let G=(a1,a2,a3|r1=a1a2a3351a§iaria:aazagia'z—i} be the
fundamental group of a link. Determine if all Triple
Products vanish.

ry is of the form aiAi(ai,aZ,aa)aiiiAi_i(ai,az,aa) where
i=1, #4=1, and Ai(ai,az,a3)=aza3aiia§1.

1) For l=ay, I=agp, or l=az we are going to show that
€ {Ay)=0.

‘31(A1)=0 since A; does not have any sequence of a;’s.

eaz(A1)=1-1=D by Lemma 1.3.

533(A1)=1—1=D by Lemma 1.3.

2) We will show that for at least one of the following
strings I=ajay;, I=ajag, or l=ajzag will have ¢[A)#D.

"aiaz(Ai):D since A; does not have any occurrences of

ajap.

53133(A1)=0 since Ay; does not have any occurrences of

ajag.

53233(A1)=1—1+1=1 by Lemma 1._3.

Hence, by Corollary 1. 4. Aier(Z)and Aiﬁ(m. Therefore, by

Definition 3.1 we have u)(A1)=2.
3) Next, we nWill show that the deviation of ry. S(r‘i), and
the degree of 8(r‘1) do not vanish.

Let U=a; and Vzazaaaiiagi. Under the mapping
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Fy3 — AZ,3) defined by

a; & 1+x;

afi—p1—«i+x%—x?+...+(—i)"x?+...
we have

U — 1+4x4

V 2 1 Hxpx3—xgXp)

-Hx3xzx2—xzx3x2+x3x%—x2x§+xg—x%+...

Hence, by Definition 1.22, we have

§U)=x 4

8(V)=x9Xgq—X3X3
By Lemma 1.8(v),
—1,-1

S(UVU ) =xﬁxzxa—xaxzr4x2x3—x3xﬂxi

=[11 -[12 ’ Ia]o]o

Hence, the degree of 8(A1)=3.

Finally, by Theorem 3.2(i) we can conclude that there
exists a non-vanishing Triple Product.
PROBLEM 2.

Let G={a ,ag,ag,a4l r} be the fundamental group of a
link where
r=a1a2a3a4a§1azia§1a4a3a;iagiaria3a4a§1a;1a234a33;135iaii.
Determine if all Triple Products vanish.

r is also of the form aiAi(ai,az,aa)aﬂ'iiA'i-i(ai,az,aa)

where i=1, #;=1, and A1=a2a3a4a§1a;1351a4a3a;1351. As in

problem 1 we will find the weight of Ai' Since

53233(A1)=5a2a4(A1)=6a3a4(A1)=€'a4aa(A1)=D ’ and

—— = e ew e m mes -




6828334(A1)=1 »

we conclude that Aiel‘(a) and Aiﬂ’(4). Hence u(A1)=3>2.

Therefore by Theorem 3.2(ii), all Triple Products vanish.

PROBLEM 3.

Let L be the Borromean Rings. Then

ii(L)={a1 ’ az . 33"‘1 ’ r‘z]
mhere r1={az,[a1,agin and r2={a3,[a2,afiﬂ.
r1=azaiagiafiaaaziaglaia3aI1,

r2=a3a2afiaglaiagiafiazaiagi

AB

Both ry and r, are of the form as described in Theorem 3.2.

where A1=a1a§1afla3, A2=a2afia§1a1, R4=1, and U,=2.
Then

1) E.ai(Ai)z&aB(Ai)=0.
2) eagagA=—141-1=—1.
3) Gai(Az)ﬂaz(A2)=D -

4) Gaiaz(A1)=1 .

(3) which imply that

By Corollary 1.4, Ai,Azel'-‘(Z) and Ai,AZEF
‘-‘Ai)ﬂxﬁz)=2.

Computing the deviation for ry and r, wWe abtain

8(a1)=xi 8(a3)=X3
8(A1)=x3x1—-x1x3 8(A2)=X1XZ-—szi
Hence,

8(P1)=8([a1 » Aj_])

e = mmmraa o= o




=X 1(1 gXg—X4X 3)—(x3x 4—x4X 3)11
=XgXgXg—XgXgX3—X3XgXg+XgX3Xy

=[11 -[13. 1110]0

Similarly 8rp={xqg,[x,, xzlolo -

Therefore, by Theorem 3.2(i) there exists a non-

vanishing Triple Product.
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