
THE ANALYSIS AND DESIGN

OT ~

FOURTH GENERATION LANGUAGE

A Thesis

Presented to the

Division of Mathematics and Physical Sciences

EMPORIA STATE UNIVERSITY

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Karen I. Craft

May 1988

AN ABSTRACT OF THE THESIS OF

Karen I. Craft for the Master of Science Degree

in Mathematics presented on March 1988

The Analysis and Design of a

Fourth Generation Language

The enclosed thesis contains a study of the first

three phases of the software engineering process as applied

to the project of creating a fourth generation language

(4GL). Initially, the 4GL is defined. Three levels of

users are also defined - the software engineer who creates

the 4GL, the application developer who uses the language to

develop a specific application program, and the final end­

user who operates the application program created with the

4GL. Incl uded are schematic diagrams to show the logic

flow of the language. Sample screens are also included to

show the results of using the language for an application.

The fourth generation language automates the code writing

process wi th modul es to handl e menu systems, data entry,

screen handling, keyboard handling, validity testing, error

handling, data access and searches, report generation,

printer control, fi le and index management, and internal

data management of buffers, pointers, and system functions.

463000 DP OCT 21 'e~

o.Jdd",

--=== CONTENTS ===-­

I - Introduction 1

II - Analysis 18

III - Design 18

IV Screen Design 29

v Developer Interface 41

VI - Code Design 48

VII - The Library 57

VIII - Testing 66

IX - Summary 68

Bibliography 78

--=== TABLE OT FIGURES ===-­

FIGURE 1 - Main Menu Screen ••..•.•.....•. 30

FIGURE 2 - I/O Screen Format •..•••..•••••• 32

FIGURE 3 - Sample Entry Screen •••.••••.••.• 33

FIGURE 4 - Sample Coding Menu Screen •••...••.. 34

FIGURE 5 - Sample Code Screen ••.••.••....• 35

FIGURE 6 - Application Specific Help Screen •••••• 36

FIGURE 7 - 4GL General Use Help Screen •..•.••.. 36

FIGURE 8 - Data Search Menu Screen • . . • • . • . • • • 37

FIGURE 9 - Sample Data Search Screen ••.•••...• 38

FIGURE 10- Sample Report Menu Screen •••••••••• 39

FIGURE 11- Sample Report Format ••••.••••.•. 40

FIGURE 12- Sample Report Format ••••••••••.• 46

FIGURE 13- System Structure Diagram ••••...•.. 51

FIGURE 14- System Structure Diagram (continued) •••• 52

FIGURE 15- System Structure Diagram (continued) ••.. 53

http:��.��.��
http:���.����.��.�
http:��..�.�.....�

---=== I INTRODUCTION ===-­

Overview --- This document contains a study of the

first three critical phases of the software engineering

process as it is app 1 i ed to the proj ec t of crea t i ng a

fourth generation language. Ini tiall y, it is necessary to

provide some background information which defines the terms

so-f tl4lt3re engineer i ng, CASE (Comp u t er Aided Sof tware

Engineering), and 4~ (Fourth Generation Language).

Understanding these terms will aid in better understanding

the goals of the project.

Background Information --- Within the past few years,

the ever-changi ng mi cro-compu ter sof tware market has

presen ted many new probl ems to sol ve. I n the wor 1d of

value-added computer retailers (VARS) , specific Rtarget

markets R have become the emphasis, such as medical, dental,

retai 1er inventory, accounts receivabl e, or general 1edger

applications, to name a few. Off-the-shelf software is too

general for these spec ia1 i zed fields, therefore custom

sof tware becomes a necessity. Wi th the recent flood of

these market needs, the software engineer is forced to

develop more eff i c i en t methods to produce the vol ume of

Q..9. 2I Introduction

applications needed. Tom Adams, team 1eader at ASCI I

(Automated Software Concepts International, Inc.) and the

designer of GhostWri ter, describes the changes required in

the programming approach at ASCII. ·We had to find a

competitive - and affordable - way to do custom software.

We decided to develop a package that automated the code

1writing process. H Custom programmers find it necessary

to increase productivi ty and coding efficiency, to

standardize their applications for maintenance efficiency

and st ill retain versatility. Continuity from one

appl ication to another keeps the maintenance and training

effort to a minimum.

Software Engineering --­

Software engineering is not just a matter of
wr it i ng code! • • • The sof tware engi neer i ng li-Fe
cycle involves a more or less standard sequence
of phases. At the outset of a software project,
a set of requirements are gathered, describing
the objectives that the software must satisfy.
Next is an analysis of the requirements, exposing
important patterns and structures. These are
called the design specifications.

At th i s poi nt, sof tware desi gn begi ns.
Usually a schematic design phase precedes
detailed design. Upon completion of design, code
is wri tten --- this is the implementation phase -­
- followed by testing and l11dintenance.

I - I~duction --- 2.9 3

Sof tware engi neer i ng therefore i nvol ves the foll owi ng

phases in the life cycle --­

1 - Requirements - gathering the objectives
2 - Analysis - exposing patterns and structures
3 - Design - schematic and then detailed design
4 - Implementation- actual coding
5 - Testing - verifying correctness
6 - Maintenance - correcting, updating, revising

Advances in technology and techniques to
improve the process have not kept up wi th the
demand for new software; or perhaps programmers
have been too busy to 1earn them. Whatever the
cause, many programmers have apparently decided
to skip designing software in favor of just
getting the job done. R I t can always be fixed
later R seems to be the attitude of the day.

Programming is costl y enough when it is done
correctly. this haphazard rush to completion
only adds to the costs, both in maintaining the
software a~ in producing truly useful
applications.

In a software engineering project, the
greatest effort is expended in the later phases
of the life cycle. Coding, testing, and
maintenance take far more time than analysis and
schematic design.

In contrast, decisions made early in the life
cycle have the greatest impact on the quality and
maintainability of the resulting software.
Studies have shown, for example, that errors
detected during [the] requirements [phase] are
correc ted in far 1ess time than errors detec ted
during implementation or maintenance.

I n other words, the 1east effor tis i nvesied
in the most important phases of the life cycle!

I - Introduction --- 2.9. 4

CASE --- A CASE produc tis any compu ter tool that

assists any phase of the software engineering process. The

defini tion is qui te 1 iberal due to the fact that software

engineering itself is a broad activity. -Any computer tool

that assists in the process can legitimately claim the CASE

label. ,,2 MCASE tools perform analysis and design, code

generation, testing and maintenance. Few, i f an y , do all

these things, however.- 3

CASE can partially automate the coding and testing

phases. "This is the goal of application builders and code

generation products. CASE will also promote standard­

ization and support better and more accessible

documentation, resulting in lower maintenance costs. In

this way CASE will, in principle, redirect resources to the

cr it i ca 1 phases of requ i remen ts, anal ysi s, and schema tic

2design.­

Through extensive user surveys (published in
CanputerAided So-ftAlt3re Engineering: CAS£), BTR
[Business Technology Research of Wellesley Hills,
MAl determined that most users have been
emp 1oyi ng CASE tool s for on 1y the past 18 to 24
months. [as of March 1988l

CASE tools break down into two segments:
design automation and programming. Programming
tool s are primari 1y avai labl e on IBM mainframes
at prices in excess of $100,OOO, according to
Bayer [David Bayer, an industry analyst with
Montgomery Securities, San Francisco, CAl. The

I - Introduction --- .e.g 5

trend, however, is to less expensive products
that can run on micro and minicomputer
workstation platforms. He expects more
sophisticate2 programming tools to appear this
year [1988].

The proj ec t inc 1uded herei n is fo11 owi ng the trend toward

the micro market.

The CASE definition includes two distinct

technologies. Front-end or upper-cd-se tools include the

ana1ysi sand desi gn ai ds. B.3ck-end or lower Cd-se tools

inc1 ude app1 ication generators. Th i s p r oj ec t centers

around the back-end or lower case tools which are also

labeled 4GLs or Fourth Generation Languages.

4GLs -These application generators assist the

later phases of the [software engineering] life cycle, from

detai 1ed design through coding, testing, and maintenance.

They focus on process, format, and documen ta t i on

2disciplines, not information or project management.­

A 4GL is ac tua 11 y a type of CASE, bu tis more easi 1y

thought of as a subset of the CASE technology, and also as

the paren t of the CASE. In its broadest sense, it is the

the back-end or lower CASE tool mentioned above.

As a response to many new needs, four th genera t i on

languages (4GLs) are becoming more prevalent and are

quickly replacing third generation languages (3GLs) such as

I - Introduction --- Q.9 6

BASIC, PASCAL, COBOL, FORTRAN, etc. A 3GL requ i res the

application programmer to specifically use the language to

tel I the compu ter how to do every detai 1 of each task.

Using a 4GL, the programmer need only tell the 4GL program

what to do. This is due to the fact that a 4GL is an

organized collection of pre-written code which contains

abou t 90% of all s tandard managemen t code needed f or all

applications. Just as an operating system is a collection

of standard 1ow-I evel menial tasks that all users need,

such as device management, character manipulation, screen

management, etc., the 4GL contains a higher 1evel

collection of management "macros· that automate data, fi Ie,

record, fiel d, screen, and report management tasks. The

app 1 i ca t i on programmer no longer needs to II re-i nven t the

wheel. II All programs developed wi th the 4GL then become

standardized in these tasks and all standard or common

tasks are handl ed the same from one app 1 i ca t i on to the

next. A 4GL does the same thing for application programs

that the operating system does for hardware, onl y at a

higher level. The operating system standardizes the

interface between the programmer, operator and hardware

devices, and the 4GL standardizes the interface between the

programmer, operator and the appl ication. A truel y

I - Introduction --- --- £9 7

efficient 4GL will automate as many standard or normal

tasks as possi bl e. All that is left for the appl ication

programmer to do is to add the non-standard tasks specific

to the application.

4GLs have al so been descr ibed as Ha con t i nued

ev 0 1uti on of languages H4 , Ha specialized language that has

been designed to do a specific function H4 , as being Hable

to do a task with roughly one-tenth of the code needed in a

3GL. H
4 • HWi th 4GLs, the prec i se ins truc t ions have been

automated. The language has been demystified. 4GLs employ

a dialogue between user and computer, interacting to solve

the user's probl em. The focus is on the task, not on the

5computer. H

Many 1evel s of 4GLs ex i st, from simp 1er 4GLs wh i ch

allow an end-user to create a simpl e database to powerful

system-house 4GLS used by software engineers. The

difference between the two is the degree of flexibility and

of the de ta i 1 allowed i nits use. The simpl e 4GLs allow

for only very basic, standard functions, while the powerful

4GLs allow the versa ti 1 i ty of adding the unusua1 ,

nonstandard func t ions when needed usi ng the host 1anguage

and the extended DmacroH language of the 4GL itself. This

study considers the later, the powerful system-house 4GL.

I - Introduction ---	 --- 2.9 8

ASCII, the producers of GhostWriter, define their

product as (1) an automated code writing process, (2) an

application generator, (3) an ap p I i ca t i on development

4system, and (4) a CASE (Computer Aided	 Software

5Engineering) product for program development. The

engineering approach contained herein echoes these four

def i nit ions and consi ders the 4GL as an ex tensi on of the

Pascal language with the creation of 8macro 8 procedures and

functions for system-house use to create rela ti onal

database management applications.

Summary In summary, this document contains the

study of the first three cri tical phases of the software

engineering process (the requirements, analysis and design

phases) for a four th generat i on language. Br i ef I y, th i s

involves a subset of the CASE technology called the

appl ication generator technology (al so call ed back-end or

lower CASE). It can also be described as an automatic code

generator wi th screen/report creat i on, dictionary

definitions, data base management, procedural language, and

functional integration as described in 8The James Martin

Productivity Series82

The creation of a fourth generation language (4GL)

I - Introduction --- ~ 9

itself requires quite an involved programming project. The

ASCII programming team spent three-and-a-half years work on

1their GhostWriter written in Turbo Pascal. This document

analyzes the type of product produced by this company.

--=== I I ANALYSIS ===-­

A high-level analysis at this point involves sever-al

d i r- ec t i on s • The fir-st step is to define the user-s, and

their- r-espective needs.

The User- --- Defining the needs or- r-equir-ements of a

softwar-e pr-oject also initially r-equir-es defining the

user-. In or-der- to avoi d any confusi on, thr-ee ter-ms ar-e

used consistently within this document -- ­

(1)	 The softwar-e enQineer- who cr-eates the 4GL.
(2)	 The application developer- who uses the 4GL.
(3)	 The client/end-user- or- oper-ator- who uses

the application cr-eated with the 4GL.

In this situation, the application developer- (also known as

a system developer-) is the user- of the 4GL, however-, while

using the 4GL, this developer- pr-oduces appl ications for- a

var-iety of clients or- end-user-s. This r-equir-es that the

4GL be wr- it ten in such a manner- as to a 11 ow for- many

di ffer-en t var- ia t ions in database app 1 i ca t ions. Ther-efor-e

analyzing the needs of the application developer-, also

involves analyzing the needs of as many client applications

as possible. The application developer- becomes the Dmiddle­

manU	 for- the client, the final application end-user-. Thus,

two 1evel s of ana 1ysi s ar-e consi der-ed, the needs of the

II - Anal.l.sis 2.9 11

application develope~ and the needs of the develope~~s

clients.

James Hughes explains a standa~d app~oach to the

analysis p~ocess --- "At p~oject initiation, a p~oject team

- consisting of systems analysts and use~s assigned full

time to the team - must define the p~elimina~y requirements

of the system."

"Traditionally, at this point analysts would interview

dozens of users to determine requirements. This often

produces a long list of wants and needs that are difficult

to analyze and use for system development."

"A better approach is to involve a few experienced

users in the definition of preliminary requirements and

major system externals - such as menus, data-entry sc~eens,

on-line query displays and reports. These system externals

should then be incorporated into a horizontal prototype."

·Users can review and rank the functions in the

horizontal prototype to determine which functions should be

8 au tomated."

Software En9inee~ and Application Developer Needs --­

The software engineer (the 4GL developer) and appl ication

developer (use~ of the 4GL) have much in common. They are

.e.g 12II Anal l::,si s

both developers for a cl ient. The software engineer

creates general applications for the application developer,

and the application developer creates specific applications

for the client/end-user. As mentioned in the introduction,

several quality requirements include increased product­

ivi ty, code efficiency, maintenance efficiency, standard­

ized appl ications, and versati 1 i ty. Further clarification

is now needed.

Increased productivity involves the production of an

application in less time than with previous methods. This

is easily measureable by keeping time logs on all projects,

however, one must remember that not all projects are

created equal.

Maintenance includes updating the system for changing

needs, correcting errors, and adding new capabi 1 i ties. In

most organizations, it is estimated that 78% of the

programming is dedicated to maintaining existing systems.

Wi th 4GLs 78% of the time is spen t on or i gi na 1 codi ng and

38% on mai n tenance. 4 A rat i 0 of 88% - 28% is the mi n imum

acceptable goal of this project with the ultimate goal of a

95% - 5% ra t i o. The appl ication developer is required to

provide parameters to the 4GL to define the data file

II - Anal~sis --- 2.9 13

structure, entry screens, and report formats. In other

words, the majority of the time for using the 4GL is spent

in designing the appl ication database, as is necessary in

any application, however, little additional time is needed

beyond that stage.

Efficiency involves three major areas of concern

speed, memory, and maintenance efficient code. Speed

eFficiency can be measured wi th timing tests. The 4GL

developer must consider disk access time when using

overlays and managing data files. Both the software

engi neer and the app 1 i ca t i on developer have access to the

use of in 1 i ne and ex terna 1 code to speed up processi ng.

H~ory efFiciency can also be implemented using inline and

external code. Due to the fact that the constraints of the

proj ec t inc 1ude use of PC/XT equ i pmen t, it is necessary to

keep the code as compact as possible. The 4GL developer

can compare the memory required by one algorithm over

another in order to determine the memory efficiency.

~intenance eFFiciency is included here as the top priority

requirement. It is not a truely measurable feature.

However , all desi gn for the software engineer and

application developer must have an under 1yi ng purpose of

2..9. 14II - Anal~sis ­

being easily updateable as new needs surface. This becomes

a Y gray area-. An elaborate algorithm may be quite

efficient time- and memory-wise, but too difficult to

maintain because of a lack of readability. Readability is

based upon the opinion of the programmers and dependant

upon their expertise. Readability and maintenance have top

priority over speed and memory.

Standardi zing app 1 i ca t ions is impor tan tin two maj or

ways. From the programming and maintenance point of view,

standardized al gori thms prevent reinventing the wheel and

save much development time. From the appl ication

developer's point of view, this is the major purpose fo

usi ng the 4GL. The app 1 i ca t i on developer no longer needs

to be concerned wi th how the app 1 i ca t i on handl es menus;

input, keyboard handling, validity testing, and error

handling; output and printer control; screen functions,

color coding, and windowing; search routines; buffers;

pointers; system functions; or even the processing of data,

i ndi ces and f i 1e managemen t • These are tota 11 yin the

control of the 4GL. The application developer then is

concerned wi th whtilt the system must do for the special

application and not how it does it.

II - Ana 1~s i s .2.9. 15

Versatility is a quality that can really only be

measured wi th time. Due to the vast range of specific

application requirements of client/end-users, it is

impossible to foresee and allow for all possible features

that might be needed by the appl ication developer. After

the major design requirements are defined, a further

requirement is to allow for direct appl ication programmer

code wi thin the program to add the non-standard features.

Standard code is code that is protected and not allowed to

be changed by the application programmer. The requirement

of versatility is provided for with code files accessible

to the application developer that contain stubbed

procedures in which any unforeseen specific application

requirements are coded by the application programmer.

Standard Pascal commands and an extended language set of

4GL macros <described in more detai 1 later) are avai lable

to the application programmer as the specific code is

added. The standard code files created by the 4GL

developer are designed to handl e 89 - 99"/. of all

application needs. These include automatic handling of the

functions listed in the ·Standardizing Appl ications·

paragraph above. Additional code added by the application

developer is typically 1-5% of the total.

II - Analysis --- --- Po 16

Client/End-User Needs --- Quite often the client/end­

user is a novice wi th respect to computer operation. All

design is directed to the needs of the new computer user.

As mentioned earlier, maintenance is the top priorty of the

entire project, but consistent user-interface is the second

priority. Every move required from the operator is to be

thoroughly prompted. In more specific terms, this first of

all requires a stdnddrd screen Id)'oUt in order to assure

the operator that all prompts will be consistently seen in

the same format throughou t the en tire program opera t i on.

Color coding aids in prompting the user also. Help screens

are avai lable at all times. Ddtd input is prompted at the

field level with data type, data limitations, and field

descriptions. All data is checked for f.I<3lidit.v and any

required or coded fields are tested before saving the

record to the database. S~rches of the database allow for

mul tiple searches for any limitations on any or all fields

available in the file. The first phase of development

allows for searches of concurren t search cr iter ia, however

the second phase allows for OR, NOT, XOR, and wi 1d card

searches. Report Forl11dts allow for col umnar formats, page

numbering, column totals, and counters. Printer

attributes, such as bold and underline, can be embedded in

II - Analysis --- --- P9 17

report formats. User-entered subtitles are also allowed.

Summary I n summar y , the fun c t i on s t ha t wi 11 be

automated include

1 - a menu system,
2 - data-entry/display screen functions

(I/O screens),
color coding
windowing

3 - data entry,

keyboard handling

validity testing

error handl i ng

4 - data access (searches),

5 - report generation (output)

printer control

6 - file management

indices
saving, deleting, reading data file

7 - internal data management

buffers

pointers

system functions

processing of data

--=== I I I DESIGN ===-­

The top 1evel design concen tra tes upon the user­

interface. The lower 1evel of design concentrates upon

the mechanics and maintenance aspects. This chapter will

discuss the top level designing phase in terms of general

requirements and of the functions to be automated.

Phased Development --- Development of this project

is designed for two major phases. The first phase uses

Turbo Pascal 3.x BCD with the top priority features. The

second phase uses Turbo Pascal 4 and adds the more

detailed features described in the following.

System Requirements --- Design begins with the

declaration of the constraints. This project is to be

impl emented on IBM PC/XT/ATs or compatibl es (XT/ATs are

preferrable) with DOS 3.1 or higher and 328K of RAM. A

hard drive is recommended and mono, CGA, or EGA monitors

are supported. The application developer is required to

use Turbo Pascal 3.x in the first phase of development and

as soon as version 4 is shipped, the second phase will use

it as its base.

III - Design IUl 19

Initialization --- A parameter passed in with the

call to execute the program declares to the program where

the data files are located, ie. the drive and subdirectory

specifications. This allows the operator to keep sets of

files within separate subdirectories. Once loaded, the

ini tial ization of the appl ication program created by the

4GL includes an option for immediate update of fi les and

the ini tial ization of the date. Exit from the program is

possible even from this point. A personalized logo

screen, desi gned by the appl ication developer, then

appears to declare the program name and any copyrights and

dates needed. Pressing a key continues into the main menu

screen.

Menus The main menu for the entire appl ication

created by the 4GL includes a 1 ist of installed database

applications. For example, a simple menu may include --­

e = Codes
1 = Chart of Accounts
2 = T~ansactions

3 = Audi t Trai 1

Each menu sel ected resul ts in the use of the same screen

1ayou t descr i bed in more detai 1 1a ter. When a menu i tern

is sel ec ted, the appropr ia te f i 1es are opened, the I/O

III - Design 2.9. 20

screen is created, and the file and field definitions are

initialized.

Command Line Once within a menu selection, a

commandline appears at the bottom of the screen. Two

forms are used. The first allows adding and updating of

records and the second allows only reading of data ---

MenUj Add/Updatej Find/Data/CINtj RtpOl'tj PgUpj PgOn ---)

"enuj Find/Data/CINtj Reportj PgUpj PgDn ---)

Phase 2 includes security password options which allow for

read/wri te access or read only access, therefore

determining which commandline the end-user will see.

I/O Screens --- Data entry and display (for browsing

through a search buffer) screens are the same. Standard

I/O screens contain the following:

1 - the menu title
2 - the current mode of operation
3 - a message area for errors and how to exit
4 - a data entry area
5 - a comrnandline area
6 - a field-level prompt area
7 - an input prompt for data entry limitations
8 - a status line including --- the number
records in the curren t f i 1es, the number of
records in the search buffer, the record
number of the record curren t 1y bei ng en tered
or viewed.

II I - Desi 9n --- 2.9 21

Help Screens --- Help screens are constantly

available by pressing the F1 key. Phase 1 help screens

inc 1ude user-spec i f i c i nforma t i on, such as accoun t i ng

aids, and a user manual displayed sequentially in a

circular list as the space bar is pressed. Phase 2

screens allow for going to specific pages in the on-screen

manual, for scrolling forward and backward sequentially as

desired, and allows for context-sensitive help. The

standard user manual is pre-installed, however this manual

is accessible to the application developer for editing.

Data Entry is standardized with I/O screens defined

by the application developer. All data is entered within

these screens and also displayed within them when in

browse mode to page through a set of records in a search.

Data entry is also dependant upon file definitions defined

by the application developer using parameter tables. File

sizes, access codes, indexing, and field definitions are

contained in these tables. Data entry in a field uses the

field definition to determine data type, field length,

validity tests, and its location within the record. Each

field has field-level prompts displayed as the field is

entered by the operator.

II I - Desi gn --- --- e.g 22

Phase 1 includes data types of string, integer, BCD

real, byte, date, and character. Automatic sequential

f i el ds (such as sequen t ia1 i nvoi ce number i ng) and defau 1 t

fields are supported. A key click option is available for

keys pressed. A lookup fac i 1 i ty is bu i 1 t-i n for coded

data fields as explained in the next section on the

·Coding System·. Validity tests are performed at the

field level. Coded fields are allowed which require entry

of only preinstalled codes. Numeric data is tested for

minimum and maximum limits. String data entry is not

allowed beyond its maximum length limit. Date entries are

also tested for val id dates. When an entry is executed

usi ng the FlO key, the record is tested for the ex i stence

of required fields. If the record is acceptible it is

recorded and any updates to related files are also updated

at that time, such as updates to chart of account totals

when a transaction is entered.

Phase 2 adds data types for telephone numbers, zip

codes, social security numbers, time, and short dates

(mm/dd).

II I - Design 2.9 23

Coding System --­ Due to the fact that it is storage

efficient to use codes for some data fiel ds, a standard

for all applications is a built-in coding system. Menu 8

is reserved for Codes. This menu selection allows the

initialization of a coding library which contains lists of

)i; available codes used in the data entry of the entire

t ~ \" program. All coded fiel ds used throughout the program

reference th i s code library to test the va I i di ty of the

data entry for that field. Therefore, all codes must be

~ i ,'" entered in the coding library before they will be accepted

!, as valid data in the coded data fields. No duplicates are

(". allowed. An example would be codes for source documents

in a transaction, such as ·CK' for check or 'IN' for an

invoice. These codes are indexed and quickly accessible

at any time during data entry <adding or updating) by

pressing the F2 key. A pop-on window lists the installed

I'"~ codes and their descriptions in alphabetical order and in

a circular I ist for paging through. The operator then

returns to the data entry from whence he came. Once a

;. ; code is used as a reference in a coded data field that is

saved to a file, the code is flagged and will not be

allowed to be deleted to guarantee that it can be

referenced by the coded field later.

Design --- --- pg 24

Data Searches --- A data search menu includes a

numbered 1 ist of all the fields in the records involved

wi th the curren t menu selection. The end-user has the

op t ion to se1ec t an~ or all numbers of the fiel ds for

which he wishes to request concurrent special criteria (a

logical AND search). After selecting the proper fields,

the end-user is prompted for the special search cri teria.

Str i ng searches are case i ndependen t and allow for two

search type options. -Begin-End B searches locate data

matching and between a user-input beginning string to an

ending string. Data is matched from the beginning of the

data fiel d. I tallows for a search such as all names

beg inn i n g wit h ~ a ~ to 'm'. -Within- searches locate all

data fields which contain the user-input string wi thin

them. Numer i c and date fields allow the user to input

minimum and maximum limits on the search.

Searches involving an indexed field will be

imp 1emen ted usi ng B-tree index i ng and other searches wi 11

be sequentially implemented. Data search records are saved

in a circular linked list called a search buffer. The

search buffer can be used for browsing through the data on

the screen (pagi ng to the prev i ous or nex t record) or to

print out numerous reports. Once the search has been

II I - Desi gn 2.9. 25

used, the search buffer can be cleared.

To see what search cri teria have been used for the

current search buffer, the operator can enter 'D' for data

at the commandline. A pop-on window will display the list

of cr iter ia used for the search. The coun t of records

con tai ned in the curren t search buffer wi 11 be di sp 1ayed

at the bottom of the screen.

Phase 2 will add the OR, XOR, NOT, IF-THEN-ELSE and

wi 1dcard searches, and al so wi 11 allow for ascending or

descending sorts according to any chosen combination of

fields. Search and replace features will be added in this

phase. An operator option is available to search for case­

sensitive data. Ad hoc searches are allowed in this phase

and commonly used searches are saved as standard -macros·.

Data Reports --- Report formats are initialized by

the application developer. In phase 1, these will be

imp 1emen ted usi ng tex t f i 1es. These forma ts wi 11 inc 1ude

field locations and field numbers. Special printer

options, such as bold, underlining, and compressed print,

wi 11 be imbedded wi th i n the formats. When request i ng a

repor t, the end-user is requested to in it ia1 i ze a search

if none exists. A numbered list of installed reports is

III - Design 29 26

displayed in menu fashion. When the operator selects the

desired report, he may opt to have the report format

displayed before continuing. This allows the operator to

be sure he has the proper report. Counters, paging,

col umn total s and numeric grouping (by groups of 5, for

example) are available directly through the formats

created by the application developer. To implement

control breaks, other than numeric grouping, the

application developer adds specific code. The page length

is set in the repor t format and is the key that

au toma. t i ca11 y manages pagi na t i on and the crea t i on of a

title block at the top of each report. One line in the

report is required to contain fields from one common file.

Phase 2 allows for a more H free form" type repor tin

which fields on the same line can be contained in

different data fi 1es. Phase 2 uses the 4GL i tsel f to

create the report formats and parameters and also allows a

max imum wi dth repor t of 132 charac ters. A mat hema. t i ca1

formula or a special logic procedure can be manually coded

by the application developer.

Design 2.9 27

Pr inter Suppor t --- Due to the fac t that there is

little standardization for the many printers on the

market, each printer requires its own set of driver codes

for special attributes, such as bold, underline,

compressed, 6 or 8 1 ines per inch, ital ics, and double

wide. Printers are supported by a parameter file

containing these code numbers. The file is created by the

application developer and allows him to install codes for

for any or all printer interfaces for which he has codes.

F i 1e Managemen t --- F i 1e managemen t loll ill be

implemented with a B-tree and indexing system. Parameters

wi 11 be suppl ied by the appl ication developer to define

files and their respective fields. Restructuring of files

is not allowed, however, a transfer from one file to

another can be made. A re-indexing uti 1 i ty re-indexes

files that have been corrupted. It uses the file, field,

and index defini tions to restructure indices after

renaming the 01 d indices to have as a backup unti 1 the

process has been verified. The operator then has the

option to delete the old indices.

User Interface --- User interface is well-served by

II I - Design 2.9. 28

the several requirements previousl y mentioned

standardized screens, a pop-on code window, a pop-on

manual or help window, and constant prompting at the field

1evel • The user wi 11 know that he is expec ted to en ter

data when the color yellow (or reverse video on monochrome

monitors) appears on the screen. Even character input

will be prompted by listing all possible characters

allowed in the input. Error messages must be preceded by

a beep to si gna1 the user to look ina pre-determi ned

message area. At all times, the user will have a message

explaining how to exit the current situation. The use of

keys will be consistent throughout the application for the

operator. Standard key combinations are pre-installed,

however, these can easi 1y be re-conf i gured by the

application developer with the simple reassignment of key

constants.

--=== IV-SCREEN DESIGN ===-­

Within the next four chapters are the more detailed

aspects of the project. This chapter concentrates upon

the I/O screen designs used by the data entry routines and

report browsing routines.

Standardized screens --- Standardized screens are

not only a benefit to the end-user, but also to both the

software engineer and the application developer. End-user

interface is of utmost importance, due to the fact that

the majori ty of users are novices. Bei ng abl e to

consistently find error and status messages and prompts in

pre-set 1oca t ions ai ds great 1yin the opera t i on of the

application program. However, the major advantage for the

developers is the fac t that all screen handl i ng can be

channeled through one screen formatting module. Any

desired changes in the screen layout are made in that one

module. Figure 1 is an example of a main menu screen from

an application using the 4GL.

IV - Screen Design --- 2.9. 38

FIGURE 1 - Main Menu Screen:

HODE = Cllllland -(HAIN HENU 1- Fl =Hanual
EXIT Pr•• = Esc

8 =CODES
1 =CHART OF ACCTS
2 = ACCOtMING
3=AUDIT TRAIL
4 =SUPPUERS
5 = CUSTIltERS
6 = ItfJENTORY
7=SALES

Stl.ct I from about ---)

FILES: S.cFILE= FO~D= Curllt= • INPUT Int= .- 7

I/O Screen --- When a mai n menu item is sel ec ted,

the program then uses the standard I/O screen shown in

Figure 2 and described below. The following list contains

the description and location of the standard items in the

screen layout and their reserved areas.

Name Line Description of use

Mode 1 Di sp 1ays curren t mode chosen from
the commandline menu.

Command means it is wai t i ng for a
command.

Add or Update are data entry modes

Title 1 displays the title of the item
selected from the main menu.

IV - Screen Design .e.g 31

Name

Manual

Message

Work area

Commandline

Files

SecFile

Found

CurRN

Input

Line

1

2

4-22

24

25

25

25

25

25

Description of use

always shows how to get the pop-on
manual or help screen

displays messages such as error
messages that tell what is wrong
and what to do about it, how to
exit, special instructions for
the current situtation

area for entry and data display

commandline menu
field level prompts

number of records used in current
file

number of records used in curren t
secondary or re 1at i ona 1 f i 1e such
as a file containing sold items
related to a primary fi 1e of
invoice data

number of records found in a
search and contained in the
current search buffer

record number of record curren t 1y
displayed on screen (the actual
physical location within the file)

prompt area for absolutely every
operator input in these formats:
Byte= - ..
Int= - ..
Real= - ..
Max Length= (used for strings)
A, C, D, F ,M , R, U, (examp 1e of c harac t­

er input for commandlines)

IV - Screen Design --­ .e.g 32

Figure 2 - I/O Screen Format:

HODE =1111111111 ---{ title area l--- Fl =Hanual
message line for errors and exits

This is the working area used for data display and entry

Line for commandline and field-level praapts
FILES=IIIII SecFILE=11111 FOUND=IIIII CurRN=11I11 IIINPUT 111111111111111111

Figure 3 below demonstrates a feature that an

application developer may use for columnar-type data

entries. It exemplifies an actual entry screen as may be

def i ned by an app I i ca t i on developer for the en try of an

accounting transaction. The example shows the screen

after three transactions have been entered. In this

application, all entries are made on the line directly

under the column headings. When the transaction is saved

by pressing the Fie key, a prompt line is inserted at this

location, pushing the previous transactions down, thus

keeping them on the screen as templates for further

entries. The design of the screen within the entry area,

1 i nes 4 22, is under the control of the appl ication

developer. On line 24, is a field-level prompt describing

the current field at which the cursor is located.

IV - Screen Design --- .Q9 33

Figure 3 - Sample Entry Screen:

HODE = Add -{ ACClHNTIN6 1- Fl = Manual
Esc = Canand Line. ENTIN F7 = Del i Fl1 = Save • F2 = CODES

BIT •••••••••••••• I CREDIT •••••••••••••••••••••••••••• I •••••

Transact r-:- Debit ---, r-- Credit --, r Sourc,"
Date Acct. Mount Acct. Mount Doc Nulbtr CGRfnts

'l'1l'i"7--.-- ----'--- ---'- - --__ - ___88/'·,7,· II ••••••••••••••••••••••••••••••••

88/11/11 1111 334.52 3121 334.52 B6 Beginning Bank Balance
88111/12 6121 23.67 un 23.67 CJ(3241 Insurance Pa~t

Enter YearA10nthlDay as 87/ 31 5 --- zeros not n,ussary

FILES:: 2 SecFILE= Foa.D= Curllf= 3 .INPUT Byte= 1- 12

On the fourth line above, the name of the debit or credit

is printed in the spaces when the respective account

numbers are entered and found to be val id. Thi sis a

result of two lines of specific code added by the

app 1 i ca t ion developer. Th i s presen ts an examp 1e of wha t

special features can be accomplished with the 4GL.

Color Coding --- When the operator sees this screen

on a color mon i tor, the data en try area for the mon th is

highlighted in yellow to indicate that this information is

what is to be entered. Yellow sayS Hdo something!H. The

two bottom lines also verifiy what is to be entered.

light cyan while the current data entry field is yellow.

screen is avai lable by pressing the F2 key whi le in the

This

2.9. 34

Ft =Manual

The mode, "Ft = Manual", and

2 = stfPllER CREDIT CODES
4 =ItfJlMORY r.ATE60RY CODES
6 =SAlEIIN

CurRN= 3 • INPUT Jot= 8­ 255FOlND=

Entry data that has already been entered is

Secfile=

Pop-on Code Screen --­ Figure 4 shows an example of

I

MODE =Add
• CODES) Esc =exi t Code Win-ire, bIr =11' for !lOre I

t = SOURCE DOCIKNTS
3 =CUTOHER CREDIT TEAMS
5 =SAlE CODES
7 =INSTALLERS

Enter Code number desired ---) •••

FllES=

I
I

Col umn headi ngs are red.

IV - Screen Design

screen after selecting a particular code to 1ist.

status data on the bottom line are coded green. Titles

are brown.

Add or Update mode.

a coding menu screen and Figure S shows an example of the

Figure 4 - Sample Coding Menu Screen:

-- ------ ------------------------------- -

IV - Screen Design --- 2.9 35

After selecting the code listing desired (1 for example),

a screen similar to Figure 5 is seen.

Figure 5: Sample Code Screen

MODE = Add -l ACCOlNTIN6 1- Fl = Hanual
CODES] Esc = ,xi t Code WindcMi.j'C' blr = ;; for _or, _

r.. CODE DElETEDESCRIPTl~
1 SOURCE DOCIl1ENTS N

1 CH Cash Transaction N

1 CK Ch,ck Transaction N

I IN Invoic' Y

1 IT Int'l'fst N

•
FILES= S,cfi IF F~D= Cur~ 3 • IIftT Int= 1- 255

Manual/He1 2 Screens The on-line manual is

available at any time by pressing the F1 key. Below is an

exampl e of an appl ication specific hel p screen and of a

4GL general help screen.

IV - Screen Design --- 2.9 36

Figure 6: Application Specific Help Screen

HODE = -[ACCOtHTING 1- FI = Hanual
Esc = exit Hanual Windlllj space bar = page for .ore

F[tWIW. I :II • ACCOIlflING EQQ:\TI~ .' _

---- ASSETS I = r LIABILITIES --, r-- EQUITY -----,increase Assets: Otcreast Assets UtCrNst I IncrNse DtCrease I Increase
NIM Assets I AcclII Deprec Paid I Payable Oraliting : Capi tal
Unexpired Insur I Unearneo FItS
PrePaid Expense: (Advanced Rev) ItmtE stJttARY
Received : Paid (tllporary proprietorship)

btcrease Equity I Increase Equit;
Expenses : Revenues
Inventory (Btgin)l Inventory (End)
Purchasts : Sales
ContraRlVenue : ContraPurchasts

(SalK RetaAl) I (Pur RaA)
(SalK Discts): (Pur Disc)

Tran~ort-iR I
Uncolltct. Accts :

Henui Add/Update! Find/Data/Clearj Re~orti PaUDj PaOn ---) •
FILE~ 67 StctILE= FOtH)i: 23 \;urlN: i8 • INPUT A,C,D,F,H,R,U,

Figure 7: 4GL General Use Help Screen

HOOE= -[ACCOtHTING 1- FI = Hanual
Esc = exi t Hanual Windlllj space bar = page for .ore

F[HINW. I •lin • SPECIAL INPUT KEYS .' _

I ... fIiil ... IBlcSpc!
,.---, Hoves cursor to I..-..-J ~
I Tab I NEXT input field Nlllber Keys at Otletes character
L=.J Top of Keyboard btfore cursorl ~LY

key used to eait
WITH S or NIIILock NlttERIC fields

Ctrl ~uses a scrolling scrttn ~ Press Space Bar to continue

,.---, WITH TAB moves cursor
I IShiftl to PREVIOUS input field
I L.-..J
I Deletes character
I ,.---, above cursor in

I Alt I text input field (D;llI I..-..-J I..-..-J

I
I

Menu' AddI!!pdate' Find/Data/Clearj Re~ort· PaUDj PQOn --) •
FILE~ 67 Stc~ILE= FOUND= 23 turAN= as • INPUT A,C,D,F,",R,U,

IV Screen Design	 2.9. 37

Data Searches --- From the commandline, the operator

may select RF R for Find to initiate a data search. Figure

8 shows an examp 1e of a data search menu for a Char t of

Accounts application. Every possible field is listed and

the operator may select one or all of the fields to search

by. If a string field is selected, the operator has the

option to select a UBegin-End" or RWithin U search as

described earlier. Ifanumer i c or da t e fie 1dis

selected, the operator is prompted to enter the minimum

and maximum desired in the search.

Figure 8: Data Search Menu Screen

"ODE = Search	 --I:~RT OF ACCOINTS]­ Fl =Hanual
EXIT Search l1tnu =Esc

II' SEARCH tINU II'

1= ClII@l!t, 2= NoD!l!t! 3= Acc. 4= Acct ~ ~ D!script

6= ~ln Sal 7= Jan Total 8= Fib Total 9& Har Total 11= ~r lolal

11= Hay Total 12= Jun Total 13= Jan Total 14= Aug Total 1~ S,p Total

16= Oct Total 17= NOli Total 18= Otc lotal 19= IstQtTotal 21= 2nijOtlotal

21= 3rdOtTotal 22= 4thQtTotal

Ent!r I of ittms to b! search'd ---} ••

FILES: 48 S,cFILE= FOlND= Curlt+= 42 .INPUT 1- 22

- ------------------ -------------------- --------------------

IV - Screen Design E.,g 38

Search Da ta Wi ndow --- The opera tor may request a

listing of the search criteria used to collect the current

search buffer (just in case one forgot) by pressing 8D8 in

the commandl i ne. A pop-on search cr iter ia screen appears

listing all limits of the search as in Figure 9 below.

Figure 9: Sample Data Search Screen

MODE = ClINnd -[CIMT OF ACCOOOS)- Fl = Hanual

• Search Data 1•••••E.sc.=.l!X.iiltiifrIliCII.wiii.dcM••••••••••

II SEARCH JTB1 FRIJt (: =begin srch) - TO

3 =Acct NwI 2... - 4999

4 =Acct tell! A - F

I I

I~------------....
FILES: Sl!cfile= FOlJiD= CurRN= 3.. INPUT A,C,D,F,",R,U,

IV - Screen Design 2.9 39

Data Reports --- A report may be initiated after a

search. I f a repor tis requested and a search has not

been executed, then one is autornaticall y requested from

the opera tor. A search menu is then 1 isted as in Figure

19 below. The operator has the option to see the report

format (Figure 11) before executing the report in order to

be sure it is the correct one. Following that, the

operator may opt to have the search criteria listed in the

headi ng of the repor t , to have page numbers, and to send

the report to the screen, printer, or both.

Figure 19: Sample Report Menu Screen

HODE =Rtpor t -[CWIRl OF ACCOOOS)­ FI = Hanual
EXIT Search Menu = Esc

III REPORT ~ III

I = Chart of Accounts 2= Account BalanctS - Yearly
3 = Account Balances - 1st Quarter 4=Account Balances - 2nd Quarter
5 =Account Balances - 3rd Quarter 6 =Account BalanctS - 4th Quarter
7 =Account Balances - Beginning 8 = Financial Report

Enter report number ---} ••

8FILES: 48 SecFILE= FOUND= 28 CurAN= .INPUT lnt= 1­

IV - Screen Design 2.9 40

Figure 11: Sample Report Format

MODE = Report -(CIMT OF ACCOlNTS)- F1 =Hanual
- KEY to CINTINUE

I 1
11111111]= ACCOIHT IIAl.fW:ES - 1st lINTER =[11111111

Acctl Account HInt
1------------ Totals ------------1

January Flbruary Harch
Balances

1st Quarter

iiiii iiiiiiiiiiiiiiiiiiiiiiii iiiiiiiiii Iitlilliii iiialiiiii iilliiiiii
11111 111111111111111111111111 1111111111 1111II1II1 1111111111 1111111111
11111 111111111111111111111111 1111111111 1111111111 1111111111 1111111111
----- -----------------------­ ---------­ ---------­ ---------­ ---------­
11111 listed 1111111111 1111111111 1111111111 1111111111

=I Page 11111]=

FILES= 48 SecFILE= FOUND= 21 CurAN= • INPUT

-== V-DEVELOPER INTERFACE ==­

The third priority of a 4GL must be the interface

between the application developer and the 4GL itself. The

discussion in this chapter involves the communication

between the 4GL and the appl ication developer in terms of

parameters which define I/O screens, output report formats,

and the database itself <records and fields>. The major

time spent by the appl ication developer shoul d now be in

the area of the database anal ysi sand desi gn. Once the

design is establ ished, the installation of the parameters

involves the following steps:

1 - Parameter tables define the base appl ication
for
A - the file data structure
B - the entry screens
C - the output or report formats

2 - Specific, non-standard code is added using
A - the 4GL RmacroR language described later
B - the Turbo Pascal language
C - in 1 i ne and ex terna1 code allowed through

Turbo Pasca 1 •

In phase 1, the implementation of the parameter tables is

through tables set up in standard text files. Phase 2 uses

the 4GL itself to create these interface definition files.

The structure and content is the same wi th each method.

The phase 2 method allows for greater security and speed in

reading the files and initializing the file definitions

internally within the program.

v Develoger Interface --- .1!9 42

I n i ti ali za t i on The application developer must

provide parameters for initialization of the system. These

include

1 - the location of the data files
2 - The computer type (PC/XT/AT)
3 - video mode
4 - the filler character for entry areas
5 - the client/end-user name
6 - the program name
7 - the logo screen with copyright and date
8 - the option to have the click sound for keys
9 - a table of the main menu selections and

their related files

The menu title is used in the main menu, and when a

selection is made, it is used in the title area of the

en try screen. The related files are automatically opened,

managed and closed during the use of that menu item.

I/O Screen Defini tions --- Screen defini tions start

wi th the definition of the window environment. This

includes

1 - The related file number
2 - The upper left corner location
3 - The lower right corner location
4 - Background color
5 - Foreground color
6 - The window frame type number
7 - The title color

v - Deyeloper Interface --- 2.9 43

Screen definitions include a table of the following data

per source field --­

1 - The source file number
2 - The en try order number (3 for 3rd f i el d

entered in the input sequence)
3 - Field location on the global screen
4 - Field number within the data file
5 - Location of the lower right corner for a

windowed field (as for a multiple line
c ommen t fie 1d)

The final step in defining a screen is the actual contents

of the work i ng or data en try area of the screen, such as

the entry screen in Figure 3. The column headings and the

data entry area (line 8 in the example) must be created.

File and Field Definitions --- The file structure of

the database is the basis of all specific data input

routines, f i 1e and record management routines, and

output/report routines. The file and record definitions

ar e c r ea t ed i n tab1e form ina t ex t f i 1e ca 1 1ed F i 1e­

Def.PAS. The file contains the following data pertaining

to a specific file --­

1 - File security code (read/write; read only)
2 - Record size
3 - Number of fields per record
4 - Set of indices indexing the defined file
5 - The major index for the file

v - DeveloQer Interface --- --- pg 44

It must be remembered that the 4GL does reserve menu 8 and

file 8 for the code library described earlier.

File-Def.PAS also contains a table of the following

data pertaining to specific fields within a file --­

1 - Field data type
2 - Field name (used in the search menu)
3 - Field-level input prompt
4 - An upper case flag for string data (yes/no)
5 - Field length internally within the record
6 - Field offset internally within the record
7 - Field minimum and maximum acceptable values
8 - Character set possible for character data

The final table included in File-Def.PAS is another

table containing the definition of the indexing system --­

1 - The source file for the index data
2 - The total number of fields used in the key
3 - The set of ordered fields to create the key
4 - The key size in bytes
5 - A duplicate key flag (yes/no)

Output/Report Def i n i ti ons Output formats for

reports use the file, field, and index definitions entered

as parameters by the appl ication developer to create the

pr oper data forma t to pass to the repor t rou tine. The

report formats are contained in a file called Rep-Def.PAS.

It is initialized with a table of --­

1 - Report name
2 - Related menu selection number
3 - Report number

v - Develo2er Interface --- 2.9. 45

The initialization table i s f 0 1 lowed by the report

formats. A format is initialized with -- ­

1 - The report menu number

2 - The report number

3 - Page length of the report/document

4 - Body length of the report/document

5 - The number of records per group

6 - The line spacing between groups

Items 5 and 6 allow, for example, for the grouping of data

in sets of 5 lines and then double spacing between them for

readability.

The actual body of the report is created in the

following manner by the appl ication developer. Figure 12

gives an example of an accounting report format. The first

charac ter per format 1 i ne descr i bes the use of the 1 i ne.

The codes are

T - Title line (No data input into this line)
D - Divider line (No data input)
C - Column heading (No data input)
1 - Primary file data line
F - Footer line (fields are totals or counters)
P - Page number line

The # symbol represents the location of a field within the

report line.

v - DeveloQer Interface --- e..2 46

Figure 12: Sample Report Format:

ACCOIHT BALmCES - 4th QIWlTER =[,1
T""""]=D====================
C Acct. Account NaIIe October Nov.uer DecBlber Quarter Bal
C ----- ------------------------ -------.-- -------.-- -------.-- -------.-­
1 "". ••••••••••••••••,....... ••••, ••••, ••, •••11.. •••••••••• """.,.1
F
F

, ••11 listed ,.",."., ."""", "",11."
F
P =[Page 11111]=
l1li Source Data
• Line Source Num
• Num FileSub Flds Source Field Array·---- ------- ---- .- -- -- -- -- -- -- -- -- -- -- -- -­
} 5 1 6 2 3 15 16 17 21

} 7 1 4 8151617

The lower source data part of the table above defines the

field content of each input area for the fifth and seventh

lines in the format. The example defines the primary file

as the source for the fiel ds 1 isted in the source fiel d

array. The fifth line, for example, has 6 fields which are

numbered 2, 3, 15, 16, 17, and 21 i'nput into the format.

This works much 1 ike the FORM command in Turbo Pascal 01"

like the PRINT USING in BASI C. Fi el d number 9, the fi rst

source field on the seventh line represents the record

coun tat the bot tom of each page of the repor t • If the

page numbering option is selected at the time of the

repor t , then the page number wi 11 be pr i n ted usi ng the

format line preceded by the HP H•

v - Devel02er Interface --- 2.9. 47

Spec i f i c Code --- A standard 1ogi c for I PO (i npu t ,

processing, output) is embedded into the system, however it

is impossibl e to foresee all uses for a program (as the

many versions on the market prove). Therefore, the use of

unprotec ted stubbed procedures wi thi n the 4GL system allow

for the application developer to further customize the

final application. Turbo Pascal commands, inline code,

external code, and internal 4GL ·macros· are available for

the application developer to complete the specific code.

The following chapter describes the ·macro· language in

more detail and lists the major ·macro· library procedures

and functions.

Th i s sp ec i f iccode sh ou 1d be the on 1y par t of the

final appl ication that would possibly require maintenance,

thus greatl y reducing the cost in time and manpower for

maintaining each application.

--=== VI CODE DESIGN ===-­

This chapter concentrates upon the design and

organization of the actual 4GL code modules. A more

detailed level of design requires a data structure, an

organization of the code files, and system diagrams.

4GL Data Structure --- The internal data structure of

the 4GL must be well designed in order to be parameter-

driven, compact enough for PCs, and as unfettered with

limitations as possible. The major structures designed

within the system are --­

1 - The use of the B-tree indexing structure
2 - The use of pointers and linked lists
3 - The direct or absolute addressing of data
4 - The allowance for subscripted arrays of

poi n t er s torec or ds f or men us, f i 1es,
fields, indices, and buffers

Dynamically created definition records are used to contain

all current working data needed for the current menu item

selected.

Organization of Code Files --- Due to the fact that

the Turbo Pascal version 3 edi tor can onl y handl e 64K of

code per source code f i 1e and for organ i za t i on purposes,

the coding organization of the program includes the

following separate protected code files. Li sted wi th the

VI - Code Design 2.9 49

file names are the contents of each.

Type-Def.Pas - all type declarations and a
minimum of global variables

Library .Pas - a universal supporting library
con tai n i ng i ndependen t modu 1es
used by the entire 4GL program

FileMang.Pas - code for index keys

file management

Pointers.Pas - pointer management including
queues, double linked lists,
trees, and buffers

Support .Pas - search menu
print search data window
get report option data
report selection module
data input module
record management related to

data en try
Controls.Pas - the 3 major controling modules

which call the supporting
modules in Support above

EnterRecord
FindData
PrintReport

Menu-Sys.Pas - menu system
Init-Fin.Pas - initialization and finalization

modules

Also included are two application-specific files accessible

to the application developer. These are the files that

contain the stubbed interface modules for the developer.

They are

Speciall.Pas - UpDateAcct for accounting modules
any data entry specific tests

Specia12.Pas - any tests required for deletions
specific report tests

VI - Code Desi~n --- R9. 50

SYstem Diagrams --- The diagrams that follow present

the high-level logic and design in a form simi lar to a

Warnier-Orr diagram. Figure 13 contains the most general

logic of the program. Figures 14 and 15 continue with more

detail for the Record Menu Keys section in the lower right

corner of Figure 13.

r-
ii !­
ilil
11'1;

VI - Code Design .Q.9 51

Figure 13: System Structure Diagram -- ­

rStt screen
I Get data drive ~raleter (Mhere data Mill bt located)
I Initialize 5 global variables and flags

I Initialize global ~ointers for buffers, files, indices, menus
Read defaults and file definitions

I (currtntly in sequential data file)
Initial- ~ Introduction Screen
ization I Collect Record Definitions

I Retain origi~l video modej set neM default video lode
I Re9uest ilitdiate update yes/nol Inltalize linUS, file definitions, buffers, and printer codes

r

IClear ring buffer pointers
Re-initiaTize 5 global flags

I Close open files to update disk directorr
I Dispose of previous screen definition pOInters

Htnu --4 Hain IUIlU scrnn
I Input neM ltAU selection

I ~en neM fi Ie set
Create neM entry scrttn and saves current work windows

L

r
I Initialize menu variables and pointers

I

Control~ Initialize search record

Loop I r

II I Initialize quit flag
I I r I
I I I Read Only: HtftujFindlDataiClearjReportjPgUpjPgDn
I I ClIIIIc1ndLi ne-----! •
I I I ReadAlrite:HtftulFindlDataiClearjReportjPgUpjPgDnj
I I I AddIUpdate
I ClIIIIc1nd Loop----! L
L I Tests for mpty filH and buffers

I rPa9fYP Key (get prev record data; print fields) I'
l Case key of ---f •

I Pa~ Key (get next record data; print fields)
I • II

I
Alt PagtUp Keys (print prev sub pg Mithin record) I

I'

IAlt ~agtDn Keys (print next sub pg Mithin record)

J
\I •

I r tI IUpda1e (call II EnterRecord (lUI» "
/ 1­I Add. (call II EnterRecord (/A » ~

IRecord Report (ca II II PrintReport>
Menu Key •

I Clear search buffer

III F'nd data
L

r

I Window Mhole screen

Finali- -4 Clear screen
zation I Video set to original video aode

I Be sure all pointers are nil and files closed
L

e represents "exclusive or" or XOR logic
II continued in more detail on follOMing pages

VI - Code Design 2.9 52

Figure 14: System Structure Diagram (continued)

r
r I Cl ear r,cord buHrr
I IF add --f Print ,ntry scrttll

Ellt,r I I Print n~ r,cord nUlbrr
R'cord --I L

Initializ, r,cord variabl's
r

. I SIt currtnt ,ntry ii'ld\ location, ii.ld ltngth and oiis.t
I S,t input window ii netOfd ior largr t,xt ii'lds

Entry --I
I rlocat, cursor

ISav, rntry ii'ld screen
· Initializ' ii'ld variablts

loop I Fi'ld looP"! Print i.tdiat. input prlllpt
· I Input routift. according to typ. until grt valid an~rr

I PutDatalntoRecord H no qui t flag
I 60to n.xt tntry ii.ld
L

rFI8 Sav, (H PostOK i,. H corrKt data thtn SavtData)

I F9 Archiv, (not currtntly install'd)
Cas, oi I
Functio~ F7 Del,t, (ii dll.tllbl, thtn ask again; print n'xt r,cord)
K,y I

I F2 Codts pop-on window
I
I Ent'rl1ab =go to n.lt ii.ld in rKord

· I et t ShiH Tab = go to prtv ii.ld in record
DispoH oi ,ntry r,cord buH,r

r
I Clear rtport iomat buH'r
I Print install'd r,port iONlats
I Gtt report data
I r
I I Search crit'ria in output (ytslno)
I I Pag, numb,rs desired (y,51no)j ii y,s, thtn ,nt,r starting pag' nUlb,r
I SIt ~ PauH b,tw,n pagrs (y,51no)

printR,port1 ~ Ch,ck print,r .,ssag'

ICh,ck paOt l,ngth
Increm,nf prinf out nUlbrr
Gtt data r,cord

I r
I I Print proprr layout iOl'llat

R'cord --f Print r,cord----! Print record totals H applicabl,
loop I I Print spicing bttwtn rKords ii applicabl,

I L
I l1ov' to n,xt search buHrr pointrr
L

Ch,ck pagr l,ngth ior iOMlietd
Dispos, oi report ioraat buiirr and total buii,rs
Rtplac, standard tntry screen
6,t data ircn last acc,sstd search buHrr nodt
Print data r,cord into ,ntry screen

VI - Code Design 2.9 53

Figure 15: System Structure Diagram (continued) -- ­

r Clear search bufftr
I r

I I Lists all fitlds availablt in rtcord for search

I I Input loop of chostn Stt of tlBltnts for tht search

I I r

I I I String/Char (begin or ~ithin starch)
I I I Byttllntegtl'/Real (.iniIUII" IIaxiltllll)

ad ~ xxListtttnu-l Input loop of search lili tations--l Oatt (.ini... " IIaXillll)
ILL

I r

I I 6tt search indtx rtquirtd for starch crittria

I I Find first rtcord nUllbtr in search

, FindData--l Search loop - adds data that INts cri ttria to search bufftr

I I Prints first rtcord found or Itssa9t of lNONE F0UND1

L L

Over 1ay Struc ture --- Due to the 1 imi ta t i on of Turbo

Pascal, version 3, the management of overlays is necessary

in phase 1. Overlays were determined to be more efficient

in this project than chaining, due to the code design. It

is also possible for the application developer to create a

batch fi 1e which automaticall y loads all compi 1ed overlay

modules into RAM disk, therefore nearly giving the speed of

an EXE program. Four overlay files are used in this

projec t .

Overlay Design Methodology --- The rules for using

over 1ays can become qu i te i nvol ved when matched wi th the

logic of a program. A single overlay file can not contain

modules which call any module within the same overlay code

VI - Code Design 2.9 54

file, including itself, because they can not exist in

memory concurrently. For memory eff i c i ency, the modu 1es

should be of simi 1ar si ze and eac h over 1ay f i 1e sh ou 1d

contain as many individual modules as possible. The size

of the largest module within an overlay code file is

reserved in the mai n program memory for swapp i ng in the

called overlay modules. To retain speed, two or more

overlay modules should not exist in a calling loop to

preven t con t i nuous tradi ng of the modu 1es into the memory

overlay area for each loop.

One way to create an overlay system is to create a

columnar table showing the calls or interfaces between only

overlayed modules. Global modules are not considered,

except for the fact that they must be declared before they

are called. The major controlling modules are singled

out. In this case, that includes the main module which

calls Initialization, Menu, and Finalization. The first

and last are ignored since they are only called once at the

begi nn i ng and the end of the program and therefore can be

located in any of the overlay files conveniently. The

con trol loop 1ogi cis then the nex t area to consi der. The

con trol loop call s En terRecord, Pr i n tRepor t, and Fi ndDa ta

which are the three major operations of the entire program.

VI - Code Design 2.9 55

A column is then created for each overlay file in the

design and each column contains the names of the modules in

it. To make it easi er to desi gn over 1ays, the sof tware

engineer shoul d use color coding wi th high-l ighter pens.

For example, use green to high-light the modules involved

in the input of data into the program, ie. those used by

EnterRecord. One might use pink to mark all modules

invol ved in the output of data from the program, ie. those

used by PrintReport. Yellow could be used to mark all

modul es invol ved in searches, ie. those used by FindData.

Any other modules might be marked with blue. The next step

is to draw color-coded lines from one module to another to

show what modu 1e call s another. To comp 1ete the process,

each column must be checked to find the dominant module, in

other words, the one that will be in memory the most. The

dominant module should be marked, perhaps with red. There

may be one dominant module in each column for EnterReport,

one for Fi ndDa ta, and one for Pr i n tRepor t • However, there

shou 1d not be more than one per each of the three maj or

controlling modules. If there is any problem in deciding

between several modules, then perhaps a redesign should be

considered.

VI - Code Design --- 2.9. 56

By looking for the dominant module in each overlay

file, the speed factor can also be considered. An overlay

may be more efficient if it is broken down into more

overlays if very many of its modules are called frequently

or are con tai ned in loops that conf 1 i c to I n the diagram

that follows, the * indicates the dominant module.

Ovt/'lay II Out/' lay 12 Ovt/'lay 13 Out/'laY 14

HanageFileSet----J

CodeWindCM
IlnputData

i

HenulEntryOK ,
HenuIEntryOl<~}

Henu2EntryOK J

I

OtleteOK

IEntryOK

I
I
I
I
I
I
II }

}

EnterRecord

Henu

HenulPostOl<
HtnulPostOK
Henu2PostOl<

,
~}

J

PostOK ---­
I
J

f1enu8ScrDtf ,
HenulScrDef ~} CreattEntryScr"" -} f1enu
Htnu2ScrDef J

Pointer library -,
Key library I
xxlistHenu I
PrintSearchData I } FindData
SetUp I
6etReportData I
ReportSelection J

--=== VI I THE LIBRARY ===-­

The master support facility for the modules contained

in the system diagram is the protected code 1 ibrary of

un i versa 11 y used procedures and func t ions wh i ch create a

-pseudo language- or -macro language- from which

everything else is based. Within this chapter is a list

of the major library modules.

--- External Call Library --­

PROCEDURE FrameWin (UL,UR,LL,LR,Hor,Ver : Char);
FrameWi n creates a frame around the curren t wi ndow
using the given characters passed into it.

PROCEDURE GetScrn (X,Y,NumChars: Integer;
VAR ChArray);

ChArray is an untyped variable used to pass in a
variable sized array of pixel data. GetScrn gets the
pixel data from the screen star t i ng at posi t i on X,Y
which are global coordinates.

PROCEDURE PutScrn (X,Y,NumChars: Integer;
VAR ChAr ray);

ChAr ray is an untyped variable used to pass in a
var i ng si zed array of pixel data. Pu tScrn pu ts the
pixel data onto the screen starting at posi tion X,Y
which are global coordinates.

FUNCTION GetVideOMode : Integer;
GetVi deoHode retr i eves the curren t video mode from
DOS.

PROCEDURE GotoXYAbs (X,Y: Integer);
GotoXYAbs goes to the global coordinate posi tion of
X,Y regardless of the current window.

VII - The LibrQr~ 2.Q. 58

PROCEDURE InitVideo (Mode: Integer);
I n i tV ideo i nit i ali z es the video mode to Mode wh i c h
can be 8-7. Standard settings are: 7 for 88x25 text
and 3 for 88x25 colo~ text.

PROCEDURE SetCu~sorSize (StartLine,EndLine:
This procedure sets the cursor size
Locate statement.

Integer);
1 ike the BASIC

FUNCTION WhereXAbs: Integer;
WhereXAbs returns the
location of the cursor.

current global screen column

FUNCTION WhereYAbs: Integer;
WhereYAbs returns the current global screen row
location of the cursor.

PROCEDURE WriteSt (St: Str255);
WriteSt is a fast screen access equivalent to Write.

PROCEDURE WriteStLn (St: Str255);
This is a fast screen access equivalent to WriteLn.

--- Window Handling Library --­

PROCEDURE AddWindow (WinNum : Integer;
WTitle : Str88);

AddWindow saves the current window contents and
current cursor position in a buffer. It can create a
frame around the new wi ndow and then wi ndow i nsi de
the frame. It 1oca tes the cursor at 1,1 in the new
wi ndow and then sets wi ndow colors and clears the
wi ndow screen. Wi nNum is the number of an array of
window definitions also set up as initialization
parameters by the programmer.

PROCEDURE RemoveWindow (NumToRemove: Integer);
RemoveWindow removes a given number of layers of
windows, resets the final wi ndow colors, and
relocates the cursor to the final wi ndow'" s last
cursor position.

--- 2.9 59VI I The Librar~

--- Sound Library --­

PROCEDURE Beep;
Beep merely beeps to get the operator's attention.

PROCEDURE Click;
Click creates a click sound and is called only by
InKey below for each key pressed.

--- String Handling Library

FUNCTION UpCaseStr (S : Str255): Str255;
UpCaseStr changes string S to all upper case using
in1ine code.

FUNCTION StrL (Len : Integer;
Character : Char) : Str255;

StrL returns a str i ng of 1ength Len fill ed wi th the
given Character.

FUNCTION De1FrontSpc (TLine : Str255) : Str255;
Del FrontSpc returns a string wi th all front spaces
del eted and is used for strings to be converted to
numer i c data because spaces wi 11 create a run-t ime
error.

FUNCTION LSet (Len : Integer;
Phrase : Str255) : Str255;

LSet left justifies Phrase into a field of length Len

FUNCTION Center (Len : Integer;
Phrase : Str255) : Str255;

Center centers Phrase in a string of length Len.

--- Screen Handling Library

PROCEDURE StatusLine (Which : Char;
Num : Integer;
Message: Str255);

StatusLine handles all reserved message areas and
color coding. Any rearrangement of the screen would
be done here.

VII - The Librar~	 J!.9. 69

PROCEDURE ErrMessage (VAR err : Boolean;
Message: Str255);

ErrMessage calls Beep, calls StatusLine
("2" ,9,Message+" - KEY TO CCl'rrINUE), calls InKey to
create a pause and allow for an Esc, and returns the
previous contents of line 2.

PROCEDURE ManualWindow;
This procedure is called any time an Fl is pressed.
It di sp 1ays the manual ina pop-on wi ndow and allows
paging through the on-line manual.

PROCEDURE CommandLine (VAR Command: Char;
CSet : CharSet;
Message: Str169);

ComrnandLi ne call s Col orCodeLi ne to di sp 1ay a color­
coded commandline message on line 24. It then calls
CharInput to input a char from CSet and sends Command
character back to be used in a case to determine the
next mode of operation.

--- Input Library -- ­

PROCEDURE InKey (VAR Special : Boolean;
VAR Charl, Char2 : Char);

InKey loops unti 1 a key is pressed. If the cl ick
flag is true then it also calls click when a key is
pressed and returns the key that was pressed as 2
characters. The Special boolean is a flag that is
true if the key pressed i So a 2-code key. I nKey is
implemented with an MsDos call.

PROCEDURE ReadStr (VAR	 TStr : str255;
LMax : Integer;
which : Char;
SpecialWindow: Boolean;

VAR BackX, BackY : Integer);
Absolutely all user input is entered through ReadStr
in str i ng form. ReadStr 1oca tes the cursor; tests
for actual character input and special keys and key
combinations.

VII - The Librar~	 2.9. 61

PROCEDURE Intlnput (Ins,TabOver: Integer;
VAR IntNum : Integer;

Bot, Top : Real;
UnderL, NextLine: Integer;
Promp t : Str255);

Ins is 8 for a H no insert- option; any other number
tells the program to insert a line at the input
location. TabOver is the column position of the
promp t message. In tNum is the integer to be i npu t;
if an original value is passed in, then that value is
displayed in the input area. Bot and Top are minimum
and maximum values allowed. UnderL is the length of
the underl ine prompt, in other words, the maximum
length of the input area or maximum number of
characters allowed to be entered. NextLine is 8 to
flag for no 1 inefeed/carriage return and any other
number sends the cursor to the nex t 1 i ne. Promp tis
an input message preceding the input area.

The	 following are similar and related to Intlnput:

PROCEDURE Bytelnput (Ins,TabOver ·· Integer;
VAR	 Bite ·· Byte;

Bot,Top ·· Real;
UnderL, NextLine: Integer;
Prompt : Str255);

PROCEDURE Linelnput (Ins,TabOver ·· Integer;
VAR	 TLine ·· Str255;

Bot,Top ·· Real;
UnderL, NextLine: Integer;
Prompt ·· Str255);

PROCEDURE Datelnput (Ins,TabOver · Integer;· VAR	 TDate ·· Byte3;
Bot,Top ·· Real;
UnderL, NextLine: Integer;
Prompt · Str255) ;

PROCEDURE Charlnput (Ins,TabOver ··· Integer;
VAR	 TChar ·· Char;

Bot,Top ·· Real;
UnderL, NextLine: Integer;
Prompt ·· Str255);

PROCEDURE Real Input (Ins,TabOver ·· Integer;
VAR	 TReal ·· Real;

Bot, Top ·· Real;
UnderL, NextLine: Integer;
Prompt ·· Str255);

.e.g 62VII	 The Library

--- Output Library -- ­

PROCEDURE PrtStat;
PrtStat checks to see if the printer is turned on and
se1ec tis on. I f e i t her i s of f then i t g i ves an
error message and waits for the operator to input to
continue or to exit.

PROCEDURE PrtPrint <Prt : Integer;
Format: Str255);

Prt is	 1 for screen only output,

2 for printer only output, and

3 for both outputs.

If Prt is 2 or 3 then PrtStat is called.

Format is the message to be output with no linefeed.

PROCEDURE PrtPrintLn <Prt : Integer;
Format: Str255);

This is identical to PrtPrint with a linefeed added.

PROCEDURE FormFeed;
This sends a formfeed to the printer if Prt is > 1.

PROCEDURE ColorCodeLine < Prt : Integer;
L : Str255;
LineFeed: Boolean;

VAR lk Integer);
Prt is	 1 for screen output only

2 for printer output only

3 for both outputs

L can	 contain the characters ,&, or ,~, or ",
,&, sets bold attributes for printer output and

sets highlighting for screen output.

,-, sets underline on for printer output and

sets low lighting for screen output.

", turns off all attributes.

LineFeed is true to produce a linefeed.
lk returns an incremented line count if output is to

the printer and Prt > 1.

VII - The Library --- 2.9 63

--- File Handling Library --­

FUNCTION FileLen (DF : Datafile) : Integer;
Fi 1eLen returns the number of records con tai ned in
file DF. It includes the number of records used and
number deleted and ready for reuse.

FUNCTION UsedRecs (DatF : DataFile) : Integer;
UsedRecs returns the number of used records with
current data in the file DatF.

PROCEDURE Oplnterrupt;
This procedure checks for an operator interrupt using
the END key. It call s CommandLi ne to ask H Do you
wish to ABORT? (Y/N)H. This is used during reports.

FUNCTION IndexKey (IndNum : Integer;
RN : Integer;
VR : VariantRec);

IndexKey creates the index key for index number
IndNum using the record number RN and the data
record contained in VR, a variant record used to
pass all data records.

PROCEDURE NextKey (VAR IndFile IndexFile;
VAR RN Integer;
VAR Key);

Nex tKey goes to the index f i 1e I ndFi 1e to get the
record number, RN, of the nex t record in the index
and returns the untyped Key for the next record.

PROCEDURE PrevKey (VAR IndFile :
VAR RN :
VAR Key);

This is identical to Nex
previous record.

IndexFile;
Integer;

tKey above, but gets the

PROCEDURE ClearKey (VAR IndFile
ClearKey sets the index
empty node of the index.

: IndexFile);
pointer to the beginning

VII The Librar~ --- 9.9 64

PROCEDURE FindKey (VAR IndFile IndexFile;
VARRN : Integer;
VAR Key);

Fi ndKey must be preceded by a Cl earKey command for
IndFile. It searches for the given index Key in
IndFi leo It finds the first occurance of an exact
match.

PROCEDURE SearchKey (VAR IndFile IndexFile;
VARRN Integer;
VAR Key);

SearchKey must be preceded by a ClearKey command for
I ndFi 1e. I t searches for gi ven index Key in
IndFi 1e. For exampl e, if IndFi 1e has keys of
CATALYST, CATAMOUNT, etc. and Key is CAT, then the RN
associated with CATALYST is returned and Key :=
CATALYST. It finds the first occurance of the first
par t of a key. I f none is found then returns a
global flag OK as false;

PROCEDURE ManageFileSet (DoWhat : Char;
FSet : FileSetType);

DoWhat is either '0' for open or 'c' to close files.
FSet is the set of numbers of the files to be
operated upon. Indices are automatically updated and
the existence of fi les and indices are tested; if a
f i 1e or index does not ex i st, the opera tor is asked
if the file should be created.

--- Miscellaneous Modules --­

FUNCTION Yes (Ins, TabOver, NextLine : Integer;
Prompt : Str255) : Boolean;

Yes call s Charlnput wi th character set of ['Y', 'N']
and returns a boolean value of true if the character
is 'Y'.

PROCEDURE ClrLine;
Cl rLi ne clears the curren t 1 i ne where the cursor is
located.

PROCEDURE IntDate (VAR IDate : Byte3);
IndDate returns the system date in three bytes of
information (year/month/day).

VI I The Librar}:: --- P..9. 65

PROCEDURE IntTime (VAR ITime : Byte3);
IntTime returns the system time in three bytes.

FUNCTI(Jo..I Date : Str8;
Date eturns
'00/00/00'

the system indata st ing form

FUNCTI(Jo..I Time : Str8;
Time returns
'00:00:00'

the system time in st ing form

All other procedures and func t ions are sel f-managi ng and

wi 11 not be call ed by the appl ication programmer. They

are the kernel of the system and are call ed on 1y by the

the program itself.

--=== VI I I TESTING ===-­

Testing of the 4GL must be extensive because it is the

basis of many applications. To prevent compounding errors,

separate testing stages are as follows:

Stage 1 --- Fi 1e managemen tis tested as a separate

module to guarantee that all data is saved, retrieved, and

deleted properly.

Stage 2 --- The menuing system and screen handling are

tested with stubbed calls to the file management routines.

This includes testing the windowing system. I t must be

verifi ed that all screens retain their consistency

according to the design described earlier.

Stage 3 Input routines are tested separately

before integrating them into the Data Entry system. The

major features to be tested include --­

1 - the error handling for invalid entry of data --­
alphanumeric data entered into numeric fields
numeric data outside of the minimum and maximum

limits
characters not allowed in the field

2 - the handl ing of the decimal point in real data
fields

3 - the cursor location, especially in string input
using both insert and over type modes

4 - the use and clarity of error messages

VIII - Testing .12.9 67

5 - the p~ope~ ~etu~n of the input to the calling
~outine.

6 - the detection of special key combinations

The fi~st 3 stages can be tested simultaneously befo~e

me~ging them togethe~.

Stage 4 --- Testing the me~ged modules with an actual

application while at temp t i ng addi tions, updates, and

del et ions of eve~y type must be comp 1eted befo~e test i ng

the ~epo~t gene~ation modules.

Stage 5 Repo~t modules a~e now tested with

standa~d sc~een layouts and then with va~ious columna~

layouts. Reco~d coun ts, col umna~ totals, and pagi ng a~e

tested extensively.

Stage 6 The final testing is a ~elational

accounting application me~ged with invento~y, pu~chase

o~de~s, and point of sale invoicing.

--=== IX SUMMARY ===-­

The anal ysi sand desi gn p esen ted he.... e is now eady

fo anothe.... mo.... e detailed stage of design and then coding.

The 4GL is •••• not a substitute fo good analysis,

6design and p oject management.· The majo coding task has

been completed fo the application develope.... , howeve.... a

tho ough analysis and design of the database iteself is the

top p io.... ity befo.... e using the 4GL. It will be only as good

as the database design itself. The 4GL has simplified the

majo.... functions that have now been automated. The wheel

has been invented and the si x spokes a e the foll owi ng

management outines

1 - Menus and commandlines

2 - Sc een management

3 - Data ent y management

4 - Data sea ch management

5 - Repo.... t gene....ation

6 - File and eco.... d management

The 4GL now contains f om 88 - 9~/. of the code needed fo a

.... elational database appl ication. Wi th the modu 1a.... desi gn

p.... esented he.... ein, the application can be expanded to

IX - Summar-i' --- E..9. 69

include mor-e functions by (1) specific code added by the

application developer-, or- (2) by additional modules or

expanded cur-r-ent modules by the 4GL developer. These can

both be done wi thout disturbing the structure of the data

files themselves. Therefore, the primary goal of

maintenance efficiency has been maintained. The secondary

goal of consistent user interface has also been maintained

wi th the above management routines. Any addi tional

managemen t capabi 1 it i es wi 11 sti 11 be implemented through

the ex i st i ng struc ture for screen management, data entry

management, etc.

The accep tance of 4GLs has grown rap i dl y wi th i n the

past few years. It is, however, only the beginning. Even

mor-e advancements must be developed to keep up wi th the

never--endi ng spec ia1 i zed needs of both today and tomorrow.

Database management has led the way, but a similar approach

is also needed for real-time systems and many other areas.

The quest for efficient, well-engineered methods still goes

on. There has never been a program that is totally

finished. There is always another need that it might

fulfill, thus one revision after another. Herei n is on 1y

the beginning of a new 4GL adventure.

--=== BIBLIOGRAPHY ===-­

1Turbo GhostWriter: Taking the Time Out of Turbo
Pascal, This Month's MENU, Vol. 1, No.2, August 1987, pp.
4.

2paul Winsberg, CASE: Getting the Big Picture,
Database Programming & Design, March, 1988, pp. 54.

3Jan Snyders, The CASE of the Artful Dodgers,
Infosystems, March, 1988, pp. 28.

4The Reality of the Promise, InfoSystems, November,
1986, pp. 32.

5 Kent Lawson, Thinking About 4GLs, Information Center,
January 1988, pp. 28.

6 brochures, ASCII (Automated Software Concepts
International, Inc.), received January 1988.

7pascal
Comdex Show
128.

amounts
5 , No.6,

GhostWriter
Dai 1y, Vol.

to
N

'instant
ovember 2, 1987, pp.

software',

8 James
Infosystems,

R. Hughes, Moving Out
October 1986, pp. 76.

of the Middle Ages,

