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In st.udying Knot. Theory. one fundam~nt.al problem is t.o 

det.ermine whet.her t.wo links are equivalent.. Many 

polynomials ar2 defined axiomat.ically or algebraically 

which answered part.ially t.he quest.ion of det.ermining t.he 

equivalence of t.wo links. Using t.he Linking Number. one 

can classify 2-component. links int.o t.wo classes: t.hose t.hat. 

have Linking Number zero and t.hose t.hat. do not.. Using 

Triple Product.s one can classify links wit.h 3-component.s 

int.o t.NO classes: t.hose t.hat. have all Triple Product.s zero 

and t.hose t.hat. have at. least. one non-zero Triple Product.. 

Det.ermining Vanishing Triple Product.s using t.he definit.ion 

is beyond t.he scope of t.his t.hesis since it. requires an 

int.ensive st.udy of Cohomology Group Theory and Lie 

Algebras. In t.his t.hesis. an algorit.hm developed by Dr. 

St.efanos Gialamas is used. in order t.o det.ect. vanishing 

Triple Product.s in t.he complement. of a link wit.h 

3-component.s. The algorit.hm requires a present.at.ion of t.he 

fundament.al group of t.he link (Wirt.inger Present.at.ion) and 

t.echniques from t.he Commut.at.or Calculus and t.he Fox 

Derivat.ives. 

The algorit.hm is applied t.o closed braids. which are 

links. and answers t.he quest.ion: which closed braids have 

all Triple Product.s vanished? 464061 DP DEC '~':11;: 
' . '~'. "",., 
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a-tAPTER 0 

INTRODUCTION 

A. Historical backgroud. 

Triple Products on a complement of a link were 

introduced by Hiroshi Uehara and W. S. Massey in their 

paper entitled uThe Jacobi Identity for Whitehead Products N 

as higher order cohomology operation. In 1967, W. S. 

Hassey used homology theory to define Triple Products in 

his paper UHigher Order Linking Number u presented at the 

Conference of Algebraic Topology, University of Illinois at 

Chicago, Chicago 1968. David Kraines extended and analyzed 

the theory of Triple Products in his paper entitled uLoop 

Operationsu which was also presented at the same 

conference. 

A different approach into the study of k-fold products 

using Hodge Theory was introduced by John Morgan and Alan 

Durfee. Topologists such as Clint McCrory, Larry Lambe, 

and Richard Hain also contributed to the study of k-fold 

products by using Intersection Theory. 

An algebraic approach to determine vanishing Triple 

Products was developed by Stefanos Gialamas in his Ph. D. 

desertation and later. k-folds Products. Moreover, this 

approach was applied to closed braids. 

B. The Triple Products. 

Let L be a link with more than two components. Let 

H1 (R3-LiZ) be the first cohomology group of the complement 

of the link. Let f,g,hEH1 (R3-LiZ) and choose f, g, and fi 
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one-cocycles such that [1]=f, [9]=9, and [~]=h. Choose 

one-cochains e and ~ such that 1.g=d9 ~nd g.~=dP. 

The tNo-cycles c=1~-efi represents the element 

<f,9,h)EH1 (R3-L;Z) 

Nhich Ne call the Triple Product of f, g, and h. 

C. Purpose of this thesis. 

As stated in the abstract, the purpose of this thesis 

is not to determine Vanishing Triple Products by using the 

definition but to give the algorithm determining vanishing 

Triple Products developed by 5tefanos Gi~l~mas and apply it 

to closed braids and anSNer the Question: Given ~ closed 

braid, determine if all Triple Products vanish? 

We are only concerned Nith closed braids, since all 

links are combinatorially equivalent to some closed br~ids. 

If a closed braid has some non-vanishing Triple Product 

then the associated link cannot be pulled apart, as in the 

case of the Borromean Rings. 

In order to use the algorithm, Ne need some backgroud 

on Commutator Calculus and Associ~te Algebra. Chapter 1 of 

this thesis is Nritten for this purpose. In Chapter 2, Ne 

introduce the notions of links and br~ids, ~nd Ne give the 

algorithm to find the Fundamental Group of the complement 

of a link, and its associ~ted closed br~id. The ~lgorithm 

to determine vanishing Triple Products is given by Theorem 

3.2. We ~lso present some problems and their solutions 

concerning Vanishing Triple Products. 



a-tAPTER 1
 

COMMUTATOR CALCULUS and ALGEBRA
 

A. Free Groups. 

DEFINITION 1.1. 

Let X be an arbitrary nonempty set. A free group on X 

is a group F together with a map ~:X ~ F such that for 

any map ':X ~ G where G is any group, there exists a 

uniQue homomorphism f:F ~ G such that the following 

diagram commutes 

yF 
X If 

~ 
G. 

Remark 1.1. 

This definition only characterizes a free group. We 

are yet to show the uniQueness and the existence of such a 

group. We are going to denote the free group F on a set X 

with respect to the function ~:X ~ F by the pair (F,~). 

The following theorem gives another characteristic of 

a free group. 

THEOREM 1.1. (UniQueness theorem) 

Let (F,~) and (F',~) be free groups on the same set X. 

Then there exists a uniQue isomorphism h:F ~ F' such that 

the following diagram is commutative: 
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~F 
X 
~Ih 

F' 

Proof. 

Since (F,~) is a free group, then it follows from the 

definition that there exists a unique homomorphism 

i : F -----t F' such tha t. j ..=f". 

F 

Y 
1j 

x~ 
FI 

Similarly, there exists a unique homomorphism k:F' -----t F 

such that k..'==9J. 

yr 
X 
~Ik 

F 

Let h=koj. Consider the following diagram: 

F y 
X
~lli 

F
 

Here, i denot.es the identity mapping. Moreover,
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h,,=koj"=koV=fJ . 

iof)='P . 

Hence, it folloNs from the uniqueness in the Definition i.i. 

that koj=h=i. But, since i is a monomorphism, j is 

one-to-one. Similarly, it can be shoNn that jok=i Nhich 

implies that j is also onto. Therefore, j is an 

isomorphism.D 

Let X be a nonempty (finite or infinite) set of 

symbols xi' iEI. We think of X as an alphabet and the xi 

as letters in the alphabet. We shall denote these symbols 

also by xi and Ne construct another set X-i that is 

disjoint from X such that IXI=IX-il and denote the elements 

of X-i by xii, iEI (for example take X-i=(x,i) ixEX) and 

identify (x,i) by x-i). 

DEFINITION i.2. 

A Nord N in X is a finite sequence of symbols from 

XUX-i , Nritten for convenience in the form 

61 ~ 6,. 
W=X&1X~ ... x&,. 

Nhere X&iEX, 6;=±i, and n~OE I . In case n=O the sequence is 

empty and N is called the empty word Nhich Nill be denoted 

by 0. TNO Nords are said to be equal if and only if they 

have the same symbols in corresponding positions. w is 

said to be reduced if it contains no pair of consecutive 

-i -isymbols of the form x&;x&i or x&i x&i· 

Let F(X) be the set of all reduced Nords on X. Let 

multiplication be the binary operation on the elements of 

F(X) Nhere it is defined to be as folloNs: 

If Ni and NZ are tNO reduced Nords Nhere 
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&1 ~ &" 
W1=X41xf&2. . - X4" (&i=±1) 

61 62 't
W2=XS1X~. - . X't (6 i=±l) 

then, the product of w1 and w2' denoted by w1w2' can be 

found by writing w2 immediately following w1' i.e. 

E.1 ~ &" 61 62 't
w1w2=X41XtI:l- .. XCl"X'1x~ ... x,. 

But, the word on the right may not be reduced if
 

&" -61
 Therefore, we redefine the product of w1 and w2X4It=X'1 

by juxtaposition and (if necessary) carry out certain 

cancellations, that is to delete successive pairs of 

symbols with opposite exponent standing next to one 

another. Clearly, it can happen that in performing these 

cancellations we delete all the symbols of one of the 

factors w1' wZ' or both. 

The identity element for the multiplication of reduced 

words so defined is the empty word. 

The inverse of w1 is 

-1 ~It ~_1 ~1 
w1 =X4" X4_1 - x41 

The proof of the associative law of the multiplication 

is a little laborious and will be omitted. Hence, the 

following lemma is proved: 

LEf1'1A 1. 1. 

F(X) is a group with respect to the operation defined 

above. 

The following theorem will show that the group F(X) is 

the free group on X. 
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THEOREM 1.2. (Existence theorem) 

Let X be a non-empty set and F(X) be the group of all 

reduced Nords on X. Let p:X ~ F(X) be a map defined by 

P(x)=x'EF for any xEX. Then (F,p) is the free group on the 

set X. 

Proof. 

Let 6 be any group and .:X ~ G be any function. 

Define f: F(X) ~ G as follows: 

Let NEF(X). If N is the empty Nord 0, Ne define 

f(N)=16 , otherwise if N is in the form 

6-1 ~ £It
W=X«1x~ ... x«1t 

we define 

titf(w)=['(XI&1)]£1 ... [f(x,..,) . 

Let N1 and w2 be reduced words as defined previously. 

Then 
6-1 £It 61 6.

f (w1w2 )=f (XI&1 ... X,..,X'1' .. x".) 

£1 fit 61 6.=[.(XI&1)] ... [.(x,..,) [V(X'1)] ' .. [.(x,.)] 

=f (N1 )of (N2) . 

Therefore, f is a homomorphism. Moreover, f~=-. 

To prove the uniqueness of f, let g:F ~ G be an 

arbitrary homomorphism such that g~=-. Then, for any 

~ ~ W=X«1" .x,..,EF(X)	 Ne have 

Eo1 6-1t9 (w ) =g ( X«1· .. x«1t ) 

=[g (X«1 )]£1 ... [g( x«It)f" 

tit=[g(P(X«1»]£1 ... [g(P(X«It» 

£1 £It=£J ( X«1 )] ... [. ( X«1t )] 
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fit==(f (XA1)]&1 ... [f (XAIt) 

=f(~) 

Hence g(~)=f(N) ~hich implies that g5f.0 

DEFINITION 1. 3. 

The group F(X) is called the free group on the set X. 

As Ne can see, the free group F(X) does not depend on 

the individual properties of the elements of X. The rank 

of F(X) is define to be the cardinal number of the set X. 

Let us shift our attention back to the map ~:X ~ F(X) 

defined by ~(x)=x'. Since ~ is one-to-one, ~e may identify 

x ~ith its image ~(x) in F(X). Having done so, ~e can 

think of X as a subset of F(X) since each element of F(X) 

can be ~ritten as a product of elements of X. Thus, X 

constitutes a generating set for F(X). The group F(X) 

sometimes is referred to as the free group generated by X. 

EXAI-PLE 1.1. 

Let X:=(xl'.·. , xsJ· Let ~1 and ~z be t~o ~ords of the 

-1 -1 -1 -1 elements of XUX such that ~l=xlxZ x3x 4x 4 x3 x5xl and 

-1 -1 -1 T . .wZ=xl Xs x3x 4 xl· he ~ord ~Z IS In the reduced form but 

~1 is not. ~1=xlx21xsxl is the reduced form of ~1. 

-1 1 -1 -1 -1 
~lwZ=xlxZ xsx xl Xs x3x 4 xl 

-1 -1 
== xlxZ x3x4 xl·
 

-1 -1 -1 -1
 
~1 = xl Xs xZxl and 

-1 -1 -1Wz == xl x4 x3 xSxl· 
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B. Group Presentation. 

DEFINITION 1. 4. 

Let G be a group generated by a subset X of G. By a 

relation among elements of X, we mean a finite product 

ulu2 ... un of elements of X or their inverses where 

u1u2' .. un=1G· 

THEOREM 1.3. (Nielsen-Schreier) 

Any subgroup of a free group is free. 

Remark 1.2. 

The proof of the above theorem can be found in [9] 

page 95. 

THEOREM 1. 4. 

Any group is a homomorphic image of a free group. 

Proof. 

Let G be any group. Let X be a set of generators of G 

(we can take X=G). By the existence theorem, there exists 

a free group F(X) with X as its set of generators. 

Consider the following diagram: 

~(X) 

X~ 3!f 

i~ 
G 

f is a unique homomorphism such that 

fOfl=i=t (fOfl) (x )=f {fH x) )=i( x) 

Moreover,f is onto. For any gEG, 9 can be written as a 

finite product of elements of X, i.e. 

£1 '-2 £"g=XCl1x~ ... XCI" where £ i =±1 . 
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" Eo! ~ f;.. Eo! ~ Eo.SJ.nce fJ(XCl!X~... xCl.)EF(X), f(fJ(XCllxCla· .. XCI.) )=g. Hence 

f ( F ( X) ) =G .D 

By the Fundamental Theorem of group homomorphism, we 

have, 

COROLLARY 1.1. 

Every group is isomorphic to a factor group of a free 

group. 

Consider the following diagram: 

f:F(X) ---t G 

;:! 
F(X)/Ker f 

Let R be a set of generators of the free group F(X). 

Since F(X) is completely determined by X and N(R)~F(X) is 

completely determined by R, then the group G~F(X)/N(R) can 

be completely described by specifying a set X, whose 

elements are called the generators of G and the set R, 

whose elements are called the defining relations of G. We 

denote this by G=={XIRJ where G is generated by the set XCG. 

This is the presentation of the group G. 

From the above discussion, we can see that given a set 

of generators X and a set of relations R among the elements 

of X, we can find the group that is presented by (XfQ. 

To explain the terminology let r=u1uZ" .. un=1 be a 

relation among the generators of G, where uiEXUX-1. Let 

F(X) be the free group on the set X and let i:X ---t F(X) be 

an inclusion identity mapping. Next, we will extend i to 

X-1 by setting i<x-1 )=(i(x»-1 VxEX. So, i is def i ne as 

I( r) =i ( u1 )1( Uz ) " .. I( un) 
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which is a uniQue element of F(X). 

Let the homomorphism f:F(X) ~ G be onto which 

satisfies 

f (i (x) )=x and 

f(i(x-1 »=x-1 VxEX. 

Then, 

f (t( r) )=u1uZ' .. un=r=l. 

Hence, t( r )EKer f. 

Conversely, let 7EKer f and let 

7=i(ul)i(uZ)" .Hun)· 

Since 7EKer f, we have f(7)=0. But 

f(7)=uluZ' .. un=l in G. 

Thus, the "reduced" relations among the elements of X and 

the elements of the free group F(X) which lie in Ker fare 

in one-to-one correspondence. 

EXAt-PLE 1.Z. 

Let G={1,a,a2) be a group where 

I 1 a a• 2 

21 1 a a


2
a a a 1 

a 2 I a 2 1 a 

Then, G has a presentation {ala3=1l. 

Remark 1.3. 

Presentation of a group is not uniQue. 

C. Commutator Subgroup and Group Ring. 

DEFINITION 1.5. 

The commutator of two elements x and y in a group G is 

an expression of the form [x,yl=xYX-1y-l. If X and Yare 
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subse~s of G ~hen [X,~ is ~he subgroup genera~ed by all
 

elemen~s [x ,y] "here xEX and yEV.
 

DEFINITION 1.6.
 

The lo"er cen~ral series of a group G is ~he seQuence 

of G(n) (n~l) defined induc~ively by 

G(1)=G, 

G(n)=[G(n-l) , G] 

(n-l)"here [G ,G] deno~es ~he n-~h commu~a~or subgroup 

-1 -1. (n-l)
genera~ed by all commu~a~ors [x,y]=xyx y "l~h xEG
 

and yEG.
 

Remark 1.4.
 

G(1)r>-G(2)r>- ... r>-G(n-l)r>-G(n)r>- ... Moreover, G(n-1)/G(n) is an 

abelian group. 

DEFINITION 1.7. 

A ring is a nonemp~y se~ R ~oge~her "i~h ~"o binary 

opera~ions (usually deno~ed as addi~ion (+) and 

mul~iplica~ion) such lha~: 

( i ) (R, +) is an abel i an group. 

(i i) (ab)c=a(bc) for all a, b, cER. 

( iii) a(b+c)=ab+ac and (a+b)c=ac+bc. 

If in addilion: 

(iv) ab=ba for all a,bER, 

lhen R is said ~o be a commu~a~ive ring. If R conlains an 

elemenl l R such lhal 

(v) l Ra=alR=a for all aER, 

~hen R is said ~o be a ring "ilh iden~ily. 

DEFINITION 1.8. 

Le~ R be a ring "ilh idenlily l R and G a 
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multiplicative group. We define the group ring RG to be 

the set of all formal sums 

RG={ ~ rg.g I rgER and rg=O except for finitely many} 
gEG 

gEG . 

where the addition in RG is defined by: 

( ~ rg. 9 ) + ( L rg. 9 ) - ~(rg + rg). 9 
g~ g~ g~ 

and .ultiplication in RG is define by: 

(L rg. 9 ) . ( L rg. 9 ) = >' ( L rg1 · r. ). 9 
gEG gEG ~ g192=g 

Remark 1.5. 

RG with these two operations can be shown to form a 

ring with identity l R·lG denoted by l RG . 

EXAJoPLE 1.3. 

Let Z be the ring of integers and G be any group. Then 

the group ring ZG is define as follows: 

ZG={~ n·g· I n·EZ, 9.EG}L- 1 1 1 1 
i 

where the summation is a finite sum. 

Remark 1.6. 

The map i: Z ---t ZG def i ned by i( n) =n . I G is a ring 

monomorphism. Thus under the identification n5n.1G , Z 

becomes a subring of the group ring ZG. 

Remark 1.7. 

The map j:G ---t ZG given by jeg)=lZ .g is a group 

monomorphism and under the identification g51Z .g, G 

becomes a subgroup of eZG,+). 
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D. Commutator calculus. 

Remark 1.8. 

Throughout this section, F will denotes the free group 

on a non-empty set. 

DEFINITION 1. 9. 

Let G be any group and ~:ZG ~ Z be defined by 

4 Lng·g)=Lng.
 
gEG gEG
 

It is called the augmentation map. 

DEFINITION 1.10. 

A map d:ZG ~ ZG is called a derivation if 

1 . rJJL + v) = dij&.) + ~) 

2. cMlJ,u) = dij&.)WI) + jL~) 

where jL. vEZG. 

THEOREM 1.5. 

a ) d(njL) = ndij&.) 

b) d(n) = 0
 

-1 -1)
c) d(g ) = -g d(g 

for any nEZ, gEG, and jLEZG. 

COROLLARY 1.2. 

If g. hEG. then d(gh)=d(g) + gd(h). 

LEt+tA 1. 2. 

Let F be the free group generated by (al.a2'·" .an). 

Then. to each generator ai of F there corresponds a unique 

derivation da.:ZF ~ ZF. called the derivation with 
1 

respect to ai' which has the property that 

--11 if ai=b
 
dai(b)\ 0 if ai..b
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PROOF. 

The existence of the derivations d a . folloN from the 
1 

follONing formula: 

£1 *-2 £ ..
Let N=Nlai NZai ... Nkai "k+l Nhere £i=±l and Nl'·· . ,Nk+l 

are words in F Nhich do not involve ai' then 

k 
~ &1 £Z £i-l (£i-1)/Z

dai(Nl= L.,£iNl a i NZai ... Ni_la i Niai . 
i=l 

We can extend the above formula to ZF by defining: 

d a ilLn i" i)-L n jda i C" j ) 
j j 

The uniqueness of d a . folloNs from the observation that 
1 

the value of any derivation is determined by its values on 

the generators of F.O 

Remark 1.9. 

In the seQual Ne Nill use the Nord derivative in place 

of derivation. 

DEFINITION 1.11. 

The higher order derivatives are defined inductively 

by 

d a1aZ· .. ak(N)=da1(daz · .. akXNl). 

The order of the derivatives is given by the integer k. 

DEFINITION 1.1Z. 

The augmented derivatives are defined inductively as 

£al CN)~CdalCN)) 

and 

£al ... ak CN )=f,Cda1 ·· .ak CN ») 

"here NEZF, and £:ZF ~ Z is the augmentation map. 
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DEFINITION 1.13. 

k £. 
Let w be a word in F. Write w as II ail where aiEX 

i=1 

(the set of generators of F) and £i=±l. An occurrence of 

the pair x,y occurs when ai=x, aj=Y' i<j. The signed of 

£i £j
the occurrence ... x .. y is defined to be £i£j. 

LEt+IA 1. 3. 

If wEF and al,aZ"" ,ak satisfy ai¢8i+1' i=1, ... ,k-1 

then £a1a Z" .a~~ is the total number of signed occurrences 

of alaZ"' .ak in the word w. 

EXAI-PLE 1.4. 

Let w=x-1YX-1 yXY. Compute d x ' d y , d xy , d yx ' d xyx , 

d yxy , £x' £y, £xy, and £xyx, 

dX<~=-x-1_x-1yX -1+x-1yX-1y . 

dyCw)=x-1+x-1YX-1+x-1YX-1yx. 

d xyCN)=dx<dyCw» 

=_x-1_x-1_X-1YX-1_X-1_X-1YX-1+x-1YX-1y. 

dyX<N)=dyCdX<~) 

=_x-1+x-1+x-1 YX-1
 

=x-1 YX-1 .
 

dx yx<w)=dx<dyx<w»
 

=_x-1_X-1YX-1 .
 

d yx yCw)=dyCdx yCw»
 

=_x-1_x-1+x-1+x-1YX-1
 

=-x-1+x-1yX -1 .
 

£x<w)=-1-1+1=-1. 

£yCw)=1+1+1=3. 

£xyCw)=-1-1-1-1-1+1=-4. 
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f.Xyx<....)=1-1-1-1=-2. 

DEFINITION 1.14. 

Let X be a non-empty set. A string 1 on the elements 

of X is defined as follo....s: 

1 =X4J.x&z ... X4" 

....here for each X4.' x4i+J.EX, X4i¢X4i+J.' If n=O ....e have an 

empty string, which is also will be denoted by 0. The 

length of 1, denoted by &(1), is given by n. 

LEt+IA 1. 4. 

For any string l=x4J.x&z" .xa" and a,bEZF .... e have 

f. ;r<ab) = L I. ~a)f.tc<b) 

....here the sum is taken over all ordered pairs (I,~ where 

J=XaJ.X&z" ,X4; and K=X4.i+J.X4;+2" .x. such that 1=IK (the 

juxtaposition of strings I and K) including (1,0) and (0,1). 

COROLLARY 1. 3. 

If string 1¢0 and gEF, then 

-1 kL(,,~g)= -1) "I (g) .. ·1.1 (g)
1 k 

where the sum is taken over all 11 12 " .lk=1 .... ith I j ¢0, 

i=1,2, ... ,k. 

LEt+IA 1.5. 

For A ,BED", k 

d a1a2' .. ak(AB>=L dal a2' .. a fA)f.a i+la j+2' .. ak(B) 
j-l 

+ Ad a1a2' .. ak(B). 

LEt+IA 1.6. 

Let glEG(i) and g2EG(j) and let I be a string on 

generators of the group G. 

(i) 1f &( I)(i then ,,~gl)=O 



18 

I 

(i i) I f &(I)~min(i, j) t.hen £. t<g19Z)=e.t<gl)-kt<9Z) 

<iii) If I(I)=i+i and 1=1 1 I Z=121'1 where 1(1 1)=I(I'1)=i 

and	 &(I Z)=I(I'2)=i, t.hen 

£.Jlg l,9Z]=e.1 (91)£1 (g2)-£I' (91)£1' (9Z)'
1 Z 1 2 

COROLLARY 1.4. 

The element. gEG(n) if and only if £.t<g)=O for all st.rings 

sat.isfying O<&(I)<n. 

EXAt-FLE 1.5. 

Let. w=ababa-lb-lab-la-lba-lbab-la-lb-l be an element. 

4of F. Show t.ha t. wer ). 

If 1(1)=1, t.hen 

&~~=1+1-1+1-1-1+1-1=0 

and &b(w)=l+l-l-l+l+l-l-l=O.
 

If 1(1)=2, t.hen &ab(~=O and &ba(w)=O.
 

I f I( 1)=3, t. hen .. aba(w)=O and "bab(w)=O.
 

Let. I =abab. Then "abab(w)=2.
 

Since l(abab)=4 and f. abab(~~O, by Coro11 ary 1. 4, wer4) . 

Remark 1.10. 

The proof of t.he t.heorems, corollaries, and lemmas 

st.at.ed in t.his sect.ion can be found in [41 and [151. 

E. Algebras. 

DEFINITION 1.15. 

A bracket. arrangement Sn of weight. n, is defined 

recursively as a cert.ain sequence of ast.erisks (which act. 

as place holders) and bracket.s (which indicat.e t.he order in 

which commut.at.ion is performed) in the following manner: 

There is only one bracket arrangement of weight one 
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1)1=(.). 

A bracket arrangement 1)n of weight n>l is obtained by 

choosing bracket arrangement 1)k and 1)m of weight k and m 

~espectively such that k+m=n and setting 

1)n=(1)k,1)m), 

that is, juxtaposing the seQuences 1)k and 1)m and enclosing
 

the resulting seQuence in a pair of brackets.
 

EXAfwPLE 1.6.
 

According to the definition, the only bracket 

arrangement of weight two is C.,.) and the bracket 

arrange_ents of weight three are 

C. , (. ,. )) and (C.,.),.). 

DEFINITION 1.16. 

Let G be a group and let al' ... ,an be a finite seQuence 

of elements of G and 1)n be the bracket arrangement of 

weight n. We define the elements 

1)n(al' ... , a~ of G 

recursively as follows: 

11) (al) = al' 

and if n>l and 1)n=C1)k,Sm) then 

n k ~ 
1) (al'··. ,a~=(1) (al'· .. ,ak)'S 'ak+l' ... ,a~). 

We call 1)n(al' ... , a~ a commutator of weight n on the 

components al' ... ,an· 

DEFINITION 1.17. 

Let R be a ring. An R-module is an abelian group A 

together with a function RXA ~ A Cthe image Cr,a) being 

denoted by ra) such that for all r,sER and A,bEA: 

Ci ) r(a+b)=ra+rb 
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( i i ) (r+s)a=ra+sa 

( iii) r(sa)=(rs)a. 

If R has an identity element l R and 

(iv) l Ra=a for all aEA, 

then A is said to be a unitary R-module. 

DEFINITION 1.18. 

Let R be a commutative ring Nith identity. An algebra 

over R (or an R-algebra) A, is a ring A such that 

(i)	 (A.+) is a unitary R-module. 

(i i) r(ab)=(ra)b=a(rb) for all rER and a. bEA. 

EXAt-PLE	 1.7. 

Let G be an additive abelian group and Z the ring of 

integers.	 Let ~:ZXG ~ G be defined as 

n 
fl'{n •g)=ng=L g
 

i=l
 

for any nEZ and gEG. Then for any n,mEZ, and a,bEG. 

n n n 
( i )	 n(a+b)=L(a+b)=La + Lb= na+nb. 

i=l i=l i=l 

n+m n m 
(Ii) (n+m)a=La=La + La=na+nb. 

i=l i=l i=l 

n m ~ 

(iii)	 n(ma) L(La)=2.,a=(nm>a.
 
i=l j=l i-l
 

(iv) 1. a=a. 

Therefore G is a unitary Z-module. 

n n 
( v )	 n(ab)=L(ab)=(La)b=(na)b .
 

i-l i=l
 

n(a~=jt(a~=a~b=~n~. 
i=l 1=1 
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Hence, G is a Z-algebra. 

THEOREM 1. 6 . 

Let R be a ring Nith identity. Let R[x] denote the set 

0' all seQuenoes 0' elements 0' R as 'olloNS: 

R(x]=(aO,al"" )laiER and ai=O except 'or 'initely 

many) . 

a) R(x] is a ring with addition and multiplication 

de'ined by: 

(aO,al" .. )+(bO,b1 ,·· . )=(aO+bO,al+bl'" .) 

and 

(aO,al"" )(bO,b1 ,··· )=(cO,cl"")' 

where 
n 

cn=Lan-ibi'
 
i=O
 

b) I' R is commutative then so is R(x]. 

c) The map R ~ R(x] given by r ~ (r,O,O, ... ) is a 

monomorphism 0' rings. 

DEFINITION 1.19. 

The ring R(x] is called the ring 0' polynomials over R, 

and its elements are called polynomials. 

We are going to identi'y R Nith its isomorphic image 

in R[x] and Nrite (r,O,O, ... ) by r. We Nill nON explain the 

notation R(x] and develop a more 'amiliar notation 'or 

polynomials. 

THEOREM 1.7. 

Let R be a ring and denote by x the element 

(0, l R , 0, ... ) of R(x]. Then 

a) xn=(O,O, ... ,O,lR ,O, ... ), where l R is the (n+l)st 
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coordinate. 

n
b) If rER, then for each n~O, rx =(0, ... ,0,r,0, ... ), 

where r is the (n+l)5t coordinate. 

c) For every nonzero polynomial f in ~x] there exists 

an integer neN(natural numbers) and elements aO"" ,anER 

such that f=aoxO+a2x2+ ... +anxn. The integer n and the 

elements ai are unique in the sense that 

o 1 mf=bOx +b1x + ... +bmx (biER) 

implies m~n; ai=b i for i=1,2, ... ,n; and bi=O for n<i~m. 

Remark 1.11. 

It is convenient to write 

o 1 2 nf =aOx +a1x +a2x + ... +anx 

as 

1 2 nf=aO+al x +a2x + ... +anx . 

We will call x the indeterminate. Let us extend ~x] 

to more than one indeterminate, namely ~xl'.' .,x~. For 

simplicity, we will only consider the case where n<~. 

Let Nn=NX ... XN (n is a positive integer) be the set of 

all n-tuples of elements of N. 

THEOREM 1. 8. 

Let R be a ring and denote by ~xl"" ,x~ the set of 

all functions f:Nn ~ R such that f(u)¢O for at most a 

finite number of elements u of Nn . 

i) ~xl' ... ,x~ is a ring with addition and 

multiplication defined by 

(f+g)(u)=f(u)+g(u) and 

(fg)(U)=L f(v)g(w) Vv,wENn 

v+w=u 
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"here f, gER[x l' ... , xnl and uENn . 

ii) If R is commutative then so is R(xl'··· ,xnl. 

iii) The map R ~ R[xl' ... ,xnl given by r ~ f r , Nhere 

fr(O, ... ,O)=r and ~(u)=O for all other uENn , is a
 

monomorphism of rings.
 

Remark 1.12.
 

We can identify R Nith its homomorphic image in 

R(xl' ... ,xnl under the mapping described in Theorem 1.8.(iii). 

Let n be a positive integer and ~or each i=l, ... ,n, 

let 

ei=(O, ... ,0,1,0, ... ,O)ENn , 

Nhere 1 is the i-th coordinate of ei. I~ kENn , let 

kei=(O, ... ,0,k,0, ... ,0). Then every element of Nn may be 

written in the form k1el+kZeZ+ ... +knen. 

Let us find a mOre convenient notation for elements of 

R(x l' ... , xnl· 

THEOREM 1.9. 

Let R be a ring with identity and n a positive 

integer. For each i=l, ... ,n let xiER(xl' .. ' ,xnl be defined 

by xi(ei)=lR and xi(u)=O for u¢ei. 

i ) For each integer kEN, X~(kei)=lR and X~(u)=o for 

u~kei; 

ii) For each (k1 , ... ,kn)EN",
 

k1 k.

XA1·· .xA.(k1e l+·· .+knen)=lR and 

k 1 kit
XA1· .. XA. (u)=O for u¢k1el+ ... +knen; 

iii) xtr=rxt for all rER and all tEN; 
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iv) For every nonzero polynomial f in RX1' ... ,x~ 

there exists a unique nonzero elements (k11 ,k12 ,··· ,k1n ), 

(k 21 ,k22 , ... ,k2n ), ... ,(kn1 ,k n2 , ... ,k nn ) of Nn and unique 

elements aO,al' ... ,an of R such that 

o 0 0 ku k12 kilt k 21 ku kltlt
f =aoXt&lx&:l ... Xt&1I +alxt&l x~ ... xl&,. +Ol2Xt&l x~ ... X(&II 

kll! k ll2 k lill
+ ... +a,.Xt&l X&:l ... Xt&1I . 

Remark 1.13. 

If R is a ring with identity, then xl' ... ,xn are called 

indeterminates. The elements aO,al' ... ,an in Theorem 1.9(iv) 

are called the coefficients of the polynomial f. A 

polynomial of the form ax~:x::... X:: is called a monomial. 

For convenient, we will omit Xi that appear with zero 

exponent in a monomial, i.e. 

o 0 0 _
aXt&lx&:l' .. xt&lI=a . 

Then f in Theorem 1.9.(iv) can be written as 

ku k12 kilt k21 kzz kltlt
f=ao+a1Xtll x&:l ... Xt&1I +Ol2Xt&l x~ • xI&,. 

kll! k ll2 k lill+ ... +a,.Xtll X~. . Xt&1I 

As we observed from Theorem 1.9.(iv), a polynomial is a sum
 

of monomials.
 

THEOREM 1.10.
 

Let R be a ring and denote by R[[x]] the set of all 

sequences of elements of R, (aO,al'.·. ,an, ... ). 

i) R[[x]] is a ring ~ith addition and multiplication 

defined by: 

(aO,al'·· . )+(bO,b1 ,· .. )=(aO+bO,al+bl'···) and 

(aO,al'··· HbO,b1 ,··· )=(cO,cl'···) 
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where 
n	 n 

cn= Laibn-i = L akbj'
 
i=O k+i=n
 

ii) The polynomial ring R{x] is a subring of R£[x)). 

iii) If R is commut.at.ive, t.hen so is R£[x)). 

DEFINITION 1.20. 

The ring R{[xD is called t.he ring of formal power 

series over t.he ring R. If R has an ident.it.y, t.hen 

x=(O,iR,O, ... )ER£[x]] is called an indet.erminat.e or a 

variable. 

The power series (aO,ai"" )ER[[x]] is denot.ed by t.he 

aD 

formal sum	 ~aixi. The element.s 8i are called coefficient.s 
i=O 

and aO is called t.he const.ant. t.erm. 

Remark i. i4. 

Let. R[[xi,x2'" . ,xk)) be t.he set. of all formal sums 

~ a>..x>", 
>..EI k 

where 

>.. n.. f'l2 "to 
X =xc.. xea'	 . XCt ' 

a>..=an..anz· .. a"to ' and 

I k={).=( ni' n2' ... , nk >In i EZ+
U(O}). 

Let. us define addit.ion and mult.iplicat.ion, respect.ively, on 

t.he element.s of R[[xi,x2"" ,xk]] by 

~ a>..x>"+~ ~x>"=~ (a>..+~)x>" 
>..El k >..EI k >..El k 

( ~ a>.. x>..1 ~ ~ x>..)-~ C>.. x>"
 
>..EI k >..EI k >..EI k
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Nhere 
cl.= L a-ybS ' 

'T+S=l. 

Then R[[xl,x2"" ,xk]] is a ring of formal pONer series in n 

variables Nith respect to the operations defined above. 

Remark 1.15. 

Let Z[[xl"" ,xk]] be the ring of formal pONer series in 

k indeterminates. Scalar multiplication in Z[[xl'" _,x~] 

is defined as folloNs: 

z(L ~x>.)=L (z~) x>' 
l.E I k l.E I k 

Remark 1.16. 

The degree of a nonzero monomial 

n1 ":l "to
aXt&l x~ ... xt&.. ER[[xl' x2' ... , xk]] 

is the nonnegative integer nl+n2+" .+nk' 

Remark 1.17. 

Proof of the theorems on ring of polynomials and ring 

of formal pONer series can be found in [5]. 

DEFINITION 1.21. 

The algebra ~,n) is the associative Z-algebra of 

formal pONer series in the non-commuting variables 

xl"" ,xn- This algebra consists of formal pONer series in 

xl"" ,xn Nith integer coefficients. 

Remark 1.18. 

The bracket [']0 is defined in the associative algebra 

~,rn and is called the bracket multiplication or bracket 

product. For tNO elements u and v in N%,rn Ne define 

[u, v]o=uv-vu. 
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LEI1'1A 1. 7 .
 

The set of all elements 9E~,rn Nith constant term 1 is 

a group under multiplication. If g=l+h, then 

-1 2 3 k kg =l-h+h -h + ... +(-1) h + ... 

THEOREM 1. 11 . 

If ~,rn is freely generated by xl' ... ,xn, then the 

elements 

ap=l+xp, p=l,2, ... ,n 

of ~, n) are genera tors of a free group F(n) of rank n. 

Moreover, 

-12k k ap =l-xp+xp- ... +(-1) xp+ ... 

DEFINITION 1. 22. 

Let W be a word in the free generators ap of F(rn. 

Using the mapping ap ~ l+xp, W can be expressed as an 

element of the power series ring NZ,rn in the form 

l+uk+uk+l+ ... +un+· .. where uk is the non-vanishing 

homogeneous component of the lowest positive degree. The 

deviation ~~ of W is defined by 

S(W)-{	 0 if w=e
 
uk otherwise
 

DEFINITION 1.23. 

The bracket arrangements in A(Z,n) is defined 

recursively as folloNs: 

1So(91)=91 and 

SS(91·· .gn)=CI~(91·· .9k),S~(9k+l···gn)]o 

where 91' ... ' 9nEA(Z, n) and k+m==n°. 

EXAr-PLE 1.B. 

Let 91,92EA(Z,2). Then, 
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2So( glg 2) ={[gl' g2]0 l[g2 I gl]o1· 

LEI+1A 1.8. 

Let U and V be Nords (non trivial) in the ap=l+xp and 

12t 6(U)=u j 6(V)=vk'I 

(i)	 Then , for all integers k ,
 

6(Uk)=ku j.
 

(ii)	 If i<k , then
 

6(UV)=6(VU)=u j .
 

(iii)	 If i=k and Uj+vk¢O, then
 

6(UV)=6(VU)=U j+vk .
 

( i v) I f j =k and Uj+vk=O I then
 

UV=0 or
 

degree 6(UV)=degree a(vU)= j +1 .
 

(v)	 If UjVk-VkU j¢O I then
 

6([U I VD=u jVk-VkU j .
 

(vi)	 If UjVk-VkU j=O I then
 

UV=VU or
 

degree 6([U IVD=i+k+l.
 

(vii) 6(U-1VU)=vk. [15] 

REMARK 1. 19. 

Let W be a Nord in F(n) under the mapping 

F(n) ~ A(Z,n). 

I t can be shoNn that 6(W)=uk=L).iS~(gl' .. I gm) Nhere ~iEZ 
i 

and gl	 " IgkEA(Z,n). The Neight of the bracket
" 

arrangement S~(gl' .. ,gm) mayor may not be equal to the 

degree of the monomial uk' The degree of the deviation 6(~ 

is the "eight of the bracket arrangement S~(gl'" 19m), 
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i . e., degree 6(W)=m. 

EXAt-PLE 1.9. 

Suppose (xl' ... , xnl is a set. of free generators of 

A(~,~. Then ai=l+xi for i=1, ... ,5 are the generators for 

the free group F(~. Let U=ala3 and v==a2a4"1 be words in 

the genera tors of F(~. Find 6(U2), 6(V2), 6(UV), 6(U-1VU), 

6(V-1UV), and 6trU,VD. Moreover, find the degree of each 

deviation. 

1)	 ala3 -+ (1+xIX1+x~
 

=l+(x 1+x~+x 1 x3·
 

Hence, 6(U)=x 1 +x3=ul"
 

-1 -1 2 n n
2) a2 a4 -+ (1+x2X1-x4+x4-·· .+(-1) x4+···) 

2 n n=(1-x4+x 4-· .. +(-1) x4+ ... ) 

2 n	 n
+ (x2-x 2 x 4 +x2x 4 - ... +(-1) x2x4+ ... ) 

2
=1+(x2-x~+(x4 -x2x~+ ... 

Hence, 6(V)=x2-x4==vl. 

Therefore, 

1) 6(U2)=2(x 1 +x3) and degree 6(U2)=1. 

2) 6(vZ,==2(x2-x~ and degree 6(V2)==1. 

3) 6(lN)=6(VU)= x 1 +x 3+x 2-x 4 and degree 6(UV)==l. 

-1	 -14) 6(U VU)=x2-x4 and degree 6(U VU)=l. 

5) 6(V-1UV-~=xl+x3 and degree 6<V-1UV-~=1. 

6) 6[U,v.D=<xl+x 3)(x2-x 4)-(x2-x 4)(xl+x 3) 

=xlx2-xlx4+x3x2-x3x4-x2xl-x2x3+x4xl+x4x3 

=(x l' x2]O+{x4' xl]o+{x3' x2]O+{x4' x~o. 

Hence, degree 6[U,VD==2 
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a-w:rrER 2 

LINKS and BRAIDS 

A. Links. 

DEFINITION 2.1. 

A link is a finite collection of disjoint simple 

closed curves in 3-dimensional space R3 , the individual 

simple closed curves being called the components of the 

link. A link of just one component is a knot. 

DEFINITION 2.2. 

In Formal Knot Theory, "e closely abstract the rope 

drawings that represent knots. 

@J 
Figure 2.1 

We call the picture on the right as knot diagram. It 

contains all necessary information for constructing the 

knot out of rope and it presents a specific form for an 

embedding of a circle, 51, in R3 . To see this embedding, 

we must understand that a broken line indicates "here one 

part of the curve undercrosses the other part. 

J
I 

Figure 2.2 

31
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DEFINITION 2.3.
 

Two link diagrams, Land L', are equivalent if there 

exists a finite sequence of Reidemeister moves 

(R-moves) that transforms the link diagram L into the link 

diagram L' or vice versa. 

....I . ~)U ~ >0 

II. 4:::!'T JC - I'--­

III . 

~/l(" x/ 
Figure 2.3. 

For simplicity, we will use the word link to denotes the 

link diagram. 

EXAI-PLE 2.1. 

?8 .­
:nr CQ~ 

~ 
~ 1
"'JI. 

Figure 2.4. 
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Remark 2.1. 

A link is split if it is equivalent to a link with 

diagram containing two nonempty parts that live in disjoint 

neighborhoods. 

EXAr-FLE 2.2. 

Thus 

o 
~ 

Figure 2.5. 

is a split link. 

B. Linking Number. 

To each crossing in an oriented link, we associate a 

sign n such that 

n=+1 for x 
~-

n=-l for 

Figure 2.6. 

DEFINITION 2.4. 

Let L=cUB be a link of two components. Let 4US denote 

the set of crossings of 4 with a. Then 

&k (L )=lk(4 ,B>=! L n(p). 

Q&US 
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This formula defines the linking number for a given
 

diagram.
 

EXAt-PLE 2.3.
 

a) lk(4 ,11)=+2.~CCr 

0( lk(4,tJ)=0.b) 

c) lk(4 ,11)=0. 

Figure 2.7. 

Remark 2.2. 

If a 2-component link L splits, then lk(L)=O. The 

converse, ho"ever, is false as sho"n in the examples 2.3(b) 

and 2. 3(c). 

c. Fundamental Group. 

Associated to a link L in R 3 is the fundamental group 

of the complementary space, R 3 _L, of the link, and it is 

denoted by Wl(R 3-L). For simplicity, "e "ill denote the 

fundamental group of a link L by wl(L). There exists an 



undercrossing arcs exactly as pictured below. 

XjXk=XkXi+1 

"'Ie
IXo 

1 

_ 

i %1.+1",1 ~"'" 
I . -+"Ie 

C(.
L 

Figure 2.8 

L 

j:tC:+1 

--->- 'fi.+1 
I+­

)flc 

Figure 2.9. 

)(1( 
~ 

xLf 

ri: XkXj=Xj+1Xk 

cr, 

to the head, thence back to *. 

There is a certain relation among the xi's whioh must 

We assume for convenience that all 4i's are oriented 

35 

This is a procedure for writing down a presentation of 

imagined as the eye of the viewer), and the loop consists 

the group of a knot K in R3 , given the diagram of the knot. 

hold. The two possibilities are: 
~k 

of the oriented triangle from * to the tail of xi' along xi 

assumed connected to 4i-1 and 4i+l (mod n) by 

short arrow labelled xi passing under each 4i in a right-

compatibly with the order of their subscripts. Draw a 

We labelled each arc in K by 41".' ,4n such that each 4i is 

left direction. This is supposed to represent a loop in 

R3 _K where a point * is taken to be the basepoint (best 

algorithm called the Wirtinger presentation for finding 

The Wirtinger Presentation. 

"'1(L>. 
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Here «k is the arc passing over the gap from «i to «i+l 

(Ic=i or i+l is possible). Let ri denote whichever of the 

two equations holds. In all, there are exactly n relations 

rl".' ,rn ~hich may be read off this way. These comprise a 

complete set of relations. 

THEOREM 2.1. 

The group wl(K) is generated by (homotopy classes) Xi 

and has presentation 

w1 ( L) =(x l' ... , x n I r l' ... , rnJ . 

Moreover, anyone of the ri may be omitted and the above 

remains true. [12l 

EXAI-PLE 2. 4 . 

The Figure-Eight Knot 

Figure 2.10. 

For the Figure-Eight knot, we have a presentation with 

generators Xl' x2' x3' x4 and relations 

(1) Xlx3=x3x2' 

(2) x4x2=x3x4' 

(3) x3xl=xlx4. 

We may simplify, using (1) and (3) to eliminate x2=xi1x l X3 

and x4=xi1x3Xl and substitute into (2) to obtain the 

equivalent presentation wl(figure-eight knot)=(xl,x3 I r) 
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Hhere 

-1 -1 -1 
r: xl x3x l x3 xlx3=x3x l x3xl' 

The argument establishing the Wirtinger presentation 

theorem adapts in an obvious manner to links. 

EXAt-PLE 2.5. 

Figure 2.11 

The trivial link (disjoint circles in a plane) of n 

components has group 

(Xl' ... , Xn I xl= ... =x2=1) = Free group of rank n. 

EXAt-PLE 2.6. 

The Borromean Ring. 

Figure 2.12. 

The fundamental group, wl(L), has a presentation 

wl(L)=(al,a2,a3 I rl,r2) 

Hhere 

-1rl=(a2,[al' a3 D and
 

-1
r2=(a3 ,[a2' al D. 
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Do Braids. 

Let 
o 0 o 0

Z~ Zi-l Zi Zi+l Zi+2 ~ 

I ... I X I .. ' IU'1 

zJ. zi-l zi zi+l zi+2 ~ 

and 
o 0 o 0 

z~ Zi-l Zi Zi+l Zi+2 ~ 

-1 I .. I X I ... Iui 

zj, zi-l zi zi+1 zi+2 ~ 

Figure 2.1.3. 

We define the multiplication of ui and Uj' denoted by UiUj' 

by 
0 0z~Z~ zi+l zo..

J zJ+l ~• 

ui: I 

U{ I () ::~ » 
,

zj, Zi Zi+l . z'·J Z;+l z:. 
Figure 2.14. 

If j~i or i+1 then we can use the following diagram to 

def ine U iU j 

0 0 0
Z~ z~ Zi+l Z.; ZJ+l ~• . . . . . . ... 

"i";I . .. X X . .. I. . . ,
zJ. zi Zl+l z'· Z;+l z:.J 

Figure 2.15. 

THEOREM 2.2. [Artin,1925l 

The group w1(Bn ) admits a presentation with generators 



Define 

Remark 2.3. 

~~i~n-2. 

~ 

zaI za 

o 
ZJ. 

z1 

Figure 2.16. 

if li-il}2, 1~i, i~n-l 

a ia i+la i=ai+la iai+l 

aiai=aPi 

4 2k ,k>OEZ is a pure braid. 

B=.Imp 

For simplicity, Ne Nill use Bn Nhen Ne mean w~B~. 
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4=(ala 2' . . a n-l Hala2' . . a n -2>' .. (ala 2 Hal >. 

Let B=ala~la~. Then BEB3 since B is in a normal form 

Nhere &=ala~l' m=l, and P=a~. The diagram of B is as 

where m is an integer, and P is a positive Nord. m is 

called the pONer of B, and P is the tail of B. 

folloNS: 

EXAt-PLE 2.7. 

Then, in Garside's treatment, it is shoNn that each element 

Remark 2.4. 

BEBn has a unique normal form: 

a~, ... ,an-l and defining relations 

(Here Bn denotes braid with n strings.) 
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EXAI-PLE 2.8.
 

S=(U1UZO"1)2eS3 is a pure braid.
 

Figure 2.17 

Closed braid and Link. 

Let L be an oriented link. Choose a point p not on any 

strand of L (p can be vieHed as the point of intersection 

betHeen a line ~ that is orthogonal to the plane on Hhich 

the link LER3 is projected onto). Assign a positive 

direction of rotation obout p (consider the right hand rule 

being applied to &). An edge ab of L is said to be 

positively (resp. negatively) oriented if a radius vector 

from p to ab rotates in a positive (resp. negative) 

direction about p in going from a to b along abo 

DEFINITION 2.5. 

A link L is said to be a closed braid, denoted by ~ if 

all of its edges are positively oriented. 

Remark 2.5. 

The height of a link L, denoted h(L), is the number of 

negative edges, and is the measure of hOH far the link is 

from being a closed braid. 
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EXAt'PLE 2.9.
 

Trefoil knot types.
 

L­

L' is a 

Figur. Z.18. 

closed braid .ine. it ha. height O. L has 

height 4, hence not a closed braid. 

Remark 2.6. 

8, 

An open braid' may be us.d to construct 

by identifying the initial paints and end 

a closed braid 

points of each 

of the braid strings. 

EXAt'PLE 2. 10 . 

XI(X 
S I 

Figure 2.19. 

THEOREM 2.3. [Alexanderl 

Every link is combinatoriallw equivalent to a closed 

braid. 

Remark 2.7. 

For any pure braid SEBn, the closed braid i associated 

to , is a link with n components. 
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EXAr-PLE 2.11. 

tl 
Figure 2.20. 

COROLLARY 2.1. 

The braid group Sn has a faithful representation as a 

group of (right) automorphisms of a free group F n generated 

by al'." ,an' of rank n. The representation is induced by 

a mapping f from Sn to Aut F n defined by: 

-1
(a i)f : a i ---+ aia i+la i 

ai+l ---+ ai 

a·1 ---+ aj if hH, i+1. 

EXAr-PLE 2.12. 

Consider S3. Let F3=(al,a2,a3>' Then under the 

mapping f as defined above, Sn has a representation as an 

Aut F 3 ...here 

-1 -1 -1 -1 ul : al -+ a18 2a l al -+ ala 2 81 

-1 -1 -1a2 -+ al a2 -+ ala 2 ala 2 a l 

a -1----1. a-1
a3 -+ a3 3 ---y 3 

-1 -1
u2 al -+ al al -+ al 
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-1 -1 -1 -1
a2 -+ a2a 3a 2 a2 -+ ala 2 al 

-1 -1 -1
a3 -+ a2 aa -+ a2a a a2a a a 2 

THEOREH 2.4. [Artin, 1925l 

Let F n=<al"" ,an> be a free group of rank n. Let ~ 

be an endomorphism of F n . Then ~EBnCAut F n if and only if 

~ satisfies the t"O conditions 

-1
(a i)S=A i aU· Ai l~i~n 

1 

(ala2' .. a,,)S=ala2' .. an 

"here <Ul"" ,Un) is a permutation of <1, ... ,n), and 

Ai =A i (al"" ,an) is a "ord in the generators of F n . 

EXAI-PLE 2.13_ 

Consider SEB3 - Let B=alu2 and F a =<al,a2,a3>' Then 

ulu 2: al -+ ul(uzCa l»=ala 2 a l
-1
 

-1

a2 -+ u l(u zCa2»==0"1(a2a a a 2 ) 

-1 -1 
=ala a a l a 2 ala 2 a l 

a3 -+ ul(uzCa a»==O"l(a2)=al 

ala 2 a 3 -+ ul(u2(ala 2a a»=ala 2 a a 

Since ulu2(a2) is not in the form described as in the 

theorem above, SEBn~Aut Fa. 

THEOREH 2.5. [Artinl 

Let ~EBn and suppose that the action on the free group 

F n is given by the Theorem 2.4. Let a be the link 

determined by the braid S. Then the fundamental group 

w~Sa_~ of the complement of a in Sa admits the 

presentation: 

generators: al"" ,an
 

defining relations: ai~Ai(ai"" ,an>au.Ai1(al"" ,an)

1 
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where l~i~n-l and U,i is a permut.at.ion of (1, ... ,n). 

Moreover, every link group admit.s such a present.at.ion. 

EXAt-PLE 2. 14 . 

See example 2.6. for t.he fundament.al group of t.he 

Borromean Rings. 

Remark 2.8. 

Proofs of t.he t.heorems and t.he corollaries in t.his 

sect.ion can be found in [2]. 



a-w:rTER 3 

Determining Vanishing Triple Products 

DEF I NIT I ON 3. 1.
 

Let F be a free group generated by ai' and let W be a 

Nord on ai (W~0). The weight of W, denoted by w(W), is 

. (n) (n+l)
the largest Integer n such that WEF , but W ~ . 

THEOREM 3.1. 

Let F be a free group generated by al' ... ,ak' and let W 

be a Nord on al' ... , ak (W~0). If W(W)=n and S(W)==um, then 

the degree of ~W) is greater or equal to n.[15] 

TI-EOREM 3.2. 

Let aeBk and let G=={ai1ri) be the fundamental group of 

~ -1 -1 
p, Nhere ri=aiAiaUiAi Then, 

(i) If Ui=i for some i, w(A i)=2, degree S(A i) is not 

zero, and ~rp is not zero, then there exists a non­

vanishing Triple Product. 

( i i ) I f i =U i f or some i, w(A i) is t he same f or all i 

and w(A p >2, then all Triple Products vanish. 

(iii) For every wer(3)nN where N is the normal 

subgroup generated by the generators of G, there are 

integers k ,p, and (nll'"12'··· ,nlk)' (n21,n22'··· ,n2k)'· .. , 

(npl,np2'··· ,npk) such that 

...1 n11 n12 n1tX ":21 na "-) (n~1 n~2 n~)W,r it r i2 ... r i.. r it r i2 ... r i.. . .. ,. i 1 r i 2 ... r i .. 

for ii' i2'· .. , i k e (I, ... ,s) where 5 is the number of 

generators of G. If Ui¢i for all i, w(A p is the same for 

45
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all i, and 

p

L(nil+ ... +n i J:s<a i)--8(a~ J)~O, 
. 1 1
1= 

then all Triple Products vanish. [16l 

PROBLEM 1. 

-1 -1 -1 -1 -1
Let G=(al' a2' a31rl=ala2a 3 a 2 a3 al a3a 2 a 3 a2 ) be the 

rl is of the form aiAi(al,a2,aa>a~.Ai (al,a2,aa> where 

fundamental group of a link. Determine if all Triple 

Products vanish. 
-1 -1 

1 

. -1 -1 
1 =1, ~1==1, and A1(al' a2' a3)=a2a 3 a 2 a3 .
 

1) For I=al' l=a2' or l=a3 we are going to shoM that
 

€.~Al)=O. 

£a~A~=O since A1 does not have any sequence of al's. 

€.a~A~=l-l=O by Lemma 1.3. 

€.a~A~=l-l=O by Lemma 1.3. 

2) We will shoM that for at least one of the following 

strings l=ala2' l=ala3' or l==a2a3 will have €.~Al)~O. 

€.ala~A~=O since A1 does not have any occurrences of 

ala 2' 

€.ala~A~=O since A1 does not have any occurrences of 

ala 3' 

€.a2 a 3(A1)=1-1+1=1 by Lemma 1.3. 

Hence, by Corollary 1.4. A1a-C2)and A1eF(3) Therefore, by 

Definition 3.1 we have w(A1)=2. 

3) Next, Me Mill show that the deviation of rl' S(rl)' and 

the degree of S(r~ do not vanish. 

-1 -1 .Let U==al and V=a2a3a2 a3' Under the mapPIng 
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F 3 ~ ~,~ defined by 

ai -+ 1+xi
 

-1 1 Z 3 n n
ai -+ -xi+x i-xi+···+(-1) xi+··· 

we have 

U -+ 1+x1 

V -+ 1+(xZx3-x3xZ) 

Z Z 3 3­
+(x3xZxZ-x2x3xZ+x3xZ-xZx3+xZ-x§J+ ... 

Hence, by Definition 1.ZZ, we have 

6(U)=x1 

6(V)=xZx3-x 3x Z 

By Lemma 1.B(v), I, I 

.i 
6(UVU-1V-

1) =x1(xZx3-x3xZ)-(xZx3-x3xZ)x1 • 
=[x1 ,[x2' x3lolo 

Hence, the degree of 6(A1)=3. 

Finally, by Theorem 3.Z(i) we can conclude that there 

exists a non-vanishing Triple Product. 

PROBLEM Z. 

Let G={a1,aZ,a3,a4' r) be the fundamental group of a 

link where 

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 
r=a1a Za 3 a 4 a 3 a4 a2 a4a 3a 4 a3 a1 a3a 4-3 a4 aZa 4 a 3-4 a3 aZ 

Determine if all Triple Products vanish. 

-1 -1 r is also of the form aiAi(a1,aZ,a~a"iAi (a1,aZ.a~ 

-1 -1 -1 -1 -1where i=1, "i=1, and A1=aZa 3a 4 a 3 a4 a2 a4a 3 a 4 a3 As in 

problem 1 we will find the weight of A1 . Since 

f. a 2(A1)==£.a3(A1)==£.a4(A1)=O, 

f.aZa3(A1)==£.aZa4(A1)==£.a3a4(A1)=f.a4a3(A1)=O, and 



48 

£aza a a 4(A1)=1 , 

Hence wCA1)=a>Z.we conclude that A1era ) and A1W4). 

Therefore by Theorem a.Z(ii), all Triple Products vanish. 

PROBLEM 

Let 

a. 

L be the Borromean Rings. 

1I'1(U={a1' aZ' aalr1' rZ) 

Then 

where -1r1=[aZ,[a1,aa ]] and -1.­rZ=[aa,[aZ,a1 -JJ. 

-1 -1 -1 -1 -1
r1=aZa 1a a a1 aaaZ aa a1 a a a 1 

Then 

1) £a1(A1):=£aa(A1)=O. 

-1 -1 -1 -1 -1
rZ=aaaZa 1 aZ a1a a a1 aZa 1 a Z 

Both r1 and rZ are of the form as described 

-1 -1 -1 -1where A1=a1aa a1 aa, AZ=aZa 1 aZ a1' ~1=1, 

in Theorem 

and ~Z=Z. 

a.z. 

I 

f' 
I 

I 

I., 

Z) £a1a a(A1)=-1+1-1=-1. 

a) £a1(Az)=£aZ(Az)=O. 

4) £a1a Z(A1)=1. 

By Corollary 1.4, A1,AZEF(~ and 

laJ(A 1)=w(AZ)=Z . 

Computing the deviation for 

A1,AZeF(~ which imply 

r1 and rZ we obtain 

that 

S(a1)=x1 

S(A1)=xax1-x1 x a 

Hence, 

S(r1)=8«:a1' A1D 

S(aa)=xa 

S(AZ)=x1xZ-x ZX 1 



·1onpo~d ald!~L 6uT4S!Ue~ 

-uou e s1sTxa a~a41 (!)Z"E wa~oa4L ftq 'a~ola~a4L 

"o[O[ZX' l Xl' EXJ=(Z~)9 ft l~e 1TWTS 

o[O[lx' EXl' l x]= 

6t 
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