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INTRODUCTION

Cequences  of reszsl or complex nunbars are  often  d

vwith 1n numbor thcory. Afrithmetic functicns are similaor to

Lthese sequances. To dofine properly, ::n srithmeliec function

—
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n

resl-  or ¢ compley-valuecd funciion wnos: domsin is thc

se¢t of positive intrgers. The theory of crithmetic funeticns
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2
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zlwnys been cone of tihne most active parts of the {aecry of

s

numbcrs. frithmetice functions play an important role in Lhe
study of divisibility properties of intosgers one Liie
distribution cf primes.
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thesls is teo investigete arithmotic
functions from on alrgebroic point of view. The emphasis in
this study 1s on the ~lgsbraic structure of  the zet  of
arithmetic functions wunder two differcent conveclution-typ.

procduct opaerstions, thr Dirichlet product Jeonotnd by %, one
the unitary product whieh 1is denoted by o. Tz main
afdvantage of the algebrsic viecuwpeint is it laacas  to  tog

develeopnent  of many classical res

™

ults  in  nunber  Lihcory

witnout difficultics and unpleszunt computztionsl tecohniquese.
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us  only to present
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s of this extensive topic. For
cxomplce, no attempt hos been uwnde in this study of such: on
importvant topic 2s the zsympicotlc propertics of orithmetic

tunctione.
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functions avve a lengtiy history. In  %tnis

bricf historicsl introduction, we will pgive 7 very zhort

ot
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sketech of history of zlgebraic theory of

functions. Ti
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nistory of vrithmetic functions 1is
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contained in Di

The Dirichlet product played = prominent role from the
very Dbeginning. Hany resulis from the =sarly times involvea
tho convolution of &two or mors particulsr arithmetic
functions. Early in this century, the Dirienlet product

began to be viewed as a binary operation on tine sgset  of

arithmetic functions. In the work of 2. 1. Bell [2, 51,
and R. Vaidyanathaswvemy [25], 1t was recognized that the
arithmetic functions with respect to ordinary addition and
Diricnlet procuct form a commutative ring with identity. The
study of the structure of the ring of =&arithmetic Tunctions
has Dbeen continued by L. Carlitz [&4, 5
an¢ C. Everett [7] prevaed tnat the ring of arithmetic
functions 1is & unique factorization domrin. 1In addition,

thie names of apiro [207, Giois [14], Fotinoc
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Subbarco [23], must be cited

€41 <) irs i esti sated 73 R¢ z [ arithmetic
Bell [2] first investigatced the theoory of arithmetd

A

functions relzted to Diricirlct product. ater,

[P

Vaidyanatnaswemy [257] investigated tnem thorougnly.

Veidyancthaswamy [2%] =2lso  introcduced the unitary prodvei

vhien hos besn studicsd extensively by E. Cohen [0, 101,
The Dirichlet product is  tine most widely 4nown  product
on the set of aritnmetic funeticng. it azs  been proven



to bhe z volusabkls teool in  ine study of aritihmetic
functions. The unitary product is one of many
generzlizations of the Dirichlet product; other

generclizations are given by Gioia [14], Davison [11], and

Chapters 1 and 2 of this tuesis deal with tuao
Dirichlet product, while chapters = znd 4 dezl with the
unitary procuct. In cnapter 1, we wWill prove thszt the sct of
arithmetic functions with respect te ordinary addition nnd
Dirichlet product forms @ unique factorizaticn demzing in
this chiepter we will alsc study some basic properties of
multiplicative functions. Chapter 2 is concerned with some
of the important arithmetic functions of number theory, sueh
#as the 1ota functions, Mobius function, Euler totiznt
function, and several other functions,

d

The wunitery product of arithmetic functions is studi

8]

in cnapter 3; it is shown that contrary to Dirichlet product,
the set of aritimetic funetions with ordinsry addition
and unitary procduct 1is not an integral domzin, and not =z
unique factorization domain. The unitary cnslogues of some
of the arithmetic functions we studied in chapter 2 are

discussed in chapter 4.



CHAPTER 1

DIRICHLET PRODUCT OF ARITHMETIC FUNCTIONS

1. THz RTING OF ARITHHCYIC FUNCTIONLS ( Dy, +, * )

Definition 1.71:

L real- or a  complex-~valued function wWhesce domzin

the set of positive intepgers 1is called  an

function.

nemorik:

1. YWhilz we assumed tast the range of on aritimetic

&

funetien 1s some subset of the complex numbers, many

recsulits  in  tails  study ec2n be easily goncrolized Lo
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thoe ezse in wnich the range 1is  ony cub
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2 nis ¢=xfinition of arithmetic funection szems  line «

sequence, it should, the two =2r= th: some e

difference 1is in the viewpoini: =zZoguonces ors usually
c:t 1717 et TR ~ 70 R o] e 1 31 o el il e v a3 -
studied with convergenee  in mind, wnile aritameotic

functions have stronger connection in the study or

divisibility properties of intecsrs and the distribution

i

of primes.
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Some of the arithmetic functions with which we shall
be cdealing are the following:
T(n) = the number of positive divisors of n

Tg(n)

#Xn)

the sum of positive divisors of n

the number of pesitive integers < n and

relatively prime to n.

Now, we are going to consider the collection of all
real-valued arithmetic functions, and denote this set by D.
There are a number of operations that can be defined on D.
For f and g in D, w= define four operations:

1. The sum f+g is defined by

(f+g){(n) = f(n) + g(n)

2. The orcdinary product fg is defined by

(fg)(n) = £(n)g(n)

3. The Dirichlet product (or convolution) f#*g is defined by

(f2g)(n) = 2 f£(d)g(n/d)
din

where the summation is over all positive divisors d of n
4, The unitary product f o g is defined by
(fog)(n) = 2 f(d)g(n/d)
din
(d,n/d)=1
Clearly D is closed with respect to each one of these

operations. Also it is easy to see that the addition and the

ordinary multiplication are commutantive and associctive.



Remarl:
Note thot f*g can be expressed as follows:

( f#g Y(n) = E:f(d)g(n/d) = ‘Zkf(n/d)g(d) = 2 f(dy1)g(dg)
din éin dydy = n

where dl and dz in the lzsgt summation run over all pesitive

integers whose procduct is n.

In this chapter, we are concerned wWith the study of the
set D, of real-valued arithmetic functions under ordinary

addition and Dirichlet convolution.

Lemma 1.01:

Diriehlet product is commutative ancd associative.
Proof':

The commutativity of Dirichlet product is clear. To
prove the associntive property, let f, g, and h belong to D.
We must show ( f*g ) ¥ h = £ * ( g¥*h ),

Let F = f¥*g and consider,

[ ( £*g ) * h 1(n) ( F ®h )(n)

2 F(dp)n(dy)

didpy = n
- 2 n(dy) 2 f(ey)eldy)
dida = n dadg = dp

<

= 4 f(d3)g(dg)h(dy)
dpd3dyg = n

In the same way, il we let G = g¥h and econsider,
[ £ * Cg* ) I(n) = C £ #* G )(n)

= 2 £(31)G(dy)
dldz = n

™M

£(dy) 2 glazdh(dy)
dl(-2 = n 0304 = 02



= 2 f(dpeldyhldy)
dydzdg = n
Hence, ( f¥g ) # h = § % ( g¥*h ) which mezns that

&

Dirichlet product is associative.

We now introduce the identities for thesc opersticons.

We define the functions 8 y Lgy and € on D by:

Bn) =0 (n = 1,2,000. )
Lgn) = 1 (n = 1,2,.00. )
€(n) ={1 if n =1

0 if n # 1

Lemmez 1.02:

For all f &€ D , we have

1. £ + 6

1]
—

o
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—
.
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Proof:
Part 1) and 2) are clear. For part 2), let

( T2 € Y(n) = & f£(4) €(n/c)

din
but since €(n/d) = 0 for d < n, Wwe have only one nonzero
term in the sum, that is when d = n, and hence,
(f % €&)(n) =2 f(c)e€(n/d) = f(n)
din
Thus we have 8 and Lo are icdentities for addition and
the ordinary multiplication respectively, while the function

€ is the identity for the Dirichlet product.



Theorem 1.1:

( by, +, . ) 1s © commut=tive ring with identity.
Proof:
It remszins to gshow the distributive law, that is

’

f(Cg +h ) = fg + fh for 31l £, g, h & D

T fC g + h ) I(n)

f(n)C g + h )(n)

f(n)[ g(n) + h(n) ]

f(n)g(n) + f(n)h(n)

(fg)(n) + (fh)(n)

[ fg + fh J(n)

Theorem 1.2:

(D, +, ¥ ) is a commutative ring with identity.
Proof:

It remeins to show the distributive law. For all f, g,
h &€ D, we have

[ £ % ( g+h) J(n) = 2 f(d1)(g + h)(dy)
dldz =N

= 2 £ld)Te(dy) + h(dy)]
01(12 = n

=2 [f(d)aldy) + F(d1)n(ey)]
ﬁlﬁz = n

=2 £(a)E(d) + 2 £(d)h(dy)
dld2= n dld2 = n

(f*¥g)(n) + (£*h)(n)

[(£%g) + (£*h)]1(n)

Thus, the distributive law is setisfied.

Tt can be easily seen that (D, +, . ) is nct an

integrs1l domnin. For, consider the functions f and g in D



defined by:

f(n) if n is even

1]
H\."
(@] —

if n is odd

0 if n is even
1 1if n is odd

Neither f nor g 1is the zero function g . But, we have

g(n)

(fg)(n) = f(n)g(n) = 0 for all integers n, hence fg = B ,
that is, f and g 2re zero divisors, and thus ( P, +, . ) is
not integral domzin. ©On the other hand, ( D, +, ¥ ) forms
an integral domain, but before we prove this, we peed tc
define a norm function on D:

N : D—R

by N(B) =0 and for f § § € D,
N(f) = 1/k where k is the smallest positive integer

for which f(k) f 0.

Lemma 1.03:

For all f, g € D,
N(C f*%g ) = H(f)N(g)

Proof:

The case where either f or g is the zero function Q ,
is trivial. Thus we may assume that neither f nor g is 9
Let N(f) = 1/k anc¢ N(g) = 1/m. By the definition of K
and m, we have,

f(d) # 0 only if d > k and g(d) # 0 only il ¢ 2 n.
How, let us consider,

g(km/ad) f 0 only if km/d > m which implies that
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g(km/d) # 0 only if k > d.
Thus,

dlkm

= f(k)g(m) + O + e o o 0 0 + 0 # O
Hence, N( ©*¥g ) > 1/km and thus we have

N( f%g ) > N(F)N(g) = 1/km

Now we are going to show that N( f*g) } N(f)N(g), that
is, N( f*g ) ¥ 1/km.

Assume that N( f*g ) = 1/dydy > 1/km, then dpdy < kn
and hence either dp < Kk or do < m, and we have
( £*g )(dyd,) = 0, this contradicts that N( f¥*g ) = 1/dqdj.

Therefore N( f¥g ) = N(f)N(g).

Now, we state formally

Corollary 1.3:

( Dy, +, ¥ ) is an integral domain.
Proof:
In order to show that D has no Zero divisor,

we Wwill assume that f¥*g Q in D. By lemma 1.02, we have

N(f*g) = N(F)N(g) = N(O) 0 . This implies that HN(f) = 0 or
N(g) = 0. Thus f =f or g = § » hence, D has no zero
divisor.

Therefore ( D, +, * ) is an integral domain.

Definition 1.2:

If for f& D there exists a function g& D such that

f¥g = g*f - € , then g is called tne Dirichlet inverse of f.
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We denote the Dirichlet inverse of f by L,

Lemma 1.04:

A function f &€ D is Dirichlet invertible if and only if
f(1n) % 0. This is equivalent to say f is Dirichlet invertible
if and only if HN(f) = 1. Moreover the Dirichlet inverse of

f is given by the recursion formula

£l (1) = 1/£(1)
£l ) = = 1/£¢(1) 2 fa/d)f~1(d) for n > 1
dln
d < n
Proof:

First assume that f has Dirichlet inverse f—l, then
rrr—lc , and in particular, (£%f~1)(1) = (1) = 1, but

(el () = 2 £ (1/a) = £ (1) = 1, hence £(1) # 0.
dii

Conversely, assume that (1) # 0. We shall show that the
equation (f*f~1)(n) = €(n) has a unique solution for the
function values f~L(n).

For n = 1, we have (F*£~1y(1) = € (1) = 1 which implies
that £(Df1 (1) = 1, and thus £71(1) = 1/£(1), since £(1) # ©

Now, assume that the function values £l (d) has been

uniquely determined for 211 d < n.

Consider the equation (£f*f~1)(n) = €(n). For n % 1,
(f*f'l)(n) = z:f(n/d)f'l(d) = 0. This «can be written as
din
¢d <n

f(f L) + 2 fasd)f L)
din
d < n

{
(@]
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Proof:

Let f, g &4, toen (f ¥ g)(1) = (NDe() {6, siuce
£C1) 4 0 znd (D) 4 0. flso, if fE€ U tren [ &U follous

immedialely frem lomms 1.04,

2. HULTIPLICATIVE FUNCTICHS
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abclicn group under Dirichlet product. fn this srctien, we

4

cre geing o study =n important subproun  of

e
Lt

~

the subgroup of multiplicotive functiona.

Definition 1.7

An arithmetic function f

1
]
i

ga1d to be multiplicative iIf
I is not identicecally zezro =ond 17 {(mn) = f(m)f(n) whonever
(m,n) = 1.

 1is completely multiplicolive 10 £lmn) = {(m)

211 positi

St pegemen .
Invefaers i, .
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Example:
Let Y% be a fixed real number and let f(n) = nk. This

function is multiplicative.

How Ve are going to study some properties of

multiplicative functions.

Theorem 1.5

If £ is multiplicative theon £(1) = 1.
Proof:

Consider, f(n) = f(n.1) = f(n)f(1) since (n,1) = 1 for
any positive integer n. &ince f f 6 , wWe have f(n) % 0 for

some n, hence £(1) = 1.

Multiplicative functions have one big =advantage, that

they are completely determined once their velues at prime

povers are known. That is, if n = p§1p§2.... °r is the prime
r
e

factorization of n, then since the Iﬁi 's are relotively

prime in pairs, we have f(n) = f(p?l)f(pSZ)....f(pir).

This can be stated more precisely a3 follows:

Theorem 1.6:

If £ and g are multiplicative functions such that
f(pl)=g(pl) for all primes p ancd all positive integers i,
then f(n) = g(n) for all positive integers n.

Proof:
The proof of this is by math induction on the number of

Aifferent prime factors of n.



For k = 1, i.e when n = p?l;

f(n) = f(pfl) and  g(n) = g(p?l), thus f(n) = g(n).

Now, assume that f(m) = g¢(m) for ¥ prime foctors of n

i.e. for m = p?l p€2 ....p%k

2 gk o f(m) = a(m).

For n = p1 p®2 ....p®k pSk+1,
1 2 k k+1

e e e e
f(n) = f(p.1 p 2 ....pk k+1l )
pl p2 pk pk+l
- e1 €2y ex Ck+1
= f(pl )f(p2 ,....f(pk )f(pk+l )
- £ Ck+1
= L(m)f(pk+l )
and
- €1 .2 ex ex+1
g(n) = g(py~ pPy® .«..pyp Prs1~ )
= g(p®1l)g(p€2)....0(p%k Ck+1
g(p/1Ie(p22) s (pk)e(p kil)
= g(m)g (pSk+1)
k+1 . _
but f(m) = g(m) and f(p* ) = g(p* ), thus
£(n) = f(m)f(pif{l) = g(m)g(pif{l) anc £(n) = g(n).
Hence f(n) = g(n) for all pesitive integers n.
Theorem 1.7:
Let f be an arithmetic function such that f£(1) = 1.

Then f is multiplicative if 3nd only 1if f(pil....pir ) =

f(plep...f(pfr) for all primes p and all integers e, 2 1.

Proof:

First, assume that f is multiplicstive. Thern by

14
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definition, f(pel....per ) = f(peL).....f(p®r).
1 r 1 r

Conversely, assume that f(pel...per ) = f(pel)...f(per).
1 r 1 r
Let m and n be any positive integers such that (m,n) = 1.
r k
and m :_II p€i and n = Il qf3 vhere p. % q. for any
i=l "1 J= ] 1 J
i and j.

[
N
3
=
St
n

e e f f
f l....pr 1 .....q%k
(pl b ql qk )

€1y....f(pcr S I S P
f(p1 ) f(pr )f(ql ) m(qk )

e e f f
f(p lL....p ¥ )f(q.l....q k
Pl Pr 1 ql q K )

f(m)f(n).

Thus f is multiplicative.

Theorem 1.5:

1) The ordinzry product of two multiplicative functions is
2 multiplicative function.
2) The Dirichlet product of two multipliective functions

is a multiplicative function.

Proof':
Part 1) 1is clear. For part 2), 1let f and g be
two multiplicative functions and h = f¥g. Let (m,n) = 1,

hen h(mn) = 2 f{d)g(mn/d).
dimn

Now, s5ince every divisor d of mn can be written =s
¢ = ab where 2 is 2 divisor of m and b is a divisor of n;
moreover (a,b) = 1, (m/a,n/b) = 1, and there 1is a

one-to~-one correspondence between the set of produects b and
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the divisor of mn, hence,

himm) = 2 f(ab)g(mn/zb)
A0m
» bin
f < i
; = &L f(a)f(blg(m/a)g(n/b)
s aim
f bin
Y f(a)g(n/a) 2 f(b)g(n/b)
alm in
= hn(m)h(n)
Therefore, h = f¥g is multiplicative.

Theorem 1.9:

If £ is multiplicetive, then its Dirichlet inverse £ -l
is alsc multiplicative.
Proof:

We define a new multiplicative function g zs follows:

For every prime p and every positive integer e, we let
r
g(pe) = f_l(pe) and for n = TI pfi we define
i=1
r
g(n) = I1 g(pfﬁd. Clearly g 1is multiplicative, hence by
i=1

theorem 1.8, f*g 1is zlso multiplicetive. How,

(f*g)(p®) = 2 f(dy dg(dy )

- .Z Feg ye L (g 5 )
dle = p

(err Ly (p®

€ (p®

Hence, f # g = ¢ , thus e = f1  angd rlogs

multiplicative.
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since f~1 and h

are multiplietive,

17

Corollary 1.10:

The set of all multiplicative arithmetic funections is an
abelian group undnr the Dirichlet product.
Proof:

Let F be the set of 2ll multiplicative functions. Then
the commutativity and zssociativity holds since Dirichlet
product 1is bothr commutative and associative; € 1z the
identity; and from thecrems 1.8 and 1.9, for zny f, g € F,
(f*g) € F ane 1 € F,

Corollary 1.11:

Let £, g and h be &arithmetic functions, and suppcse
f¥g = h. If any two of the functions are multiplicative, then
so is the third.

Proof:

Let h = f#g. If f and g are multiplicative, then h
is multiplicative by thecrem 1.0. Assume that £ and h
are miltiplicative, then f #¢g = h implies that
£L % (f*g) = Lo h, and ¢ = =Ll =z n is multiplicative

is multiplicative. Similarly, when g and h

f is multiplicetive.

Corecllary 1.12:
If g = f¥4g , i.e. 1if g) = 2 £(d), then g
din
is multiplicstive 1if and only if £ 1is multiplicztive.

Horeover, 2 f(ad)
din

r ei
:H(}Zf(

r
pj )) where n = H pil . is the
i=1 j=0 i=1
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i prime factorization of n.
¢ Proof':

First assume thot g is multiplicative.

Then, g = f * Lo implies that g * Lg = (f* Yo ) b and
thus, f = g * C& is multiplicative since Dboth g and Cb
are multiplicative.

Conversely, essume that f is multiplicative. Then

g = f ¥ L, is multiplicative.
Now, for p prime and e > 0,

(£%L )(p®) = 2 £(d) = £(1) + £(p) +eevnser £(p)
dip®

r
so, for n = Jl pfi
! i=1pl ’ r

(£% Ly () = II (e uy )(pft

=]
r

I £00 )+ £(PL ) weeiiw £(POL) ]
i=1 i i
r e.

I Y i 1.
i=1 j=0 1

3. PRIMES AND UNIQUE FACTORIZATION IH ( D, +, ¥ )

Sinece the ring structurs of ( D, +, ¥ ) is anzlogous to
that of the ring of integers Z, it is natural to pose some
questions, such as whether ( D, +, % ) is a wunique
factorization domain? In this section we are going to prove
that ( D, +, * ) is & unique factorization donsin. The
proof is based on showing th=zt D 1is isomorphic to the domain
R[[x1,X95+eXpse+1] of formcl power series over the real field
E, in countably many voriables and the fact that

RI[%] ,%25+e¥nse--1]1 i @ unique factorization domain.



19

First, we extend the concepts of divisibility and prime

numbers in the rine of integers to arbitrary integrzl domain.

Definition 1.%4:

Let R be a commutzative ring with identity 1, R is said

to be an integral domain if ab = 0 in R implies that a3 = 0 or

Definition 1.5:

If R is an integral domain, an element b & R is sazid to
be divisible by an element a & R if there exists x € R such
that b = a % x. We denote this by alb. If alb, then we say a

is a factor or divisor of b.

Remarlk:

Unit elements in R divide any element in R. For if u is
a unit in R, then for any s € R, we have a = u * ul x4,
Sometimes, we refer to the unit elements in R as improper

divisors.

Definition 1.¢&:

Two elements a and b of a domzin R =are said to be
associates if a = b ¥ u for some unit u& R, and we denote

this by a~~Db.

Theorem 1.13

The relation " of Dbeing associates 1is a

equivalence relation on R.
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1) reflexivity-~a~n since a =z 2z * € for all o &€ R.

2) symmetry--o~b impliecs thnat

@0
LH

b # u for some unit u&R,
-1

whieh implies a # ul =p oy %y

and 2 %yl b

thus b—~~ana

3) transitivity--a~~b implies that a = b ¥ u for scme unit
u & R and
b~~c implies that b = ¢ # v for some unit

v &€ R
thus a = (¢ ¥ v ) ¥ u =zc % (v #* yu )
and a~~2C

Therefore "~." 18 an equivalence relation.

Thorem 1.14:

In an integral domain R, a~-b if and only if alb ond
bla.
Proof:

First, assume that a—~-b. This implies that & = b # u
for some unit u & K. Then by definition, bizs. Since 2~ob

implies b~~a2a, we czn writc b = o ¥ u'l, which implies hat

)]

1be

Converscly, assume that &1b and bia.
21b implies b = a * x for *x € R and bla implies = =z b * y

for y € R, Thus, @ = (a * ¥) ¥y = & * (x * y). This implies
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that x ®* yv = € , whiech meens that ¥ and vy are inverses of

each other.(i.e. x and y are units). Therefore a ~—b.

Remarl:s:
1. If aib, then a divides all the associates of b.
2. The associates of an element a in R are improper divisors

of a.

Definition 1.7:

An element a of a domain D 1is s»2id to be a proper
divisor (or factor) of b if alb but bfa. (i.e. in the
equation b = a ¥ ¢, ¢ is not a unit in R). We denote this by

allb.

Remark:
If u is a unit, and u = a ¥ b, then both a and b are

units, thus the units of R do not have proper divisors.

Definition 1.8:

Let H be an integral domain.
1. An element ¢ of R is said to be irrecducible provided that:
i) ¢ is @ nonzZero and nonunit.
ii) whenever ¢ = a ¥ b for a2, b&€R, then either a or b is
a unit in R,
2. An element p of R is a2 prime provided that:
i) p is a nonzero and nonunit.
ii) If pilab, then pia or pib.
2. The remaining elements of R, neither 9,unit, nor primes

are called composite.



22

?Theorem 1.15:

If R is an integral domain, then every prime element of

R is irreducible.

Proof:

Suppose that p &€ R is 3 prime element. Let p = a * b,

Since p is & prime and piab, then pia or pib. If pla,
then we have 2 = p # ¢ for some c&€ R. So, p = (p ¥ ¢) ¥ b,
and since p # 0, then 1 = ¢ ¥ b, and hence b is a unit.

Similarly, if pib, then a is a unit.

Thus, p is irreducible,.

Remark:

The converse of this theorem is not true in general.

Theorem 1.16:

Let R be an integral domain. Then
1. Every associzte of an irreducible element of R is
irreducible.
2. Every associate of a prime clement of R is prime.

3. Every associate of a composite element of R 1s composite.

Proof:
1. Let a~b where &a is irreducible. Then a = b ¥ u for
some unit u € R. This implies & *% u-l - b, =and since

a is nonzero and nonunit, then b is nonzero and nonunit.

Now, let b = x # y for x, y &€ R.
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Then, a = (x ®# y) # u =z x * (y # u)., Since a is
irreducible, then either x or (y * wu) 1is a unit,.
Similarly, wWe can write a = (x ¥ y) ®u =y % (x % uy,
then either vy or (x ¥ u) is a unit. Hence, if b = x * vy,

either x or y is a unit. Therefore, b is irreducible.
2. Let a-—~—bD Where a is prime. Then a =z b * u for some

unit u €& R. This implies a ¥ u~l = b, and since a is

nonzero and nonunit, then b is nonzero and nonunit.

Now, let bi(x ¥ y) for x,y € R.

Then, (x ¥ y) b ¥ z for some z & R, and

(x ¥ y) = (a ¥ u'l) # z, and
(x # y) ¥u = a * z, which implies

ajlx * (y * u)l.

Since a is prime, then either ailx or al(y # u). If

alx, then x (a ¥ r) for some r &€ R, and thus

x = (b # u) ¥ r b ¥ (u * r) implies bix. Similarly, if

ai(y # u) then (y # u) = (a * s) for some s € R, and thus

y = (2 *uly* g =b % s implies b!y. Hence, if
bi(x ® y) either bix or bly.
Therefore, b is prime.

3. Let a—~b where a is composite. Then, b is composite

follows from parts 1) =2nd 2), @a&and the definition of

composite elements.

Definition 1.¢:

En integral domain R is said toc be a unique

factorization domain provided that:



i) Every nonzsro nonunit elenant

product of » finite numbear of
l.6. a = ¢ eesC_ With ez
1.¢€ C1¢y n Wwith eozch

ii) If T= C1Che.eCy and  a = d
are irreducibles, then n = m
of {1,2,...,n}, ¢y and d

Remark:

Conditions 1) and ii) in the
irreducible element 1in =2 unique

prime. Thus, irrecducible and prim

Definition 1.10

An integrsl domain R is sail

chain condition if R contains no i

24

o

w of R con be written as o
irrcducible c¢lements in .
ciEE R is irr=sducible.

snd d

Gheedd where ¢,
1°2 m i

cnd for some permutation O

arec szssoclates for ocvery i.
definiticon, implies every
facterization domain 1is

e elements coincicde.

d to satisfy the ascending

nfinite sequence S REPIERE

with the property that each a1 is 3 proper factor of =& .
In other vords, if every chesin of proper f{zctors
R T UL LA R PRREN R PO R R § 0 is finite.
Lemma 1.05:
The integral domain (D, 4+, ¥ ) of aritimetic functions
setisfies the nccending chain eondition.
Proof:
The proof of this lemms is by contradiction.
Let 1 % Q,fz,... be an infinite sequence in D with the
property tnat eesch fi+1:: fi , then
fy =744 % g4, Where g4 1s not a unit, hence
N(ey ) < 1 and H(fy) = N(fijq)H(ry) < d(f341 ) for
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any i. ore generally, we havoe

. n=1
N(fy)= 1(£) IIN(gj)——~+(L as n —» oo .
J=1

This implies N(f;) = 0 and thus fj = § , which is a
contradiction.
Remark:

On the other hand, the descending chain condition for
ideals does not hold in ( D, 4+, % ).

For k an integer, 1let Dy be the set of all functions
f&€ D with N(f) < 1/k.

1]
@]

if n <k}
We want to show that
i) each Dy 1is an ideal of D
ii) D = Dy D D, D D33 «esss With each containment proper.
i) For each k, Dk is an ideal of D.

Let £, g € Dk . Then f(n) ¢ if n < ¥ and

g(m) 0 if m < k.

Thus, (f - g)(x) = f(x) - g(x) 0 if x < k.

Therefore, f - g € Dk'
How, let £ & D, and h &€ D. We have

N(f # h) = N(EIN(h) < (1/k) N(h)

I~

1/%, since N(h) < 1

Thus f % h & Dk . Therefore Dk is an ideal of D.

ii) How, f € Dk implies that f(n)

0 if n < k& and

g € Dp_jimplies that g(n) 0 if n < k-1

thus f &€ Dy 4 and hence DkC Dk—l
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Hew  daofin., (i) = Do ifn <L - T
it n > -1

Tous b & Dy but n § D since Lt - 1) = 1.

Fenee, Dy f Dk-l

NOW, Ve oAars goine

U
o
o}
&
-
A
(A
e
o
-
=
o
r“"
3

~2
=
Q
<
o

D hry ¢ factorizction inte irrcsducible olenonts.

Let £ be 2 nonunit olement in D, Then,

o - - % r~ % .. i 24
L = & l £ 2 . & s

arz  irreducibles.

bl
=
@
g
3
2
fas
—
—
Sy
o}
-
[¥3]

Proct:
Ir r is irrcducipdlc, tnere 1z nothing to prove.

Cthnrvwise, 12t © = il @ fq WS iz o proper f=ctor of

\ ~

{. Eitwer ] is irre

¢

proper factor of j. a2ad oooinlin

scguoned ‘,Il,Iz,...

But, since LT sgetd

63}

L1000 RO dn

[N

bre:'s off =2{tor « 1

P Eal L e oy o 2 . ~ r ] Fal
term, ' 13 irrcducible . n¢ Ln,tl.

Ve now s5¢t fh = £1 =nd we wuribe o=z gl x 1,12 01 4,
oo ounit, §  dis dirr-ocucible, othorviize we hove 1o g #2

- L a o A 2y .- Y A L2 K L S e oy TR PRI
Tera gp is drreducible.  Continuing in this woy, We obhtain

the cequencs T il ,f2 Fekels

~-
.
.
.

precoding one ane fAmloo,ow Al viaere g is  drrefucibie

[EN R m e b FalFal [T o FAVN 1 S N S P G- _
i braciio of 0 owith o Irvoduciblae clemant 7S 1 = (:S *
, . S C oL 2 L o o ;



Our next obJjective 1s to

factorization into irreducible
to show that if the uniqueness of

fails in a "simple way".

First, let us

elements of D into two classes,
whose elements

irreducibles 1is unique, and the cl

show

elements.

factorization

divide the set of

are those functions whose factorization
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the uniqueness of

First, we are going

fails, it

all nonzero, nonunit

the class of normal elements,

into

es5s of abnormal elements,

whose elements can be factored into irreducibles in two
essentially different ways. 3Since the abnormzl elements are
nonunits, they all have norm less than 1.

Theorem 1.18:

Let £ be an abnormal element of D such that 1/H(f) is a

least for =211 abnormal functions. Suppose

f = g, L. & hl ¥ ... ¥ n are twvo
essentially different factorizations of f into irreducibles
B hj’ thenm = n = 2 and N(gl) = N(gz) = N(hl) = N(hz).
Proof:

Heither m ner n is equzl to 1, since an irreducible is =
normzl clement. lloreover ne g4 is the associate of any hj ,
for if so, since cancellation holds in D (recsll that D is an
integral domzin), we hove

2

gl‘h e 0 e * gi_f gi"‘l% e v e gm = hl.’.‘

and each side 1s still abnormal.
irreducible, 1/L(g;) > 1, thus

oo g f gt

However, since g.

1
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1705 (gy) e Mgy)

2 W/H(g1)ee e 1/H(g521) 170 (g1 41) 0 o0 1/H(gg)
which contradicts the minimslity of 1/N(f) for abnormal
elements. Hence, no g; 1is an associate of any hj

Without loss of gencernlity, we may cssume

1/N(gy) < 1/W(gyyq) for all i = 1,2,...,m-1,
1/N(hy) & 1/N(hy,p) for all § = 1,2,...,0-1,
and  1/N(hy) < 1/N(gp).

Now,

(%) 1/N(f) = 1/N(gy ¥ «.0 ¥ g )

> 1/N(gq * g, ) = 1/N(gp). 1/N(gy)
> 1/N(g1). 1/N(g 1)
> 1/N(gp).1/H(hy) = 1/N(gq * hy )

Claim:
Equslity must hold throughout (¥),
Suppose at least one > holds in (¥*¥), so th=st
I H *
1/N(E) > 1/J(gl hl).
Consider F = £ - (gl i hl). Clearly, F # Q, because 1if

k = 1/N(gl # hl), then f(k) = C and (gl * hl)(k) f 0, so0
F(k) # 0. Also, £(1) = 0 since f is not a unit and g, (1) = 0
hl(1) = 0 since gi , hi is irreducible, so (gl ¥ hl)(1) = 0,

hence F(1) = 0. Therefore, F is not a unit.

1/N(F)

/KL - (gl * hl)]

min { 1/N(f), 1/N(gl ¥* hl) }

1/N(g;l ® hl) by our assumption that

1T/7H(E) > T/H(gl * h.o).

1
Thus, 1/H(F) < 1/H(f), so F is normal.
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Since g {Foandg n, | and F is normal, it follovs

g, ¥ ho)if, =2sa ¥ h, ¥ OH =
(o )I L] y gl l

=g ¥hy ® G for som

= G € D.

ff for sone H

How e * h * h = f = g ceeas T £ honce
! < ] ] t>] = ’
11 }1 = g i e o o 8 * = .
] i 2 [

Since m > 1, thie product is not the
2 unit, anc hence is normal because

2 m -

]

Thus, is 2n associate of g, for
i

h
1

whien is o contradiction. Therefore, in

holds throughout.

In paorticular, (%) yicldo,

1/1Cgy ). 1/1Cgy) = 1/8(gy) . 1/1(g

or H(gy) = Hlgy) = H(nag).

o>

P

Also, m = 2 since (%) szys,
1/8(gy ¥ woen Fogr) = /0y ¥
But, 1/H(f) = 1/L(gy * g,) = 1/H(g))

1/71(1)

1 ‘l':‘ ':*:‘ Ig
1/:1011 co Ln)

/0y ) e e e 170(0y)

v

[1/0(ny) 1"

[1/H(gp) 10

thus, [1/i(5101% 2 [W/LGsI% s

~

1, then n = 2.

29

S P
Lot

-
QN

some 1 =z 2yeae4n=-1,

l) = 1/1‘3(gl

gz).

H(gz) and

H(h
). 170 (k)

agilncoe
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Now, g2y # By = f = ny ¥ n, ., Teliing nerns,

N(gy * gy) = N(gy)N(g,) N(hy)H(hy) = N(gl)ﬁ(hz )
since N(gy) # 0, N(gy) = N(h,).

Thus, thne proof 1s complete.

y, THE RING OF FORMAL PCWER SERIES

? For any positive integer k, let

Ik = {Cl: (nl,nz’--nynk) : n.

; € zt+'U {0} }, and

X13Xpyeee,%X ... De a countably infinite number of

indeterminates. For each @€ I we define xa as

k’

a _ .ny .n n
X = xll x22 ....xkk .

Let R be the field of real numbers. Then the power

series ring R[[xl,xz,..x 1] in indeterminates

n,nco

X13XggessXyeee OVEr R is defined 2s the set of all

n
formal sums Zaaxa , where aa =a A, ee.d € R with
addition and multiplication definesd by
La a a
> egX + Zbax = 2 (aa + ba )X

( Zaaxa ) ( zbaxa ) = 2 caxa where q 23-3_;_;[3 b}’ .
It is easy to show that the following relations hold for
all &, B, and CE R[{x; | 1 € zt11:
i) AB = BA
ii) (AB)C = A(BC)
iii) A(B + C) = AB + AC
iv) 1 = 2 a xa , Where o2

aer, 0
is @ unit element for multiplication.

1, ag= 0 for all 0 § aE€r,
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Thus, we can state formally:

Theorem 1.1¢:

. -t . . . . .
Ri{x, i€ Z 1] 1is & commutative ring with unity.

+
1] has no

Now, we are going to show that R[[xi Pie Z
zero divisor.

Given P = Z aaxa 1= R[[xi Vil e Z+]], the terms a.x%
such that 2. = p are called the terms in A of total degree

po

Definition 1.11:

The formol power series Ap whose terms of total degree
p are those of A and whose other terms are zero, 1is czlled

the homogenous part of A of degree p.

Definition 1.12:

For every A € R[[x; | i€ Z%]), A 4 0, the leest
integer p 2> 0, such that Ap % 0 is called the order of A, and

we denote the order of A by wi).

Theorem 1.20:

R[[Xi Pl e 2111 is an integral domain.

Proof:

We only need to prove that R[[xj_: i€ 2171 nas no zero
divisor.

Let A = E:aaxa and B = E:baxa be two nonzerco

elements in R[[xi L ioe 270,

Let p = w(h), q = W(B), and let - anxa where

A.B
cq = zaley. Hence, ca=0 for Za< D + g and
B+r-a
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Ca = (Ap-Bq)a # 0 for za: p + d.

Thus L.B # 0, and the proof is complete.

Theoren 1.21:

The ring of aritnmetic function ( D, +, # ) is

isomorphic to the ring of formal power scries in countably

infinite number of indeterminates R[[xi i e Z*ﬂ].
Proof:

Let { P1s DPoseses } be the set of primes listed in any
definite order. Then every integer n can be written uniquely
in the form n = p?lpgz.... and uniquely described by a vector
(e15€95++0.) With nonnegative integral compenents, finitely
many of which are nocnzero.

Let ¢ : D—>3R[[x; | 1 € z']] be given by

pry = T £y
where the summation extends over all @ =z (eg,29,...)
where n = p?lpgz.... .
i)  Assume that (f) = P(g).

This implies that

a
Zf(n)xa = zg(n)x
and f(n) = g(n) for all n &€ 2zt ,
and f = g

Thus, ¢) is one=to-onc.

. ; . +
ii) To shou Cf) is onto, 1let 2 aaxa c R[[xi pie 211,
define f&€ D by f(n) =38y for all n & Zt  where

n = pilp§2.... and a = (el,ez,...), then

by =T rmx? = Ta x%
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> (f + g)(n)xa
S rfn) + g(n)1x9

1i1) P(f + g)

= z[f(n)xa + g(n)xa

= Pr) + Plg).

2 (f ¥ g)(n)xa
= I Y f‘(dl)g(dz)]xa

]

iv) @(f * g)

dld2 = n B
= 2 [ 2 f(dpx Zg(dz)x),]
dldz = n
where dj = pilp§2.. and d, = p?lp22...., and Q = L3+ )4
= = fdy)x v g((‘z)xy
1 da

b(£) ).

Hence, ¢> is an isomorphism.

To prove that ( D, +, ¥ ) 1is 2 unique factorization
domain, we need the following theorem whose proof is 1little

involved.[ 7]

Theorem 1.22:

The ring of formal power seories R[[xi ie zY)1) is o

unique factorization domzin.

Corollary 1.23:

(D, #, # ) 1is & unique factorization domain.
Proof:

Suppose unique factorization into irreducible elements
fails in D. DBy thecorem 1.18, we should have an element of

D of the form f # g =z h % k&, where f, g, h, ond ¥ are
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irreducibles of tne sezme norm, and T is not =zssociated of

D

{

either n or k. Under the isomorphism ¢>, this 1leads to
have series of the form cf)(f)cl)(g) = ‘-}b(h)ﬂb(k) where
(i)(f‘), ci)(g), Cf)(h), and 95(}:) are primes in
RILx, | 1€ 2%]] and b(r) is not associated with either
b)) or Px).

But, this contradicts the fact that R[[x; | i€ 27]] is
a unique factorization domain. Hence, factorizeztion 1into
irreducible elements is unique in ( D, +, ¥ ) up to order

and units.

Corocllary 1.24:

Let f &€ D be such thnat N(f) = 1/p, where p 1s g
prime, then f is irreducible in ( D, +, * ).
Proof:

Since ( D, +, ¥ ) is a unique factorization domain,

every irreducible element in ( D, +, ¥ ) is also & prime.
Now, to show that 1if N(f) = 1/p, then f is
irreducible.

Let f = g * h, then N(f) = ©HN(g)l(h). Hence,

p = 1/N(f) = 1/H(g)N(h), thus we must have either 1/N(g) = 1

or 1/N(h)

1, thius either g or h 1s a unit, and hence

f is irreducible.



CHAPTER 2

SOME IMPORTANT ARITHMETIC FUNCTIONS

In this cheapter, we will be dealing with some of the

important arithmetiec functions of number theory. By taliing
advantage of the algebraic structure introduced on the set of
arithmetic functions in Chapter 1, we prove many classiczl
results concerning these funtions. The algebraic viewpoint

has the obvious advantages of leading to the development of

such results without mysterious combinatorial techniques.

The iota functions

First, we zre coing to introduce a very important class
of arithmetic functions, the iota functions. Ve will see that
these functions can be used to build up many of the

arithmetic functions in this study.

Definition 2.1:

For any real number k, we define the functions bk by
Hén) = nk for cvary positive integer n.

WHe will refer to these functions as the iota functions.

In particular, note that Lg(n) = 1 for every n > 1. Also we

will write U for 7] when no confusion will arise.

Theorem 2.1:

The iotsz functions are multiplicative.
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. Proof:
Let (m,n) = 1, then by <definition 2.1,
L(mn) = (mnﬂi
- mknk
= Lp(m) b ln)
Thus, Lk is multiplicative. Alsc, Ve cazn see that

in fact completely multiplicative.

Theorem 2.2:

The iota functions are Dirichlet invertibls and
1 if n = 1

vid(n) = (-1)E nk if n is a product
distinct primes

0 otherwise
Proof:

For a real number k, (1) = 1 % G, hence

L

"%

k

of

invertible. Furthermore, bil is multiplicative. Thus,

using lemma 1.04, we get

for n = 1, bk1(1) = 1/ bk(1) = 1

N
H

and for rime L—% -1/ (1) L, (p/ad) b_l(d
P P , Lp(p b ;I:kp o ()

cqp
d < p

H

—(1) 4y () D)

= -(1)pk
and for = > 1, L_l(pe) = =1/ L (1) 2 b (p€/d) vE(a)
k k d,pek k
s
¢ < p®

but (k'l(u) # 0only if ¢ = 1or ¢ = p, so

-1 e
4
Lk\p )

- _pek . p(e-l)k.pk
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r

is

by

- ey, -1 -1y~1
= ( 1)[bk(p L k(1> + Lk(pe )bk(p)]



is multiplicative, hence for

-1
Lk (n) = ﬁ bk(p i)

[

{ -1T (p p ..p )k if all e, 's =
i

1

—(1)pk if all e.'s = 1
1 1

oll ::]H

othervise

[

otherwise

-1) n if all e.'s
i
otherwise

It
—_

The Mobius function

Definition 2.2:

The Mobius function A is defined to be

1 if n =1
H(n) = 0 if n is not squarefree
(-1)r if n is a product of r distinct
primes
r
iote: squerefree means that if n = II p?i , All e 's are 1.

i=1 *

Lemma 2.01:

M is multiplicative.
Proof:
Let (m,n) = 1. Then
i) ifm=mn =1, p(mn) = 1 = (m) p(n)

ii) 1if either m or n, (or both) are not squarefrece,

p(mn) = 0 = fL(m)fL(n)



' i1ii) if m and n are squsrefree, then m = plpz...pr and
n = .an vwhere for all 1 =z 1,..,r
4., --a_ P, %qj ool
j - 1,-..,5.
r+s r S
/L(mn) = (=-1) = (=1 (-1) = p(m)p(n)

thus M 1s multiplicative.

Theorem 2.3:

The Mobius function M is the unique arithmetic function

such that f# L, = € ie. 2 u(d) = 1 ifn o= 1
din
0 if n # 1
Proof:
i) Since M and Lo are multiplicative, ( L % LO ) is

multiplicative, so
(/‘L* "0)(1) = ILL(1) 00(1) =1 = €(1)

and for p prime and e > 0,

( K % Ly )(p®)

KO Lo (p®) + w(p) 1y (p®7L)  «

e-2) 4 eeene +

H(P2) Ly (p
m(pe Le(P) + (%) L)

(1) + (-D)(C1) + C 400+ 0+ 0

Q

= €(p®)
Therefore, H * LO = €
ii) To prove the uniqueness, assume that M ¥ LO= H *bo
Then, Hox by o= %z Ly
. =1 - -1
(% L) * Ly = (K% Ly %L
. L o-1 - L=l
/'L*("OWLO) =/‘L""("‘O*"O)
¥ € - [l % €
K= R



Remark:

Hote that W is the Dirichlet inverse of g .

Theorem 2.4: (Mobius inversion theorem)

For all arithmetic functions f and g

g = f * Lo if and only if f = MK * ¢

i.e. g(n) = 2 r(d) if and only if f(n) = & m(d)g(n/d)
din din

Proof:

First, assume that g = f ¥ Lg, then

T

HL* (f % Lg)
HE (g £)
(M4 % lg) *f

= € % f
= f
Conversely, assume that f = 4L * g, then

f*w=0K*g) *l

(g *p) ¥t

:g*G

g

Theorem 2.5: (Generalized Moébius inversion theorem)

39

Ifr f, g, and h are arithmetic functions, and h(1) f 0

then ¢ = £ # h if and only if f = g * hol,

i.e. g(n) = 2 £(d)h(n/d) if and only if f(n) = g(d)i Xn/a
dlin din

)
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Proof:
First, assume thet g = £ ¥ h ,then
g ¥ h = (f #h ) % h_l
=f % (no# Tl
- f % &
= f
Conversely, assume that f = g * h_l, then
£F¥n = (g#ht) #n

g * (0l osn)

g * €

g

Note that if h = lg in this theorem, then we have the

classical Mobius inversion formula.

Number aznd sum of divisors

Definition 2.3:

For posiftive integers n, we define the folloving
functions:
i) T(n) is the number of positive divisors of n
ii) o(n) is the sum of positive divisors of n
iii) Gn) 1is the sum of the UNth powers of positive

divisors of n, where k is any real number.

Note that T(n) and O(n) are special cases of On).
i.e. T(n) = Oan) nnd O(n) = 0Gyn)

We can write these functions in terms of the iotc

functions:



T(n) = ( Lg* bgdn) = 21
din

o(n) = ( Lo¥ b )(n) = 2 d
din

aqn) = ( Lo* L) = 2 ¢
din

Theorem 2.95:

Ukis multiplicative.

Proof:

]

-
E
-

Since Lk is multiplicative, then Ui

multiplicative.

Corollary 2.7:

The functions T and O are multiplicative..
Proof:
Since T and O are special cases of 0O , hence,

and O are multiplicative.

Theorem 2.9:

For any prime p and any positive integer e, we have

O(p®) = %pik: e + 1 if v = 0
=0 pk(erl) — 1 ir Kk 40
pk - 1
Proof:
gdpe) = ( Y 4 )(p®)
- X gk
¢ ip®
= 1.+ pK 4+ p2K 4 .. 4 pek
. 3 ik

41

is

T
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ﬁhence, by wusing sum of geometric progression with common

tratio pX , we have

O‘k(p ) = e + 1 if ¥« = 0
pk(etl) 4 if &k # 0
pr - 1

r
Since Oy is multiplicztive, then when n :IT pi  we get

; i=11
t Corollary 2.9G:
r
o (n) = IT(e, +1) ifk=o0
; k i=1 *
| pklei+l) - 1 if k {0
% i=1 Pk -1
'j 1
Corollary 2.10:
I
If n = 1l p®i , then T(n) = (e + 1 ). Also
i=1+1 i=1
T(1) = 10
Proof:
_—— r
T(1) = Z1=1and T) = ggn) = 11 (g + 1),
al i=1
Corollary 2.11:
Ir
Ifn = [l p€i , then o(n) = peitl - 1
i=1 *t T -
i=1 p; - 1
Proof:
o(n) = Gitn) = r pfitl - 1
i=1 Py = 1

Tt is easy to derive various identities involving the

arithmetic functions O& and Moo



i Theorem 2.12:

For any positive integer n,

L Gr o= Ly . d.e. 2 OR(d) M (n/d) = nk

din
Proof:
By definition, o = Y9 * Y o, thus
0;(* L;l: (,O-x Lk # L;l
; O # H = L * €
% *H o= i

)

Corollary 2.1

For any positive integer n, we have

i) T % p o= Lg ice. 2 T(d)p(n/d) = 1
din
i) O K - L i.e. 2 0(d) M(n/d) = n

din

iii) oO# g T % L i.e. 20‘(@) = Z(n/d)r(d)

cin din
Proof':
i) T x M = Ob ¥ M= Lo
ii) O g - TP Kooy

iii) % lg = (g L) * LO

( Y+ L@ x U

We also have

Theorem 2.14:

For any pesitive integer n,

i) 2c0(d) = 2 (n/d)2 o(d)
din din
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i) 20(d)o(n/d) = 2 d T(d) T(n/d)
din din

Proof:

i) Since z:(n/d)zcr(d) is equivalent to ( l2* O )(n), and
din

both Uty and O are multiplicative, we can just look =2t
its value at pe y Where p prime ancd e > 0.

2 () (p&ra)?

(L% T )(p®)
dip®

c(1Np2® + o(p)p2(e~ll ... + o(pe-2)pd

+ o Hp? & o)

p2e + (1 + p)pz(e-kl...+ (1 + D +eeut $72) pA

+ (1 + D 40+ PP7LOP2 4 (1 # p #euevs D& )

p2e + (pze_% p2e—2) teoot (p4 + D2 4. s pe+%

+ Q; + p3 Fos et pze'% + (1 + p2+...+ p€ )

T+ (p + 92 )y + (p2 + p3 + p4 ) I P

(pe~l4 p® w....+ p2€=2) 4 (p® 4+ petly.. .. p29)

2 Ufpz) Foeoeowot

jal)
o]
o N
™M
o)
q
N
=
St

1

gf1) + pogi(p) +p

pe~l o(pe~l) + pe o (pe)

14 p(1 +p) + P2(1 +p + P2) 4eeunnns

it

pe_l(1 + D He.o+ pe_l) pe(1 + p +...pe )
=1 + (p =+ p2) + (p2 + p3 + p4 ) Heenaeot
e-1 e 2e—% e e+l 2e
(p + D 4eee+ P + (p +p +eee+ P )

Thus o @ o (d) = 2 (n/d)2 o (¢)
Adin din
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ii) Similarly, since 2. o(d) o(n/d) is equivalent te
din
(T* O )Y(n), then

(T*T )(p®) = 20(d) o(pS/e)
dip©

o(1) o (p®) + o(p)o(p®h +..... +

o Hom) + om® o)
1

= (1 + D 4eeeet DS + (1 + PYX(1T + p +eeu+ pe_ )
Feeeoet (1 + P 4.0+ pe_l)(1 + p) +
(1 + P +eeeet+ D)

2 (1 4P 4eeeetPE) + [(1 + D +euuus pe_l) +
(P + P2 #0eeet PE)T 4eued [(1 4D +0uut pe_l)
+ (p + P2 4.0+ P )] + (1 4+ p 4,00+ p€ )

e-1

(e + 1) + 26D +.4..4 2€p + (e + 1)p*©

and

2c T(d) T(pe/a) T(1)T(p®) +p T(p)T (L) +....4

3 1p®

pe~l r(pe~l )T (p) + p© T(P®) T(1)

(e + 1) + p(2)e +0vevt pSl(e)2 «

p€(e + 1)

e-1

(e + 1) + 2D +..e.+ 2€p + (e + T)p

Thus 20(3)0 (n/d) = 2d T(d) T(n/d)
din din

Fuler's function

Definition 2.Y4:

We define LEuler's function 4) by

b= Lo = L i. ZPd) = n
din

)
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By Mobius inversion theorem,

L% M ice. P(n) = 2 ¢ p(n/d)
din

Since L and i sre multiplicative, it follows that <#

is multiplicative.

Theorem 2.15:

For n > 1, we have <#(n) = n II(1 - 1/p)

pin
If p is prime and ¢ > 0, then
Py = (L E LD
= LA + LAY v LT (T e .
vTh )+ L (B (D)
204+ 0+ 0 4eeeer (D) &8
- _pe—l + pe

=p¢ (1 - 1/p)
r

Then, if 1 < n = Il p®1i
n) = (pSi)
P P

r
IT i1 - 1/p )
=1 1 i

1

1
n II(1 - 1/p)
pin

pSl....p%T (1 = 1/p )1 = 1/p Jeev(1 = 1/p )
r 1 2 r

Oréinarily, the Euler function @(n) is defined to be
the number of intepgers m, where 1 < m < n and such that
(m’n) = 1-

To show the equivalence of the two definitions, consider
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the function Y defined for each positive integer n by

Y(n) = number of integers 1 < m < n with (m,n) = 1.
First, we will prove the following lemma
Lemmz 2.02:
If din, let Sd = {mn/d |} 1 <(m<d and (m,d) = 1}
If din, eln and d # e, then Sd N Se = ¢ and
LJSd ={ 1,2,...,n }. That is, { Sd ! din } is a partition
in

Of { 1,2,....,1’1 }Q
Proof:

Let din, ein and d f e, then

Sqg = {mn/¢ | 1 <m <dand (myd) = 1} and
Se = {rn/e | 1 <r e and (r,e) = 1}

Suppose S5gM Sg f ¢, then there is an integer t where
t = mn/d and t = rn/e with 1T <&m < d, 1<r <e,

(myc¢) = 1, (r,e) = 1. Thus

(m,d) = 1 implies that (mn/d, dn/d) n/d  which implies

i

(tyn) = n/d

Similarly,

D

(rye) = 1 1implies that (rn/e, en/e) = n/e which implies
(tyn) = n/e

(t,n)

n/d and (t,n) = n/e 1implies d = e, which 1is
impossible. Therefore, if ¢ # e, faN S = @

How, let t &€ { 1,2,...,n }. We will show that t & 34
for some d uhere din.

For some integer k, let k = (t,n).

This implies that kit and kin, thus t = kb and n = kd where
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—
IA
e
IA
~~
3]
o
Q.
—
IA
)
In

n. Frem this, we get t = bn/d, buf
1<t {ny, s0o1<b <t dnand thus 1 { b £ d.

Also, k¥ = (t,n) implies k (kb,kd) which implies 1 = (b,d).

Since t = bn/d where 1 (b < d and (b,¢) = 1, then t&S3,

Now, we will show that EhiC: { 1,2,¢4.4,n } when din.
Sg = {mn/d 1 1 <m <dand (myd) = 1 }. 5o, we need to show
that 1 < mn/d { n. i.c. d < mn and mn £ nd.

mn < nd implies that m < d, which is true from the
definition of S4. d < mn if and only if 1 ¢ mk where k = n/d
and k > 1. Thus d ¢ mn if and only if m > 1, which is true.
Thus SdC: { 1,2,00e04n }.

Therefore, L{Sd = { 1,2,...,n }

din

Now, since the collections of the subsets 3,4 is =&

partition of { 1,2,...,n }, the number of elements in

{ 14,2,...y,n } is the sum of the number of elements in 3.

1}
=
.

Since 5S4 has Y(d) elements, wWe have Z:)Kd)
din

n
-
=

Therefore, by !obius inversion theorem, we have Y
and we see that Y = ci: .
Summarizing these results, vwe have

Theorem 2.16:

The number of integsrs m such that (m,n) = 1 and

1<m<n is 4D(n).

Corollary 2.17:

kny c¢yeclic group of order n has <#(n) generators.
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any c¢yeclic group of order n is isomorpinic to (Zn ).

Thus we will lool at the generators of (Zp,+).

The units in Zn are Un = { [a] G:Zn ! (a,n) = 1} thus

VR (P(n).
Claim:

Every unit in Z, 1is a generator for (Z,,+).
Proof of claim:

Let Z,, = { [11,[2],¢.¢.,[n=1],[n] }. Assume that
[al &€ Z, is a unit in Z, . Since [a] is a unit, (a,n) = 1.
Thus < [a] > = { [&], 2[a] 4e400., nlal }

We will show r[=2] % sfal for =211 1<r,s <n, if r f S .

Assume rlal = s[al]. This implies [ra] = [sa]

and ra = sa (mod n)
(ra - sa) = 0 (mod n)
a(r = s) = 0 (mod n)

thus n} a(r - s)

and n)(r - s) sinece n/a

but this is impossible since (r - s) < n. Contradiction,

and thus r(s] f sfal.
Therefore, every unit in Z, is a generator for (Z,+).

Theorem 2.18:

The following identities hold among the functions <# R

T ag and U .

? b
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or more generally, we have

i) P % o = L ow L

:,Proof:
We will prove part iii) only since parts i) and ii)
| follow from it.

iii)gb*c‘k=(L«x,u)a:-o'k=(,*(,u,*o-k) L%Lk

To sum up the fract that most familiar arithnmetic
functions namely T , T , 4) y and K can be build up from
4

the functions tg 2nd L , we state the following theorem

Theorem 2.19:

The group generated by lg and U is the ‘smallest!
subgroup of the group of units of arithmetic functions in D
with wvalues in Z under the Dirichlet product which conteins

the following classicsl 2rithmetic functions:

e = Uir e : the Dirichlet identity
Moo= 161 : Mobius function

T = Yh¥ b : number of divisors

g = L x LO : sum of divisors

#): L o® Lal : Euler's function

Jordan function

The Euler d)-function is an example of a wider class of

functions called the class of totient functions.

Definition 2.5:

A

An arithmetic function f is a totient if it can Dbe

2t

written as f =z g # h_lwhere g znd h a2re completely

[
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E multiplicastive func-ions.

Clearly, the Euler 4)—function is » totient since
-1
43:(,*24/&:1. ¥ Lo

where both L and Lg are completely multiplicative functions.

Fs an example of & teotient function, we will consider
the Jordan totient J. as one of many generalizations of the

Euler ¢)—function.

Definition 2.6:

For any positive integer k, the Ukth order Jordan
totient function Jy is defined by Jy = YW * b . Tt follows
from the definition that Jx(n) = 2 u(d)(n/d)

din

Theorem 2.10:

For any integer k > 1, Jk is a totient.
Proof:

Since Jyx = b ¥ H =z Ly ¥ bal where both b ang
are completely multiplicetive functions, then Jk is a

totient.

Theorem 2.11:

Jyi 1s multiplicative.
Proof:
Since Jy = bty * H  where both ¢ and M are

multiplicative functions, then Jk is multiplicative.

‘ st hat = L = =
Note that Jg = o= ¢



?Theorem 2.12:

J (1) = ( bk*# Y1)

f For p prime and e

CLe®#H ;S

> 0,

Ji (p )

+ LT

(e=1)k ek
+ D

= p

[
i
=
1]
e

.,
S
ke
b D
'_J.
i

1

Theorem 2.13:

For any positive integer

Proof:

By definition, Jy(n)

inversion theorem,

2 5 () =
din

Theorem 2.14:

Jx (n) equals the number

( Xp9Xoyeee Xy } such that 1

r
elk....perk I1
r »

52

)e
J (D = 1 and if 1 < n = I pSi, then
r i=1
Iy = ok IT (1 = 1/pk )
. 1
i=]1
] Proof:

L (DAL = 1

L (A (PS) + Lk(p),u-(pe_l) PR Lk(pe-l)lu.(p)

O + 0 +¢uveet p(e_lwi1) + pek

r
nk IT (1 = 1/pk )
i=1 i

N, z:Jk(d) = nk .

din
2 () (n/d)K, thus by MSbius
din
nk,
of ordered k-tuples of integers

xy <nfori = y ¥ and

1,2, ...
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ged( X 1X e eeX D Yy = 1.

To prove this theorem, we will make use of the following
Wwell known combinatorizl principle:

Inclusion-exclusion principle

If Al ,....ﬁt are subsets of a finite set 3 fhen the

number of elements of the set

t .
SN (MU B U.oU B = 181+ 2 (-2 21y NN
‘ "
The proof of this formula can be found in [24].

Proof of theorem 2.14:

Let 7& be defined by
Vk(n) = number of ordered k-tuples of integers ( X s eeesXp )

such that 1 < X; <n, i=1,2,...,k and gcd(xl,...,xk,n) = 1.

Let S { (x

1,...,xk) 1< x, <n, 1 =1,2,...,k } and

g 1

i
A, = { (xl,...,ﬁ<)€5 31 p.d gcd(xl,....,xk) } where

1

ej er
n = v s as
pl pr

If (xl yeee Xy ) € Ai , then gcd(xl,....,xk ,n) f 1,

beczuse each X5 o i = 1,....,k are multiples of P . Thusg
- 1 < 1
Y(n) = 1 8\ (aU A2LJ U A
Claim:
- k ;
(AN L0 Rig) do= n/pil....pij) y 1 <Ey <.

To prove the eclaim, wve will lcok at specizl cases, that
is when i = 1 and i = 2. From there, we can see that it works
for all 1 < % < r.

For i = 1,

Al = { (Xl,.oo.,Xk)€53 : pl : gcd(Xl,---o’Xk) }
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- v o)
{ (pl,apl,....,(n/pl)pl) A (pl,apl,----,(n/pl)pl)

Yououo. X (pl,2p ,....,(n/pl)pl) }

1
’..O.,p

{ (pl » P )y (pl,2p , 2P perr2P )y renn,

1 1 1 1
N ¢ )
((n/pl)pl,(n/pl)pl,- ) n/pl pl) }

e

thus, A | = (n/pl)ﬁ
Now, we will look at A1 MAy!
AN Ay = | (X75eeeer,X) &€ 3 1 ppi ged(Xy,yee.,¥,) and

p2} gcd(xl,...,xk) }

{ (plpzygplpz,-.-,(n/plpz)plpz) X

S R R e IR I B O "

i (plp2,2plp2,...,(n/plpz)plpz) X veeesoX

(plp2’2p1p27""(n/plp2)plp2) }

{ (PyPysPyPys+e+sP1Py )y (P1Pys2P1PyyesesZP1Pp)yene,

((n/pyPy )Py Py » (N/P1Py )P Pyseveses (N/P1PyIP1Py) ]
k
Therefore, in general,
! n 4 J ! = 3 * 5 o 0 3. .. .
N A0 N A ) L s (n/py by, o, < i <
Using the inclusion-exclusion principle,

r .

}’k(n) = nk + Z (-1)3 .Z(I’l/Pi]<-_- -pij )k
j=1 T Eipdeee X 1jg r

2 (n/a¥u(a)

din

"

Z d]ﬁt.l—(n/d)
din

( ¥ K )(n)
Jk(n)

i

Therefore, 7&: Iy -

Now, we will give an example to illustrate the theorem

and its proof.



fExample:

Let n = 6 = 2.3, and 8 = {(xl,xz) b1 < 4 < 6, 1= 1,2}
ithen Ay = { (2,2),(2,4),(2,6),(4,2),(4,4),(4,6),(6,2),(6,4),
(6,5) }
Ay = { (3,2),(2,6),(6,3),(6,6) 1}

AlU Az = { 2,2),(2,1‘;),(2’6),(11,2)’(1"1;)’()‘!’6)’(6’2)’(‘6)4)’
(6,6),(3,3),(2,0),(6,3) }

Thus, NN (AlL)Az) are the ordered pairs that are not

both multiples of 2 or 3. That is, the gcd(xl,xz,ﬁ) = 1.
Then, 75(6) = | 3\ (AlLJAZ) boso24,
Also, Alﬂ Ay = { (6,6) }, | Alﬂ A2 ! = 1, and
( n/plp2 )2 = ( 6/2.3 )2 = 1, thus
| M08 ! = (n/pypy )2,

2 (d)(6/d)2

Now, J2(6) -
d|'ﬁ

KODB2 + (2 (D2 4 w22+ p(6)

= 2

Therefore, 7&(5) = J2(6).

Theorem 2.15:

Let { Fk(n) ' &€ Z } be a set of nonzero completely
multiplicative arithmetical functions such that

W)

Then, Fi (n)

Kt (n) and let

( H = Fk Y(n).

¥
[ Fy ( \I/k_j . F9) 3.

55



Proof:

Corollary 2.16: (Gegenbauer)

TPy * Wy - Fy) 1) = 2

din

56

(Wk-5 . B )(n/¢)Fj(d)

) \I/k_j (n/d)F4(n/d)Fy(d)

¢in
= Fy(n) 2 q?k_j(n/d)
din
= F3(m)( g # Wk-9 )(m)

= Fy(n)[ Fg—j (n) 1

= Fk(n)

. =1
Cdx * Jd5 )(n) = Jxy (n) Ly(n)
Proof:
By definition, Jp * Lj = (M % L) o L5
= Lk ( /u- ] LJ )
- _l _ L m b-l T‘ e 24 .
hence, Jk % Jj = k ¥ i hen by substituting

Fk(:’]) =
Ik-i (n) = ( K * br—y ) ()

Y(n) =

Lk(n) in theorem 2.1%5,

-1

Mso, Jy* oy = ( B * b
7

= ( s Lj
= J] ¥ O%
so, I * J—jl = O-k % C"j_l.
Thus we get
Cornollary 2.17: (Negoes)
( o ¢+ o ymy =0 . ()

k ;| k-7

-1
C 4 ¥ LymoHm)

we nave

and

= Jx-3 (n) 4y (n).
¥ ( Ly o# Lj )
# ( UO * Lk )

L.(n).
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F Liouville's function

f Definition 2.

T
i
¢

Ue define Liouville's function A(n) ag follows
AT
A(n)

1
t+ole. T
(_1)61 er

Theorem 2.1%:

For every n > 1, we have

2 N(d) { 1 if n is a square

din
0 otherwise
;J or equivalently X(n) = EI,¢<n/d2>
| d2in
i moreover, X—%n) = (M (n)i for all n.

Proof:

=

Let g(n) = E:X(d), then g is multiplicative, so we can
in

compute g(p®) for p prime and e > 0.

Z AMd)
O|p

A1) + A(P) +ennet APE™H + ANS

g(p%)

th

1T+ (=1) + (=12 4euvus (=1L L (o1ye
C if e is odd
1 if e is even

r
so, if n :lTlpfi,
i=

r
g(n) :_II g(pfﬁ) = { O 1if one of the e; 1is odd

1 if 211 e; are even
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This implies theat

din
) otherwise

Z)\(d) = g(n) :{:1 if n is a square

By Hobius inversicn thecorem,

A(n)

if ¢ is a2 square

2p(n/d)p(d) but g(d)

din

1
)

0 otherwise

? hence, X(n)

2 (n/a%)
dZ./;lL i

Now, let A ¥ {p} =€
CA ® R = XDIR(DY = 1
and for p prime, e > 0,
AN TR G+ N ip ST
e NOSThH p) + AS) )

(A x (S

0 4 0 #eewet (=18 L1y 4 (=1F

(-1 1o (o1

-(=1)¢ + (-1)®

"

= 0
r

since A and M are multiplicative , hence when n =1 pii ,
i=1

( A ¥ i i) (n) = O, Thus X_%n) = :;L(n){

Theorem 2.19:

r
If n = II p;®i , then
i=1

r

.

1) ZH(@A@) = 2
din

el+. .oty 2]:

>\(n)2r

ii) Z,u(d) A(n/d) = (-1)
din
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Proof:

i) For p prime and e > 0,

Hi

TN = L (DX +4EIAN (D) et LN ()

dip®
= 1T + (=1)(=1) + e..uo + 0
= 2
r

thus for n = T[p?i,
i=1 +

2N () = 2..... 2 = oF
din r times

ii) For p prime, and ¢ > 0,

2 (NS = (DN (S + (PN ™Y s e L (PSHND)
ZH P po ) p
= (=1 # (-D(=1°%""4+ 0+ ..... + O

(=18 + (=) (=171

= (-1 + (-1)¢

2(-1)°

r
thus for n = [l p?i ,
i=1

r
A(n)2

2 (N (n/a) = Ir[ 2= o £ (oyf1te-cTer
din i=1

The Mangoldt function

This arithmetic function is important in the study of

problems concerning distribution of primes.

Definition 2.¢:

For every integer n > 1, we define the Mangoldt function
A . m . . . v
(n) = log p if n = p for some prime p and some

n > 1

0 othierwise



Theorem 2.20:

Ifn> 1, ve have
i) log n = EA(d)

ain
ii) (M % log )(n) = A(n)
i.e. ./\(n) = z/u,(d)log(n/d) = - z,u—(d)log(d)
din

d1in

i)y If n =1, log 1 =0 and 2ZA) = A1) = ¢
ati

Assume n > 1, let n = fI %éi then
i=1

r
log n = log JJ pii
i=1

: el e2 *® 5 5 5 0 3 er
log pl + log p2 + + log pr
r

= 2 log pti
iS1 °8 Py

‘f
= e: log p:
i=1 * *

Note that the only nonzero terms in the sum of

.. . m
are the divisors d in the form P; form = 1,2,...,e5

-

i=1,2,.

-1

.y Therefore,

ELA(G)
din

I Vs
7 MR
>
hol
3

i=1 m=1
I i
= 2: 2:1og p.
i=1 m=1 1
= E: e. log p.
i=1 *
= log n

11) (M * logd(n) = [ M ¥ (N x vyl
=t Hx vy Ny
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Z|A(d)

and



-1
=T gy =N 3

=1 €x Ny
= A(n)
From part i), log n = zA(d)
din

and by Mobius inversion theorem,

Ay = 2 p(d)rog(n/ad

din

2 H(d)(log n - log d)
din

din din

but, 2 A(d)log (n) = log (n) & m(d)
d!n din

log n 1 if n =
0 if n ¢

= 0

hence, A(n) = - z,l—L(d)log (d)

din
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2 p(d)log (n) = ZM{d)log (d)

J



CHAPTER 3

UNITARY PRODUCT OF ARITHMETIC FUNCTIONS

o
£}
O

cenersclizatic Pirichlet procuct, that i3 the unicory
procuct of ~rithmetle function. Our trostment of the unitory
procuct here will feollow the patitern wve ¢lraady

S

the Diriehlet product,

Definition ~.1:

E positive divisor ¢ of the positive infteger n is czllaed

unitary divisor of n if (d,n/¢) = 1.

~y

T 1 -
{¢ doenote the T

o)

ct thet ¢ is a unitory divisor of n by

We shall now prove some important properties o

divisors.

Lemmz 35.01:

I @i lb and blle, then ofiz.

Proot

By definivion, aiib impli>s b = 2x Tor some iutoeger

anc¢ (z,b/a) = 1, &and biic implics ¢ = by for some intcorer v
and (b,e/b) = 1. Thus, ¢ = (2x)y = 2(xy), and since Z!b tit-n

(¢, </b) = 1. How, (g,v/) = 1 und (a,e/b) = 1 impli=c

(eyba/ab) = {(a,c/e) = 1, Yhereforz, olilc.

62
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Definition 2.2:

r
Let n »nd m be two positive integers, with n = II p?l .
i=1
& f
and m = II p;i , e, ,f. > 0. Then we define
. 1 1 1 -
i=1
T Sles, £
<n,m> = II p.(el’ i) where S(e,f) ={ 0 if e f T
i=1 *
e if e = ¢
Lemma 3.02:
<n,m> is & unitary divisor of n and of m.
Proof:
r r
Let n = ]I p®1 and m = [[ pfi . S0, by definition,
i=1 i=1
n/<n,m> = (pel ....per )/(pS(el'le..pa(er'fIB, but each

pS(ei'fi)divides p€i , thence n/<n,m> 1is an integer which
implies that <n,m>|n.
Sipilarly, m/<n,m> = (pfl....pfr )/ (pO(e1 £1) pSler &),

is an integer , thus <n,m>im.

Now, ve will show that (n,m>,n/<n,m>) = 1 gand

(<n,m>,m/<n,m>) = 1.

£

Let n = p®l...p%p%j...p%r and m = £1...0%x fj... r
pl pk pj pr pl pk pj p
Then,
(<n,m>,n/<n,m>)
£ ey, t
(pa(el'flz..ps(er’frz(pel ....per )/ps(el' 12..p8( rr r))



C 1,p51 L..pSr ) it B(ey,fy) = 0

for 211 1 = 1,...,r

el er H -
( Py* «+eP_ s 1) if S(ei,fi) = e

for all 1 = 1,4..,r

(p%l...pﬁk,p§j...p§r ) if 8(ei,fi) = e for
and S(ei,fi) = 0 for

= 1
Similarly, (<n,m>,m/<n,m>) = 1.

Therefore, <n,m>}in and <n,m>|inm.
Lemma 35.035:

ali<b,e> if and only if a||b and alic.
Proof:

First, assume alib and a}ic. Then

ajib implies b = ax for some integer x and
and allc 1implies ¢ = 2y for some integer y and
Thus, <b,c> = <ax,ay> = 2<x,y> implies <b,c>/a =
ai<b,c>.

Now, we have (a,b/a) = (a,x) = 1 and (a,c/a)

hence, (a2,<x,y>) = 1, i.e. (8,<b,c>/a) = 1.

then

Thus, ali<b,c>.

64

i o= 1,..,1-{
i = Jy,.e.,r
(ayb/ﬂ) = 1
{a,c/a) = 1.
<{x,¥>, hence
= (a,y) = 1
e>lie

Conversely, assume 2a!i<b,c>. Since <b,c>!|b ancd <b,

by lemma 3.01, z2i{ib »nd alic.
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Lemma 3.0U4:

Let m and n be two relatively prime positive integers

and 4} imn, then ¢ = ab where a|im and b} in.
Proof:
Let (m,n) = 1 and d!!mn.
r s
Let m = J1 p?l and n = II qﬁj where p; % qs for all
i=1 j=1 J

r
i=1,¢.,r and j = 1,...5. Since d}}imn, then d=<T1p91)<fIqﬁ%>
i=1 1t j§=11J

[

S
Q. .
where 0 < Cli<_ e 0 SBjS f‘j. Take a = p;l and b :jlzlq[jzj.

i=1
Thus aim and bin.
Now, since (dymn/d) = (ab,mn/ab) = 1, then
(ab)x + (mn/abl)y = 1 for some integer x and y. Thus,
a(bx) + (m/a)(n/bl)y = 1 implies (a,m/a) = 1. Similarly,

b(ax) + (n/b)(m/a)y = 1 implies (by,n/b) = 1.

Therefore, d = ab where al!im and b} in.

Definition 3.23:

The unitary product (or convolution) of two arithmetic
funtions f and g is defined for 211 positive integers n by
(f o g)(n) = 2 f(d)g(n/a)
dlin
Now, we are going to study some properties of the
unitary product. Let ( Zﬁ, 0 ) be the set of all rezl-valued

arithimetic functions together with the unitary product.

Remark:

Note that the unitary product (f o g) c¢cen be expressed



as follows

(f o
dlin

#)(n) = 2 £(d)e(n/d)

= 2 f(n/d)g(d)

Itin

let ¢
1

ot i =
1¢ n/al d2

Now, be a

(dl,n/dl) = 1;

i 1 ] = =
(cl,dluz/ul) ( )

1 d
“119

(f o g)(n) =

dldz =

’

1. So,

then n

2 £(d )g(a,)

where dl

product

Lemma 3.05:

The unitary product

Proof:

The commutativity of unitary product is clear. Let

h € Z& . He need to shiow that

F =f og, then,

[ (f og)oh 1(n) =

L in

(F ¢ h)(n)

is n and are relatively primec.

(f o g) oh

2 F(d)h(n/d)

= 2 F(d1)h(dy)

dl dz = 1N

(dl,dz) = 1

= E:h(dz)
d1dy = n
(dl,dz) =

1

d

d

is commutative and

unitary divisor of n.

12

and dy run over all positive

f o (g oh).

66

Thus, dlln and

end (dl,n/dl)

integers

associative.

£,

2 £(d3)g(dy)
d3dy = d1

= 2 £(d3)g(dgIn(dy)

dpd3dy

= n

(dz,d3,d4) = 1

whose

o
&

Let



In the same way, if we let G = g o h,

' f o (g o h) 1(n) (f o GY(n)

i

2 £(d)G(n/d)

iin
= 2 f(C!l)G(dz)
d1d2 = n
(dl’dZ) = 1
= 2 f(dy) 2 g(d3)h(dy)
d1dy = n dadg = d2
(dl,d2) = 1 (d3,d4) = 1

™

f(dl)g(d3)h(d4)
dld3d4‘= n
(dl,d3,c4) = 1
Hence, (f o g) oh = f o (g o n) and hence the unitary

product is associative.

Lemma 3.06:

For 211 f & A, we have

f o € = f , where €(n) 1 if n =1
o if n % 1

f(n) since €(n/d) = 0O

Proof:

™M

(f o €)(n) =
d

f(d) € (n/d)

in
for all d < n and €(1) = 1.
Thus the function € 1is the identity for the wunitary

product.

Theorem 3.1:

( Zﬁ, +, 0 ) is 2 commutative ring with identity.
Proof:
It remains to show the distributive lav,. i.e,

f o(g +h) = (f og)+ (f oh).

67
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[ f o (g +h) I(n) = 2 f(d1)(g + 1)(d2)

dldz = n
(01,02) = 1

= 2 faplgldy) + h(d)]
d1d2 = n
(d1,dp) = 1

= 2 [f(aDgldy) + F(dh(d)]
didpy = n

= 2 £(dpa(dy) + 2 £(dph(do)
dido = n dido = n
(d15¢,) = 1 (d1,d,) = 1

= [(f o g) + (f o h)J(n)

Therefore, the distributive law is setisfied.

Reczll in Chapter 1 that N(§) = 0 and for f §0 € D,
N(f) = 1/k where k is the smallest positive integer for which

£ (k) # 0.

Lemma 3.07:

For 211 f, g € A we nave
1) HN(f o g) £ N(f)K(g)
ii) N(f o g) = N(f)N(g) if 1/N(f) and 1/N(g) are relatively
prime.
Proof:
Assume that neither f nor g is 8 .
Let N(f) = 1/&k and N(g) = 1/m. By definition,
f£(d) % 0 only if ¢ > k and

7(d) # 0 only if d > m. So,

Iv

g(km/d) ; 0 only if km/d > m . i.e. when k > d.

Consider (f o g)(km) = 2f(d)a(im/d)
¢iikm
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but tle only tirme when £(8) ¥ 0 anc c(m/¢) % 0 is when
¢ = i, which implies that (k,m) = 1. Ther=fore,

(f o g)(km) = 2 T(d)g(km/d)
djikm

i

0 if  (k,m) # 1

F()g(m)  if (k,m) = 1

i) (f o g)(km) = 0 implies that K(f o g) < 1/km = H({f)N(g).
Is there exist h < km such that (f o g)(h) f fe He will
show that there doesn't exist such h, by contradiction.

Essume that there exists h < k4m such that

(f o g)(h) % 0 . Then (f o g)(a) = > f(d)g(n/d), but
iih

I'el

£(d) # 0 only if d > i and g(i/c) # 0only if h/d > m
which implies that km > h > md, thus k¥ > d. Therefore,

F()g(h/d) # S oeonly if ¢ = 4, and since h/d = h/k < m

thus g(h/k) = 0. This iwplies (f ¢ g)Y(h) = £{(K)g(h/k) =

[

whieh 1s & contradiction.

How, we will show the equnlity when (k,m) = 1,

ii) (f o g)(km) = £(k)g(m) if (k,m) = 1 implies that
N(f o g) > N(F)N(g) = 1/k%m. By similar argument usec in
lemma 1.03, MN(f o g) } N(f)H(g). Thus,

H(f o g) = K(f)IN(g).

From Chapter 1, we find out that ( D, +, ¥ ) forms on
integrel domain. However, (Z&, +, 0 ) is not nn integral

domain., We will give an example that showe f ;!9 e A y but

o)
o}
w
"
D
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Example:

f({n) = 1 if n = 2
0 otherwise

(f o £)(n) = 2f(¢)f(n/d) 4 0 only if ¢ = 2 end n/d = 2,

31
Sagn

=

and thus (d,n/d) = 2 % 1 which contradicts the definition o
unitzary product.

2 £(d)f(2/d)
R

Particularly, (f o {)(2)

fCNf(2) + £(2)F(1)

0.

Therefore, (Z&, + 4, o ) 1is not an integral domain.

Definition 3.4:

If for f& A, there exists a funtion gEAsuch that

f og=gof = €, then g is czlled the unitary inverse of

In the next lemma, we characterize unitary invertible
functions and give & recursion formula for the inverse.

Lemma 3.08:

A function re A is uniteary invertible if and only if
£f(1) # 0. This is equivalent to say f is invertible if and
only if N(f) = 1. Moreover, the unitary inverse of f is given

by

)
~~
—
S~
n

1/7£(1)

-8 2emsza)e" for n > 1
diln
d < n

o]
~
o
~
1]



Proof:

First, assume that f‘EZZXhas unitary inverse f_l
fof Ll ¢ . In particular,

S o)y Lcsa)
dii

(f o ™1y

1

FCDE (1) = €(1) = 1

hence, £(1) % n.

Conversely, assume that f(1) # 0.

For n = 1, (f o £ 3)(1) = 2 fa)r~Lc1/4)
ali
= £(DETTND
= e (1)
=1
-1 . ) . -1
thus, f(1)f (1) = 1 whiech implies that £ (1) =

since £(1) § 0.
-1
liow, assume that the function values f (d) has
uniquely determined for 2all d < n.

1

Consider, (f o f “)(n) = €(n).

Forn § 1, (f o £7Hm) = Zrm/a)r M) = em) =0
diin
d <n
this can be written as f(1)f " *(n) + 2 f(n/d)f_l(d) =
dltln
d <n
If the values of f_l(d) sre known for all divisors

then f'l(n) is uniquely determined by

£ lny = = 1/£(1) T f(n/sa)f i)

n
d <{n

71

y bthen

1/7£(1)

0.

d < n
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Theorem =.2:

Let U be the set of units in A .
i.e. U = { fEA} £{1) % 0}, then (U,o0) i3 an abelisn
group.
Proof:

Let f, g € U, ‘then (f o g)(1) = £(Ng(1) # 0 since

1

£(1) 4 0 and g(1) # 0. Also, if £ € U, then £~ € U follcus

~

immediately from lemmas 2.04.

In chapter 1, Wwe also find out that ( D, +, # ) is #
unique factorization domain, but ( Zﬁ, +, 0 ) is not. Before
we give an example showing that ( Zl, +, 0 ) is not a unique
fectorization domain, we want to recall the definition of

divisibility in an integral domain.

Definition 3.5:

Two elements a and b of a domain R are said to be
associates if a2 = b o u for some unit u &€ R, and denoted by

& —\’b.

Lemma 3.0C:

1r £&€ D is such that 1/N(f) :pcz where p 1is =2

prime and Q@ > 1, then f is irreducible.
Proof:

Let f = g o h. Since N(f) = 1/pa then f(p‘z) % 0, and

hance (g o h)(pa ) % 5. Thus

(g o h)(pa ) = 2 g(d)‘n(pa/d)
ipd

]

C



hence, at least

either g(1) f 0 or h(1

unit.

T

n the

§ 0

one of

) f C.

the terns

Therefore,

does not hold in the ring ( ZS, +, 0 ).

Example:

Let f(n) = 1
0
g(n) = -1
1
0
h(n) = 1
0
z(n) = 1
0
Thus N(f) = 1/2 ,
Clearly, one c¢an see
and z3; as an exampl
to h, then by definit
H(f) = N(h o wu) = N(h
Therefere, lemma
are nonassociates irre

if n = 2
if n = 5
otherwvise

othervise

N(g) =
that
e, 1f w
ion f = h
JN(u) = N
3.00 imp

ducibles.

172, N(h)

gDy + ¢pDHncn

either g or h is

next example we will show unique

= 1/4,

is nonvanishing.

73

So,

a

factorization

N(z) =

1/5-

and g are not assoclates to 1

e assume that f is
ou for some unit
(h), which is not t
lies that f, g, h

associste

u,
rue.

y &

and

nd =z
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Now, we will show f o g = h o z % 6 .

(f o g)(n) = Z f(d)g(n/d), but f£(d) § 0 only if d = 2,4,
'1in
or 5 and g(n/d) # 0 only if n/d = 2 or 5. Then since
(dyn/d) = 1, ve will choose ¢ = 4 and n/d = 5, hence, n = 20,
Thus,
(f o g)(20) = f(d)g(20/d)
dj 20
= £f(Mg(3)
= 1.

Similarly, for (h o z)(n) = 2h(d)z(n/d), h(d) # 0 only
diin

if d = 4 and z(n/d) # 0 only if n/d = 5. Therefore, n = 20
and

(h o z)(20)

11

2 h(d)z(20/d)
n

dii2

h(4)z(5)

= 1
Hence, f o g = h o z { §, and thus ( Zx, +, 0 ) 1s not

a2 unique factorization domain.

Similerly 1like ( D, +, ¥ ), ( ZX, +, © ) does not

satisfy the descending chein condition for ideals.

Theorem 2.3:

¢ A y +, 0 ) does not satisfy the descending chain
condition for ideals.
Proof:

For k an integer, let Zxk be the set of =211 funections



fe N with N(F) < 1/%.

ie. Op = (€A f(n) =0 if
We want fo show that

i) each Zﬁk is an ideal of A

i)y A ADHDA D L.

proper.

i) For each k, Zﬁk is an ideal of

Let £, g€ Oy . Then f(n) =
g(m) =
Thus, (f - g)(x) = f(x) =

Lt

Therefore, f - ¢ & Zxk'

n

< i}
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viith  each containment

A

0

0

if n < k and

if m < k.

g(x) =0 if X

Now, let f& Ak and h € N . We have

N(f o h) < N(f)H(h)

A\

(1/%) N(h)

N\

thus o h € Ak . Therefore
ii) Now, f € /A implies that f(n)

g€ A implies that g(n)

1/k y Since N(h) ¢ 1

Zﬁk is an ideal of

0 if n < K and

0 if n < k-1

thus f € Ak—l and hence Akc Ak—l

Now, define
h(n) = C if n < % -1
1 if n > ¥ - 1

thus h& D, ; but h & Ak

Hence, Ak ¥ Ak—l

since h(k ~ 1) =
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4

Next, we are going to study the behavior of

multiplicetive function under unitary product.

Theorem Z.U4:

¥3]
ar

The unitory product of two multiplicztive functions i
multiplicative funection.
Proof:

Let £ and g be two multiplicstive functions and

h =f og. Let (m,n) = 1, then

himn) = 2 f£(é)g(m/d)
ditom
= 2 f(ab)g(mn/ab) since d can Dbe
alin written as ¢ = ab
blin where alim and bl in

= 2 f(z)f(b)g(m/al)g(n/b) since (a,b)
211m and (m/a,n/b)
n

trn
—_

O“ {

= Z f(a)g(n/a) 2 £(b)g(n/b)
bi

aiim in

(R4

= h{m)h(n)

hence h is multiplicntive,

Theorem 3.5:

If £ is multiplicative, then its unitary inverse f_l is
also multiplicative.
Proof:
We definc 3 new multiplicative function g as follows:
For every prime p and every ¢ > 0, we let g(p®) = 7 _l(pe )
r

r
and for n = Il p€i , Wwe define g(n) = I g(p?l ). Clearly,
i=1 1 i=1

g is multiplicative, hence f o g is multiplicative.
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d 1«

ow, (f o p)(p®) = 2 fldp)e(dy)
iy = p
(fﬁl,dz) = 1
= 2 f(dé)f_l(dz)
dqd = p
(dl’dz) = 1

= (f o £ 5 (p®

)

€ (p
Since f o g = € y thus g = ¢ and f is

multiplicative.

Theorem 3.6:

The s3et of 2ll multiplicative functions is an eobelien
group under unitary product.
Proof:

Let F be the set of all multiplicative functions. Then
the commutativity and =associativity holds since unitary
procduct are both comnmutative and associative; € is the
identity; and from theorem 2.4 and 3.5, for any f{, g & ¥
(f o g) € Fand fl&F.

Corollary 3.7:

Let £, g, and h be arithmetic functions, =znd suppose
f o ¢ = h, If any two of the functions are multiplic=ative
then so i3 the third.
Proof:

Let h = f o g. If f &and g are multiplicative, then h is
multiplicative by theorem 3.!". fssume that f and h are

multiplicative, ther f o g = h implies that £ 1

Fl o n , and £l o n is multiplicative since

O(fog):

£l g
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-

multiplicative by thecrem 2.5. Similarly, when g and h  are

multiplicativey f is multiplicative.

Corollary 3.83:

i.e. if g(n) = 2. f(d), then
diin

If g =°f o ¢ is

Ja

O ?
multiplicative if and only if f is multiplicative. HMoreover,

r r
2 r(d) = I ¢y £(p$i )) where n = [T pei

pin i=1 j=1
Procf:

First, assume that g is multiplicative. Then, g = f o U

implies that g o balz f o LO o 061 and thus f = g ¢ balis

multiplicative since g and balare both multiplicatives
Conversely, assume that £ 1is multiplicative. Then,
g =f o ly is multiplicative.
Now, for p prime and and e > 0,

2 £(d)

(f o Lo )(p©)
diip®

£(1) + £(p®)

Thus, if n = pr?i ,
i=1 1

r
(f o tg)n) = Il

[ £¢1) + £(p.51) 7
i=1 1



CHAPTER 4

THE UNITARY ANALOGUES OF SOME ARITHMETIC FUNCTIONS

[§3]
-
9]
&
]

introduce new carithmetical functions which ney
& cgarded 25 the unitary ansa % 5 of some of the wall-

be rog ¢ s the unitary anzlogues of s of  th .

iinown clegasicnl functions. Among these functions, we lhave

corresponding to the Euler <¢-function, the uniteary totient

* . . . . . * "
<# is introduced. The unitary analogue H to the Hobiu=z
function M is also defined. A unitery anzlogus of the

Mobius inversgion formula is also proved.

Definition #.1:

Let n = p?l...pir be the canonical factorization of n.
We define win) =r with w(1) = 0. Then wn) is

the number of distinet prime divisors of n.

Number and sum of unitary divisors

Definition 4.2:

For positive integers n, we define the fellowing
functions:
. X . s 2 3 .
i) T {(n) is the number of unitary diviscrs of n
*
ii) g(n) is the sum of unitrry divisors of n

* . .
iii) qgn) is the sum of %th powers of unitary divisors o

I n
where 11 13 any resl numbear.
Example:
s - - *
As  examples, we wWill find the values of T(12),

79
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U}(12), and Ui(12). The wunitazry diviscrs of 12 are 1,
3, b, and 12, thus

Y

i)y  TH12)

)

ii)  d12) T+ 4 o4 12 = 20

¢

1 +

iii) ep(12) = 1 + 2K 4 ak 4 12k

Note that T}(n) and Oj(n) are special cases of Uih1)
i.c. T*(n) = U%(n) and o*(n) = OTU}). Klso, in

terms of the icta functions, they can be written as

i) T(n) = ( tgo by )(n)
ii) F(n) = ( Lyo L )(n)
iii) q}:(n) = ( tyo by )(n)

Theorem 4.1:

%
Ox is multiplicative.

Proof:
Since the wunitary product of two multiplicative
functions is multiplicative, and q: = g O UL , hence

* R . . .
Ok 1s multiplicative.
. * * .
Blso, since T and o are special cases of Oi s

they are multiplicative.

Theorem 4.2:

Tf n = Il p.€1 , e. > 0, then

i=1 1 *
x :
ok(n) = 1 if n = 1
Y
nkll (1 + 1/pke; ) if n o> 1
i=1 i

oi(1) = (Lgo L XN = L) L (1) = 1.



For p prinme

*
G&(D

Since

Corol

€)

%

oi(n)

and e > 0,

t

is multiplicative,

{ by ©

2

P
bp(D L P +

pke

4

L

1

'|+pke

r

I

i=1

k

eLO(d)

) (p%)

L (p€/d)

k

(1 + piei )

blp € ) L)

then for 1 <

r
ok I1 (1« 1/pkei )
i=1 i

lary 4,3:

i)

ii)

Proof

i)

X
IfF 1 ¢n = 1] p.Ci , then
i=1 %

T*(n)
Oj(n)

T*(n)

H

il

a,*

ﬁn)

TR e (R

‘._l
I
=

-:thﬁ:jH
‘,_l

t_J
0
—

—
.
—_

|

ro

(1

+

p{0)ej)

(D]
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The unitary Mdbius function

Definition &.32:

ver s . *
We define the unitary enalogue of lMobius function W (n)
by

fﬁ(1) = 1 and pf(n) = (_1yu(n)

Theorem H.4:

* C s .
Hois multiplicative.

Proof:
—_— r s
Let (m,n) = 1, then n =_H pSi and m =_H q’?j ,
i=l 1 j=1 J
where P % qj for all 1 = 1,..., 7 J = 1,.00,8.
Then pr(mn) = (-1 (mR)
= (-1) StT
= (-1°% (-1»F
w(m) w (n)
= (=1) (-1
= pFm) 4t
Thus, /L* is multiplicative.
Theorem 4.,5:
*
/—L*O Lo = € i.e. Z /—L(d) = 1 if n = 1
dlin
0 if n § 1

Proof:
o L)1) = ut e (1) = 1
( 4 o 0 Y1) = M (1 o1 = 1.
For p prime and o > 0,

(p*o 1)) = 2
[

d

é/.*(c‘.) Lo (PR /d)
p



83

KD o+ p M)

:1+(—1)
= 0.
r
Zince fL* is multiplicative, for 1 <{n :_II %éi ,
. =
( /LL 0 bo Y(n) = 0.
Thus Fﬁ o bty = € .
Theorem U4.6: (MSBbius inversion theorem)
For all arithmetic functions f and g,
. . *
g =f o LO if and only if f = @ o g.
. Z s o . z *
i.e. g(n) = f(d) 1if and only if f(n) = MK (d)g(n/d)
diin diin
Proof:
First, assume that g = f o Ly , then
% *
K og= H o (folg)
= fL* o ( tgo f)
= (M 0 ty)of
= € o f
= f
Conversely, assume that f = Fﬁ 0 g, then
f o tg=( /L* o g) o Ly

(g o *) o Lo
go (KL o Ly )

=g o €

=g

Theorem U4.7: (Generalized Mobius inversion theorem)

If f, g and h are arithmetic functions, and h(1) f 0
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then, ¢ = f oh if 2nd only if f = g o % .

i.e. g(n) = 27(3)h(n/d) if and only if f(n) = zzg(d)h_l(n/d)
d}in diin

Proof:
First, assume that g = f o h, then
g onl = (f oh)onl

f o (h onhl)

= f o €
= f
Conversely, assume that f = g o n~l , then
f o h = (g o "l ) on

g o (™1 o n)

£ o €

=g

Hote thet if h = LO

classical Mobius inversion theorem.

in this theorem, then we have the

The unitary ?*—function
}h—_—_

Definition 4.4;:

, C L . . . *
For & a positive integer, we define the unitary ¢k—

function by ¢£‘ = Fﬁ o b o i.e. 4{(1) = Eaff(d)(n/d)k
diin
. * s . *
313 a are nult ic Yy is
Since fL and Lk re multiplicative, 4&
multiplicative.
Corresponding to Euler <#—function, the unitcory

. * . . * - . . s
totient Ci) is & special rase of C#k. It is defined by

d)*

s
1-)(-
O

ie.  @n) = X pNE)(n/d)

G1lin



i=1 i
*
¢ ) =1 ifn =1
k r
nk I1 (1 - 1/pkes ) ir
i= i
Proof
*
P = 2 (7K = K1) =1
aiii

1P
= pXN(pke) +  p(pe
= pke + (=1)

*
Since 4)k is multiplicative, then for 1 < n = II

r
*
- k
Ci:)]én) - igl (plel - D
= k
=ok I (0 - a/pl®i
1=
Corollary 4,9:
r
Y IT (e i,
C]S(n) = C#l(n) = 1 (pSi 1)

Theorem 4.10:

Cb* o btg = L i.e. 2 ¢*(d) = n

Proof:

@ oty = (M c L Yo by

H
~
O

-

o
~r

C
P

t

~
o)
-

v
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Theorem No11:

Let { F. n)y | k& 2 1}, be o sct

k

multiplicative functions, such that Fk(n).Fj(n) = F

end let W) = (M o F_)(n) , then

Fk(i'l) = [ F] @] (\Pk_ij)J(N)-

of

86

nonzZero

k+3j

FFy 0 (W) s FOIm) = 2 (W . FJ)(n/d)F (2)

Pin

= Z WY 5(n/@Fj(n/e)F5(a)

diin

= F(n) 2 \I/k_j(n/d)

'1in

= F5(n)[ tg o Wy_51(n)

= F3(n)[Fg-j (n)]

= Fk(n)

Corollary 4.12:
3 *_l %
(P, o b7 am) = Py i)

J
Proof:
% %
t lefinitior . = L
By definition, Cf)ko bj ( H o K ) ;
*
= l‘ko ( /-‘L O Lj )
*
= l‘k o] ¢j
) * *_ -1 . . .
hence ci)ko 5 L Ly © L'j . Then by substituting
Fr() = tp(n) in theorem #4.17, we nave
*
*
#&_j(n) = ( Lol K- Y(n) and
* * *
=L -1
( Ctlk o ij) n) = C k o 37 H(n) = ch(_j(n)
* %
A1so, qbkoo*j=(,u.ouk)o(uoouj)
= ( @ o Lt3) o ( g o Ly )

-
o
S

(n)
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SUMMARY AND CONCLUSION

r

The objeset of this paper hasgs been tc study =zrithmetic

functions from an zlgebreic point of vieuw. The empnasis has
been on two ring structures on the set of arithmetic
functions. This algebraic approach of studying arithmetic
functions has the zdvantage that it leads to the development
of many classical results in. number theory witheout
difficulties and unpleasant computational techniques.

As we have proven in chepter 1, the set of arithmetic

functions with respect to ordinary addition and Dirichlet

product forms a unique factorization domain. In this
chapter, ve also study some basic properties of
multiplicative functions. Some of the importent arithmetic

functions of number theory, such as the 1iota functions,
Mobius function, Euler totient funection, and several otner
functions have been studied in chapter 2.

In chapter 2, wc¢ found cut that contrary to Dirichlet
product, the set of arithmetic functions with orcdinary
addition and unitary product is not an integral domzin, and
not & unique feocetorizetion domain. The unitary analogues of
some  of the sritnmetic funetions studied in chapter 2, navae
been discussed in chapter 4.

In conclusion, we suggest that the results of tnhis prper
couls be extended 1in two vays. One way would be the

rxtension of the Diri

Q

hlet and unitary convolutions %o k-

88



corvoluticn

conditions under whicn

tne structure of » ring or

respect to k-conveclution.
K-convolution znalogues

arithmetical functions and

89

znd  then Lo detarmine

the set of srithmectic funetions has
o unique fzctorization domain with

& second way would¢ be to define
of the wcell-kKnown classical

the study of their properties.
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