THE a&aNAaLlLYSIS aNhD DESI G
oF S

FOURTH GENERATION LaAaANGUAGE

A Thesis
Presented to the

Division of Mathematics and Physical Sciences

EMPORIA STATE UNIVERSITY

In Partial Fulfillment
of the Requirements for the Degree

Master of Science

by
Karen 1. Craft

May 1988

Al ABSTRACT OF THE THESIS OF

Karen 1. Craft for the Master of Science Degree

in Mathematics presented on March 1988

The Analysis and Design of a

Fourth Generation Language

The enclosed thesis contains a study of the first
three phases of the software engineering process as applied
to the project of creating a fourth generation language
(4GL)> . Initially, the 46GL is defined. Three levels of
users are also defined - the software engineer who creates
the 46GL, the application developer who uses the language to
develop a specific application program, and the final end-
user who operates the application program created with the
4GL . Included are schematic diagrams to show the logic
flow of the language. Sample screens are also included to
show the results of using the language for an application.
The fourth generation language automates the code writing
process with modules to handle menu systems, data entry,
screen handling, keybocard handling, validity testing, error
handling, data access and searches, report generation,
printer control, file and index management, and internal

data management of buffers, pointers, and system functions.

463000 bp 0CT 21 '

C), = e~

Appfroved for the Major Division

Ogprmse. Sealll

ﬁppr‘ou@ﬁ for the Graduate Council

I1

Il

v

V1

VII

VIII

IX

Introduction « 2 a

Analysis . « « « &

PDesign

Screen Design . . .

Developer Interface

Code Design

The Library

Testing

Summary . « « « s+

Bibliography . . .

=== CONTERNTS

18

18

29

a1

48

S7

66

68

78

FIGURE

FIGURE

FIGURE

FIGURE

FIGURE

FIGURE

FIGURE

FIGURE

FIGURE

FIGURE

FIGURE

FIGURE

FIGURE

FIGURE

FIGURE

11-

12~

13-

14—

15-

Main Menu Screen e & & = a

1/0 Screen Format

Sample
Sample

Sample

Application Specific Help Screen

Entry Screen
Coding Menu Screen .

Code Screen « & = .

4GL General Use Help Screen

Data Search Menu Screen . .

Sample
Sample
Sample
Sample
System
System

System

Data Search Screen .
Report Menu Screen .
Report Format . . .
Report Format . . .

Structure Diagram .

Structure Diagram (continued)

Structure Diagram (continued)

TeaBLE of FI GURES

30

32

33

34

35

36

36

37

38

3%

48

a4

o1

52

o3

http:��.��.��
http:���.����.��.�
http:��..�.�.....�

——=== I — INTRODUCTION ===——

Overview --- This document contains a study of the
first three critical phases of the software engineering
process as it is applied to the project of creating a
fourth generation language. Initially, it is necessary to
provide some background information which defines the terms
software engineering, CASE (Computer Aided Sof tware
Engineering?, and 46L (Fourth Generation Language?.
Understanding these terms will aid in better understanding

the goals of the project.

Background Information --- Within the past few years,

the ever—-changing micro—-computer software market has
presented many new problems to solve. In the world of
value-added computer retailers (VARS), specific "target
markets” have become the emphasis, such as medical, dental,
retailer inventory, accounts receivable, or general 1ledger
applications, to name a few. Off-the-shelf software is too
general for these specialized fields, therefore custom
sof tware becomes a necessity. With the recent flood of
these market needs, the software engineer is forced to

develop more efficient methods to produce the volume of

1 - Introduction ——-— -—— pg 2

applications needed. Tom Adams, team leader at ASCII
{Automated Software Concepts International, Inc.?> and the
designer of GhostWriter, describes the changes required in
the programming approach at ASCII. "We had to find a
competitive - and affordable - way to do custom software.
We decided to develop a package that automated the code
writing process."1 Custom programmers find it necessary
to increase productivity and coding efficiency, to
standardize their applications for maintenance efficiency
and still retain versatility. Continuity from one
application to another keeps the maintenance and training

effort to a minimum.

Sof tware Engineering —--

Sof tware engineering is not just a matter of
writing code! 2«2 The software engineering /ife
cxycle involves a more or less standard sequence
of phases. At the outset of a software project,
a set of regquirements are gathered, describing
the objectives that the software must satisfy.
Next is an analysis of the requirements, exposing
impor tant patterns and structures. These are
called the design specifications.

At this point, software design begins.
Usually a schematic design phase precedes
detailed design. Upon completion of design, code
is written ——— this is the jmplementat{aw phase ——
- followed by testing and maintenance.

1 - Introduction ——- -—— pg_ 3

Software engineering therefore involves the following

phases in the life cycle ---

1 - Requirements - gathering the objectives

2 - Analysis ~ exposing patterns and structures
3 - Design - schematic and then detailed design
4 - Implementation—- actual coding

5 - Testing - verifying correctness

6 - Maintenance - correcting, updating, revising

Advances in technology and techniques to
improve the process have not kept up with the
demand for new software; or perhaps programmers
have been too busy to learn them. Whatever the
cause, many programmers have apparently decided
to skip designing software in favor of Jjust
getting the Jjob done. "It can always be fixed
later” seems to be the attitude of the day.

Programming is costly enough when it is done

correctly. this haphazard rush to completion
only adds to the costs, both in maintaining the
sof tware a in producing truly useful

applications.

In a software engineering project, the
greatest effort is expended in the later phases
of the life cycle. Coding, testing, and
maintenance take far more time than analysis and
schematic design.

In contrast, decisions made early in the life
cycle have the greatest impact on the quality and
maintainability of the resul ting sof tware.
Studies have shown, for example, that errors
detected during [thel requirements [phasel are
corrected in far less time than errors detected
during implementation or maintenance.

In other words, the least effort is invested
in the most important phases of the life cycle!

] - Introduction -—— -—— pq_ 4

CASE —--——- A CASE product is any computer tool that

assists any phase of the software engineering process. The
definition is quite liberal due to the fact that software
engineering itself is a broad activity. "Any computer tool
that assists in the process can legitimately claim the CASE
label.“2 “CASE tools perform analysis and design, code
generation, testing and maintenance. Few, if any, do all
these things, however."

CASE can partially automate the coding and testing

phases. "This is the goal of application builders and code

generation products. CASE will also promote standard-
ization and support better and more accessible
documentation, resulting in lower maintenance costs. In

this way CASE will, in principle, redirect resources to the
critical phases of requirements, analysis, and schematic

design."”

Through extensive user surveys (published in
Compu ternided Software Engineering: AsSEy, BTR
[Business Technology Research of Wellesley Hills,
MA] determined that most users have been
employing CASE tools for only the past 18 to 24
months. [as of March 19881

CASE tools break down into two segments:
design automation and programming. Programming
tools are primarily available on IBM mainframes
at prices in excess of #%108,8088, according to
Bayer [David Bayer, an industry analyst with
Montgomery Securities, San Francisco, CAl. The

I -~ Introduction ——— --— pg S

trend, however, 1is to less expensive products
that can run on micro and minicomputer
workstation platforms. He expects more
sophisticateg programming tocls to appear this
vear [1988]1.

The project included herein is following the trend toward

the micro market.

The CASE definition includes two distinct
technologies. Front—-end or upper-case tools include the
analysis and design aids. Back-end or lower case loals
include application generators. This project centers

around the back—-end or lower case toocls which are also
labeled 4GLs or Fourth Generation Languages.

46Ls --—- "These application generators assist the
later phases of the [software engineeringl life cycle, from
detailed design through coding, testing, and maintenance.
They focus on process, format, and documentation
disciplines, not information or project management.'2

A 4GL is actually a type of CASE, but is more easily
thought of as a subset of the CASE technology, and alsoc as
the parent of the CASE. In its broadest sense, it is the
the back-end or lower CASE tool mentioned above.

As a response to many new needs, fourth generation
languages (4GLs) are becoming more prevalent and are

quickly replacing third generation languages (3GLs?> such as

I - Introduction ——- -——- pq &

BASIC, PASCAL, COBOL, FORTRAN, etc. A 3GL requires the
application programmer to specifically use the language to
tell the computer Aow to do every detail of each task.
Using a 4GL, the programmer need only tell the 4GL program
what to do. This is due to the fact that a 4GL is an
organized collection of pre-written code which contains
about 98X of all standard management code needed for all
applications. Just as an operating system is a collection
of standard low-level menial tasks that all wusers need,
such as device management, character manipulation, screen
management, etc., the 46L contains a higher level
collection of management "macros" that automate data, file,
record, field, screen, and report management tasks. The
application programmer no longer needs to “"re-invent the
wheel.* All programs developed with the 4G6L then become
standardized in these tasks and all standard or common
tasks are handled the same from one application to the
next. A 4GL does the same thing for application programs
that the operating system does +for hardware, only at a
higher level. The operating system standardizes the
interface between the programmer, operator and hardware
devices, and the 4GL standardizes the interface between the

programmer , operator and the application. A truely

I - Introduction —-—-— -——pq 7

efficient 4GL will automate as many standard or normal
tasks as possible. All that is left for the application
programmer to do is to add the non-standard tasks specific
to the application.

4GLs have also been described as "a continued
evolution of languages'4, "a specialized language that has
been designed to do a specific function“4, as being "able
to do a task with roughly one-tenth of the code needed in a
36L.“4. “With 4GLs, the precise instructions have been
automated. The language has been demystified. 4GLs employ
a dialogue between user and computer, interacting to solve
the user’s problem. The focus is on the task, not on the
computer.”

Many levels of 4GLs exist, from simpler 4GLs which
allow an end-user to create a simple database to power+ful
system—house 4G6LS used by software engineers. The
difference between the two is the degree of flexibility and
of the detail allowed in its use. The simple 4GLs allow
for only very basic, standard functions, while the powerful
4GLs allow the versatility of adding the unusual,
nonstandard functions when needed using the host language

and the extended "macro" language of the 4GL itself. This

study considers the later, the powerful system—house 4GL.

I - Introduction ——- --- pg 8

ASCII, the producers of GhostWriter, define their
product as (1) an automated code writing process, (2) an
application generator, (3) an application development
system,4 and (4 a CASE (Computer Aided Sof tware
Engineering’ product for program development.5 The
engineering approach contained herein echoes these four
definitions and considers the 4GL as an extension of the
Pascal language with the creation of "macro” procedures and
functions for system—house wuse to create relational

database management applications.

Summary -—— In summary, this document contains the
study of the first three critical phases of the software
engineering process (the requirements, analysis and design
phases) for a fourth generation language. Briefly, this
involves a subset of the CASE technology called the
application generator technology (also called back-end or
lower CASE>. It can also be described as an automatic code
generator with screen/report creation, dictionary
definitions, data base management, procedural language, and
functional integration as described in “The James Martin
Productivity Series'2

The creation of a fourth generation language (4GL)

I - Introduction ——-— -—— pg 9

itself requires quite an involved programming project. The
ASCII programming team spent three-and-a-half years work on
their GhostWriter written in Turbo Pascal.1 This document

analyzes the type of product produced by this company.

=== I 1 — ANALYSIS =

A high-level analysis at this point involves several
directions. The first step is to define the users, and

their respective needs.

The User --- Defining the needs or requirements of a
software project also initially requires defining the
user. In order to avoid any confusion, three terms are

used consistently within this document --—-—

(1> The software engineer who creates the 4GL.

(2> The application developer who uses the 4GL.

(3> The client/end-user or operator who uses
the application created with the 4GL.

In this situation, the application developer (also known as
a system developer)? is the user of the 4GL, however, while
using the 4GL, this developer produces applications for a
variety of clients or end-users. This requires that the
4GL be written in such a manner as to allow for many
different wvariations in database applications. Therefore
analy¥zing the needs of the application developer, also
involves analyzing the needs of as many client applications
as possible. The application developer becomes the "middle-
man* for the client, the final application end-user. Thus,

two levels of analysis are considered, the needs of the

Il - Analysis ——— --- pg 11

application developer and the needs of the developer‘s
clients.

James Hughes explains a standard approach to the
analysis process ——— "At project initiation, a project team
- consisting of systems analysts and users assigned full
time to the team - must define the preliminary requirements
of the system.”

*Traditionally, at this point analysts would interview
dozens of users to determine requirements. This often
produces a long list of wants and neede that are difficult
to analyze and use for system development.®

"A better approach is to involve a few experienced
users in the definition of preliminary requirements and
major system externals - such as menus, data-entry screens,
on—-line query displays and reports. These system externals
should then be incorporated into a horizontal prototype.”

"Users can review and rank the functions in the
horizontal prototype to determine which functions should be

automated."8

Software Enqgineer and Application Developer Needs ---

The software engineer (the 46GL developer) and application

developer <{user of the 46L) have much in common. They are

I - Analysis ——— ——— pg 12

both developers for a client. The software engineer
creates general applications for the application develgper,
and the application developer creates specific applications
for the client/end-user. As mentioned in the introduction,
several quality requirements include increased product-
ivity, code efficiency, maintenance efficiency, standard-
ized applications, and versatility. Further clarification

is now needed.

Increased productivity involves the production of an

application in less time than with previous methods. This
is easily measureable by keeping time logs on all projects,
however, one must remember that not all projects are
created equal.

Maintenance includes updating the system for changing
needs, correcting errors, and adding new capabilities. In
most organizations, it 1is estimated that 76% of the
programming is dedicated to maintaining existing systems.
With 4GLs 78X of the time is spent on original coding and
36% on maintenance.4 A ratio of 864 - 284 is the minimum
acceptable goal of this project with the ultimate goal of a
954 - S% ratio. The application developer is required to

provide parameters to the 4GL to define the data file

Il - Analysis ——- --— pgq 13

structure, entry screens, and report formats. In other
words, the majority of the time for using the 4GL is spent
in designing the application database, as is necessary in
any application, however, little additional time is needed

berond that stage.

Efficiency involves three major areas of concern -
speed, memory, and maintenance efficient code. Spesd
efficienc)» can be measured with timing tests. The 4GL
developer must consider disk access time when wusing
overlays and managing data files. Both the software
engineer and the application developer have access to the
use of inline and external code to speed up processing.
Memor)y efficiency can also be implemented using inline and
external code. Due to the fact that the constraints of the
project include use of PC/XT equipment, it is necessary to
keep the code as compact as possible. The 4GL developer
can compare the memory required by one algorithm over
another in order to determine the memory efficiency.

Maintenance efficienc)» is included here as the top priority

requirement. It is not a truely measurable feature.
However, all design for the software engineer and

application developer must have an underlying purpose of

Il - Analysis ——-— --—pqg 14

being easily updateable as new needs surface. This becomes
a “gray area". An elaborate algorithm may be quite
efficient time- and memory—-wise, but too difficult to
maintain because of a lack of readability. Readability is
based upon the opinion of the programmers and dependant
upon their expertise., Readability and maintenance have top

priority over speed and memory.

Standardizing applications is important in two major

ways. From the programming and maintenance point of view,
standardized algorithms prevent reinventing the wheel and
save much development time. From the application
developer s point of view, this is the major purpose for
using the 4GL. The application developer no longer needs
to be concerned with how the application handles menus;
input, keyboard handling, validity testing, and error
handling; output and printer control; ‘screen functions,
color coding, and windowing; search routines; buffers;
pointers; system functions; or even the processing of data,
indices and file management. These are totally in the
control of the 46GL. The application developer then is
concerned with whHat the system must do for the special

application and not fAow it does it.

11 - Analysis ——— -——pg 15

Versatility is a quality that can really only be
measured with time. Due to the vast range of specific
application requirements of client/end—users, it is
impossible to foresee and allow for all possible features
that might be needed by the application developer. After
the major design requirements are defined, a further
requirement is to allow for direct application programmer
code within the program to add the non-standard features.
Standard code is code that is protected and not allowed to
be changed by the application programmer. The requirement
of versatility is provided for with code files accessible
to the application developer that contain stubbed
procedures in which any unforeseen specific application
requirements are coded by the application programmer.
Standard Pascal commands and an extended language set of
4GL. macros (described in more detail later) are available
to the application programmer as the specific code is
added. The standard code files created by the 4GL
developer are designed to handle 88 - 994 of all
application needs. These include automatic handling of the
functions listed in the "Standardizing Applications"
paragraph above. Additional code added by the application

developer is typically 1-54 of the total.

I - Analysis ——— --—- pg 1é

Client/End-User Needs —-—— Quite often the client/end-

user is a novice with respect to computer operation. All
design is directed to the needs of the new computer user.

As mentioned earlier, maintenance is the top priorty of the

entire project, but consistent user—~interface is the second

priority. Every move required from the operator is to be
thoroughly prompted. In more specific terms, this first of
all requires a standard screen la)»out in order to assure
the operator that all prompts will be consistently seen in
the same format throughout the entire program operation.
Color coding aids in prompting the user also. Help screens
are available at all times. Data input is prompted at the
field level with data type, data limitations, and field
descriptions. All data is checked for uv=/idiéy» and any
required or coded fields are tested before saving the
record to the database. Searches of the database allow for

multiple searches for any limitations on any or all fields

available in the +file. The Ffirst phase of development
allows for searches of concurrent search criteria, however
the second phase allows for OR, NOT, XOR, and wild card
searches. Report formats allow for columnar formats, page
numbering, column totals, and counters. Printer

attributes, such as bold and underline, can be embedded in

11 - Analysis —--- --——-pgq 17

report formats. User-entered subtitles are alsoc allowed.

Summary --- In summary, the functions that will be

automated include ---

1 - a menu system,
2 - data-entry/display screen functions
(1/0 screens),
color coding
windowing
3 - data entry,
keyboard handling
validity testing
error handling
4 — data access (searches),
5 - report generation (output)
printer control
é - file management
indices
saving, deleting, reading data file
7 — internal data management
buffers
pointers
system functions
processing of data

The top 1level design concentrates upon the user-
interface. The lower level of design concentrates upon
the mechanics and maintenance aspects. This chapter will
discuss the top level designing phase in terms of general

requirements and of the functions to be automated.

Phased Development -—-—-—- Development of this project
is designed for two major phases. The first phase uses
Turbo Pascal 3.x BCD with the top priority features. The
second phase uses Turbo Pascal 4 and adds the more

detailed features described in the following.

System Requirements --—- Design begins with the

declaration of the constraints. Thie project is to be
implemented on IBM PC/XT/ATe or compatibles (XT/ATs are
preferrable) with DOS 3.1 or higher and 326K of RAM. A
hard drive is recommended and mono, CGA, or EGA monitors
are supported. The application developer is required to
use Turbo Pascal 3.x in the first phase of development and
as soon as version 4 is shipped, the second phase will use

it as its base.

II] - Design ——- -——-pqg 19

Initialization --—- A parameter passed in with the
call to execute the program declares to the program where
the data files are located, ie. the drive and subdirectory
specifications. This allows the operator to keep sets of
files within separate subdirectories. Once loaded, the
initialization of the application program created by the
46L includes an option for immediate update of files and
the initialization of the date. Exit from the program is
possible even from this point. A personalized logo
screen, designed by the application developer, then
appears to declare the program name and any coprrights and
dates needed. Pressing a key continues into the main menu

screen.

Menus --- The main menu for the entire application
created by the 4GL includes a list of installed database

applications. For example, a simple menu may include ---

Codes

Chart of Accounts
Transactions
Audit Trail

W =®

Each menu selected results in the use of the same screen
layout described in more detail later. When a menu item

is selected, the appropriate files are opened, the I/0

IIl - Design —-—- -—— pq 20

screen is created, and the file and field definitions are

initialized.

Command Line --- Once within a menu selection, a
commandline appears at the bottom of the screen. Two
forms are used. The first allows adding and updating of

records and the second allows only reading of data --—-

Menu; Add/Update; Find/Data/Clear; Report; Pgllp; Pgbn ---)
Menu; Find/Data/Clear; Report; PgUp; Pobn ---

Phase 2 includes security password options which allow for
read/write access or read only access, therefore

determining which commandline the end-user will see.

1/0 Screens —-—— Data entry and display (for browsing
through a search buffer) screens are the same. Standard

1/0 screens contain the following:

- the menu title

- the current mode of operation

- a message area for errors and how to exit

— a data entry area

- a commandline area

a field-level prompt area

- an input prompt for data entry limitations
8 —a status 1line including --- the number
records in the current files, the number of
records in the search buffer, the record
number of the record currently being entered
or viewed.

N DW=

11l - Design ——- -=-- pqg 21

Help Screens -—— Help screens are constantly
available by pressing the F1 key. Phase 1 help screens
include user-—specific information, such as accounting
aids, and a wuser manual displayed sequentially in a
circular 1list as the space bar is pressed. Phase 2
screens allow for going to specific pages in the on-screen
manual, for scrolling forward and backward sequentially as
desired, and allows for context-sensitive help. The
standard user manual is pre—installed, however this manual

is accessible to the application developer for editing.

Data Entry is standardized with I/0 screens defined
by the application developer. All data is entered within
these screens and also displayed within them when 1in
browse mode to page through a set of records in a search.
DPata entry is also dependant upon file definitions defined
by the application developer using parameter tables. File
sizes, access codes, indexing, and field definitions are
contained in these tables. Data entry in a field uses the
field definition to determine data type, field Ilength,
validity tests, and its location within the record. Each
field has field-level prompts displared as the field is

entered by the operator.

Il - Design --- --= pq 22

Phase 1 includes data types of string, integer, BCD
real, byrte, date, and character. Automatic sequential
fields (such as sequential invoice numbering? and default
fields are supported. A key click option is available for

keys pressed. A lookup facility is built-in for coded

data fields as explained in the next section on the
"Coding System". Validity tests are performed at the
field level. Coded fields are allowed which require entry
of only preinstalled codes. Numeric data is tested for
minimum and maximum limits. String data entry is not
allowed beryond its maximum length limit. Date entries are
also tested for valid dates. When an entry is executed
using the F18 key, the record is tested for the existence
of required fields. I¥f the record is acceptible it is
recorded and any updates to related files are also updated
at that time, such as updates to chart of account totals
when a transaction is entered.

Phase 2 adds data types for telephone numbers, zip
codes, social security numbers, time, and short dates

(mm/dd> .

111 - Design ——— -—— pg 23

Coding System ——— Due to the fact that it is storage

efficient to use codes for some data fields, a standard
for all applications is a built-in coding srystem. Menu @
is reserved for Codes. This menu selection allows the
initialization of a coding library which contains lists of
available codes used in the data entry of the entire
program. All coded fields used throughout the program
reference this code library to test the validity of the
data entry for that field. Therefore, all codes must be
entered in the coding library before they will be accepted
as valid data in the coded data fields. No duplicates are
allowed. An example would be codes for source documents
in a transaction, such as "CK’ for check or ‘IN‘ for an
invoice. These codes are indexed and quickly accessible
at any time during data entry (adding or vupdating) by»
pressing the F2 key. A pop-on window lists the installed
codes and their descriptions in alphabetical order and in
a circular ltist for paging through. The operator then
returns to the data entry from whence he came. Once a
code is used as a reference in a coded data field that is
saved to a file, the code is flagged and will not be
allowed to be deleted to guarantee that it can be

referenced by the coded field later.

| 111 - Design —-- ——- pg 24

Data Searches --- A data search menu includes a
numbered 1list of all the fields in the records involved
with the current menu selection. The end-user has the
option to select any or all numbers of the fields for
which he wishes to request concurrent special criteria (a
logical AND search?. After selecting the proper fields,
the end-user is prompted for the special search criteria.
String searches are case independent and allow for two
search type options. "Begin—-End" searches locate data
matching and between a user-input beginning string to an
ending string. Data is matched from the beginning of the
data field. It allows for a search such as all names
beginning with ‘a‘ to ‘m’. "Within" searches locate all
data fields which contain the user-input string within
them. Numeric and date fields allow the user to input
minimum and maximum limits on the search.

Searches involving an indexed field will be
implemented using B-tree indexing and other searches will
be sequentially implemented. Data search records are saved
in a circular linked list called a search buffer. The
search buffer can be used for browsing through the data on
the screen (paging to the previous or next record) or to

print out numerous reports. Once the search has been

IIT - Design ——- -=-=-_pg 25

used, the search buffer can be cleared.

To see what search criteria have been used for the
current search buffer, the operator can enter ‘D’ for data
at the commandline. A pop-on window will display the list

of criteria used for the search. The count of records

contained in the current search buffer will be displayed
at the bottom of the screen.

Phase 2 will add the OR, XOR, NOT, IF-THEN-ELSE and
wildcard searches, and also will allow for ascending or
descending sorts according to any chosen combination of
fields. Search and replace features will be added in this
phase. An operator option is available to search for case-
sensitive data. Ad hoc searches are allowed in this phase

and commonly used searches are saved as standard "macros®.

Data Reports —-—- Report formats are initialized by
the application developer. In phase 1, these will be

implemented using text files. These formats will include
field 1locations and +field numbers. Special printer
options, such as bold, underlining, and compressed print,
will be imbedded within the formats. When requesting a
report, the end-user is requested to initialize a search

if none exists. A numbered list of installed reports is

111 - Design ——- -—— pq 26

displayed in menu fashion. When the operator selects the
desired report, he may opt to have the report format
displayed before continuing. This allows the operator to
be sure he has the proper report. Counters, paging,
column totals and numeric grouping (by groups of 35, for
example) are available directly through the formats
created by the application developer. To implement
control breaks, other than numeric grouping, the
application developer adds specific code. The page length
is set in the report format and 1is the key that
automatically manages pagination and the creation of a
title block at the top of each report. One line in the
report is required to contain fields from one common file.
Phase 2 allows for a more "free form" type report in
which +fields on the same 1line can be contained in
different data files. Phase 2 uses the 46GL itself to
create the report formats and parameters and also allows a
maximum width report of 132 characters. A mathematical

formula or a special logic procedure can be manually coded

by the application developer.

iIII — Design —-- --- pq 27

Printer Support —-—— Due to the fact that there is

little standardization for the many printers on the
é market, each printer requires its own set of driver codes
for special attributes, such as bold, underline,
compressed, & or 8 lines per inch, italics, and double
wide. Printers are supported by a parameter file
containing these code numbers. The file is created by the
application developer and allows him to install codes for

for any or all printer interfaces for which he has codes.

File Management -——= File management will be
implemented with a B-tree and indexing system. Parameters
will be supplied by the application developer to define
files and their respective fields. Restructuring of files
is not allowed, however, a transfer from one file to
another can be made. A re—indexing utility re-indexes
files that have been corrupted. It uses the file, field,
and index definitions to restructure indices after
renaming the old indices to have as a backup until the
process has been verified. The operator then has the

option to delete the old indices.

User Interface —-—— User interface is well-served by

| 111 - Design ——- -—— pq 28

the several requirements previously mentioned -
standardized screens, a pop-on code window, a pop-on
i manual or help window, and constant prompting at the field
level . The user will know that he is expected to enter
data when the color rellow (or reverse video on monochrome
monitors) appears on the screen. Even character input
will be prompted by listing all possible characters
allowed in the input. Error messages must be preceded by
a beep to signal the user to look in a pre—-determined
message area. At all times, the user will have a message
explaining how to exit the current situation. The use of
keys will be consistent throughout the application for the
operator. Standard key combinations are pre-installed,
however, these can easily be re-configured by the
application developer with the simple reassignment of key

constants.

Within the next four chapters are the more detailed
aspects of the project. This chapter concentrates upon
the 1/0 screen designs used by the data entry routines and

report browsing routines.

Standardized screens -—-- Standardized screens are
not only a benefit to the end-user, but also to both the
sof tware engineer and the application developer. End-user
intertface is of utmost importance, due to the fact that
the majority of users are novices. Being able to
consistently find error and status messages and prompts in
pre—set locations aids greatly in the operation of the
application program. However, the major advantage for the
developers is the fact that all screen handling can be
channeled through one screen formatting module. Any
desired changes in the screen layout are made in that one
module. Figure 1 is an example of a main menu screen from

an application using the 4GL.

IV - Screen Design ——-—

-—— pqg 38

FIGURE 1 - Main Menu Screen:

NODE = Conmand —{ MAINMNBNU]— F1 = Manual
EXIT Progran = Esc
8 = CODES
1 = CHART OF ACCTS
2 = ACCOUNTING
3 = AUDIT TRAIL
4 = SUPPLIERS
5 = CUSTONERS
é = INVENTORY
7 = GALES
Setect 8 from above ---) _
s—emsesm——— —]

FILES= SecFILE=

1/0 _ Screen --—-—

FOLND= CurR¥e

EINPUT Int= 8- 7

When a main menu item is selected,

the program then uses the standard I/0 screen shown in

Figure 2 and described below. The following list contains

the description and

location of the standard items in the

screen layout and their reserved areas.

Name Line
Mode 1
Title 1

Description of use

Displays current mode chosen from
the commandline menu.

Command means it is waiting for a
command.

Add or Update are data entry modes

displays the title of the item
selected from the main menu.

;
.
]
;

E,IU - Screen Desig

Name

Manual

Message

Work area

Commandline

Files

SecFile

Found

CurRN

Input

Line

1

q4-22

24

25

25

25

25

25

Description of use

always shows how to get the pop-on
manual or help screen

displays messages such as error
messages that tell what is wrong
and what to do about it, how to
exit, special instructions for
the current situtation

area for entry and data display

commandl ine menu
field level prompts

number of records used in current
file

number of records used in current
secondary or relational +file such
as a file containing sold items
related to a primary file of
invoice data

number of records found in a
search and contained in the
current search buffer

record number of record currently
displayred on screen (the actual
phy¥sical location within the file)

prompt area for absolutely every

operator input in these formats:

Byrte= HH#H-HHH

Int= HHHHH-BUHHHH

Rea l=HHHHHHH . HE—-HHHHHHH . H8

Max Length= #H## (used for strings)

A,C,D,F,M,R,U,{example of charact-
er input for commandlines?

IV - Screen Design ——-— -—— pg 32

Figure 2 - I/0 Screen Format:

MODE = ANBRBRRANR —{ title area 1— F1 = Manual
message line for errors and exits
= |

This is the working area used for data display and entry

[—— — ————————————————————— |

Line for commandline and field-level grungts
FILES=88888 SecFILE=##ME FOUND=HiNESR CurRN=EHIME BN INPUT SRERBRARERHERNRNNN

Figure 3 below demonstrates a feature that an
application developer may use for columnar-type data
entries. It exemplifies an actual entry screen as may be
defined by an application developer for the entry of an
accounting transaction. The example shows the screen
after three transactions have been entered. In this
application, all entries are made on the line directly
under the column headings. When the transaction is saved
by pressing the F18 key, a prompt line is inserted at this
location, pushing the previous transactions down, thus
keeping them on the screen as templates for further
entries. The design of the screen within the entry area,
lines 4 - 22, is under the control of the application
developer. On line 24, is a field-level prompt describing

the current field at which the cursor is located.

IV - Screen Design ——-— -—-= pq 33

Figqure 3 — Sample Entry Screen:

MODE = Add —{ ACCOINTING 1— F1 = Nanual
Esc = Conmand Line @ ENTRY F7 = Del; F18 = Save @ F2 = CODES
%

kBlT a0sasssssBRRRRBRORRBRTRERS MD]T lllll.ll.llllll.lllllllll
Transact &—'Debl _ .-—Credlt —. &c ource—.

Amount Acctd Comnents
W "PRPRD lllllll.: esnas lllllll::: [ERENNNNN] S0 A0 RERDRPRPRIIINRIRERIRORD
88/61/61] 334.52 3120 334.52 B Beginning Bank Balance

111
88/01/12 6128 23.67 1118 23.47 CK 3241 Insurance Payment

[———— —_—y
Enter YearMonth/Day as 87/ ¥/ 5 --- zeros not ne:essar‘
FILESs 2 SecFILE= FOUND= Curf= 3 IMINPUT Byte= 8- 12

On the fourth line above, the name of the debit or credit
is printed in the spaces when the respective account
numbers are entered and found to be valid. This is a
result of two lines of specific code added by the
application developer. This presents an example of what

special features can be accomplished with the 4GL.

Color Coding —-- When the operator sees this screen
on a color monitor, the data entry area for the month is
highlighted in vellow to indicate that this information is
what is to be entered. Yellow says "do something!®. The

two bottom lines also verifiy what is to be entered.

IV - Screen Design ——— --— pg 34

Column headings are red. The mode, *F1 = Manual", and
status data on the bottom line are coded green. Titles
are brown. Entry data that has already been entered is

light cran while the current data entry field is rellow.

Pop—-on Code Screen —-- Figure 4 shows an example of

a coding menu screen and Figure 5 shows an example of the
screen after selecting a particular code to list. This
screen is available by pressing the F2Z key while in the

Add or Update mode.

Figure 4 — Sample Coding Menu Screen:

MODE = Add —[ACCOUNTING 1— F1 = Manual
M CODES)

1 = SOURCE DOCUMENTS 2 = SUPPLIER CREDIT CODES

3 = CUTOMER CREDIT TERMS 4 = INVENTORY CATEGORY CODES
9 = SALE CODES 6 = SALESMEN

7 = INSTALLERS

Enter Code number desired ---) .-

FILES= Sectile= FOUND= Corf= 3 I INPUT Int= 8- 250

IV - Screen Design ——— ——— pg 335

After selecting the code listing desired (1 for example),

a screen similar to Figure 5 is seen.

Figure 5: Sample Code Screen

MODE = Add —{ ACCOUNTING]1— F1 = Manual
Esc = exit Code Window; space bar = for more
CODES 1
#% CODE DESCRIPTION DELETE
1 SOURCE DOCUMENTS N
1 CH Cash Transaction N
1 CK Check Transaction N
1IN Invoice Y
117 Interest N

FILES= Secfiles FOUND= Curfe 3 INPUT Int= 6- 255

Manual/Help Screens —-- The on-line manual is

available at any time by pressing the F1 key. Below is an
example of an application specific help screen and of a

46GL general help screen.

IV - Screen Design ——- -=—= _pg 3é

Figure 6: Application Specific Help Screen

MODE = —I ACCOUNTING 1— F1 = Manual
Esc = exit Manual Window; space bar = page for more
= MANUAL]

§ ——— LIABILITIES EQITY ——
fncrease Assets ; Decrease Assets &rease H Increa_s‘e mse i Increase

New Assets Accum Deprec Paid i Payable Drawing i Capital

Unexpired Insur | Unearned Fees

PrePaid Expense i {(Advanced Rev) INCOME SUMMARY

Received i Paid (tenporary proprietorship)
Decrease Equity | lncrease Equity
Expenses ' Rev
lnventory (Begm). lnventory (End)
Purchases i Sales
ContraRevenue | ContraPurchases

(Sales Ret8Al) | (Pur R&A)
(Sales Discts) { (Pur Disc)
Transport-in H
Uncollect. Accts §

Nenu; Add/U date Fmd/Data/Clear Report PoDn ---
FILES 67 SechILE= ot S ke’ PIE M INAUT 4,,0,F MR,

Figure 7: 4GL General Use Help Screen

MODE = —1{ ACCOUNTING)— F1 = Manual
Esc = exit Manual Window; space bar = page for more
) e SPECIAL INPUT KEYS s—
o | HR] .. BkSpc
Moves cursor to
Tab | NEXT input field Nunber Keys at Deletes character
Top of Keyboard before cursor;
key used to e&n
WITH § or NumLock NUMERIC fields

Ctrl Bauses a scrolling screen
ress Space Bar to continue

WITH TAB moves cursor
Shift| to PREVIOUS input field

Deletes character
above cursor in
Alt text input field Del

—_—

Menu; date; Fmd/Data/Clear Report P -—-) .
T S e AR A ?&nlmrm A,C,0,F MR, U,

IV - Screen Design ——-— -—— pq 37

Data Searches -—-- From the commandline, the operator
may select "F" for Find to initiate a data search. Figure
8 shows an example of a data search menu for a Chart of
Accounts application. Every possible field is listed and
the operator may select one or all of the fields to search
by. If a string field is selected, the operator has the
option to select a "Begin-End®* or "Within" search as
described earlier. If a&a numeric or date field is
selected, the operator is prompted to enter the minimum

and maximum desired in the search.

Figure 8: Data Search Menu Screen

NODE = Search —I{CHART OF ACCOUNTS)— F1 = Manual
EXIT Search Menuv = Esc

m
uss SEARCH NENU e

1= Complete 2= NoDelete ¥ Accthun 4 Acct Name 5= Descript
é= Begin Bal 7= Jan Total & Feb Total 9= Mar Total 18= Apr Total
11= May Total 12= Jun Total 13= Jan Total 14= Aug Total 15 Sep Total
16= Oct Total 12= Nov Total 18= Dec Total 19= {si@tTotal 28= 2nd@tTotal
21= 3rd@tTotal 22= 4thBtTotal

Enter § of items to be searched ---) -

--——--eee sy

FILES= 48 SecFILE= FOUND= Curf= 42 BINPUT B~ 22

IV - Screen Design ——-— --— pg 38

Search Data Window --— The operator may request a

listing of the search criteria used to collect the current
search buffer (just in case one forgot)> by pressing "D" in

the commandline. A& pop—-on search criteria screen appears

listing all limits of the search as in Figure %? below.

Figure ¢: Sample Data Search Screen

MODE = Conmand —[CHART OF ACCOUNTS]— Fi = Manual
Esc = exit from Window

" SEARCH ITEM FROM (i =begin srch) - T0
3 = Acct Nom 2000 - 499
4 = Acct Name A -F

FILES= Secfile= FOUND= CurfN= 3 I INPUT A,C,D,F,M,R,U,

IV ~ Screen Design —-—-— -—— pg 39

Data Reports -—— A report may be initiated after a
search. If a report is requested and a search has not
been executed, then one is automatically requested from
the operator. A search menu is then listed as in Figure
18 below. The operator has the option to see the report
format (Figure 11) before executing the report in order to
be sure it is the correct one. Following that, the
operator may opt to have the search criteria listed in the
heading of the report, to have page numbers, and to send

the report to the screen, printer, or both.

Figure 186: Sample Report Menu Screen

MODE = Report —[CHART OF ACCOUNTS]— F1 = Manual
EXIT Search Menu = Esc

aas REPORT MENU sea

= Account Balances - Yearly

= Account Balances - Znd Quarter
= Account Balances - 4th Guarter
= Financial Report

= Chart of Accounts 2
= Account Balances - ist Quarter q
= Account Balances - 3rd Quarter é
= Account Balances - Beginning 8

Enter report number ---) .+

i
3
3
7

_
FILES= 48 SecFlLE= FOUND= 28 CurfN= BINPUT Int= 1- 8

IV - Screen Design —-- -—— pg 48

Figure 11: Sample Report Format

MODE = Report —[CHART OF ACCOUNTS1— F1 = Manual
- KEY to CONTINUE
m
Hinm 1= ACCOUNT BALANCES - 1st GUARTER == i
—
jmmmmmmmmmm—- Totals —=---==--=-- i Balances
Acctl Account Name January February March ist Quarter

T ———— T
HEEEE ERMRMRRRRRRRIRRIRRNND BRONUERERE BURRREEEN NENRRAREEE EREEINONY
R R T R T R T T T R T
AN Disted MO M T

==[Page HIN =

e ee—_—s—s—s—s—_——y

FILES= 48 SecFliE= FOND= 20 CurRé I INPUT

—_——= JU-DEWVELOFPER INTERF&AaCE =

The third priority of a 4GL must be the interface
between the application developer and the 4GL itself. The
discussion in this chapter involves the communication
between the 4G6L and the application developer in terms of
parameters which define 1/0 screens, output report formats,
and the database itsel+ (records and fields). The major
time spent by the application developer should now be in
the area of the database analysis and design. Once the
design is established, the installation of the parameters

involves the following steps:

1 - Parameter tables define the base application
for -——
A — the file data structure
B — the entry screens
C - the output or report formats

2 — Specific, non—-standard code is added using —-——
A - the 4GL "macro® language described later

B - the Turbo Pascal language
C - inline and external code allowed through
Turbo Pascal.

In phase 1, the implementation of the parameter tables is
through tables set up in standard text files. Phase 2 uses
the 46L itself to create these interface definition files.
The structure and content is the same with each method.
The phase 2 method allows for greater security and speed in

reading the files and initializing the file definitions

internally within the program.

V - Developer Interface ——— -——— pg 42

Initialization --— The application developer must

provide parameters for initialization of the system. These

include --—-
1 - the location of the data files
2 - The computer type (PC/XT/AT)
3 - video mode
4 - the filler character for entry areas
S -~ the client/end-user name
4 - the program name
7 — the logo screen with copyright and date
8 - the option to have the click sound for keys
? —a table of the main menu selections and

their related files
The menu title is wused in the main menu, and when a
selection is made, it is used in the title area of the
entry screen. The related files are automatically opened,

managed and closed during the use of that menu item.

1/0 Screen Definitions -~— Screen definitions start
with the definition of the window environment. This
includes ———

1 - The related file number

2 - The upper left corner location

3 -~ The lower right corner location

4 - Background color

5 - Foreground color

6 — The window frame type number

7 - The title color

= loper Interface —-—-— -—— pg 43

Screen definitions include a table of the following data

per source field -—-

— The source file number

- The entry order number (3 for 3rd field
entered in the input sequence)

Field location on the global screen

- Field number within the data file

- Location of the lower right corner for a
windowed field <(as for a multiple line
comment field>

mnbhw N -
|

The final step in defining a screen is the actual contents
of the working or data entry area of the screen, such as
the entry screen in Figure 3. The column headings and the

data entry area (line 8 in the example? must be created.

File and Field Definitiong --- The file structure of

the database 1is the basis of all specific data input
routines, file and record management routines, and
output/report routines. The Ffile and record definitions
are created in table form in a text file called File-
Def.PAS. The file contains the following data pertaining

to a specific file ———

File security code (read/write; read only>
Record size

Number of fields per record

- Set of indices indexing the defined file

- The major index for the file

NnH wWwh -
|

V - Developer Interface ——— ——— P9 44

It must be remembered that the 4GL does reserve menu 8 and
file B for the code library described earlier.
File-Def.PAS also contains a table of the following

data pertaining to specific fields within a file ———

- Field data type

— Field name (used in the search menw)

- Field-level input prompt

- An upper case flag for string data (yes/no)
Field length internally within the record

- Field offset internally within the record

- Field minimum and maximum acceptable values
— Character set possible for character data

VNN D W N~
1

The final table included in File-Def.PAS is another

table containing the definition of the indexing system ——-

1 - The source file for the index data

2 - The total number of fields used in the key

3 - The set of ordered fields to create the key

4 — The key size in bytes

5 - A duplicate key flag (ryes/no)

Output/Report Definitions —-—-- Output formats for

reports use the file, field, and index definitions entered
as parameters by the application developer to create the
proper data format to pass to the report routine. The
report formats are contained in a file called Rep-Def.PAS.
It is initialized with a table of ---

1 - Report name

2 - Related menu selection number
3 - Report number

V - Developer Interface —-- --- pqg 45

The initialization table is followed by the report

formats. A format is initialized with ——-

- The report menu number

- The report number

- Page length of the report/document
Body length of the report/document
— The number of records per group

- The line spacing between groups

NN DWW
t

Items 5 and &6 allow, for example, for the grouping of data
in sets of 5 lines and then double spacing between them for
readability.

The actual body of the report is created in the
following manner by the application developer. Figure 12
gives an example of an accounting report format. The first
character per format line describes the use of the line.

The codes are ——-

- Title line {No data input into this line)

— Divider line (No data input?

Column heading (No data input)

— Primary file data line

- Footer line (fields are totals or counters)
- Page number line

TN=00H
1

The # symbol represents the location of a field within the

report line.

V - Developer Interface ——— -—— pg 4é

Figure 12: Sample Report Format:

T HHHR 1= ACCOUNT BALANCES - 4th QUARTER ==[
]

C Acctd Account Name October Noveaber December GQuarter Bal
c == - - -

1 HHEE HRRERREI RN R RN RERRRRRERN SRRRERNND RRRRRORREN RRRHEDORNM

F#MA88 listed ST I N
F
P ==[Page Hilll I—

R Source Data
B Line Source Num
BNum FileSub Flds Source Field Array

Y} 5 1 é 2315161721

Y 7 1 q 8 151617

The Yower source data part of the table above defines the
field content of each input area for the fifth and seventh
lines in the format. The example defines the primary file
as the source for the fields listed in the source field
array. The +fifth line, for example, has & fields which are
numbered 2, 3, 15, 14, 17, and 21 input into the format.
This works much like the FORM command in Turbo Pascal or
like the PRINT USING in BASIC. Field number 8, the first
source field on the seventh 1line represents the record
count at the bottom of each page of the report. If the
page numbering option is selected at the time of the
report, then the page number will be printed using the

format line preceded by the "P*",

R R e gt

Y - Developer Interface ——— -—— pg 47

Specific Code --- A standard logic for IPO (input,
processing, output) is embedded into the system, however it
is impossible to foresee all uses for a program (as the
many versions on the market prove). Therefore, the use of
unprotected stubbed procedures within the 4GL system allow
for the application developer to further customize the
final application. Turbo Pascal commands, inline code,
external code, and internal 46L "macros” are available for
the application developer to complete the specific code,
The <Ffollowing chapter describes the "macro®™ language in
more detail and lists the major "macro” library procedures
and functions.

This specific code should be the only part of the
final application that would possibly require maintenance,
thus greatly reducing the cost in time and manpower for

maintaining each application.

—_———== A\ J I — CoODE DESIGH

This chapter concentrates upon the design and
organization of the actual 4GL code modules. A more
detailed level of design requires a data structure, an

organization of the code files, and system diagrams.

46L Data Structure --- The internal data structure of
the 4GL must be well designed in order to be parameter-
driven, compact enough for PCs, and as unfettered with

limi tations as possible. The major structures designed

within the system are —-—-

- The use of the B-tree indexing structure

-~ The use of pointers and linked lists

The direct or absolute addressing of data

- The allowance for subscripted arrays of
pointers to records for menus, files,
fields, indices, and buffers

WM
|

Dynamically created definition records are used to contain

all current working data needed for the current menu item

selected.

Organization of Code Files --— Due to the fact that

the Turbo Pascal version 3 editor can only handle 644K of
code per source code file and for organization purposes,
the coding organization of the program includes the

following separate protected code files. Listed with the

VYl - Code Design ——— -—— pqg 4%

file names are the contents of each.

Type-Def.Pas - all type declarations and a
minimum of global variables
Library .Pas - a wuniversal supporting library
containing independent modules
used by the entire 4GL program
FileMang.Pas - code for index keys
file management
Pointers.Pas — pointer management including
queues, double linked lists,
trees, and buffers
Support .Pas - search menu
print search data window
get report option data
report selection module
data input module
record management related to
data entry
Controls.Pas - the 3 major controling modules
which caltl the supporting
modules in Support above
EnterRecord

FindData
PrintReport
Menu-Sys.Pas - menu system
Init-Fin.Pas - initialization and finalization
modules

Also included are two application-specific files accessible
to the application developer. These are the files that

contain the stubbed interface modules for the developer.

They are ——

Speciall.Pas - UpDatefAcct for accounting modules
any data entry specific tests

Special2.Pas - any tests required for deletions
specific report tests

VI - Code Design ——-— --— pg 58

System Diaqrams -—— The diagrams that follow present
the high-level 1logic and design in a form similar to a
Warnier-Orr diagram. Figure 13 contains the most general
logic of the program. Figures 14 and 15 continue with more

detail for the Record Menu Keys section in the lower right

corner of Figure 13,

Vl - Co

de Design ——- pg 51

Figure

Initial- —
i2ation

Menu

Control—
Loop

13: System Structure Diagram -——

[Set screen)
et data drive parameter (where data will be located)
Initialize 5 global variables and flags o
Initialize global gpinters_fqr'buffers. files, indices, menus
Read defaults and file definitions .

currently in sequential data file)
Introduction Screen
Collect Record Definitions
Retain original video mode; set new default video mode
Request immediate update yes/no .
i Initalize menus, file definitions, buffers, and printer codes

Clegr_rjn?_buffer pointers

Re-initialize 5 global flags

Close open files to update disk director

Dispose of previous screen definition pointers

| Main menu screen)

Input new menu selection

Open new file set)
Create new entry screen and saves current work windows

[Initialize menu variables and pointers

Initialize search record

[Initialize quit flag

| Read Only: Menu;Find/Data/Clear jReport;PqUp;Pgdn

CommandLine—] .
Read/Uri te:Menv;Find/Data/Clear jReport ;Pglp;PgDn;
Add/Update

Command Loop— L
L Tests for enpty files and huffers

[Pagdob Key (get prev record data; print fields)

Case key of —— . .
L Pagele)n Key (get next record data; print fields)

Alt gagdb Keys (print prev sub pg within record)
Alt gagel)n Keys (print next sub pg within record)

[Updage (call #x EnterRecord ('U’))
Add o (call 22 EnterRecord (‘A’))

Record Report (call #* PrintReport)
Menu Keys— 8

Clear search buffer
Find data

r

| Window whole screen

Finali- —{ Clear screen

2ation

| Video set to original video mode

{ Be sure all pointers are nil and files closed

8 represents "exclusive or® or XOR logic
3% continued in more detail on following pages

VI - Code Design

--- pg 52

Figure

Enter

Record —

PrintReporH

14:

| IF add —

Initialize

Loop

Entry —

Field Loopd

Case of
Func tion—]
Key

-

Get report

Set Up—|

Record —
Loop

FSet current entry fie
Set input window if n

System Structure Diagram (continued)

[Clear record buffer
Print entry screen
i Print new record number

record variables

1d

eede

location, field length and offset
d for large text fields

Locate cursor
Save entry field screen
Initialize field variables
Print immediate input prompt .)
lngut routine according to tygo until get valid answer
PutDatalntoRecord if no quit flag
Boto next entry field

[F10 ; Save (if PostOK ie. if correct data then SaveData)

F$ = Archive (not currently installed)

F? : Delete (if deleteable then ask again; print next record)
F2 ; Codes pop-on window

Entea/Tab = go to next field in record

Shift Tab = go to prev field in record

data

-

Check pa
Increnen

Dispose of
R

Get

ace stan
data from last accessed search buffer node
Print data record into entry screen

r
rd entry

Dispose of hentry recor& buffer

Clear report format buffer
Print installed report formats

Search criteria in output (yes/no) .

Page numbers desired (yes/no); if yes, then enter starting page number
| Pause between pages (yes/no)
] Check printer message

Eor

Get data record

ength
int out number

Ir Print proper layout format

Print record——{ Print record totals if applicable

IL Print spacing between records if applicable

Move to next search buffer pointer

Check page length for formfeed
ort format buffer and total buffers

screen

YI - Code Design —--—- -—-—- pg 53

Figure 135: System Structure Diagram (continued) ——-

r Clear search buffer

| r

[| Lists all fields available in record for search
| | Input Yoop of chosen set of elements for the search
I

|

I

I r
| | String/Char (begin or within search)
I | Byte/Integer/Real (minimum & maxinum)
d —] xxListMenu—{ Input loop of search limitations—| Date (minimum & maximum)
L L

r
| bet search index required for search criteria
| Find first record number in search

FindData—] Search loop - adds data that meets criteria to search buffer

| Prints first record found or message of "NONE FOUND®
t

- e ——— —

Qverlay Structure --- Due to the limitation of Turbo

Pascal, version 3, the management of overlays is necessary
in phase 1. Overlays were determined to be more efficient
in this project than chaining, due to the code design. It
is also possible for the application developer to create a
batch file which automatically loads all compiled overlay
modules into RAM disk, therefore nearly giving the speed of

an EXE program. Four overlay +files are used in this

project.
Qverlay Design Methodologqy --- The rules for using

overlays can become quite involved when matched with the
logic of a program. A single overlay file can not contain

modules which call any module within the same overlay code

VI - Code Design —-- ——— pg 54

file, including 1itself, because they can not exist in
memory concurrently. For memory efficiency, the modules
should be of similar size and each overlay file should
contain as many individual modules as possible. The size
of the 1largest module within an overlay code file is
reserved in the main program memory for swapping in the
called overlay modules. To retain speed, two or more
overlay modules should not exist in a calling loop to
prevent continuous trading of the modules into the memory
overltay area for each loop.

One way to create an overlay system is to create a
columnar table showing the calls or interfaces between only
overlayed modules. Giocbal modules are not considered,
except for the fact that they must be declared before they
are called. The major controlling modules are singled
out. In this case, that includes the main module which
calls Initialization, Menu, and Finalization. The first
and last are ignored since they are only called once at the
beginning and the end of the program and therefore can be
located in any of the overlay +files conveniently. The
control locop logic is then the next area to consider. The
control locop calls EnterRecord, PrintReport, and FindData

which are the three major operations of the entire program.

VYl - Code Design ——-— -—- pg 55

A column is then created for each overlay file in the
design and each column contains the names of the modules in
it. To make it easier to design overlays, the software
engineer should use color coding with high-lighter pens.
For example, use green to high-light the modules involved
in the input of data into the program, ie. those used by
EnterRecord. One might wuse pink to mark all modules
involved in the output of data from the program, ie. those
used by PrintReport. Yellow could be used to mark all
modules involved in searches, ie. those used by FindData.
Any other modules might be marked with blue. The next step
is to draw color-coded lines from one module to another to
show what module calls another. To complete the process,
each column must be checked to find the dominant module, in
other words, the one that will be in memory the most. The
dominant module should be marked, perhaps with red. There
may be one dominant module in each column for EnterReport,
one for FindData, and one for PrintReport. However, there
should not be more than one per each of the three major
controlling modules. If there is any problem in deciding
between several modules, then perhaps a redesign should be

considered.

VI - Code Design —--- —-- pg 5&

By looking for the dominant module in each overlay
file, the speed factor can also be considered. An overlay
may be more efficient if it is broken down into more
overlays if very many of its modules are called frequently
or are contained in locops that conflict. In the diagram

that follows, the * indicates the dominant module.

MenuBEntry0K 4
MenuiEntryOK }——) *Entry0K

Dverlay ¥ Overlay #2 Overlay #3 Overlay #4
;) Hﬂ“l
| —
ManagefileSet— |
I
Codeldindow |
$InputData I
|
[

Menu2Entry0K 4 }————> EnterRecord
DeleteK |

MenuBPostOK - |

MenviPostOK ——) PostOK —

Menu2PostOK 4

MenuBScrDef -

MenuiScrDef |——) CreateEntryScresn —) Menu
Menu2ScrDef 4

Pointer library —
Key library
xxListhenu
PrintSearchData

|

I

I » FindData
Setlp |

I

J

GetReportData
ReportSelection

R it Ol

=== T I — THE LIBRARY

The master support facility for the modules contained
in the system diagram is the protected code library of
universally used procedures and functions which create a
*pseudo language” or ‘macro language” from which
everything else is based. Within this chapter is a list

of the major library modules.

——- External Call Library ——

PROCEDURE FrameWin (UL,UR,LL,LR,Hor,Ver : Char);
FrameWin creates a frame around the current window
using the given characters passed into it.

PROCEDURE GetScrn (¢ X,YNumChars: Integer;
VAR ChArray)
ChArray is an untyped wvariable used to pass in a
variable sized array of pixel data. GetScrn gets the
pixel data from the screen starting at position X,Y
which are global coordinates.

PROCEDURE PutScrn ¢ X,Y NumChars: Integer;
VAR ChArray)3
ChArray is an untyped wvariable used to pass in a
varing sized array of pixel data. PutScrn puts the
pixel data onto the screen starting at position X,Y
which are global coordinates.

FUNCTION GetVideoMode : Integer;
GetVideoMode retrieves the current video mode from
DOS.

PROCEDURE GotoXYAbs (X,Y: Integer);
GotoXYAbs goes to the global coordinate position of
X,Y regardless of the current window.

VIl - The Library --— pg 58

PROCEDURE 1InitVideo (Mode: Integer);
InitVideo initializes the video mode to Mode which
can be 8-7. Standard settings are: 7 for 86x235 text
and 3 for 86x235 color text.

PROCEDURE SetCursorSize (StartLine,EndlLine: Integer);

This procedure sets the cursor size like the BASIC
Locate statement.

FUNCTION WhereXAbs: Integer;

WherexXAabs returns the current global screen column
location of the cursor.

FUNCTION WhereYAabs: Integer;
WhereYAbs returns the current global screen row
location of the cursor.

PROCEDURE WriteSt (St: Str255);
WriteSt is a fast screen access equivalent to Write.

PROCEDURE WriteStLn (St: Str23535);
This is a fast screen access equivalent to WritelLn.

~-=- Window Handling Library —--

PROCEDURE AddWindow (WinNum : Integer;
WTitle : Str88);
AddWindow saves the current window contents and
current cursor position in a buffer. It can create a
frame around the new window and then window inside
the frame. It locates the cursor at 1,1 in the new
window and then sets window colors and clears the
window screen. WinNMum is the number of an array of
window definitions also set up as initialization
parameters by the programmer.

PROCEDURE Removellindow (NumToRemove: Integer);
Removellindow removes a given number of layers of
windows, resets the final window colors, and
relocates the cursor to the final window’s last
cursor position.

VYIl ~ The Library -—— pg 3%

——— Sound Library -—

PROCEDURE Beep;
Beep merely beeps to get the operator’s attention.

PROCEDURE Click;

Click creates a click sound and is called only by
InKey below for each key pressed.

—-—— String Handling Library --—-

FUNCTION UpCaseStr (S : Str255): Str2535;

UpCaseStr changes string S to all upper case using
inline code.

FUNCTION StrL (Len : Integer;
Character : Char?) : Str255;

StrL returns a string of length Len filled with the
given Character.

FUNCTION DelFrontSpc (TLine : Str255) : Str2355;
DelFrontSpc returns a string with all front spaces
deleted and is used for strings to be converted to

numeric data because spaces will create a run—-time
error.

FUNCTION LSet (Len : Integer;
Phrase : Str2535) : Str255;
LSet left justifies Phrase into a field of length Len

FUNCTION Center (Len t Integer;

Phrase : Str235 > : Str255;
Center centers Phrase in a string of length Len.

-== Screen Handling Library —--—-

PROCEDURE StatusLine (Which

¢ Char;
Num t Integer;
Message : Str255);

StatusLine handles all reserved message areas and

color coding. Any rearrangement of the screen would
be done here.

VIl

— The Library -—— pg &9

PROGCEDURE ErrMessage (VAR err : Boolean;
Message : 5tr255);
ErrMessage calls Beep, calls StatuslLine
(“2°,8,Message+’ - KEY TO CONTINUE>, calls InKey to

create a pause and allow for an Esc, and returns the
previous contents of line 2.

PROCEDURE ManualWindow;

This procedure is called any time an Fi1 is pressed.
It displays the manual in a pop-on window and allows
paging through the on-line manual.

PROCEDURE CommandLine (VAR Command : Char;
CSet : CharSet;
Message : Strié8);

CommandLine calls ColorCodeLine to display a color-
coded commandline message on line 24. It then calls
Charlnput to input a char from CSet and sends Command
character back to be used in a case to determine the
next mode of operation.

—-=~= Input Library --—-—

PROCEDURE InKey (VAR Special : Boolean;

VAR Charl, Char2 : Char’;
InKey 1loops until a key is pressed. If the click
flag is true then it also calls click when a key is
pressed and returns the key that was pressed as 2
characters. The Special boolean is a flag that is
true if the key pressed is a 2-code key. InKey is
implemented with an MsDos call.

PROCEDURE ReadStr (VAR TStr : str255;
LMax : Integer;
which t Char;
SpecialWindow: Boolean;

VAR BackX, BackY Integer);
Absolutely all user input is entered through ReadStr
in string form. ReadStr locates the cursor; tests
for actual character input and special keys and key
combinations.

VII - The Library -—— pg &1

PROCEDURE IntlInput ¢ Ins,TabOver: Integer;
VAR IntNum : Integer;
Bot, Top : Realj
UnderL, NextLine: Integer;
Prompt : Str233);
Ins is B for a "no insert" option; any other number
tells the program to insert a line at the input
location. TabOver is the column position of the
prompt message. IntNum is the integer to be input;
if an original wvalue is passed in, then that value is
displayed in the input area. Bot and Top are minimum
and maximum values allowed. UnderL is the length of
the underline prompt, in other words, the maximum
length of the input area or maximum number of
characters allowed tc be entered. NextLine is 8 to
flag for no linefeed/carriage return and any other
number sends the cursor to the next line. Prompt is
an input message preceding the input area.

The following are similar and related to Intlnput:

PROCEDURE Bytelnput < Ins,TabOver t Integer;
VAR Bite : Brte;
Bot,Top : Real;
UnderlL, NextLine: Integer;
Promp t t Str255>;
PROCEDURE Linelnput ¢ Ins,TabOver : Integer;
VAR TLine : Str2595;
Bot,Top t Real;
UnderL, NextLine: Integer;
Promp t : Str255);
PROCEDURE Datelnput ¢ Ins,TabOver : Integer;
VAR Thate : Brte3;
Bot,Top : Real;
UnderL, NextLine: Integer;
Prompt :t Str235);
PROCEDURE Charlnput ¢ Ins,TabOver : Integer;
VAR TChar t Charj
Bot,Top t Realj;
UnderlL, NextLine: Integer;
Prompt : Str2595);
PROCEDURE Reallnput ¢ Ins,TabOver t Integer;
VAR TReal : Real;
Bot,Top : Real;
UnderL, NextLine: Integer;
Prompt : 5tr255);

VII - The Library -—— pg é2

-—= Output Library ---

PROCEDURE PrtStat;
PrtStat checks to see if the printer is turned on and
select is on. If either is off then it gives an
error message and waits for the operator to input to
continue or to exit.

PROCEDURE PrtPrint (Prt : Integer;
Format : Str253);
Prt is 1| for screen only output,
2 for printer only output, and
3 for both outputs.
If Prt is 2 or 3 then PrtStat is called.
Format is the message to be output with no linefeed.

PROCEDURE PrtPrintLn (Prt : Integer;
Format : Str255);
This is identical to PrtPrint with a linefeed added.

PROCEDURE FormFeed;
This sends a formfeed to the printer if Prt is > 1.

PROCEDURE ColorCodeLine ¢ Prt : Integer;
L : Str285;
LineFeed: Boolean;

VAR 1k : Integer);

Prt is 1| for screen output only
2 for printer ocutput only
3 for both outputs
L can contain the characters 7 or % or “*7
%’ gets bold attributes for printer output and
sets highlighting for screen ocutput.
sets underline on for printer output and
sets low lighting for screen output.
turns off all attributes.
LineFeed is true to produce a linefeed.
1k returns an incremented line count if output is to
the printer and Prt > 1.

FEaard

LA N 4

VIl - The Library -—= _pg &3

--— File Handling Library -——

FUNCTION FilelLen (DF : Datafile) : Integer;
FileLen returns the number of records contained in
file DF. It includes the number of records used and
number deleted and ready for reuse.

FUNCTION UsedRecs (DatF : DataFile) : Integer;
UsedRecs returns the number of used records with
current data in the file DatF.

PROCEDURE OpInterrupt;
This procedure checks for an operator interrupt using
the END key. It calls CommandLine to ask "Do you
wish to ABORT? (Y/N)". This is used during reports,

FUNCTION IndexKey (IndNum : Integer;
RN : Integer;
VR : VariantRec);

IndexKey creates the index key for index number
IndNum wusing the record number RN and the data
record contained in VR, a variant record used to
pass all data records.

PROCEDURE NextKey (VAR IndFile : IndexFile;
VAR RN : Integer;
VAR Key)
NextKey goes to the index file IndFile to get the
record number, RN, of the next record in the index
and returns the untyped Key for the next record.

PROCEDURE PrevKey (VAR IndFile : IndexFile;
VAR RN : Integer;
VAR Key)J;
This is identical to NextKey above, but gets the
previous record.

PROCEDURE ClearKey (VAR IndFile : IndexFile);
ClearKey sets the index pointer to the beginning
empty node of the index.

VII - The Library -——— pqg &4

PROCEDURE FindKey (VAR IndFile IndexFile;

VAR RN Integer;

VAR Key)3
FindKey must be preceded by a ClearKey command for
IndFile. It searches for the given index Key in
IndFile. It finds the +first occurance of an exact
match.

PROCEDURE SearchKey (VAR IndFile : IndexFile;

VAR RN ¢t Integer;

VAR Key)3
SearchKey must be preceded by a ClearKey command for
IndFile. It searches for given index Key in
IndFile. For example, 1if IndFile has Lkeys of

CATALYST, CATAMOUNT, etc. and Key is CAT, then the RN
associated with CATALYST is returned and Key :=
CATALYST. It finds the first occurance of the first
part of a key. I+ none is found then returns a
global flag OK as false;

PROCEDURE ManageFileSet (DoWhat : Char;
FSet : FileSetType);
DoWhat is either ‘0 for open or ‘C” to close files.
FSet is the set of numbers of the +files to be
operated upon. Indices are automatically updated and
the existence of files and indices are tested; if a
file or index does not exist, the operator is asked
if the file should be created.

-~-—~ Miscel laneous Modules -——

FUNCTION Yes (Ins, TabOver, NextLine : Integer;
Prompt : S5tr255) : Boolean;
Yes calls Charlnput with character set of [’Y’,’N’]
and returns a boolean value of true if the character
is 'Y’.

PROCEDURE ClrLine;

CilrLine clears the current line where the cursor is
located.

PROCEDURE IntDate (VAR IDate : Byted);
IndDate returns the system date in three bytes of
information {(year/month/day).

VII - The Libraqg

-—— pqg &5

PROCEDURE IntTime (VAR ITime : Byte3);
IntTime returns the system time in three

FUNCTION Date : Str8;

Date returns the system data in
‘@R/ER/RE

FUNCTION Time : Str8;

Time returns the system time in
‘PR:EERE’

bytes.

string form

string form

All other procedures and functions are self-managing and

will not be called by the application programmer. They

are the kernel of the system and are called only by the

the program itsel+f.

Testing of the 4GL must be extensive because it is the
basis of many applications. To prevent compounding errors,

separate testing stages are as follows:

Stage 1 -——- File management is tested as a separate
module to guarantee that all data is saved, retrieved, and
deleted properly.

Stage 2 --- The menuing system and screen handling are
tested with stubbed calls to the file management routines.
This 1includes testing the windowing system. It must be
verified that all screens retain their consistency
according to the design described earlier.

Stage 3 -—-—- Input routines are tested separately
before integrating them into the Data Entry system. The
major features to be tested include ---

1 - the error handling for invalid entry of data --—-
alphanumeric data entered into numeric fields
numeric data outside of the minimum and maximum

limits
characters not allowed in the field

2 - the handling of the decimal point in real data
fields

3 - the cursor location, especially in string input
using both insert and overtype modes

4 - the use and clarity of error messages

VIII - Testing ——— ——— pg &7

S - the proper return of the input to the calling
routine.
é - the detection of special key combinations

The first 3 stages can be tested simul taneously before

merging them together.

Stage 4 -——- Testing the merged modules with an actual
application while attempting additions, updates, and
deletions of every trpe must be completed before testing
the report generation modules.

Staqge S —-——— Report modules are now tested with
standard screen layouts and then with wvarious columnar
layouts. Record counts, columnar totals, and paging are
tested extensively.

Stage é =--— The +final testing is a relational
accounting application merged with inventory, purchase

orders, and point of sale invoicing.

————= I X -— SuUMMaRY

The analysis and design presented here is now ready

for another more detailed stage of design and then coding.

The 46L is "... not a substitute for good analysis,
design and project management.'6 The major coding task has
been completed for the application developer, however a
thorough analysis and design of the database iteself is the
top priority before using the 4GL. It will be only as good
as the database design itself. The 4GL has simplified the
major functions that have now been automated. The wheel
has been invented and the six spokes are the following

management routines ——

1 - Menus and commandlines
2 - Screen management

3 - Data entry management
4 — Data search management
5 - Report generation

& - File and record management

The 4GL now contains from 88 - 984 of the code needed for a
relational database application. With the modular design

presented herein, the application can be expanded to

IX -~ Summary ——-— -—— pg &%

include more functions by (1) specific code added by the
application developer, or (2) by additional modules or
expanded current modules by the 4GL developer. These can
both be done without disturbing the structure of the data
files themselves. Therefore, the primary goal of
maintenance efficiency has been maintained. The secondary
goal of consistent user interface has also been maintained
wi th the above management routines. Any additional
management capabilities will still be implemented through
the existing structure for screen management, data entry

management, etc.

The acceptance of 4GLs has grown rapidly within the
past few years. It is, however, only the beginning. Even
more advancements must be developed to keep up with the
never—ending specialized needs of both today and tomorrow.
Database management has led the way, but a similar approach
is also needed for real-time systems and many other areas.
The quest for efficient, well-engineered methods still goes
on. There has never been a program that is totally
finished. There is always another need that it might
fulfill, thus one revision after another. Herein is only

the beginning of a new 4GL adventure.

1Turbo GhostWriter:; Taking the Time Out of Turbo
Pascal, This Month’s MENU, Vol. 1, No. 2, August 1987, pp.
4.

2Paul Winsberg, CASE : Getting the Bi Picture,
Database Programming & Design, March, 1988, pp. 954.

3Jan Snyders, The CASE of the Artful Dodgers,
Infosystems, March, 1988, pp. 28.

4The Reality of the Promise, InfoSystems, November,
1984, pp. 32.

5Kent Lawson, Thinking About 4GLs, Information Center,
Janvary 1988, pp. Z28.

6brochures, ASCII (Automated Software Concepts
International, Inc.), received January 1988.

?Pascal GhostWriter amounts to “‘instant software’,
Comdex Show Daily, Vol. 39, No. &6, November 2, 1987, pp.
128.

8James R. Hughes, Moving Out of the Middie Ages,
Infosystems, October 1984, pp. 76.

