
AN ABSTRACT OF THE THESIS OF

John D~nnis Albers

in Mathematics presented on July 27,1988

Title: HIDDEN LINE REMOVAL ~- MORE THAN MEETS THE EYE

~~~Abstract approved: __ 

The purpose of this thesis is to investigate a method 

in which three-dimensional objects can be geometrically 

modeled and realistically displayed on a two-dimensional 

view screen. When a computer generates an image, without 

special programming instructions, all parts of the object 

including the hidden parts are displayed. The 

identification and removal of the hidden parts of an object 

plays a major role in the production of realistic images. 

Along with a development of the basic concepts involved 

with three-dimensional graphics, this thesis presents three 

hidden line removal algorithms. These algorithms will 

correctly remove all hidden lines from any object that can 

be modeled as a polyhedron. 



HIDDEN LINE REMOVAL - MORE THAN MEETS THE EYE 

A Thesis 

Presented to 

the Division of Mathematics 

EMPORIA STATE UNIVERSITY 

In Partial Fulfillment 

of the Requirements for the Degree 

Master of Science 

By
 

John Dennis Albers
 

July 1988
 



9~Md~~ 
Approved by the Graduate Council 

~A~J£
Approved by the Major Department 

46~1058 ..... L:': (, '.gn 



ACKNOWLEDGEMENTS 

I would like to thank Debra for her support while I was 
preparing this thesis. 



TABLE OF CONTENTS
 

Chapter Page 

I. INTRODUCTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
 

A Brief History ....................•... 1
 
Applications 3
 
Overview Of The Thesis ...•......•...... 3
 

II. THREE-DIMENSIONAL REPRESENTATIONS 5
 

Object Representation Tables 6
 
Data Verification ••...............•.... 8
 

III. BASICS OF THREE-DIMENSIONAL GRAPHICS ..... 10
 

The Viewpoint 10
 
The Eye Coordinate System ....•.......•. 11
 
Projection 14
 
The Viewing Parameters 18
 

IV. HIDDEN LINE REMOVAL 19
 

Algorithm Number One (Back Face 
Removal) 19
 

Algorithm Number Two (Clipping Edges
 
Against Surfaces) 23
 

Algorithm Number Three 35
 
Line Processing 38
 

V. CONCLUSION. . . . • • . . . . . . . . . . . . . . . . . • . . . . . .. 44
 

Summary Of The Thesis 44
 
Conclusions 45
 
Recomendations For Future StUdy 47
 

BIBLIOGRAPHY 48
 

APPENDIX A 49
 
APPENDIX B 51
 
APPENDIX C 54
 
APPENDIX D 56
 
APPENDIX E 61
 
APPENDIX F 69
 
APPENDIX G 79
 
APPENDIX H 89
 

http:��.................�
http:�.......�
http:�......�


LIST OF TABLES
 

Table	 Page 

I. Surface Table	 7
 

II. Vertex Table	 7
 

III. Edge Table	 7
 

IV. Surface Orientation Table	 21
 

V. Edge Table with Erasure Information	 38
 

VI. Edge Two (Zero Erasures) ...................• 41
 

VII. Edge Two (One Erasure)	 41
 

VIII. Edge Two (Two Disjoint Erasures)	 42
 

IX.	 Edge Two (Three Overlapping Erasures
 
Resolved Into Two Disjoint Erasures) 42
 



LIST OF FIGURES
 

Figure 

I. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

ll. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

Page
 

Regular Tetrahedron ....•.................... 7
 

The Eye Coordinate Axes .....••.............. 12
 

Translate Origin to (Theta,Phi,Rho) 12
 

Rotate (90-Theta) clockwise about Z' Axes 12
 

Ratate (180-Phi) clockwise about X' Axes 12
 

Convert to Left-Hand System 12
 

The Projection of an Edge 15
 

Finding Screen Coordinates 16
 

Octahedron 22
 

Concave Polyhedron 24
 

Transparent Object 24
 

Algorithm II,
 

Algorithm II,
 

Algorithm II,
 

Algori thm II,
 

Algorithm II,
 

Algorithm II,
 

Algorithm II,
 

Case 1 27 

Case 2 28 

Case 3 29 

Case 4a 32 

Case 4b 33 

Case 4b 34 

Case 4c 36 

Point Located Interior To The Polygon 52
 

Point Located Exterior To The Polygon 53
 



LIST OF PROCEDURES AND FUNCTIONS
 

Procedure Or Function 

AddEdge 

AddErasure 

BehindPlane 

BuildEdgeTable 

CalcNormalVector 

CalcNormals 

CalcR2Intersection 

CalcR2Line 

CalcR2Vertex 

CalcR3EyeVertex 

CalcR3Plane 

CalcViewvector 

Clip 

CramersRule2x2 

Dec 

DecodeFunctionKey 

Deg 

Det2x2 

Det3x3 

DrawAxes 

DrawBorder 

DrawBox 

DrawEdge 

Drawobject 

DrawSurface 

Pages 

73,84
 

97
 

107
 

73,84
 

83
 

64
 

104
 

104
 

95
 

109
 

104
 

95
 

92
 

103
 

92
 

94
 

89
 

103
 

103
 

94
 

91
 

95
 

72,83
 

65
 

64
 



Procedure Or Function Pages 

DrawSurfaces ......... . 65
~ 

EatTestEdge 100 

EraseStats 89 

ExitProgram 90 

EyeXYZ 91 

FindEdgeNumber 98 

FindIntersectionPoints 106 

FindPreImage ........................................ 108 

FindSlope 96 

Find t 96 

GetKeySequence 94 

Inbetween 102 

Inc .................................................. 92 

InfrontPlane 107 

Initialize 66,76 

InsidePoly 105 

LoadSurface 90 

LoadVertex 89 

MarkSurfaceEdges 98 

Max 97 

Min 96 

Nothing 102 

outsideBox 106 

ProcessObject 75,87 

Processoverlap 99 



Procedure Or Function 

ProcessTestEdge 

R2Angle 

R2Diff 

R2Magnitude 

R2VectorsEqual 

R2MidPoint 

R3Diff 

R3DotProduct 

R3MidPoint 

RectangularBoundary 

RemoveErasure 

RemoveHiddenLines 

ScreenXY 

Set_Backedge_Flags 

Sgn 

ShowStats 

SortErasure 

switchlntegers 

switchReals 

UnmarkSurfaceEdges 

WrapAroundDec 

WrapAroundlnc 

ZapScreen 

Pages 

108
 

103
 

105
 

103
 

97
 

102
 

91
 

94
 

102
 

106
 

100
 

74,85
 

92
 

86
 

105
 

89
 

98
 

97
 

97
 

99
 

92
 

92
 

91
 



CHAPTER I 

INTRODUCTION 

When looking at an object, the viewer may think that 

he is seeing it in its entirety, but actually he is only 

seeing about one-half of the object. It is the opaqueness 

of the closer surfaces that prevent portions of the 

surfaces located further away from being seen. When a 

computer generates an image, no such automatic elimination 

of the hidden parts takes place. Instead all parts of the 

object, including the parts that should be hidden from 

view, are displayed. Hidden line removal refers to the 

task of identifying and removing the hidden parts of an 

object. 

A Brief History 

Towards the end of the era of the second generation 

computer, interactive computer graphics made its first 

appearance. While working on his PhD at the 

Massachusetts Institute of Technology, Ivan Sutherland 

introduced the concept of using a keyboard and a hand

held light pen for selecting, pointing, and drawing 

[4, pg. 12]. Most significantly, he developed a data 

structure based on the topology of the object rather than 

on the picture. In 1963, Sutherland introduced a 

computer program called sketchpad. People were excited 

because this program was able to display a three

dimensional object with the hidden lines removed. A 

documentary film about the techniques used in this program 



2 

was sent to nearly every computer center in the united 

states. 

General Motors was the first user of an elaborate 

graphics system developed by IBM [4, pg. 15]. The system 

was called DAC-1 (design augmented by computer). This 

system was eventually made pUblic at the 1964 Fall 

Joint Computer Conference. The DAC-1 was the birth of 

computer aided design (CAD) systems. 

The first major reasearch center for computer graphics 

was established at the University of Utah [4, pg. 15]. 

In 1972 several breakthroughs were made. Ed Catmull 

directed reasearch towards finding ways to generate 

images of curved surfaces. The solution consisted 

of dividing each surface into very small patches whose 

relationships to one another could be defined 

mathematically. Dr. James Blinn developed methods 

for effective surface modeling. starting with a 

wireframe drawing composed of lines, color and texture 

are then added to the surfaces to give them a realistic 

appearance. 

By 1984, computer graphics technology had advanced so 

much that it enabled a skilled user to match photographic 

reality [4, pg. 18]. A picture of an article could be 

so accuratly simulated on a computer that it was almost 

impossible to distinguish between the computer generated 

image and the actual photograph. By the turn of the 

century it is very probable that computer graphics 

will begin to replace conventional photographic 



3 

technology. 

Applications 

Many real world applications that involve computer 

graphics require the display of three-dimensional images of 

objects and scenes. For example, flight simulation is an 

application which requires the rapid and continous display 

of realistic images relative to the pilot and aircraft [6, 

pg. 23J. A few of the many applications requiring the 

generation of realistic images include molecular modeling, 

animation, and computer-aided design (CAD) systems [10, 

pg. 294J. Because of the continuing need and desire for 

more and more realism in computer generated images, hidden 

line removal becomes a very important aspect in the 

design of computer graphics software. 

Overview Of The Thesis 

The purpose of this thesis is to investigate a 

method in which three-dimensional objects can be 

geometrically modeled and displayed realistically on a two

dimensional graphics display screen. Chapter I is the 

introduction which introduces the idea of hidden line 

removal, gives a short account of the history of computer 

graphics, lists applications, and finally gives an overview 

of the thesis. A method for organizing and checking a 

polyhedral model's vertices, surfaces, and edges is given 

in Chapter II. In the third chapter, the processes 

involved in displaying a three-dimensional object are 

discussed. Chapter IV presents several elementary hidden 



4 

line removal algorithms. The fifth and final chapter 

includes a summary of the thesis, conclusions, and 

recommendations for future study. Following this chapter, 

is the bibliography, and then eight appendices. Appendices 

A,B, and C contain supplementary information pertaining to 

the second and third hidden line removal algorithms. 

Appendix D contains instructions for using the programs 

located on the program disk. Finally appendices E,F,G, and 

H contain the source code for each of the hidden line 

removal algorithms. 



CIIAPl'ER II 

THREE-DIMENSIONAL REPRESENTATIONS 

Any three-dimensional object can be modeled by a 

polyhedron [10, pg. 309]. Objects that have curved 

surfaces (cylinders,cones,spheres, ... ) can be partitioned 

into a number of flat polygon surfaces. If the object 

can be partitioned into an adequate number of these flat 

polygon surfaces, usually an acceptable modeling of the 

actual object can be achieved. The main components 

(vertices, edges, and polygon surfaces) of this polyhedral 

model must be organized in such a way that the computer can 

use them. 

Definition 1. A polygonal path is determined by 

a number of points, P1 ,P2 , ,P l'Pn- n called 

the vertices, given in a definite order. The 

path is the set of points on the segments P1P2 , 

P 2 P 3' ••• , Pn -1Pn [ 2, pg. 144 ]. 

Definition 2. A polygon is a polygonal path 

whose beginning and end coincide. If the 

vertices are all different and no two sides have 

a point in common (other than a vertex of two 

adjacent sides), then the polygon is called 

simple [2, pg. 145]. 

Definition 3. A polygonal cell is the set of 

points on, or interior to, a simple plane polygon 

P ,P2 , ... ,P - 1 ,P • The edges of the cell are1 n n 



6 

the sides PIP2' P2P3 ... of the polygon [2, pg. 

244]. 

Definition 4. A polyhedron is the set of points 

on a finite number of polygonal cells joined 

together in the following way: 

1.) Any two cells have either no points in 

common, exactly one vertex in common, or 

exactly one edge in common. 

2.) Every edge is on precisely two cells. 

[ 2, pg. 2 4 4 ] • 

Definition 5. A polyhedron is called convex if 

the segment joining any two points of the 

polyhedron lies either on the polyhedron or in 

its interior. A polyhedron is regular if it is 

convex and all faces are congruent regular 

polygons [2, pg. 244]. 

Object Representation Tables 

One way to organize the main components of a 

polyhedron, is to create three lists: a vertex table, an 

edge table, and a polygon surface table [6, pg. 190]. 

Tables I,ll, and III organize the components of the regular 

tetrahedron in figure 1. First of all, each polygon 

surface is defined in the polygon surface table as a list 

of edges. Second, the R3 standard coordinates for 

each vertex of the object are stored in the vertex table. 

Lastly, the edge table lists the endpoint vertices 



Surfaces Vertices Edges 

51 : E1 ' ES • E6 v1: (x1,y1•z1) E1 : (v 1,v2) 

52 : E2 ' E4 ' E6 v2: (x2 'Y2 ,z2) E2 : (v 1,v4) 

53 : E3 ' E4 • ES v3: (x3 ,Y 3 ' z3) E3 : (v 2 ·v4) 

. 54 : E1 ' E2 ' E3 v4: (x4 ,y4 ' z4 ) E4 : (v 3,v4) 
-

(v 2 ,v3)ES : 

E6 : (v 1,v3) 

7 

VI 

Table III.Table I I. 

(j) 

Fi gure 1. 

EI 

I 
I 
I 
I 
I 
I 

IE4 
I 

I~
I~ 
I 
I 

..l
".V ...... 

E5 ./ ". 3 ...... 
".'" ......

~/ (J;\' E
~_~~ g W .... ,6, ....... 

...... 
...... 

Table I. 

V2 



8 

defining each edge. 

All information about the polyhedral model can be 

derived from the polygon surface and vertex tables. 

However without the edge table, the model would have to be 

processed using the polygon surface table causing some 

edges to be processed twice. Listing the data in three 

tables provides an efficient way for the computer to access 

the major components (vertices,edges, and polygon surfaces) 

of a polyhedron. The edge table could also include 

pointers into the polygon surface table so that common 

edges between surfaces could be found more rapidly [6, pg. 

191]. 

Data Verification 

As the complexity of the polyhedral model increases, 

so does the possibility for the distortion of the model due 

to errors in the represention tables. The following five 

tests can be used to help check for the consistency 

and completeness of the data in the representation tables 

[6, pg. 192]. 

1.) Make sure that every vertex is listed as 

an endpoint for at least two edges. 

2.) Verify that every edge is part of at least 

one polygon. 

3.) Check to see that every polygonal surface 

is closed. 

4.) Verify that each polygonal surface has 



9 

at least one shared edge. 

5.)	 If the edge table contains pointers to 

the polygon surface table, make sure that 

the polygon surfaces actually share those 

common edges. 

The author also suggests an additional way to help check 

for	 the consistency of the data in the representation 

tables: 

6.)	 If the polyhedron is convex, then the 

the number of vertices: v, number of 

edges: e, and number of faces: f, must 

satisfy the Euler Descartes formula: v - e 

+ f	 = 2. 



CBAP1'ER III 

BASICS OF THREE-DIMENSIONAL GRAPHICS 

The focus of this chapter is to discuss and 

explain the process in which different views of a three

dimensional object modeled by a polyhedron can be displayed 

on a two-dimensional view screen. The process is the same 

for all polyhedra and involves projecting the edges 

onto a flat surface called the projection plane. 

Before this projection process takes place, the eye 

coordinates (coordinates relative to the viewer's eye) 

for each vertex of the polyhedron must be calculated. 

The Viewpoint 

The location of the viewer's eye relative to the 

object is commonly referred to as the viewpoint. The 

viewpoint will be identified by spherical coordinates 

(Theta,Phi,Rho). Imagine that a line is drawn from the 

origin to the viewpoint. The third parameter Rho 

represents the distance along this line. The first 

parameter Theta represents the angle that the plane formed 

by the line and the Z axis makes with the plane formed by 

the X and Z axes. The second parameter Phi represents the 

angle that the line makes with the Z axis. Increasing Rho 

will have the effect of moving the viewer farther away from 

the object, while decreasing Rho will have the opposite 

effect. The direction from which the viewer will see the 

object can easily be changed by altering the values of 

Theta and or Phi. 



11 

The Eye Coordinate system 

It will prove to be more convenient for projection and 

hidden line removal, to think of an object's vertices in 

terms of coordinates relative to the eye instead of 

coordinates relative to the standard coordinate axes. For 

this reason the eye coordinates of an object's vertices 

need to be calculated. 

The eye coordinate system, [Xe:Ye:Z ] consists ofe 

three mutually perpendicular axes intersecting at the 

viewpoint and is shown in figure 2. The eye coordinate 

e 

system is always orientated so that the positive Ze axis 

points towards the origin of the standard 

coordinate system [8, pg. 139]. The positive X e axis 

points to the viewer's right, and the positive Y axis 

points upward. Also note that the eye coordinate system 

is a left-handed system. The vertices of a polyhedral 

object can be represented by coordinates relative 

to the standard coordinate system, or by coordinates 

relative to the eye coordinate axes. 

Transfering coordinates relative to the standard axes 

system to coordinates relative to the eye coordinate system 

is accomplished by a sequence of four transformations [8, 

pg. 141]. The intermediate axes systems are each referred 

to as [X':Y':Z']. Note that for scaling and rotation a (3 

3) transformation matrix is all that is actually 

required. However to make matrix mUltiplication compatible 

between the (4 x 4) translation matrix A and the (3 x 3) 

x 



x 

-------1 
x 

l 

x,

•S a...m6~.:1 

/ 

x.,., 

x 
'9 a...m6 U 

lNIOdM31/\ 

-~--_.._-_._._---------_._~------------

Zt 

'-------------------------------



13 

tation and scaling matrices B,e, and D, an extra row and 

~column have been added.
 

1.) Translate origin to (Theta,Phi,Rho):
 

1 0 0 0 
0 1 0 0 

= I 
0 0 1 0 

-Rho -Rho -Rho 1 
cos (Theta) sin (Theta) cos (Phi) 
sin (Phi) sin (Phi) 

Refer to figure 3. 

2.)	 Rotate through (90 - Theta) clockwise about the Z' 
axis: 

sin (Theta) cos (Theta) 0 0 
B = -cos (Theta) sin (Theta) 0 0 

o 010 
o 001 

Refer to figure 4. 

3.)	 Rotate through (180 - Phi) clockwise about the X' 
axis: 

1 0 o o 
c = o -cos (Phi) -sin(Phi) o 

o sin (Phi) -cos (Phi) o 
o	 0 o 1 

Refer to figure 5. 

4.) Convert to left-hand system: 

D = 
-1
I 0 

000 
100 

o 010 
o 001 

Refer to figure 6. 



14 

e matrix product ABeD is given below: 

-sin (Theta) -cos (Theta) cos (Phi) -cos(Theta)sin(Phi) o 
cos (Theta) -sin (Theta) cos (Phi) -sin(Theta)sin(Phi) o 
o sin (Phi) -cos (Phi) o 
o o Rho 1 

If the standard coordinates (x,y,z) of a vertex are 

known, the eye coordinates of that vertex may be obtained 

through the matrix product (x,y,z,l) ABeD. Note that since 

the matrix product ABeD is a (4 x 4) matrix, a dummy forth 

coordinate must be attached. 

Projection 

Up until now all that has been accomplished is to 

convert the coordinates of the object's vertices relative 

to the standard axes system into coordinates relative to 

the eye axes system. The final step of getting a 

representation of the object that can be shown on a two-

dimensional computer screen is to actually project the 

edges of the object onto the projection plane. Referring 

to figure 7, the points on the edge AB when projected 

form the line segment A'B' on the projection plane. 

This type of projection is known as a 

perspectivity. Such a projection is popular because 

it is very similar to the way that images are 

formed by the human eye and by lenses on 

photographic film [10, pg. 295]. Perspective 

projection conveys more depth information than 

other types of projection. This is because distant 

objects will appear smaller than the nearer ones under 



15 

are 

right 

Given any 

that 

point on the 

Notice also 

13 

PROJECTI~ 
PL,4NE 

point P which could represent a 

The X and Y coordinates of P' 
e e 

triangles. 

z 

. ._-

similar 

Refer to figure 8, 

Figure 7. 

are 

point (x,y,z) relative to the eye coordinate axes, the 

projection plane. 

triangles OBF and ODE are similar. 

this type of projection. 

screen coordinates (Sx,Sy) can be calculated [8 , pg. 137]. 

Again referring to figure 8, right triangles ORA and ODC 

Therefore: 

called the screen coordinates of the point P. 

vertex on the object projects to P', a 

ill.. --"- ------ I 



'8 a...m6u 

9t 



17 

DC/OD = BAlOB and DE/OD = BF/OB. 

By sUbstitution: 

Sx'D = XelZe and SylD = YelZe. 

Solving for Sand S : x y 

Sx = D(XelZe) and Sy = D(YelZe). 

From the matrix product (x,y,z,l) ABeD: 

X = -x sin(Theta) + y cos (Theta)e 

Y = -x cos (Theta) cos (Phi) - y sin(Theta)cos(Phi) 
e +z sin (Phi) 

Z = -x cos(Theta)sin(Phi) - y sin(Theta)sin(Phi) 
e -z cos (Phi) + Rho 

Once the screen coordinates have been determined, the 

polyhedral model can be displayed on the graphics display 

device. However, the programmer should be aware of the 

coordinate system used by the particular dispay device 

he intends to use. First of all, the resolutions of the X 

and Y axes are typically not the same. If this fact is 

neglected, distorted images can occur. For example squares 

will appear as rectangles, or circles can appear as 

ellipses. To correct the problem, one of the coordinates 

of the points to be plotted is multiplied by a scaling 

factor (known as an aspect ratio) to compensate for the 

differences in the resolutions. Second, the origin is not 

located in the center, but typically is located in the 

upper left hand corner of the viewing area. Third, the Y 



18 

usually increases from top to bottom. Finally, the X 

and Y axes can only represent discrete integer quantities. 

'the Viewing Parameters 

It is worthwhile to consider how changing the 

.viewpoint parameters (Theta,Phi,Rho) and D (the distance of 

the projection plane from the viewpoint) affect the image 

generated on the graphics display device [8, pg. 146]. 

First of all by changing Theta and or Phi, views of the 

object from different angles can be generated. Second, the 

image size of the object can be controled by changing Rho 

(the distance from the viewpoint to the [X:Y:Z] origin). 

Increasing Rho will make the image appear smaller, while 

decreasing Rho will make the image appear larger. Changing 

the value of D is a second way of changing the image size 

of the object. Increasing D will enlarge the image size, 

while decreasing D will reduce the image size. 

It is necessary to have two parameters Rho, and D to 

control the image size [8, pg. 146]. Increasing Rho 

will decrease the effect of perspective, but the 

object's image size will appear smaller. To compensate 

for the smaller image size, increase the value of 

D. Decreasing Rho will increase the effects of 

perspective, but the object's image size will become 

larger. To compensate for larger image size, 

decrease the value of D. 



CIIAPl'ER. IV 

HIDDEN LIRE REMOVAL 

It is relatively easy to display a three-dimensional 

object on a two-dimensional graphics screen. However, in 

order to generate a truly realistic image, the line 

segments and surfaces which are not visible to the viewer 

must be identified and removed. Many algorithms for hidden 

line removal exist, some simple and some very 

sophisticated. This thesis will discuss three elementary 

algorithms that will correctly remove all hidden lines from 

any object that can be modeled as a polyhedron. 

Algorithm Number One (Back Face Removal) 

The following algorithm removes the hidden lines from 

an object by eliminating the back surfaces [8, pg. 156]. 

Appendix E contains a complete source listing written in 

Turbo Pascal for this algorithm. Refer to Appendix D for 

instructions on how to use the programs contained in this 

thesis. 

Assumptions 

The back face removal algorithm operates 

under the following assumptions about the object: 

1.)	 The object being processed is modeled by a 

convex polyhedron. 

2.)	 The polyhedron is constructed in such a 

way that the viewer cannot see the 

interior of the object from any viewpoint. 



20 

3.) There are no obstructions in the line of 

sight from the viewpoint to the object. 

As one looks at a convex polyhedron, the visible 

are the ones facing the viewer. This is because 

light traveling from these surfaces has an unobstructed 

path to the viewer's eyes. The other surfaces, the ones 

that are not visible, are called back surfaces. These 

back surfaces are facing away from the viewer, and the 

light from these surfaces is blocked from reaching the 

viewer's eyes by other surfaces. 

Two normal vectors can be associated with each surface 

of a polyhedron. One normal vector points outward away 

from the polyhedron; the other points inward. The outward 

normal vector will be used as the orientation vector for 

each surface, and is denoted by N. The outer normal vector 

N is given by: N = (v2-v ) x (v3-v1 ) where v 1 ,v2 , and v 31

are any three properly ordered vertices belonging to the 

surface. The proper ordering of the vertices of a surface 

is very important and will be discussed later. A second 

vector W the line of sight vector will be associated with 

each surface. This vector W is directed from a vertex on 

the surface to the viewpoint. For each surface, beta 

represents the angle between W (the line of sight vector) 

and N (the surface orientation vector). The visibility of 

a given surface is determined by the following: 



21 

1.)	 If oo <= beta <= 900 (ie. W· H > 0), the 

surface is facing the viewer and should be 

displayed. 

2.)	 If 900 <= beta <= laoo ( ie. W· H <= 0), the 

surface is facing away from the viewer and 

should not be displayed. 

Care must be taken in how the vertices of each surface 

are labeled in order for the outer normal orientation 

vectors to be calculated correctly [a, pg. lS9]. Referring 

to the octahedron in figure 9, the identification of the 

first vertex of each surface is completely arbitrary. 

However once this identification has been made, it is vital 

that the listing of the remaining vertices continue in a 

counterclockwise direction as viewed from the outside of 

the object (in this case the octahedron). Table IV gives 

one example of how the surfaces of the octahedron could be 

oriented. 

Table IV. 

Surface orientation 

Sl : vOl,v02,v03,v04 Nl = (v02 -VOl ) x (v03 -VOl ) 
S2 : v04,v03,v06'vOS N2 = (v03 -v04 ) x (v06-V04 ) 
S3 : v07,voa,vOS,v06 N3 = (v -v07 ) x (vOS-v07 )oa
S4 : vlO,v09,voa,v07 N4 = (v09-vlO ) x (voa-vlo ) 
Ss : vll,v12,v09,vlO NS = (v12-vll ) x (V09-vll ) 
S6 : vll,v02,vOl,v12 N6 = (v02 -vll ) x (vOl-vII) 
S7 : v02,v04,vos,voa,v09,v12 N7 = (v04 -v02 ) x (VOS-v02 ) 
Sa : v02,vll,vlO,v07,v06,v03 Na = (vll-v02 ) x (v lO-v02 ) 

If, instead, the vertices are given in a clockwise 

direction as viewed from outside the object, then the 



L'N 

x 



23 

} 
rientation vector H will be pointing inward, and 

(undesired results will occur when using this hidden line 

removal algorithm. 

Figure 10 gives an example of a concave polyhedron in 

algorithm number one will not correctly remove all 

the hidden lines. All of the back surfaces will be 

correctly identified and removed. The problem with concave 

polyhedra is that the front surfaces are not always 

completely visible. For example, the surface PQR is facing 

the viewer but is not completely visible. 

Figure 11 gives an example of a convex polyhedron in 

which algorithm number one will also not correctly remove 

all of the hidden lines. The hexahedron is constructed in 

such a way that the viewer can see the interior of the 

object from certain viewpoints. Consider the surfaces 

ABCD,BCGH,ABFG,EFGH,ADEF to all consist of opaque 

materials while the surface CDER consists of a transparent 

material. Algorithm number one will incorrectly 

identify surfaces EFGH and ADEF as being back 

surfaces (surfaces that are completly hidden from view). 

A1gorithm Humber Two (Clipping Lines Edges Surfaces) 

The following algorithm removes hidden lines by 

comparing all edges of the object with each surface [5, 

pg. 230]. Appendix F contains a complete source listing 

written in Turbo Pascal for this algorithm. 

Assumptions 



t7 
N 

H 

tl 

3 



25 

The edge clipping algorithm operates under the 

following assumptions about the object: 

1.) The object being processed is modeled by 

a concave or convex polyhedron. 

2.) The surfaces that make up the polyhedron 

are all convex polygons. 

3.)	 The polyhedron is constructed in such a 

way that the viewer can possibly see the 

interior of the object from certain 

viewpoints. 

4.)	 There are no obstructions in the line of 

sight from the viewpoint to the object. 

Theory Of Operation 

Before the algorithm begins, all edges of the 

polyhedron are initialized or marked as being visible to 

the viewer. Each surface is then taken one at a time, and 

all edges defining the other surfaces are compared one by 

one to this surface to determine if the visibility of the 

edges are blocked. Any portion of the edges that are 

blocked are marked as being erased. After all the edges 

have been processed with respect to each surface, all 

visible portions of the object are then drawn. 

Given an edge PQ and a polygonal surface Al A2 ... An 

the following four steps will determine if the visibility 

of the edge is blocked by that particular surface, and if 

so, exactly how much of the edge PQ will have to be erased. 



26 

1.) If both endpoints P and Q of the edge are 

in front of the actual surface A A1 2 

An' then the edge is completly visible 

relative to the surface. No further 

testing of the edge is necessary with 

respect to this surface. Refer to 

figure 12. 

2. ) If the projected edge P'Q' is 

completely exterior to the projected 

surface A
, 

1
A

I 

2 . .. A'
n then the edge 

PQ is completely visible relative 

to the surface. No further testing of 

the edge is necessary with respect 

to this surface. Refer to figure 13. 

3.) If the projected edge coincides with 

any of the projected surface edges 

, I I I 
A 1A:2 ' A2 A 3 ' ,II lA', then the edgen- n 
should not be erased. No further testing 

of the edge is necessary with respect to 

this surface. Refer to figure 14. 



~----------------~---------------, 

'Zt a...m5~:1 

1 NIOdM31/\ 

L'l 



· £1 i3..An5~.:l 

INIOdM31/\ 

82:
 



----------_.-------------

. vI aJ.n5 U 

INIOdM31/\ 

6Z
 



30 

4.)	 Find any intersection points where the 

projected edge intersects the projected 

surface edges. Remember that the 

intersection points of the line 

segments defined by the edges is desired 

rather than the intersection points of 

the infinite lines defined by the edges. 

Refer to appendix A for an explanation of 

how to find these intersection points. 

Since by assumption all surfaces are 

convex polygons, there will be at most 

two intersection points. 

a.)	 Zero intersection points.
 

If the midpoint H' of the
 

projected edge is exterior to
 

the projected surface then the
 

projected edge is completely
 

exterior to the projected surface
 

and therefore the actaul edge is
 

completely visible with respect to
 

the surface. If H' is interior
 

to the projected surface then the
 

projected edge lies completely
 

interior to the projected surface.
 

Since at least one endpoint of
 

the actual edge is behind the
 

actual surface, the actual edge
 



31 

lies completely behind the surface 

and therefore should be erased. 

Refer to figure 15. 

b.)	 One intersection point. 

The pre-image of a point R located on 

the projected edge P'Q' is defined to 

be the point located on the actual 

edge which projects onto R. 

Determine which endpoint P' or Q' of 

the projected edge is interior to 

the projected surface. If the pre

image of this endpoint is behind 

the actual surface then erase the 

portion of the projected edge from 

the intersection point I~ to the 

projected endpoint located 

interior to the projected surface. 

Refer to figure 16. If neither 

endpoint P' or Q' is interior to 

the projected surface then the 

projected edge lies completely 

exterior to the projected 

surface and should not be erased. 

Refer to figure 17. 

c.) Two intersection points. 

If both endpoints P and Q of 



lNIOdM31;\ 



------------~----------------

·9t a...m5 LJ 

INIOdM31t\ 



r-------~--------~------------~----__. 

•L1 a..m6~.:1 

1NIOdM31t\ 



35 

the actual edge are behind the 

actual surface then erase the 

portion of the projected edge 

from II 
1 to I~. If endpoints P 

and Q are not both behind the 

actual surface then let M' be the 

midpoint of the projected edge 

P'Q' . If M is behind the actual 

surface then erase the portion 

of the projected edge located 

between the intersection points I~ 

and I~. Refer to figure 18. If 

M is in front of the actual 

surface, then the actual edge 

is completely visible with 

respect to the surface and 

should not be erased. 

Refer to appendices Band C for information on how to 

determine whether or not a given point P is located in 

front or behind a surface and if the point P is located in 

the interior of a plane polygon. 

Algorithm Number Three 

The following hidden line removal algorithm is a 

combination of algorithms one and two. Appendix G contains 

a complete source listing written in Turbo Pascal for this 

algorithm. 



· 81 a..m6 U 

INIOdM31f.. 

'I
 I 

9£ 



37 

Algorithm number three operates under the following 

assumptions about the object: 

1.) The object being processed is modeled by 

a polyhedron. 

2.)	 The polyhedron is constructed in such a 

way that the viewer cannot see the 

interior of the object from any 

viewpoint. 

3.) The surfaces that make up the polyhedron 

are all convex polygons. 

4.) There are no obstructions in the line of 

sight from the viewpoint to the object. 

Theory Of Operation 

All lines on the object are first marked as 

being hidden. Algorithm number one is then used to 

determine the surfaces that are facing the viewer. All 

edges on these front surfaces are marked as visible. 

Each of the front surfaces are taken one at a time, and 

all edges belonging to the other front surfaces are 

compared one by one (using the four steps outlined in 

algorithm number two) to this particular front surface to 

determine if the visibility of the edges are blocked by 

this surface. Any portion of the edges that are blocked 

by this surface are marked as erased. After all the 

edges have been processed with respect to each surface, 

all visible portions of the object are then drawn. 



38
 

Processing 

When implementing algorithms number two and three, in 

the entire object could have been drawn on the 

display device including the hidden lines. Then 

the necessary line segments could be erased to produce the 

final image. Because of round-off errors in the 

calculation of intersection points and screen coordinates, 

lines are often not entirely erased. Thus leaving an 

unwanted trail of stray points in the final output of the 

object. Another disadvantage of this technique could not 

be used in connection with those graphics output 

devices which are unable to erase lines, such as plotters 

and printers. This section explains and outlines a 

technique for storing and processing the object in 

computer memory before displaying the final version of 

the object with the hidden lines removed. 

To effect the task of storing and processing the 

object in computer memory, the edge table needs to be 

expanded to hold the necessary erasures to be performed on 

each particular edge. Refer to table V. 

Table v. 

Edge Table 

Edge 
No. 

vertex 
v. v. 

1 J 

Number 
Erasures 

Erasurel Erasure2 
t l t 2 t l t 2 

- - - - 
.12 .13 .97 .99 
.01 .50 .52 .87 
.11 .87 - - 

Erasure3 
t l t 2 

-  -
.10 .11 
- -
- -

Erasure4 
t l t 2 

- -
- -
- - 
- - 

0001 
0002 
0003 
0004 

01 03 
03 04 
07 10 
11 15 

000000 
000003 
000002 
000001 



39 

edge table is constantly being updated while hidden 

removal algorithms two or three are executing. Every 

a hidden line removal algorithm calls for a portion of 

projected edge to be erased, the edge table is updated 

this information. Finally after the hidden line 

algorithm has completed executing, the visible portions of 

the object are drawn using the information from the edge 

table. 

The equation for each projected edge (vi,vj ) of an 

object can be represented in the parametric form: 

R(t) = (x1'Yl) + t(x2-x1 ,y2-y1 ) , 0 <= t <= 1 

where (x1,y1 ) and (x2 ,y2 ) are the endpoints of the 

projected edge (Vi,vj ). If a portion of the projected edge 

(Vi,vj ) needs to be erased, then the endpoints of the line 

segment to be erased, t and are stored in the edge1 t 2 

table. Note that t and t are the parameters associated1 2 

with the parametric equation R(t) representing the 

projected edge (Vi,Vj ). 

As an example, let edge number two, namely (v ,v )
3 4 

have endpoints (x1,y1 ) and (x2 ,y2 ). Suppose that the 

portion of projected edge (v ,v ) from point P having
3 4 

coordinates (Pl,P2) to point Q having coordinates (Ql,q2) 

needs to be erased. Rather than store the four coordinates 

(pl,p2) and (ql,Q2) of this segment, the parameters t 1 

and t 2 that correspond to points P and Q respectively are 

stored in the edge table. Later on (Pl,P2) and 



40 

(Ql,q2) can be decoded from t 1 and t 2 by the following: 

" 
(Pl,P2) = (x1,y1 ) + tl(x2-xl'Y2-Yl) 

(Ql,q2) = (x1,y1 ) + t2(x2-xl'Y2-Yl)· 

Remember that there is often round off error in the 

calculation of the endpoints P and Q to be erased, 

therefore P and Q are often very close to but not exactly 

located on the projected edge (v3 ,v4 ). Approximate values 

for t 1 and t can be obtained in the following way:2 

Let m denote the slope of the projected edge 

(v3' v 4) • 

1.)	 If Abs(m) = 1 then 

k 1 = «Pl-x1 )/(x2-x1 ) + (P2 - y 1 )/(y2-y1»/2 

k 2 = «Ql-x1)/(x2-x1 ) + (Q2 - y 1 )/(y2-y1»/2 

t 1 =	 Min {k1 ,k2 } and t 2 = Max {k1 ,k2 } 

2.)	 If Abs(m) < 1 then 

k 1 = (Pl-x1)/(y2-y1 ) 

k2 = (Ql-x1 )/(y2-y1 ) 

t 1 =	 Min {k ,k } and t = Max {k ,k }1 2 2 1 2 

3.)	 If Abs(m) > 1 then 

k 1 = (P2-Yl)/(x2-x1 ) 

k 2 = (Q2-Yl)/(x2-x1 ) 

t 1 = Min {k1 ,k2 } and t 2 = Max {k1 ,k2 } 

The	 last problem that must be solved is the potential 

for overlap in the erasures on a particular edge. This 



41 

~roblem can be best illustrated with an example. Suppose 
~~ 

number two, has projected endpoints(v3' v 4) 

and (200,200) and no portions of this edge are 

be erased yet. Refer to table VI. 

Edae Table 

Vertex Number IErasure1 IErasure2 IErasure3 IErasure4 
Erasures tv. v. t 1 t 2t 1 t 2t 2 t 1 t 211 J 

03 04 I 000000 

Now suppose that a hidden line removal algorithm calls for 

the portion of the projected edge from (137.6,144) to 

(153.2,158) to be erased. The parameters corresponding to 

the endpoints of this erasure are stored in table VII. 

Table VII. 

Edge Table 

Edge 
No. 

Vertex 
v. v. 

1 J 

03 04 

Number 
Erasures 

Erasure1 Erasure2 
t 1 t 2 t 1 t 2 

.20 .40 - -

Erasure3 
t 1 t 2 

- -

Erasure4 
t 1 t 2 

- -0002 000001 

Next suppose that the portion of the projected edge from 

(184.4,188.3) to (188.3,189.5) needs to be erased. The 

parameters corresponding to the endpoints of this erasure 

are stored in table VIII. 



42
 

Edge Table 

Vertex 
v. v. 

1 J 

Humber 
Erasures 

IErasure1 
t 1 t 2 

Erasure2
t 1 t 2 

1Erasure3
t 1 t 2 t 1 

JErasure4 
t 2 

03 04 I 000002 .401.20 1. .85'80 - 

Lastly, suppose that the portion of the projected edge from 

(145.4,151.0) to (161,165) needs to be erased. Finally a 

problem results, which is that this erasure (.30,.50) 

overlaps the first erasure already stored in the table. 

its place. 

Two solve 

(.20,.40) 

Refer to table IX. 

the problem, simply 

from the edge table an

remove 

d SUb

the 

stitute 

first 

(.20,

erasure 

.50) in 

Table IX. 

-
Edge Table 

Edge 
Ho. 

Vertex 
v. v. 

1 J 

03 04 

Humber 
Erasures 

Erasure1 Erasure2 
t 1 t 2 t 1 t 2 

.20 .50 .80 .85 

Erasure3 
t 1 t 2 

- -

Erasure4 
t 1 t 2 

- -0002 000002 

Let and t be the endpoints of an existing erasuret 1 2 

on an edge. Suppose that n and n are the endpoints of a1 2 

new erasure. There are basically four types of overlap 

that can occur: 

1.) *------t ---------------t ----------------------*1 2n -----------------n1 2 

t 1 <= n 1 <= t 2 · 

If this type of overlap happens, then remove (t1 ,t )2



43
 

from the edge table and add (t1 ,n ) to the table.2

*-------------t -----------------t -------------* 1 2n ---------------n1 2
 

n 1 <= t 1 <= n2 ·
 

If this type of overlap happens, then remove (t1 ,t2 ) 

from edge table and add (n1 ,t ) to the table.2

J. ) *-------------t --------t ----------------------* 1 2n ---------------------------n1 2
 

<= t and t <= n
n 1 2 .1 2 

If this type of overlap happens, then remove (t1 ,t2 ) 

from edge table and add (n1 ,n ) to the table.2

4. ) *----------t ------------------------t ---------* 1 2 n --n1 2
 

n >= t and n 2 <= t 2 .
1 1 

If this type of overlap happens, then ignore (n1 ,n )2

and do not update the edge table. 



CIIAPl'ER V 

CONCLUSION 

The Thesis 

The purpose of this thesis was to explore how three

dimensional objects can be modeled and realistically 

displayed on a two-dimensional view screen. All man made 

images are either moving or static. These images are 

either obtained through construction or by a recording 

device. For example, photography deals with the recording 

of static images, while cinematography is concerned with 

the recording of moving images. However cinematography and 

photography are not well suited for the construction of 

three-dimensional images, the reason being that an object 

must first exist before a picture can be taken. One 

alternative is the traditional method of drawing and 

painting to produce images of real world objects. The 

other more viable alternative is to use a computer for 

image generation. Hidden line removal is an important 

aspect in the generation of realistic three-dimensional 

computer images. 

The first chapter was an introduction to the thesis. 

In it was discussed the idea of hidden line removal and its 

applications. Also given was an overview of the thesis 

along with a short account of the history of computer 

graphics. Chapter two presented the notion of using 

polyhedra to model three-dimensional objects. Also 

contained in this chapter was a method for organizing the 



45 

vertices, and polygonal surfaces of a polyhedral 

The third chapter dealt with the concept of 

projecting the edges of the polyhedral model onto the view 

screen thus producing an image of the object. A major step 

in this process was the conversion of the coordinates of 

the object's vertices relative to the standard coordinate 

system into coordinates relative to the eye coordinate 

system. Chapter three concluded with a discussion of the 

viewing parameters which control the size of the object and 

the direction from which the object will be viewed. Three 

elementary hidden line removal algorithms were presented in 

chapter four. The first algorithm was for use with convex 

polyhedra. The second and third algorithms could be used 

to remove the hidden lines from both concave and convex 

polyhedra. Following chapter five are a bibliography 

and eight appendices A,B,C,D,E,F,G, and H. Appendices A,B, 

and C contain supplementary information pertaining to the 

second and third hidden line removal algorithms. Appendix 

o contains instructions for using the programs located on 
• 

the program disk. Finally appendices E,F,G, and H contain 

the source code for the hidden line removal algorithms. 

Conclusions 

Throughout the course of implementing the hidden line 

removal algorithms on the computer, several conclusions 

became evident to the author. 

1.)	 Although theoretically an object can be
 

approximated to an arbitrary fine
 



46
 

precision by a plane faced polyhedron, 

this method of surface modeling is not 

always practical. For example, a 

polyhedral approximation of a coffee cup 

could contain many surfaces and would be 

difficult to generate and to modify. A 

simple alteration of any kind would 

result in having to recalculate many of 

the coordinate values. 

2.)	 To test the hidden line removal 

algorithms contained in this thesis, 

several polyhedral models were 

constructed. A considerable amount of 

time (much more than was expected) 

was spent generating the coordinate 

values and surface orientations 

for these very simple models. 

3.)	 It is very important to understand how 

the viewing parameters (Theta,Phi,Rho, 

and D) affect the computer generated 

images. It took some practice in 

adjusting the viewing parameters in order 

to get a particular view of the object. 

4.)	 Hidden line removal is very important in 

the generation of realistic images. 

Before the hidden line removal algorithms 

were tested, objects were displayed on 



47 

the view screen in their entirety. 

Almost without exception the computer 

generated images were very confusing and 

difficult to interpret. Most of the 

ambiguities were resolved when the hidden 

line removal algorithms were applied. 

5.)	 Due to the nature of convex polyhedra, 

the removal of hidden lines is easily 

accomplished. The surfaces of a convex 

polyhedron are either completely visible 

or completely hidden from view. Because 

of this fact, the first hidden line 

removal algorithm executes very rapidly 

as compared to the significantly 

slower execution speeds of the second 

and third hidden line removal 

algorithms designed primarily for concave 

polyhedra. 

Recomendations For Future study 

It is the opinion of the author that a 

subsequent study involving parallel processing could help 

increase the characteristically slow execution speeds of 

hidden line removal algorithms in general. Future 

studies might also include enhancing an object's realism 

further through the use of special effects such as shading, 

transparency, shadows, and textures. 



47 

the view screen in their entirety. 

Almost without exception the computer 

generated images were very confusing and 

difficult to interpret. Most of the 

ambiguities were resolved when the hidden 

line removal algorithms were applied. 

5.)	 Due to the nature of convex polyhedra, 

the removal of hidden lines is easily 

accomplished. The surfaces of a convex 

polyhedron are either completely visible 

or completely hidden from view. Because 

of this fact, the first hidden line 

removal algorithm executes very rapidly 

as compared to the significantly 

slower execution speeds of the second 

and third hidden line removal 

algorithms designed primarily for concave 

polyhedra. 

Recomendations For Future study 

It is the opinion of the author that a 

subsequent study involving parallel processing could help 

increase the characteristically slow execution speeds of 

hidden line removal algorithms in general. Future 

studies might also include enhancing an object's realism 

further through the use of special effects such as shading, 

transparency, shadows, and textures. 

.. 



BIBLIOGRAPHY 

[1]	 Angell, I. o. A Practical Introduction to Computer 
Graphics, HALSTEAD PRESS, New York, NY, 1982 
NY, 1982. 

[2]	 Brumfiel, C. F. Eicholz, R. E., and Shanks, M. E. 
Geometry, Addison-Wesley Publishing Co., Inc., 
Reading, MA, 1962. 

[3]	 Demel, J. T. and Miller M. J. Introduction to
 
Computer Graphics, Brooks/Cole Engineering
 
Division, Montery, CA, 1984.
 

[4]	 Hearn, D. and Baker, M.P. Computer Graphics,
 
Prentice-Hall, Englewood Cliffs, New Jersey,
 
1986.
 

[5]	 Hearn, D. and Baker, M.P. Computer Graphics for the 
IBM Personal Computer, Prentice-Hall, Inc. 
Englewood Cliffs, NJ, 1983. 

[6]	 Lewell, J. Computer Graphics, Van Nostrand Reinhold 
Co., Neew York, 1985. 

[7]	 McGreagor, J. and Watt, A. The Art of Graphics for 
the IBM PC, Addison-Wesley Publishing Co., 
Reading, MA, 1986. 

[8]	 MUfti, A. A. Elementary Computer Graphics, Reston
 
Publishing Co., Inc., Reston, VA, 1983.
 

[9]	 Myers, R.E. Microcomputer Graphics, Addison-Wesley 
PUblishing Co., Reading, MA, 1982. 

[10]	 Newman, W. M. and Sproull, R. F. Principals of 
Interactive Computer Graphics, McGraw-Hill Book 
Company, New York, NY, 1979. 



APPENDIX A
 

Obviously in order to calculate the intersection point 

of two lines, the equations of both lines must be known. 

The standard form for the equation of a straight line in R2 

is A x + B Y + C = 0 where A,B, and C are constants. 

Given two distinct points (x1 'Y1) and (x2 'Y2) the constants 

A,B and C can be calculated by the following [9, pg. 45]. 

A = Y2 - Y1
 

B - x - x
- 1 2
 

C = x 2Y1 - x 1Y2
 

One way to find the intersection point of two lines 

is to solve the following system: 

A x + B Y = -C (line one).1 1 1
 

A2 x + B Y = -C2 (line two).
2 

By Cramer's rule: 

[-c -c1]Det 1 B
1
] Det [ A

1 

-C B -C2 2 A2 2
 

x = Y =
 

1 1 1 1
Det [ A B ] Det B ][A

A B2 A2 B2 2 

Remember that the intersection point of two finite line 

segments is desired and not the intersection point of the 

infinite lines defined by the two line segments. Assuming 

that the two line segments are not dependent or 



50 

{inconsistent, the following three possibilities exist [9, 

48] • 

1.)	 The intersection point lies between the 

endpoints of both line segments. In this 

case the two line segments actually 

intersect. 

2.)	 The intersection point lies between the 

endpoints of one line segment and not the 

other. In this case the two line segments do 

not actually intersect. 

3.)	 The intersection point does not lie between 

the endpoints of either line segment. Also 

in this case the two line segments do not 

actually intersect. 



APPENDIX B 

The following algorithm can be used to determine if a 

given point P is located interior or exterior to of a 

plane polygon [8, pg. 143]. The algorithm is best 

explained by using figures 19 and 20. Consider the 

following angles where the vi's represent the vertices of 

the polygon. 

Al = ~ v 1Pv2 ' A2 = ~ v 2Pv3 ' •.. , An = 1+ v Pv1n

If	 the rotation about the point P from vi to isv i +1 

clockwise then Ai is given a negative value; otherwise Ai 

is given a positive value. 

1.)	 If P is interior to the polygon, then 

the sum of the Ai's will eqaul plus 

or minus 3600 
• Referring to figure 19, 

since P is inside the polygon the angles 

Al + A2 + A3 + A4 + AS + A6 + A7 add up 

to a sum of -3600
• 

2.)	 If P is exterior to the polygon, then the 

sum of the A.'s will equal 00 
• Referring

1 

to figure 20, since P is outside the 

polygon the angles Al + A2 + A3 + A4 + 

oAS + A6 + A7 add up to a sum of 0 . 



"61 a-An6kj 



HSIN 1.:J 

d 

•Ol aJn6 Ll 

-93N 

·SOd 
S" 

L" 0° <t. '0 <; \
'

+
G 9 



APPENDIX C
 

Considering the viewpoint to be the origin, a point P 

defined to be in front of a plane if and only if the 

point P is on the same side of the plane as the origin or 

is contained within the plane. In any other case P is 

defined to be behind the plane. 

The standard form for the equation of a plane is A x + 

B Y + C z + D = 0 where A,B,C, and D are constants. Given 

three non collinear points (x1 'Y1,zl)' (x2 'Y2,z2)' and 

(X3 'Y3,z3) the constants A,B,C, and D can be determined by 

the following [6, pg. 195]. 

A = Y1(z2 - z3) + Y2(z3 - zl) + y 3 (zl - z2) 

B = zl(x2 - x 3 ) + z2(x3 - xl) + z3(x1 - x2 ) 

C = x 1 (Y2 - Y3 ) + x2 (Y3 - Y1 ) + x 3 (Y1 - Y2 ) 

D = -x1 (y2z 3 - Y3 z 2 ) - x 2 (y3z 1 - Y1z 3 ) -x3 (y1 z 2 - Y2z 1 ) 

Consider a plane that does not contain the origin 

and having the equation: A x + B Y + C z + D = o 

where D > o. This plane partitions R3 into three 

disjoint sets of points [1, pg. 54]. 

1.)	 The set of points lying on the same 

side of the plane as the origin. Any 

point (x,y,z) in this set will satisfy: 

A x + B Y + C z + D > O. 

2. ) The set of points contained within the 

plane itself. Obviously any point (x,y,z) 



55 

in this set will satisfy:
 

A x + B Y + C z + D = O.
 

3.)	 The set of points lying on the side 

opposite the side of the plane containing 

the origin. Any point (x,y,z) in this 

set will satisfy: 

A x + B Y + C z + D < o. 

Therefore the point P having coordinates (i,j,k) is 

defined to be behind the plane having equation: A x + B Y + 

C z + D where D > 0 if and only if A i + B j + C k + D < O. 

On the other hand, point P is defined to be in front of the 

plane if and only if A i + B j + C k + D >= O. 

" 
~; 



APPENDIX D 

What follows are some guidelines and helpful 

information on how to use the programs on the program disk. 

Vertex And Surface Definition Files 

In order to display the image of any polyhedral model 

two files must exist. The first file is the vertex 

definition file. The vertex definition file contains a 

listing of the standard three-dimensional coordinates for 

each vertex. This sequential file consists of an ordered 

sequence of records, one record per line, and each record 

having three fields. The three fields contain the X,Y, and 

Z standard coordinates respectively for each consecutive 

vertex. Examples of vertex definition files are HOUSE.VER, 

DODEe. VER, SIXTY.VER, SPHERE. VER, and TETRA. VER which are 

all located on the program disk. To obtain a listing of 

the contents of any vertex definition file simply type the 

following at the DOS prompt: 

A> copy filename. ext con 

For example, if the user wanted to look at the contents of 

the vertex definition file TETRA.VER he would simply type 

A> copy TETRA.VER con 

and the following output would be produced: 

5.77350269 10.00000000 0.000000000 
5.77350269 -10.00000000 0.000000000 

-11.54700538 0.00000000 0.000000000 
0.00000000 0.00000000 16.329931620 

The above file TETRA.VER is a discription of the vertices 

of a regular tetrahedron. In the above file, records 1,2,3 



57 

and 4 correspond to the three-dimensional coordinates of 

v 1 ,v2 ,v3 , and v 4 (vertices 1-4) respectively. 

The second file, the surface definition file contains 

a listing of the edges that form each surface. This 

sequential file consists of an ordered sequence of records, 

one record per line, and each record not necessarlily 

having the same number of fields. The first field always 

lists the number of edges that form each surface, 

and the remaining fields list the vertices defining 

each of the edges that make up that particular surface. 

Examples of surface definition files are HOUSE. SUR, 

DODEe.sUR, SPHERE. SUR, SIXTY.SUR and TETRA.SUR which are 

all located on the program disk. For example, if the 

user wanted to view the contents of the surface 

definition file TETRA.SUR he would simply type 

A> copy TETRA. SUR con 

and the following output would be produced: 

03 01 04 02 01 
03 01 03 04 01 
03 03 02 04 03 
03 01 02 03 01 

The above file TERTA.SUR is a discription of the surfaces 

of a regular tetrahedron. Records (1-4) correspond to 

surfaces (1-4) of the object respectively. The first 

field indicates the number of edges that form the surface. 

The remaining fields list the vertices that define each of 

the edges that make up the surface. For example, 

surface number one is formed by three edges. The first, 

second, and third edges are v 1v 4 ,v4v 2 ' and v 2v 
1 



58 

respectively. Note that when using hidden line removal 

algorithms number one and three, the vertices of each 

surface must be ordered in such a way that the normal 

vector associated with each surface points in an outward 

direction away from the center of the object. Refer to 

chapter four for more information on the proper 

ordering of the vertices of a particular surface. 

The names of the vertex and surface definition files 

corresponding to a particular object must be the same 

(preferably the name of the object that they discribe) and 

the extentions must be .VER and .SUR respectively. 

Function Keys 

The three programs HLR01.PAS, HLR02.PAS, and HLR03.PAS 

on the program disk are controlled exclusively by the 

function keys (F1 - F10). The following is an explanation 

of what each function key does. 

Function Key Operation 

Fl Decrease Theta. 

Shift Fl Decrease Theta rapidly. 

etrl Fl Turns status information 
on or off. 

F2 Increase Theta. 

Shift F2 Increase Theta rapidly. 

etrl F2 Turns coordinate axes 
on or off. 

F3 Decrease Phi. 



59
 

Function Key	 Operation 

Shift F3	 Decrease Phi rapidly. 

etrl F3	 Turns the hidden line 
removal algorithm on or 
off. 

F4	 Increase Phi. 

Shift F4	 Increase Phi rapidly. 

F5	 Decrease Rh.o. 

Shift F5	 Decrease Rh.o rapidly. 

F6	 Increase Rho. 

Shift F6	 Increase Rho rapidly. 

F7	 Decrease D. 

Shift F7	 Decrease D rapidly. 

Fa	 Increase D. 

Shift F8	 Increase D rapidly. 

F9	 Draws obj ect. * 

FlO ..•.......................	 Exits the program and 
returns control to the 
Turbo or DOS command 
prompt. 

*	 The object will be drawn according to whether or not 
hidden line removal is turned on or off. It may take 
several minutes for an image of the object to appear 
on view screen. 

Executing The Programs 

...., 

~ 
'" 

To run the programs HLR01.PAS, HLR02.PAS, or HLROJ.PAS 

do the following: 

1. Insert the program disk into drive A. 

2. Turn the computer on. If the computer is 



60 

already on then restart the computer by 

pressing the three (3) keys etrl,Alt, and Del 

simultaneously. 

3.	 Depending on which program the user wants to
 

run, (HLR01,HLR02, or HLR03), type one of the
 

following at the DOS prompt:
 

A> HLR01 objectname
 

A> HLR02 objectname
 

A> HLR03 objectname
 

For example, if the user wanted to remove the hidden 

lines from a regular dodecahedron by using the first hidden 

line removal algorithm, he would simply type the following: 

A>	 HLR01 DODEC .. 
.." 

and the program HLR01 would begin executing and would load 

vertex and surface definition files DODEC.VER and DODEC.SUR 

respectively. 

~ 
~'.,



APPENDIX E
 

The following is the source code written in Turbo 

ascal for algorithm number one. Refer to appendix D for 

how to run the program. 

Hidden_llne_Retnval_Ol (InJllt,OltJX.It) 

: TIJRIn Pascal 3.0lA 
: lIM R:; or CCJIIIBtibles 

: Penni.ssien is granted by the autror to uge, reproduce, 
mdify all or }l3rt of the CCJDIX.lter progranEl contained 
herein for the readers own personal uge. This 
penui.ss:ien is rot to ~ construed as a license to 
distrilxrt:e or sell all or any }l3rt of the prograII5 to 
otrers in any shape or form. 

:	 The autlx>r has spent a great deal of t::i.ne and effort 
in preIXring this thesis and the progran5 contained 
herein. This includes Dmly hours of research, 
develoIJlE'lt and testing of the programs to determine 
treir effectiveness. The autlx>r shall rot ~ liable 
in any event for iIri.dental or consequential danBges 
in conectien with or arising out of the furnishing, 
perfOIlIBOCe or uge of all or any partien of these 
programs. 

{ Palette 0 color constants. 

Black = o ., 
Green = 1 ; 
Red = 2 ., 
Brom. = 3 ; 

{ Display w:indcM boondary constants. } 

Xmi.n = 1 ., 
XnBx = 310 ; 
Ymin = 20·, 
Ynax = 199 ; 

{ Roughly the center of the display window. } 

CenterX = 155 ; 



62 

= 89; 

= 0.93; {the approxiJIBte aspect ratio for the IIJvI R:: 
graJirics screen. } 

q These constants detennine row ID.rlt the viewing }lll"8IlEters Theta,Fhi,Rho, 
and D will increase or decrease when the respective function keys are 
pressed tmt control each of these rarmeters. } 

= 0.0175; { roughly one degree. } 
= 0.0175; { roughly one degree. } 

5 •= , 
5 •,= 

= 5 • , { The mininun value for D. } 
= 5 • , { The mininun value for Rho. } 
= m·, { The nmci.nun nunber of vertices tmt an 

= 

object can have. } 
= m; { The nmci.nun nunber of surfaces an object 

can have. } 
~., { The nmci.nun nunber of vertices tmt can 

fonn a surface. } 
BordeI<:'.olor = Red; { The color of the display window lx>rder. } 
(lljectColor = Green ; { The edges tmt form the object will re 

displayed in this color.} 

R3Vector = Record 
x,y,z : Real • 

Fnd ,• ' 

R2Vector = Record 
x,y : Real • 

Fnd ,• ' 

SurfaceRecord =Record 
Vertices : Array[l ••M:1xStrlVertices] Of Integer; 
NunVertices : Integer ; 

Fnd ; 

R3VerteXType = Array[1••Vert:exr13x] Of R3Vector ; 
NornBlType = Array[I ••Surf~] Of R3Vector ; 
StrlaceType = Array[I ••Surf~] Of SurfaceRecord ; 
R2VerteXType = Array[I ••Vert.e.xM9x] Of R2Vector ; 

FileNareType = String[8] ; 

StatsRecord = Record 
Staafil,Axis,Hidden : Boolean ; 
Th,Ph,Rh,Dist : Real ; 
DbjNaIe : FileNanEType ; 

Fnd ; 



63 

:R3VerteXI'ype; 

{{	 R3_SINRD_VERrnC[i] cootains the starxlard three-d:in'e1sional coordinates for 
the i-th vertex. } 

:R2VerteXI'ype; 

( R2Vertex[i] contains the ~onal &:reeI1 coordinates for the i-th 
vertex. ) 

: SurfaceType ; 

{ Surface[i].NunVertices contains the nunber of vertices that form the i-th 
surface.
 

Surfoce[i].Vertices[j] contains the j-th vertex in the fornulation of
 
the i-th surface. }
 

Norns1 : NonmlType ;
 

{ Nomel[i] contains the oonm! vector associated with the i-th surface.
 

vertexCotmt : Integer;
 

( The actual nunber of vertices that form the object. )
 

SurfaceCount : Integer ;
 

( The actual nunber of surfaces that form the object. )
 

FuoctKey : Integer ;
 

( Contains a ntlIlber assocaited with the fuoctioo key that was pressed. )
 

'Theta,Hri.,ROO,D : Real ; 

{ The viewing p:mIIeters. 

A,B : Olar ; 

( Holds the sequence of characters gererated Wlen a function key is 
pressed. ) 

Stats : StatsRecord ; 

( Contains the status infonmtion wch is displayed on the first 1:\0.0 lines 
of the display screen. ) 

CX>jectNme : Fi.1.eNaueType ; 

( Contains the naoE of the object being displayed. ) 



64
 

GRAHU.1RJ } 

teeedure 0:UcN0nm1s(R3 SINRD VERl'EX:R3VerteXI'ype ; Surface:SurfaceType ; 
r SurfaceCotmt:Integer ; Var Noma1:NonmlType) ; 

a,b : R3Vector ; n : Integer ; 

For n := 1 To SurfaceQ:xmt Ih
 
Begin
 

R'IDiff(R3 SINRD VFRIEX[Surface[n].Vertices[2]],
 
R3 SINRD VERIE<[Surface[n].Vertices[l]],a) ;
 

R'IDiff(R3 SINRD VOOEX[Surface[n].Vertices[3]],
 
R3 SINRD-VFRIEX[Surface[n].Vertices[1.]],b) ;
 

Norma1[n].x := a.y * b.z - b.y * a.z ;
 
Narme1[n].y := b.x * a.z - a.x * b.z ;
 
Narma1[n].z := a.x * b.y - b.x * a.y ;
 

Procedure CalcR2Vertex(R3 VERIE<:R3VerteXl'ype ; VertexCount:Integer ; 
Var R2Vertex:R2VerteXfype ; Theta,Fhi.,Rho,D:Rea1) ; 

Var k: Integer; R3Eye: R3Vector ; 

For k := 1 To VertexCotmt Ih 
Begin
 

EyeXYZ(Theta,Fhi.,Rho,D,R3_SINRD_VERIE<[k] ,R3Eye) ;
 
ScreenXY(Theta,Fhi.,Rho,D,R3Eye,R2Vertex[k] ) ;
 

End; 

&xi; 

Procedure Drm&Jrface(Surface:SurfaceRecord ; R2Vertex:R2VerteXl'ype ; 
Color: Integer) ; 

Var k,vn1,vn2 : Integer ; 

Begin 



65
 

k := 1 to Surface.NtmVertices Ih 

vn1 := Surface.Vertices[k] ; 
vn2 := Surface.Vertices[k+l] ; 

Clip(R2Vertex[vnl].xtRZVertex[vnl].y tRZVertex[vn2].xtRZVertex[vn2].Yt
 
ColortXmintXnaxtYmintYDBX) ;
 

._ure DJ:'OOurfaces(Surface:SurfaceType ; Surfac.eCam.ttColor:Integer ;
 
Nomal.:NomalType ; R3_SINRD_vrRIEX:R3VertexType ;
 
R2Vertex:R2VertexType ; 'IhetatF'hitRhotD : Real ;
 
Stats:StatsRecord) ;
 

ViewVector : R3Vector ; n : Integer ; 

For n := 1 To SurfaceColmt Ih 
Begin 

CalcVieNector(Surface[n] tR3_SINRD_VERIEXt'IhetatF'hitRhotVieNector) ; 

If Stats.Hi.dden TIEl !: 

Begin 
.. 

If R3IhtProduct(VieNector tNomal[nD >0 Then 
DrcOOurface(Surface[n] t·R2VertextColor) ; 

Fnd 
Else 
DrawSurface(Surface[n] tR2VertextColor) ; 

Procedure Ilra\\Object(R3_SINRD_VERIEC:R3VertexType ; VertexCom1t:Integer ; 
Surface:SurfaceType ; SurfaceCoont: Integer ; 
Nomal:NomalType ; Color:Integer ; 
'IhetatF'hitRhotD:Real ; Stats:StatsRecord) ; 

Begin 

CalcR2Vertex(R3_SINRD_VERIECtVertexColmt tR2Vertext'IhetatF'hitRhotD) 

Write(Qn-(7» ; 
ZaIficreen ; 
~faces(SurfacetSurfaceColmttColor tNomaltR3 SINRD VERIECt 

R2VertextThetatF'hitRhotDtStats); - 

If Stats.Ax:is Then DrawAxes('Iheta,F'hi,Rho,D) ; 



Infile : Text ; 

Theta := o ; 
Hrl. := Pi/2 ; 
ROO 0 425 ;o

n := 1549; 

"", 

66 

:= Object:Nare ; 
:= False ; 
:= True ; 
:= Theta ; 
:= Phi ; 
:= Rho ; 
:= D ; 

:= True ; 

!nit;81; ze(Var R3_SINRD_VFRIEX:R3Vert.eXI'ype ; 
Var Surface:SurfaceType ; 
Var NoIUBl.:NornBlType ; 

ObjectNme:FileNmeType ; 
Var Theta,Phi,Rho,D:Rea1 ; 
Var VertexCotmt,SurfaceCoont:Integer ; 
Var Stats:StatsRecord) 

lDadVertex(Infile,R3 SINRD VEIDEX,VertexCotmt) ; 
Close(Infile) ; - -

Assign(Infile,ObjectNme + '.Ver') ; 
ieset(Infile) ; 

ClrScr ; 

CalcNonmls(R3_SlNRD_vrIDEX,Surface,Stn"faceCotmt,NornBl) ; 

Za}flcreen ; 

laidSurface(Infile,Surface,Stn"faceCount) ; 
Close(Infile) ; 

Assi.gn(Infile,ObjectNme + '.Sur') ; 
Reset(Infile) ; 

With Stats Ib 
Begin 

Staafil 
ObjNme 
Axis 
Hidden 
Th 
H1 
Rh 
Dist 

End 0, 

Begin 

Fnd; 



l'ext*xle(CID) ; 

Initjal j re(R3_SINRD_VERIEX,Surfoce,Nonml,ll>jectNatE,Theta,Phi,Rho,D, 
VertexCotmt,SurfaceCount,Stats) ; 

Stats.'Ih := Theta ; Stats.Rh := Rho ; 
Stats.H1 := Phi ; Stats.Di.st := D ; 

If Stats.StatSh Then ShoitBtats(Stats) Else EraseStats(Stats) ; 

GetKeySequence(A,B) ; 

If Ord(A) = 27 Then 
Func:tKey := lS::odeFunctiooKey(B) ; 

If Ord(A) =27 Then 
Begin 

Case FunctKey Of 

01 : WrapAroundIk(Theta,DelTheta,O,2*P:i..) ; 
02 : WrapAroundInc(Theta,MTheta,O,2*P:i..) ; 
03 : WrapAroundIk(Phi,DelPhi,O,Pi.) ; 
04 : WrapAroundInc(Phi,DelPhi,O,Pi.) ; 
OS : Ia:(Rho,DelRho) ; 
(X) : Inc(Rho,De1.Rho) ; 
07 : Ia:(D,DelD) ; 
00 : Inc(D,DelD) ; 

09 : J:lrm.a>ject(R3_SINRD_VEm'EX,vertexCotmt,Surface,SurfaceCount, 
NoIllB1,ll>jectG:>lor,Theta,Phi,Rho,D,Stats) ; 

11 : WrapAroundIa:(Theta,MTheta*lO,O,2*P:i..) ; 
12 : WrapArcxmdInc(Theta,MTheta*10,0,2*P:i..) ; 
13 : WrapAroundIa:(Phi,DelPhi*10,0,Pi.) ; 
14 : WrapAroundInc(Phi,MPhi*10,0,Pi.) ; 
15 : Ia:(Rho,DeJ.Rho*lO) ; 
16 : Inc(Rho,DeJ.Rho*lO) ; 
17 : Ia:(D,De1D*10) ; 
18 : Inc(D,DeID"10) ; 
21 : Stats.StatSh := Not Stats.StatSh ; 
22 : Stats.Axi.s := Not Stats.Axi.s ; 
23 : Stats.Hi.dden := Not Stats.Hi.dden ; 

67 

..' 





APPENDIX F
 

The following is the source code written in Turbo 

for algorithm number two. Refer to appendix D for 

instructions on how to run the program. 

Hidden_Line_Ram~02 (Input,<A1tput) ; 

1Bnguage/Canpi1er 
Canj:mer 

Copyright(c) 

Disc:.1a:iner 

Canst 

: 1UROO Pascal 3.0lA 
: IR1 Fe or COJlll3tibles 

: Permission is granted by the author to use, repnxluce, 
IIDdify all 
herein for 
pernd.ssion 
distrilxJte 

or put of the canputer pr0graI5 contained 
the readers own personal use. This 

is oot to be construed as a license to 
or sell all or any put of the progrcm; to 

others in any shape or fonn. 

:	 The aut:lm' has spent a great deal of t:illE and effort 
in preJming this thesis and the progratIE contained 
herein. This i.oc1udes DB11y!nIrs of research, 
develoIJIBlt and testing of the prog:raII5 to determine 
their effectiveness. The autlDr shall oot be liable 
in any event for incidental or coosequential dallBges 
in conection with or arising out of the furnishing, 
perfo:rmmce or use of all or any portion of these 
progranB. 

{ Palette 0 color constants. 

Black = o ., 
Green = 1 ; 
Red = 2 ; 
Brown = 3 ; 

"1 

{ Display window boundary constants. } 

Xnrin = 1 •, 
X1mx = 310 ; 
Ymin = 20; 
YIIBX = 199 ; 

{ Roughly the center of the display window. } 

CenterX = 155 ; 
CenterY = 89; 



70
 

= 0.93; {the approx:iJmte aspect ratio for the lIM OC 
graIirl-cs screen. } 

{ These coostants determine 00w JID:h the viewing ~ters Theta,Fhi,Rho, 
am Dwill iocrease or decrease llhen the respective function keys are 
pressed that control each of these JBIClDEters. } 

IelTheta 
~ 

~ 
IelD 
lMin 
Rtd1i.n 
Vert:exIilx 

Surfac.EM3x 

=0.0175 ; 
=0.0175 ; 
= 5 ; 
= 5 ; 
= 5 ; 
= 5 ; 
= 100 ; 

= 100 ; 

M3xSurfVertices = 8; 

BorderCo1or 
<l>jectCo1or 

FrasurEM3x 

E'dge:M:lx 

FcasureRecord 

&asureType 

FdgesRecord 

E'dgesType 

R3Vector 

R2Vector 

LineType 

= Red ; 
= Green; 

= 10 ; 

= 100 ; 

=Record 

{ The m:in:inun value for D. } 
{ The m:in:inun value for Rho. } 
{ The oexiJrun nunber of vertices that an object 

can have. } 
{ The oexiJrun nunber of surfaces an object can 

have. } 
{The oexiJrun nunber of vertices that can fonn 

a surface. } 
{ The color of the display window border. 
{ The edges that fonn the object will be 

displayed in this color. } 
{ The oexiJrun nunber of disjoint erasures that 

an edge can have. } 
{ The oexiJrun nunber of edges that an object 

can have. } 

tl, t2 : Real ;
 
End;
 

= Array[l ••F.rast1rEM3x] Of ErasureRecord ; 

=Record 
nv1,nv2 : Integer ; 
Erasure : ErasureType ; 
NurErasures : Integer ;
 
F1ag : &>olean ;
 

End;
 

=Array[l••&i~] Of &igesRecord ; 

=Record 
x,y,z : Real ; 

End ; 

=Record 
x,y : Real ; 

End ; 

= Record 
endl,end2 : R2Vector ; 

End; 



71
 

Verti.cesType =Array[1 ••M:DcSurfVertices] Of R2Vector ; 

=Record 
Vertices : Array[1 ••MlxSurfVertices] of Integer ; 
NunVertices : Integer ; 

Fnd ; 

IOVertexType =Array[1••Ve~] Of R3Vector ; 
R2VertexType =Array[1••Vert:exf-m] Of R2Vector ; 
SurfaceType =Array[1••SurfaceHlx] Of SurfaceRecord ; 

FileNareType =String[8] ; 

StatsRecord =Record 
Stat9AJ.,Axis,Hidden : Boolean ; 
Th,Ph,Rh,Dist : Real ; 
eX>jNaJE : FileNareType ; 

Fnd; 

R3 SINRD VERIEX : R3VerteXI'ype;
 

{ R3 SINRD VERIE<[i] cootains the standard three-dinelsioml coordinates for
 
tiE i -th- vertex. } 

R3 EYE VERlE{ : R3Vert:eXfype; 

{ R3 EYE VERIEX[i] contains the eye three-dinelsioml coordinates for the 
i-tit vertex. } 

R2Vertex : R2VertexType;
 

{ R2Vertex[i] cootains the b.o-d:inEns:i.om1 screen coordinates for the i-th
 
vertex. } 

Surface : SurfaceType ; 

{ Surface[i].NunVertices contains the j-th vertex in the fonwlatioo of the 
i -th surface. } 

Fdges : FdgesType; 

{ Fdges[i].nv1 cootains the ntJDber of the first vertex defining the 
i-th edge. 

Fdges[i] .nv2 cootains the nunber of the second vertex defining the 
i-th edge. 

Fdges[ i] •Erasure[ j]. t1 cootains the the first endpoint defining the j-th 
erasure of the i-th edge. 



72 

FJiges[i].Erasure[j].t2 cootains the second endpoint defining the j-th 
erasure of the i -th edge.
 

FJiges[i].NtJnErasures cootains the IltJIlber of erasures currently on the
 
i-th edge.
 

FJiges[i].Flag is a process flag. If Fdges[i].Flag = 'OOE then the i-th 
edge will not be processed (ie. tested for visibility with respect to the 
surfaces of the object). } 

: Integer;
 

( The actual nllllber of vertices that fonn the object. )
 

: Integer;
 

( The actual nunber of surfaces tlBt form the object. )
 

: Integer; 

( The actaul nunber of edges that fOnD the surface. ) 

1reta,Fhi,Rho,D : Real; 

( The viewing~. ) 

FUoctKey : Integer; 

( Contains the IllIIIber as&lCiated with the fuoction key tlBt 'eS pressed. ) 

A,B : Char; 

( ibId the sequen:e of dmacters generated W1en a fuoction key is pressed. ) 

Stats : StatsRecord; 

( Contains the status infonmtion wch is displayed on the first t\\O 1ires 
of the display screen. )
 

<l>jectNmE : FileNmEType;
 

( Contains the IlCIIE of the object being displayed. )
 

($1 GRAHIl.TRJ )
 
($1 GRAHI2.TRJ) 

Procedure DrawFdge(Fdge:FdgesRecord ; R2Vertex:R2VerteXI'ype ; CoIor:Integer) ; 

Var xl,yl,x2,y2,ql,q2: Real; k: Integer ; 

Begin 

xl := R2Vertex[Edge.nvl].x ; yl := R2Vertex[Edge.nvl].y ; 



73 

:= R2Vertex[Edge.nv2].x ; y2 := R2Vertex[F.dge.nv2].y ; 

F.dge.Nmfrastn-es =0 Then
 
, Clip(xl,yl,x2,y2,Color,Xmin,Xnax,Ymin,YIIBX)
 
~11.se 
lBegin 

SortErasure(Edge.Erasure,Edge.Nm£rasures) ; 

ql := Edge.Erasure[l].tl ; 

Clip(xl,yl,xl+ql*(x2-xl),yl+ql*(y2-yl),Color,Xmin,Xnax,Ymin,YIIBX) ; 

k := 1 ; 

lmle k <= F.dge.Nmfrastn-es - 1 Ib 
Peg:in
 

ql := Edge.Erasure[k].t2 ;
 
q2 := Edge.Erasure[k].tl ;
 
Clip(xl+ql*(x2-xl),yl+ql*(y2-yl),xl+q2*(x2-xl),yl+q2*(y2-yl),Color,
 

Xmin,Xnax,Ymin,YII8X) ;
 
k := k+l ;
 

Fnd;
 

q1 := Edge.Erasure[Edge.Nmfrastn-es]. t2 ;
 
Clip(xl+ql*(x2-xl) ,yl+ql*(y2-yl) ,x2,y2,Color,Xmin,Xnax,Ymin,YIIBX) ;
 

Procedure AddEdge(Var Edges:EdgesType ; Var EdgeS:btmt:Integer ; 
nvl,nv2,Nm8:asures:Integer ; F1.ag:Poolean ) ; 

If Edgeabunt <Edged1Dc Then
 
Peg:in
 

F.dgesCoont := Edgeahmt + 1 ;
 

If nvl >nv2 Then SwitchIntegers(nvl,nv2) ; 

"1I'"."""Edges[EdgeeCount].nvl := nvl ;
 
F.dges[EdgeS:btmt].nv2 := nv2 ;
 
Edges[EdgeS:btmt].F1.ag := Flag ;
 
Edges[EdgeeCount].Nm8:asures := NuIf'.casures ;
 

Fnd; 
End; 

Procedure fuildEdgeTable(Var Edges:EdgesType ; Var EdgeeCount:Integer ; 
Surface:SurfaceType ; SurfaceCount: Integer) ; 



74
 

j,k,nvl,nv2,EdgeNunber : Integer ; Found : fuolean ; 

For j := 1 To SurfaceCamt Ih 
Begin
 

For k := 1 To Surface[j].NumVerti.ces Ih
 
Begin
 

nvl := Surface[j].Vertices[k] ; 
nv2 := Surface[j].Verti.ces[k+1] ; 
FiMEdgeNunber(Edges,EdgeS:hmt,nv1,nv2,EdgeNunber,Found) ; 
If Not Found Then AddFdge(Fdges,EdgeS:bunt,nvl,nv2,O,False) ; 

End;
 
Fro;
 

t~oc:eaure Drcna>ject(Edges:EdgesType ; EdgeS:'.ount:Integer ; 
R2Vertex:R2VerteXI'ype) ; 

Begin 
For k := 1 To Edgea'oont Ih DrawEdge(Edges[k],R2Vertex,Green) 

Fm; 

Procedure RaooveHiddenLines(R3 SlNRD VERI'EX,R3 EYE VERI'EX:R3V~ ; 
RZVertex:R2Vert:eXI'ype -; Surface:SurfaceType ; 
Var Edges:EdgeSI'ype ; EdgeS::ount,Vert:exColmt, 
StrlaceCount : Integer ; 'Ireta,Phi,Rho,D:Real) ; 

Var Surf,K,NunInt,ntvl,ntv2,Nut6urfVertices,EdgeNunber : Integer ; 
e,f,g,h,minpolyx,lIBXpOlyx,minpolyy,naxpolyy : Real ; 
TestFdge, PolyEdge : LineType ; 
pl,p2 : R2Vector ; 
PolyPoints : VerticesType ; 
hl,h2,h3 : R3Vector ; 
~t,Found,Behindl,Behind2,Insidel,Insid.e2 : &olean ; 

Begin 

For Surf := 1 To SurfaceCount Ih
 
Begin
 

Nm6urfVerti.ces := Surface[Surf] .NunVertices ; 

For K := 1 To NmBurfVertices+1 Ih
 
PolyPoints[K] := R2Vertex[Surface[Strl].Verti.ces[K]] ;
 



- -

75
 

K:ukSurfaceFrlges(&lges,&lgea'.omt,Surface[Surf]) ; 

Rectangu1arBoundry(Nun6urfVertices,PolyPoints,minpolyx,lIBXpolyx,
 
minpolyy,JIBXpolyy) ;
 

hI := R3 EYE VEXTIX[Surface[Surf].Vertices[I]] ;
 
h2 := R3-EYE-VFID'EX[Surface[Surf].Vertices[2]] ;
 
h3 := R3-EYE-VFID'EX[Surface[Surf].Vertices[3]] ;
 

Ca1cR3P1ane(hl,h2,h3,e,f,g,h) ; 

For FrlgeNunber := I To &lge9}:xmt Ih 
Begin 

ntvl := &lges[&lgeNudJer].nvl ; 
ntv2 := F.dges[&lgeNunber].nv2 ; 

If &lges[FrlgeNunber].Flag Then
 
Nothing
 
Else
 
Begin
 

Test&lge.endl := R2Vertex[ntvl] ; 
TestF.dge.end2 := R2Vertex[ntv2] ; 

Behindl := BehindPlane(R3 EYE VERIEX[ntvl],e,f,g,h) ; 
Behind2 := Behi.ndP1ane(R3-EYE VERI'EX[ntv2],e,f,g,h) ; 

If «Not BehindI) And (Not Behind2» Or 
(CAltsidePox(TestF.dge,minpolYX,lIBXpolyx,minpolyy,lIBXpolyy» Then 

Nothing 
Else 
Begin 

FindIntersectiooPoints(TestF.dge,Nm6urfVertices,PolyPoints, 
pl,p2,NunInt,Lependent) ; 

If Not ~ent Then 
Begin 

Insidel := InsidePoly(Nrn6urfVertices,PolyPoints,TestF.dge.endl) ; 
Inside2 := InsidePoly(Nm6urfVertices,PolyPoints,TestF.dge.end2) ; 

ProcessTestF.dge(TestF.dge,&lgeNunber, 
R3_EYE_VERIEX[ntvI] ,R3_EYE_VERI'EX[ntv2], 
R2Vertex,pI,p2,NunInt,Nm6urfVertices, 
PolyPoints,e,f,g,h,1heta,Phi,Rho,D,F.dges, 
Behindl ,Behind2, Insidel, Inside2) ; 

Fnd ;
 
Fnd ;
 

Fnd ;
 
Fnd ;
 
UrMni<SurfaceF.dges(Frlges,&lgeQbunt ,SurfacerSurf]) ; 

Fnd ; 
Fro; 

Procedure Proc:es9l>ject(R3 SINRD VERIEX:R3VerteXI'ype ; 



76
 

R3 EYE VERlEX:R3VerteXI'ype ;
 
R2Vertex:R2Vert:eXI'ype ;
 
VertexCotmt:Integer ; Surface:SurfaceType ;
 
SurfaceCount:Integer ;
 
Edges:EdgesType ; EdgeS:'.ount:Integer ;
 
Theta,Phi,Rho,D:Rea1 ; Stats:StatsRecord) ;
 

K : Integer ; 

Ca1cR3EyeVertex(R3 SINRD VERIEX,Vert:a<hmt,R3 EYE vtRIEX,
 
Theta,Phi,Rho,D) ; - 

Ca1cR2Vertex(R3_EYE_VFRIEX,Vert:exCount,R2Vertex,Theta,Phi ,ROO,D) 

If Stats.Hi.dden Then
 
Begin
 

For K := 1 To EdgeS:'.oont Lb
 
Begin
 

Edges[K].Nmf.rasures := 0 ;
 
Edges[K].F1.ag := False ;
 

Fnd ;
 

Write(Chr(7» ; 
RaJDveHi.ddenU.nes(R3 SINRD VERlEX,R3 EYE VERlEX,R2Vertex,Surface,Edges, 

Ed~t,VertexCount,SurfaceCount,Theta,Phi,Rho,D) ; 
Fnd; 

Write(Chr(7» ;
 
lapScreen ;
 
Drm.a>ject(F.dges,EdgEShmt,R2Vertex) ;
 

If Stats.Axi.s Then DrawAxes(Theta,Phi,ROO,D) ; 

Fnd; 

Procedure Initialire(Var R3_SINRD_VERIEX:R3VerteXI'ype ; 
Var R3_EYE_VERI'EX:R3VerteXI'ype ; 
Var Surface:SurfaceType ; 
Var Edges:EdgesType ; 

Ulject:Natre:FileNareType ; 
Var Theta,Phi,Rho,D:Rea1 ; 
Var Edge(h.mt,SurfaceCount,VertexCount:Integer ; 
Var Stats:StatsRecord) 

Var Infile: Text ; k: Integer ; 

Begin 

Ass:i.gn(Infile,UljectNaIe + '.Ver' ) 



With Stats Ib 
Begin 

Stats.Th := Theta ; Stats.Ph := Hrl ; 

... 
1II11111

•• 

77 

:= False ; 
:= 'Irue ; 

:= Object:Naie ; 
:= Theta ; 
:= Hrl ; 
:= Rho ; 
:= D; 

:= 'Irue ; 

Statah 
Axis 
Hidden 
ObjNaIE 
Th 
Ht 
Rh 
Di.st 

&rl.l.dFrlgeTable(Edges,EdgeS:ot.mt,Surface,SurfaceCbunt) ; 

loadVertex(Infile,R3 SINRD VFRI'EX,Vert:exCount) ; 
Close(Infile); - -

Assi.gn(Infile,Object:Naie + '.Sur') ; 
Reset(Infile) ; 

ZapScreen ; 

Repeat 

Fnd; 

If Parc:lJQxmt = 0 Then 
Begin 

Textltxle(CID) ; 
Write('Object : ') ; 
Readln(ObjectNmE) ; 

Fnd 
Else 
Object:Nare := Parao"6tr(l) ; 

!nit;81; re(R3_SINRD_VFRI'EX,R3_EYE_VFRI'EX,Surface,Edges,ObjectNaue, 
Theta,Hrl,Rho,D,EdgeS:ot.mt,SurfaceComt,VertexCotmt, 
Stats) ; 

" 1oodSurface(Infile,Surface,SurfaceCbunt) ; 
Cl.ose(Infile) ; 

Pi/4 ; 
:= Pi/2 ; 
:= 425 ; 
:= 1549; 

Begin 



78 

Stats.Rh := ROO ;	 Stats.Dist := D ; 

If Stats.Stat:9Al Then Sln6tats(Stats) Else EraseStats(Stats) ; 

GetKeySequeoce(A,B)	 ; 

If Ord(A) = 27 Then
 
FuoctKey := IkodeFuoctiooKey(B) ;
 

If Ord(A) = 27 Then
 
Begin
 

Case FuoctKey Of 

01 : WrapArot.mdIK(Theta,U:!lTheta,0,2*Pi.) ; 
02 : WrapAromdInc(Theta,MTheta,O,2*Pi.) ; 
03 : Wrapt\roun<ID:!c(Fbi,re:t.Fhi,O,Pi) ; 
04 : WrapAroundInc(Fbi,re:t.Fhi,O,Pi) ;
 
OS : Ik(ROO,U:!1Rho) ;
 
OC> : Inc(ROO,U:!1Rho) ;
 
07 : Ik(D,U:!ID) ; 
00 : Inc(D,U:!lD) ; 

00	 : Proces:Dbject(R3 SlNRD VERIEX,R3 EYE VERIEX,R2Vertex, 
VertexCount,Surface,SurfaceCount, 
Edges,EdgeS:.ount,Theta,Fbi,ROO,D,Stats) ; 

11 : Wrapt\roun<ID:!c(Theta,U:!lTheta*lO,O,2*Pi.) ; 
12 : WrapAro.mdInc(Theta,MTheta*10,0,2*Pi.) ; 
13 : WrapAroundla:(Fbi,re:t.Fhi*10,0,Pi) ; 
14 : WrapAroundInc(Fbi,re:t.Fhi*10,0,Pi) ; 
15 : Ik(ROO,U:!1Rho*10) ; 
16 : Inc(ROO,U:!1Rho*1O) ; 
17 : Ik(D,MJ)IclO) ; 
18 : Inc(D,U:!llJI=lO) ; 
21 : Stats.Stat:9Al	 := Not Stats.Stat:9Al ; 
22 : Stats.Axi.s := Not Stats.Axi.s ; 
23 : Stats.Hi.dden := Not Stats.Hi.dden ; 

End;
 
End ;
 

Until (FuoctKey = 10) And (Ord(A) = 27) ; 

ExitProgram ; 

End. 



APPENDIX G 

The following is the source code written in Turbo 

Pascal for algorithm number three. Refer to appendix D for 

instructions on how to run the program. 

Progroan Hidden_Lire_Ramval_03 (Inp..1t,CAIt}Xlt) ; 

( I1mguage/Canpiler : TIJROO Pascal 3.0lA 
CaIprt:er : TIM R:: or carJIBtibles 

Copyrlght(c) : Pernd.ssion is granted by t:re autlDr to use, reproduce,
 
roodify all or Jm"t of t:re canputer prograns contained
 
herein for t:re readers own personal use. This
 
penniss:ion is not to be construed as a license to
 
distribute or sell all or any Jm"t of t:re progran5 to
 
ot:rers in any shape or fonn.
 

Dis:1ainer :	 The autlDr has spent a great deal of t:inE and effort
 
in preJming this tresis and t:re progran5 contained
 
herein. This includes nany hoors of research,
 
develoJlIBlt and testing of t:re programs to determine
 
t:reir effectiveness. The author shall not be liable
 
in any event for :iIridental or consequential danages
 
in cooection with or arising out of t:re furnishing,
 
perfOI1lBJK:e or use of all or any portion of these
 
prograns.
 

Const 

( Palette 0 color constants. 

Black = o ; 
Green = 1 •, 
Red = 2 ., 
Brown = 3 •, ""I

Ii;.'.". 
( Display window bomdary constants. ) 

Xmin = 1 •,
 
XnBx = 310 ;
 
Ymin = Xl·,
 
YllBX = 1l}) ;
 

( Roughly t:re center of t:re display wi.ndcM. ) 

CenterX = 155 ;
 
CenterY = 89;
 



80 

= 0.93; {the approxi.nBte aspect ratio for the IlM R: 
graIirlcs &:reen. } 

{ These constants d.eteImi.ne 00w JIJJCh the viewing JB}mEters Theta,Phi,Rho,
 
and Dwill increase or decrease ~ tre respective functioo keys are
 
pressed that cootrol each of these JBIaIeters. }
 

"	 MTheta = 0.0175; 
MPhi. = 0.0175; 
00Rh0 = 5 ; 
M.D = 5 ; 

!Min = 5 ; { The mininun value for D. }
 
RhcMin = 5 ; { The mininun value for Rho. }
 
Vert:exfiDc = 32 ; { The nmcim.Jn m.mber of vertices that an object
 

can have. }
 
SurfaceMDc = (:fJ ; { The IIBXinun nunber of surfaces that an object
 

can have. }
 
tiDSurlVertices = 7 ; { The IIBXinun m.mber of vertices that can fonn
 

a surface. }
 
BorderColor = Red ; { The color of the oorder of the display
 

window. }
 
CbjectColor = Green ; { The edges that form the object will be
 

displayed in this color. }
 
FrasurEM:uc = 10 ; { The nmcim.Jn m.mber of disjoint erasures that
 

an edge can have. }
 
&igeEl1Dc = I~ ; { The IIBXinun m.mber of edges that an object
 

can have. }
 

~ 

FrasureRecord =Record
 
tI, t2 : Real ;
 

End ;
 

ErasureType = Array[ 1••~] Of ErasureRecord ;	 ••
FrlgesRecord =Record invI,nv2 : Integer ; 

Erasure : ErasureType ;	 ..•
NunErasures : Integer ; •....
BackEdge : &olean ; .. 

'" Flag : &olean ;
 
End ;
 

FrlgesType =Array[I ••Frl~] Of FrlgesRecord ; 

R3Vector =Record
 
x,y,z : Real ;
 

End ;
 

R2Vector =Record
 
x,y : Real •
 

End • ' , 

." 

....



- -

81 

=Record
 
erxil,end2 : RZVector ;
 

End;
 

VerticesType =Array[1••tilxSurfVertices] Of RZVector ; 

SurfaceRecord =Record
 
Vertices : Array[l..ttlxSurfVertices] of Integer ;
 
NunVertices : Integer ;
 

End •• 

R3V~ =Array[1••Vert:.eJcMgx] Of R3Vector ;
 
R2V~ = Array[I ••VertexM3x] Of RZVector ;
 
SurfaceType = Array[l ••Surfacd1D:] Of SurfaceRecord ;
 

Fi1~Type =String[8] ; 

StatsRecord =Record
 
Stat&b,Axis,Hidden : Boolean ;
 
'Ih,Hl,Rh,Dist : Real ;
 
ObjNaJE : FileN!meType ;
 

End •• 

Var 

R3 SINRD VERI.'EX : R3V~; 

{ R3 SINRD VERI'FX[ i] cootains the star¥iard t:hree-d:ine1sional coordinates for
 
the i -th-vertex. }
 

R3 EYE VERI.'EX : R3V~; 

{ R3 EYE VERI.'EX[i] coota1ns the eye t:hree-d:ine1siooal coordinates for the ••
i-th vertex. } 

II

RZVertex : RZV~; 
..•
i 
I{ RZVertex[i] cootains the ~ooal s::reen coordinates for the i-th 

vertex. } ·••,.
'." 

Surface : SurfaceType ; 

{ Surface[i].NunVertices cootains the j-th vertice in the fOllllllatioo of the
 
i -th surface. }
 

Edges : EdgesType; 

{ Edges[i] .nv1 cootains the rnmber of the first vertex defining the
 
i-th edge.
 

Edges[i] .nv2 cootains the nunber of the secood vertex defining the
 
i-th edge.
 

•



82 

Fdges[i].Erasure[j].tl cootains tiE tiE first endpoint defining tiE j-th 
erasure of tiE i-th edge.
 

Fdges[i] •Erasure[j].t2 cootains tre second endpoint defining tiE j-th
 
erasure of tiE i -th edge.
 

Fdges[i].NunErasures cootains tiE nunber of erasures etnTeIltly 00 tiE 
i-th edge.
 

Fdges[i].&ckF.dge is a tack edge flag for tiE i-th edge.
 
If Fdges[i].&ckF.dge = 'IRUE then tiE i-th edge is a 00ck edge and
 
trerefore should not Ie displayed.
 

Fdges[i].F1ag is a process flag. If Fdges[i].F1ag = 'IRUE then tiE i-th
 
edge will not Ie processed (ie. tested for visibility with respect to tiE
 
surfaces of tiE object). }
 

VertexCotmt : Integer; 

{ The actual IllIIIber of vertices that form tiE object. } 

SurfaceCount : Integer; 

{ The crtual IllIIIber of surfaces that form tiE object. } 

Fd~t : Integer; -I-:It{ The actual mJIlber of edges that fonn tiE surface. } 
=: 

'1heta,Ati.,Rho,D : Real; i 
{ The viadng ~. } i 
FuoctKey : Integer; ..•
{ Contains tiE mJIlber as9Xiated with tre fuoctioo key trat was pressed. } ..•I 

iii 
iA,B : Char; 
f
••{ lhlds tiE sequeoce of characters generated W1en a fuoctioo key is ..
•

pressed. } • 
'" 

Stats : StatsRecord;
 

{ Contains tiE status infonmtioo Wich is displayed 00 tiE first tw:> lines
 
of tiE display screen. } 

<l>jectNare : FileNcmeType; 

{ Contains tre raIE of tiE object Ieing displayed. } 

{$1 GRAHIl.1FU} 
{$1 GRAffi2.1FU} 



•• 

• •• •

._ure DrawEdge(Frlge:FrlgesRecord ; R2Vertex:R2VerteXI'ype ; Color:Integer) ; 

xl,y1,x2,y2,q1,q2 : REBl; k: Integer ; 

If Not Frlge.fuckFrlge Then 
1, Begin' 

xl := R2Vertex[Frlge.nv1].x ; y1 := R2Vertex[Frlge.nv1].y ;
 
x2 := R2Vertex[Edge.nv2].x ; y2 := R2Vertex[Frlge.nv2].y ;
 

If Frlge.Nmi'.rasures =0 Then
 
Clip(xl,y1,x2,y2,Color,Xmin,Ximx,Ymin,YIIBX)
 

Else 
Begin 

SortErasure(Frlge.F'..rasure,Frlge.Nmi'.rasures) ; 

q1 := Frlge.Erasure[1].t1 ; 

Clip(x1,y1,x1+q1*(x2-x1),y1+q1*(y2-y1),Color,Xmin,Xmax,Ymin,YIIBX) ; 

k := 1 ; 

Wrlle k <= Frlge.Nm£.rasures - 1 Ib 
Begin 

q1 := Frlge.Erasure[k].t2 ; 
q2 := Frlge.Erasure[k].t1 ; 
Clip(x1+q1*(x2-x1),y1+q1*(y2-y1),xl+q2*(x2-xl),y1+q2*(y2-y1),Color, 

Xmin,Ximx,Ymin,YIIBX) ;
 
k := k+1 ;
 

Fnd ;
 

q1 := Frlge.Erasure[Frlge.Nuo£rasures]•t2 ; 
Clip(x1+q1*(x2-x1) ,y1+q1*(y2-y1) ,x2,y2,Color,Xmin,Ximx,Ymin,Yrmx) ; 

Fnd; 
Fnd; 

Fnd; 

Procedure CalcNornalVec.tor(R3 S'INRD VERI'FX:R3VerteXI'ype ; 
Surface:SurfaceRecord ; 
Var Nonml:R3Vec.tor) ; 

Var a,b: R3Vec.tor ; 

Begin 

R3Diff(R3 S'INRD VOO'EX[Surface.Vertices[2]],
 
R3_S'INRD VOO'EX[Surface.Vertices[1]] ,a) ;
 

R3Di.ff(R3yrnRD_VOO'EX[Surface.Vertices[3] ], 

83 

-I-» 
2 
i 
•J 

••••i 
f 

• 



84 

R3_SINRD_VERrEX[Surface.Vertices[].] ] ,b) ; 

Normal.x := a.y * b.z - b.y * a.z ;
 
Normal.y := b.x * a.z - a.x * b.z ;
 
Normal.z := a.x * b.y - b.x * a.y ;
 

u.-..ure AddEdge(Var Edges:FrlgesType ; Var EdgeS:'.ount:Integer ; 
nvl,nv2,NunErasures:Integer ; Pack&lge,F1ag:Eoolean ) ; 

If Edge:Coont <Edga:M:Jx Then
 
Begin
 

Edge:Coont := EdgeECount + 1 ;
 

If nvl >nv2 Then SwitehIntegers(nvl,nv2) ; 

Edges[E'dgeS:'.otmt].nvl := nvl ;
 
Edges[Edge:Coont] .nv2 := nv2 ;
 
Edges[EdgeS:omt] .fuckF.dge := fuckF.dge ;
 
Edges[EdgeS:omt].F1ag := F1ag ;
 
Edges[EdgeS:omt].NunErasures := NunErasures ;
 

End; 
Fro; "" 

Procedure I1rUdEdgeTable(Var Edges:EdgesType ; Var EdgeeCotmt:Integer ; 
Surface:SurfaceType ; SurfaceCount:Integer) ; 

Var j,k,nvl,nv2,EdgeNunber : Integer ; Found : Boolean ; .. 
rBegin 

•I
••

Edge:Count	 := 0 ; 
•
IFor j := 1 To SurfaceCount Ih iBegin , 

For k := 1 To Surface[j] .NunVertices Ih
 
Begin
 

nvl := Surface[j].Vertices[k] ;
 
nv2 := Surface[j].Vertices[k+l] ;
 

FindFdgeNunber(Edges,Ed~t,nv1,nv2,EdgeNunber,Found) ; 

If Not Found Then AddEdge(Edges,EdgeS:.ount,nvl,nv2,O,False,False) ; 

End; 

End ; 
End ; 



,

85 

,_lire Drat.a:>ject(Edges:EdgesType ; Edge9:'.otmt:Integer ;
 
R2Vertex:R2VertexType) ;
 

For k := I To Ed~t Ih DrawFrlge(Edges[k],R2Vertex,Green) ; 

6~ure RaooveHi.dderiLires(R3_SINRD_VERI'EX,R3_EYE_VOOEX::R3VertexType ; 
R2Vertex:R2Vert:eXI'ype ; Surface:StrlaceType ; 
Var Edges:EdgeSI'ype ; EdgeS:ount,VertexCoont, 
Strlace:amt : Integer ; 'lle:a,Phi.,ROO,D:Real) ; 

Surf,K,NunInt,ntvI,ntv2,NunSurfVertices,EdgeNunber : Integer ;
 
e,f,g,h,minpolyx,nmcpolyx,minpolyy,lIBXpOlyy : Real ;
 
TestFdge,PolyEdge : UneType ;
 
pI,p2 : R2Vector ;
 
PolyPoints : VerticesType ;
 
hI,h2,113,View,Nonml : R3Vector ;
 
~t,Found,BehindI,Behind2,InsideI,Inside2 : P.oolean ;
 

For Surf := I To SurfaceCount Ih .,.Begin 
I... 

CalcViewVector(Surface[Surf],R3 SINRD VERIEX,'lle:a,Hri.,ROO,View) ; It
 
CalcNonmlVector(R3_SINRD_VERlE(,Surf'OCe[Strl] ,Nonml) ; Z


i' 
If R3IhtProduct(View,Nonml) >0 Then l-
Begin f 

Nm6urfVertices := Surface[Surf].NtmVertices ; ••
I 

•i
I
•For K := I To Nun6urfVertices+I Ih
 

PolyPoints[K] := R2Vertex[Surface[Surf].Vertices[K]] ;
 

Mni<SurfaceF.dges(Edges,Edgea'.olmt,Surface[StrlD ; r 

RectangularBoundry(NunSurfVertices,PolyPoints,minpolyx,nmcpolyx,
 
minpoIyy,nmcpolyy) ;
 

hI := R3 EYE VERrEX[Surface[Surf].Vertices[I]] ;
 
h2 := R3-EYE-VOO'EX[Surface[Strl].Vertices[2]] ;
 
113 := R3 EYE_VERI'EX[Surface[Surf].Vertices[3]] ;
 

CalcR3P1ane(hI ,h2,113,e,f,g,h) ; 

For EdgeNunber := I To EdgeS:hmt Ih
 
Begin
 

If ( Not Edges[ErlgeNt.mber].PackF.dge) And 



86 

( Not Fdges[FdgeNunber].Flag ) Then
 
Begin
 

ntvl	 := Fdges[FdgeNunber].nvl ; 
ntv2	 := Fdges[FdgeNunber] .nv2 ; 

If Fdges[FdgeNunber].Flag Then 
Nothing
 

Else
 
Begin
 

TestFdge.endl := R2Vertex[ntvl] ; 
TestFdge.end2 := R2Vertex[ntv2] ; 

Behindl := Beh:i.n1P1.ane(R3 EYE VEmEX[ntvl],e,f,g,h) ;
 
Behi.nd2 := Beh:i.n1P1.ane(R3- EYE- VEmEX[ntv2] ,e,f, g,h) ;
 

If «Not Pehindl) And (Not Behind2» Or 
(CbtsideBox(TestFdge,mi.npolyx,lIBXpOlyx,minpolyy,lIBXpOlyy» Then
 

Nothing
 
Else
 
Begin
 

FindIntersectiooPoints(TestFdge,Nun6urfVertices,PolyPoints,
 
pl,p2,NtJnInt,~pendent) ;
 

If Not ~pendent Then 
Begin 

Insidel := InsidePoly(NlIl6urfVertices,PolyPoints, I." TestEdge.endl) ; •
ItInside2 :... InsidePoly(NlIl6urfVertices,PolyPoints, 

TestF.dge.end2) ; :I 

ProcessTestEdge(TestFdge,EdgeNunber, i 
R3 EYE VERIEX[ntvl],R3 EYE VEmEX[ntv2], l
R2Vertex, pI,p2,NtJnInt,Nm6urf'Vertices, fPolyPoints,e,f,g,h,Theta,Phi,Rho,D,
 
Fdges,BehindI,Behind2,Insidel,Inside2)
 

Fro ;
 
End;
 

Fro	 •, 
Fnd ; 

End •, 
UdkkSurfaceFdges(Fdges,FdgefC.otmt,Surface[Surf]) ; 

Fro •, 
Fnd •, 

Fnd ; 

Procedure Set_&ckFdge_F1ags(Var Fdges:FdgesType ; Fdge:Count:Integer ; 
R3_SINRD_VERIEC:R3VertexType ; 
Surface:SurfaceType ; SurfaceCount:Integer ; 
Theta,Hri.,Rho,D:Rea1) ; 

Var	 View,Norn:B1: R3Vector ; FdgeNunber,J,K : Integer ; 
Found : Boolean ; 

Begin 



87 

For K := 1 To Fdge;Cotmt Ib Fdges[K].PackF.dge := 'frue ; 

For K := 1 To Surfac::eC<xmt Ib 
Begin 

CalcViewVector(Surface[K],R3 SINRD VERI'EX,'Iheta,Phi,ROO,View) ; 
CalcNonmlVector(R3_SINRD_vERrEx,Surface[K] ,Nonml) ; 

If R3IhtProduct(View,Nonml) >0 Then
 
Begin
 

For J := 1 To Surface[K].NlJnVertices Ib
 
Begin
 

FindFdgeNmJber(F.dges,FdgeShmt,Surface[K].Vertices[J],
 
Surface[K].Vertices[J+1] ,FdgeNt.mber,Found) ;
 

Fdges[FdgeNtJnber] .BackEdge := False ;
 
End ;
 

Fm; 
End; 

FDl; 

Procedure Pr~ject(R3 SINRD VERTEX:R3VerteXI'ype ; 
R3 EYE_VFRI'EX:R3VerteXI'ype ; 
R2Vertex:R2VerteXl'ype ; 
VertexCount:Integer ; Surface:SurfaceType ; 
SurfaceCount:Integer ; 
Fdges:FdgesType ; Fdge;£hunt:Integer ; 
'Iheta,Phi,ROO,D:Rea1 ; Stats:StatsRecord) ; "" I

•
Var K: Integer ;	 .. 

I 
Begin	 i 

.. 
Ca1cR3EyeVertex(R3_SINRD_VERI'EX,VertexCount,R3_EYE_VERIEX,	 III 

JTheta,Phi,ROO,D) ; 

QUcR2Vertex(R3_EYE_VERI'EX,VertexChunt,R2Vertex,'Iheta,Phi,ROO,D) ; 

If Stats.Hi.dden Then
 
Begin
 

For K := 1 To FdgeShmt Ib 
Begin
 

Fdges[K] .N\II£z'asures := 0 ;
 
Fdges[K].Flag := False ;
 
Fdges[K] .PackF.dge := False ;
 

End ,•

SetJ~ackFdge_F1ags(Fdges,Fdge&hmt,R3_SINRD_VERIlX,Surface,
 
SurfaceCount,Theta,Phi,ROO,D) ;
 

Write(01r(7» ; 
RamveHi.ddenUnes(R3~_VERIlX,R3_EYE_VERIlX,R2Vertex,Surface,F.dges,
 

Fd~t,VertexCount,SurfaceCaunt,Theta,Phi,ROO,D) ;
 
End ;
 

mtmrWFif&:';·'~'·V~iJ:c~·,l.t"~~~'~f"'.t<::;:">' 



88 

1a¢lcreen ; 
Write(Cl1r(7)) ; 
IEawa>ject(Edges,Ed~t,R2Vertex) ; 

If Stats.Axis Then DrawAxes(Theta,Fhi.,Rho,D) 

..........~ure.X Initjalize(Var R3 SINRD VEIDEl{:R3V,...-t-o.m""", ;_ _ \;,L~A.I~ 

Var R3 EYE VEIDEl{:R3VerteXI'ype ; 
Var Surface:SurfaceType ; 
Var Edges:EdgeSI'ype ; 

CbjectNcme:Fi.leNcJreType ; 
Var Theta.Fhi.,Rho,D:Rea1 ; 
Var EdgeCount,SurfaaCount.VertexCotmt:Integer ; 
Var Stats:StatsRecord) 

Infile : Text ; k: Integer ; 

Assi.gn(Infi1e,CbjectNcme + '.Ver') ; 
Reset(Infile) ; 

Assign(Infile,CbjectNane + '.Sur') ; 
Reset(Infile) ; 

lDadSurface(Infile,Surface.SurfaceCount) ; 
Close(Infile) ; 

LoadVertex(Infi1e,R3 SINRD VERIEX,VertexCoont) 
Close(Infile) ; - - III, 

I
•Ill

~ 
i 

0, 

Theta:= 
Fhi. := 
Rho := 
D := 

Pi!4 ; 
Pi./2; 
425 ; 

1549; 

:= True ; 
:= False ; 

:= Fhi. ; 
:= Rho ; 
:= D ; 

With Stats lh 
Begin 

StatS:b := True ; 
Axis 
Hidden 
CbjNme := CbjectNaIe ; 
Th := Theta ; 
fh 
Rh 
Dist 

Fnd ; 
&.rlldFrlgeTable(Edges,Ed~t,Surface.Surfaca::'.otmt) ; 

Fnd ; 



- -

APPENDIX H 

The following procedures and functions are located in 

the include files GRAPHl.TPU and GRAPH2.TPU. These 

procedures and functions are all common to the programs 

HLROl.PAS,HLR02.PAS, and HLR03.PAS. 

( GRAIID.1RJ ) 

Fuoctim Ieg(x:Rea1):Rea1 ; 

&gin 
~ := x * loo/pi ; 

End; 

Procedure Shoo.r.6tats(Stats:StatsRecord) ; 

&gin 

With Stats Ih 
'" Begin I..If Sta~ 1ren
 

Begin
 " 
GotoXY(Ol,Ol) ;
 
Write( 'Theta Hri. Rho D ())ject ID..R Axes') ;
 
GotoXY(Ol,02) ;
 
Write(' ') ;
 
GotoXY(03,02) Write(Ieg(Th):3:0)
 
GotoXY(07,02) Write(Ieg(Ph):3:0)
 
GotoXY(11 ,02) Write(Rh:5:0) ;
 
GotoXY(l7,02) Write(Dist:5:0) ;
 
GotoXY(23,02) Write(ClljNauE) ;
 
GotoXY(32,02) If Hidden 1ren Write('rn') Else Write('CFF')
 
GotoXY(36,02) If Axis 1ren Write(' rn') Else Write('CFF' )
 

End ; 
End; 

End ; 

Procedure EraseStats(Stats:StatsRecord) 

Begin 

GotoXY(Ol,Ol) ; Writeln(' ') ;
 
GotoXY(Ol,02) ; Writeln(' ') ;
 

End; 

Procedure LoadVertex(Var Infile:Text ; Var R3 SINRD VERIEX:R3VerteXI'ype ; 



90 

Var VertexCoont:Integer) ; 

{ This procedure reads the vertex definitioo file fron the disk. The 
vertex definitioo file cootains a listing of the standard threEHi:inEnsiooal 
coordinates for each vertex. Examples of vertex definition files are 
lUBE.VER, J:XlH:.VER SIXlY.VER, smERE.VER, and lEIRA.VER which are all 
located on the progran diS<.. } 

vertexCotmt := 0 ; 

Wrile (Not Eof(InFile» And (VertexCoont <Vert:ext1uc) Ih
 
Begin
 

vertexCotmt := VertexCotmt + 1 ; 
Ra1dIn(InFile,R3 SINRD VERrEX[VertexCotmt] .x,
 

R3- SINRD- VFRrEX[VertexCoont].y,
 
R3 SINRD VFRl'EX[VertexCoont].z );
 

Procedure LcadSurface(Var Infile:Text ; Var Surface:SurfaceType ; 
Var SurfaceCount:Integer) ; 

{ This procedure reads the surface definitioo file fran the diS<.. The 
surface definitioo file contains a listing of the vertices that fom each 
surface. Examples of surfac definitim files are JDEE.SUR, J:XlH:.SUR, 
SIXlY•SUR, smERE.SUR, and lEIRA.SUR which are all located on the 
program disk. } 

Var k : Integer ; 

Pegin 

SurfaceCount := 0 ; 

\o.hile (Not Eof(Infile» And (SurfaceCount <Surfac8ilx) Ih 
Begin 

SurfaceCoont := SurfaceCount + 1 ;
 
Rmd(Infile,Surface[SurfaceCount] .NtInVertices) ;
 

For k := 1 To (Surface[SurfaceCount].Nt.mVertices + 1) Ih
 
Rmd(Infile,Surface[SurfaceCount].Vertices[k]) ;
 

Readln(Infile) ;
 

Fnd ; 
Em ; 

Procedure ExitProgram ; 



91 

,'..;1t-ri ...~iu:::es-ul 

.	 Ik'aw(Xmin,Ymin,Ximx,Ymin,Borderlhlor) 
Ik'aw(Xnax,Ymin,Xnax,YIIBX,BorderColor) 
Ik'aw(Xnax,YIIBX,Xmin,YIIBX,Borderlhlor) 
Ik'aw(Xmin, YIIBX,Xmin,Ymin,Borderlhlor) 

",n...I
"aAl ; 

Begin
 
Grapiblorl1xie ;
 
Palette(O) ;
 
~tats(Stats) 

DrawBorder ; 
Pm; 

Procelure R3Di£f(a,b:R3Vector ; Var diff:R3Vector) 

Begin 

diff.x := a.x - b.x ;
 
diff.y := a.y - b.y ;
 
diff.z := a.z - b.z ;
 

Fnd; 

Procedure EyeXYZ(Theta,Hli.,Rho,D:Real ; Standard:R3Vector ;
 
Var Eye:R3Vector) ;
 

{ Given ~ standard coordinates of a point in three-space, this procedure 
calculates ~ eye coordinates for that IBrticular JX>int. } 

Var sl,s2,c1,c2,x,y,z: Real ; 

Begin 

x	 := Standard.x ; y := Standard.y ; z := Standard.z ; 

sl := Sin(Theta)
 
c1 := Cos(Theta)
 
s2 := Sin(Hli.) ;
 
c2 := Cos(Hli.) ;
 

Eye.x := -x * sl + y * c1 ;
 
Eye.y := -x * c1 * c2 - y * sl * c2 + z * s2 ;
 
Eye.z := -x * c1 * s2 - y * sl * s2 - z * c2 + Rho ;
 

End ; 



92
 

Procedm-e ScreenXY(Theta,Phi,Rho,D:Rea1 ; R3Eye:R3Vector ; 
Var Screen:R2Vector) ; 

( Given the eye coordinates for a JX>int in three-srece, this proc.edm-e 
calculates the screen coordinates for that p:uticular JX>int. ) 

Feg:in 

Screen.x := CenterX + D* R3Eye.x/R3Eye.z ; 
Screen.y := CenterY - D * R3Eye.y/R3Eye.z * As~tRatio ; 

Fm; 

Prccedm-e WrapArCllUldn:c(Var x:Rea1; Mta,l.oIEr,UpJer:Real) 

Begin 
x := x - Mta ; 
If x <l.oIEr Then x := Upper ; 

Fm; 

Procedure WrapAroundInc(Var x:Rea1; Mta,l.oIEr,Upper:Rea1) 

Begin 
x := x + fults ; 
If x >Upper Then x := l.oIEr ; 

Fnd •, 

Procedure :roc(Var x:Rea1; Mta:Rea1) 

Begin x + fulta ;x := 
Fnd ; 

Procedm-e IK(Var x:Rea1; Mta:Real) 

Begin x - fulta ;x := 
Fnd ; 

Procedm-e Clip(xl,yl,x2,y2 : Real ; Color,Xmin,XJIBx,Ymin,YIIBX : Integer) 

label	 Return ; 

Type	 Frlge = (Left,Right,Bottan,Top) 
QJtCode =Set of Frlge ; 

Var	 c,c1,c2: QJtCode ; 
x,y : Real ; 

Procedm-e Code(x,y : Real ; Var c : QJtCode)
 
Begin
 

C := [ ] ;
 

J
 



93 

If x <Xmin Then c := [Left]
 
Else
 
If x >XDax Then c := [Right] ;
 

If y <Ymin Then c := c + [Top]
 
Else
 
If y >YIIBX Then c := c + [:Ihttan] ;
 

End; 

Code(xl,yl,el) ; 
Code(x2,y2,c2) ; 

\\hUe (el 0 []) Or (c2 0 []) 10 
Begin 
If (el * c2) 0 [] Then Goto Return ; 

c := el ; If c = [] Then c := c2 ; 

If left In c Then 
Begin 

y := yl + (y2-yl)*(xmtn-xl)/(x2-xl) ; 
x := Xmin ; 

End
 
Else
 
If Right In c Then
 
Begin
 

y := yl + (y2-yl)*(XDax-xl)/(x2-xl) ; 
x := XDax ; 

End 
Else
 
If Pottan In c Then
 
Begin
 

x := xl + (x2-xl)*(YIIBX-yl)/(y2-yl) ; 
y := YJmx ; 

End 
Else
 
If Top In c Then
 
Begin
 

x := xl + (x2-xl)*(Ymi.Jr.yl)/(y2-yl) ; 
y := Ymi.n ; 

Fnd; 

If c = el Then
 
Begin
 

xl := x ; yl := y ; Gode(x,y,cl) ; 
End 
Else 
Begin 

x2 := x ; y2 := y ; Gode(x,y,c2) ; 
End ; 

End ,•



94 

Draw(TIunc(xl),Ttunc(yl),Ttunc(x2),Ttunc(y2),001ar) 

Return : 

Procedure DrawAxes(Theta,Im,Rho,D:Re.a1) 

" Var i3s,j3s,k3s,i3e,j3e,k3e: R3Vector ; i2,j2,k2 : R2Vector ; 

&gin 

i3s.x := AxisI2ngth ; i3s.y := 00 ; i3s.z := 00 ; 
j3s.x := 00 ; j3s.y := Ax:i.slatgth ; j3s.z := 00 ; 
l&;.x := 00 ; k3s.y := 00 ; k3s.z := Ax:i.slatgth ; 

EyeXYl(Theta,Im.,Rho,D,i3s,i3e) ;
 
EyeXYl(Theta,Im.,Rho,D,j3s,j3e) ;
 
EyeXYl(Theta,Im.,Rho,D,k3s,k3e) ;
 

ScreenXY(Theta,Im.,Rho,D,i3e,i2) ;
 
ScreenXY(Theta,Im.,Rho,D,j3e,j2) ;
 
ScreenXY(Theta,Im,Rho,D,k3e,k2) ;
 

Clip(CenterX,CenterY,i2.x,i2.y,Green,Xmin,Xnmc,Ymin,Yrmx)
 
Clip(CenterX,CenterY, j2.x, j2.y,Red ,Xmin,Xnmc,Ymin,Yrmx)
 
Clip(CenterX,CenterY,k2.x,k2.y,Brown,Xmin,Xnmc,Ymin,Yrmx)
 

Fnd ; 

Functioo R3IhtProduct(Vector1,Vector2:R3Vector):Re.a1 ; 

Begin 

R3IhtProduct := Vectorl.x * Vector2.x +
 
Vectorl.y * Vector2.y +
 
Vectorl.z * Vector2.z
 

Fnd ; 

Procedure GetKeySeqtelCe(Var A,B:Olar) 

Begin
 
Read(Kbd,A) ;
 
If Ord(A) = 27 Then Read(Kbd,B)
 

Fnd ,•

Functioo Ia::odeFunctiooKey(A : Olar):Integer ; 

{ This functioo is used to decode the 0.0 coosecutive characters 
returned after a functioo key has been pressed. } 



95 

Pegi.n 
If Ord(A) >103 Then 

lkodeFuoctiooKey := Ord(A)-l03+-:}) (Alt fl - flO : returns 31-40 ) 
Else 
If Ord(A) >93 Then 

lkodeFuoctiooKey := Ord(A)-93+2O (Ctrl fl - flO : returns 21-:}) } 
Else 
If Ord(A) >68 Then 

D:!codeFuoctiooKey := Ord(A)-83f-lO (Shift fl - flO : returns 11-20 ) 
Else 
If Ord(A) >58 Then 

Ia:odeFunctiooKey := Ord(A)-58 ; ( fl - flO : returns 01-10 ) 
F.hd; 

Procedure DrawBox(xl,y1,x2,y2 : Real ; Color:Integer) ; 

Begin 

Clip(x1,y1,x2,y1,Color,Xmin,Xnax,Ymin,YI1BX) ;
 
Clip(x2,y1,x2,y2,Color,Xmin,Xnax,Ymin,YI1BX) ;
 
Clip(x2,y2,x1,y2,Color,Xmin,Xnax,Ymin,YI1BX) ;
 
Clip(xl,y2,x1,y1,Color,Xmin,xmax,Ymin,YI1BX) ;
 

End; 

Procedure CalcViewVector(Surface:SurfaceRecord ; 
R3 SmRD VERIEX:R3VerteXrype ; 
Theta,Fm.,Rho:Real ; 
Var ViewVector:R3Vector) ; 

( Gi.veIl a JBIticu1ar S\lrlace, this procedure canprt:es the view vector 
which is the vector directed fran the first vertex of the surface to the 
viewpoint \\hose SJi1erical coordinates are (Theta,Fm.,Rho). ) 

Var x : R3Vector ; 

Begin 

x.x := Rho * Sin(Fm.) * Cos(Theta) ; 
x.y := Rho * Sin(Fm.) * Sin(Theta) ; 
x.z := Rho * Cos(Fm.) ; 

R3Diff(x,R3_SmRD_VERIEX[Surface.Vertices[l]],ViewVector) ; 

Fnd ; 

( GRAHf2.1RJ ) 

Procedure CalcR2Vertex(R3_EYE_VERIEX:R3VerteXrype ; VertexCount: Integer ; 
Var R2Vertex:R2VerteXrype ; Theta,Fm.,Rho,D:Real) ; 



96 

For k := 1 To Vert:exQ>unt Ih
 
ScreenXY(Theta,Phi,Rho,D,R3__EYE_VFRrEX[k] ,R2Vertex[k]) ;
 

Procedure FindSlope(x1,y1,x2,y2:Rea1 ; Var m:Rea1 ; 
Var lhlefined:Boolean) ; 

llidefined := 1hJe ; 

If (x2 - xl) 0 0 Then 
Begin
 

m := (y2 - y1)/(x2 - xl) ;
 
Undefined := False ;
 

Fnd ; 

End; 

Fuoction Find t(xl,y1,x2,y2,px,py:Rea1):Real ; 

( A lire segJIBlt with endpoints (x1,y1) and (x2,y2) can be defined by a
 
parateUic equation R(t) = (x1,y1) + t(x2-x1,y2-yl). Given a point
 
(px,py) not necessarily on th:is l.ire segDEIlt but resonably close, this
 
procedure calculates a value for t soch that R( t) is approxinatly equal
 
to the point (px,py). }
 

Var slope: Real ; undefined : Boolean ; 

Begin 

FindSlope(x1,y1,x2,y2,slope,tmdefined) ; 

slope := Abs(slope) ; 

If Abs(slope - 1) <0.01 Then
 
Find__t := «px - x1)/(x2 - xl) + (py - y1)/(y2 - y1»/2
 

Else
 
If (slope >= 0) And (slope <1) Then
 

FindJ := (px - x1)/(x2 - xl)
 
Else
 

Find t := (py - y1)/(y2 - y1) ; 

End ; 

Fuoction Min(x,y:Real):Real ; 

Begin 



I 

97 

If x <= y Then Min := x Else Min := y ;
 
Ubi;
 

Begin
 
If x >= y Then M:ix := x Else M:ix := y ;
 

Pm;
 

.. !uoctioo R2VectorsEqual(v1,v2:R2Vector):Boolean ; 

Begin
 
R2VectorsEqual :=
 
(Abs(v1.x - v2.x) <0.001) And (Abs(v1.y - v2.y) <0.001) ;
 

End;
 

Procedure AddErasure(Var Fdges:FdgesType ; FdgeNunber:Integer ;
 
newt1,newt2:Real ) ;
 

Var Nmfrasures: Integer ;
 

Begin
 

NlInErasures := Fdges[FdgeNmlber].Nmfrasures ;
 

If Nmfrasures <ErasureM:!x Then
 
Begin 

Nmfrasures := Nmfrasures + 1 ; 

Fdges[EdgeNunber].Erasure[Nmfrasures].t1 := Min(newt1,newt2) ; 
Fdges[FdgeNunber] .Erasure[Nmfrasures].t2 := M:ix(newt1,newt2) ; 
Fdges[EdgeNunber].Nmfrasures := Nmfrasures ; 

End ; 
End ; 

Procedure SwitchRea1B(Var a,b:Real) ; 

Var Temp : Real ; 

Begin 

Teq> := a; a:= b; b:= Temp ; 

End ; 

Procedure SwitehIntegers(Var a, b:Integer) ; 

Var Temp: Integer ; 

Begin 

Teq> := a; a:= b; b:= Teq> ; 



98 

Procedure SortErasure(Var Erasure:ErasureType ; N:Integer) ;.. 
Var i,j: Integer ; 

Begin 

For i := I To N-I Ih 
For j := I To N-i Ih
 
If Erasure[j]. tl >Erasure[ j+-I].t2 Then
 
Begin
 

SwitehReals(Erasure[j].tI,Erasure[j+-I].tI) ; 
Swit:c:hRmls(Erasure[j] •t2,Erasure[j+-I ]•t2) ; 

End ; 
End; 

Procedure FindFdgeNunber(Edges:EdgesType ; Ed~t: Integer ; 
nvI,nv2:Integer ; Var EdgeNunber:Integer ; 
Var Found:fuolean) ; 

Begin 

Found := False ; 

If Ed~t >0 Then 
Begin 

14'rl~ ...ho....- 0 • 
~1~.- , 

If nvi >nv2 Then SwitchIntegers(nvI,nv2) ; 

Repeat 

EdgeNunber := EdgeNuOOer + I ;
 
If (Edges[EdgeNunber].nvi = nvI) And
 

(Frlges[EdgeNtJnber] .nv2 = nv2) Then Found := True ;
 

Until (Found) Or (EdgeNunber =EdgeECount) ; 
End; 

End ; 

Procedure M:1rkSurfaceF.dges(Var Edges:EdgesType ; EdgeEColmt:Integer ; 
Surface:SmfaceRecord) ; 

{ Gi.yen a pnticular surface, this procedure sets the process flag for all 
the edges defining this surface to 'rnUE. Thuc; IDle of the edges that 
define this surface w.i1l be tested for visibility with respect to this 
surface. } 

Var k,EdgeNunber: Integer; Found : fuolean ; 



99 

Begin 

For k := 1 To Surface.NumVertices Ih
 
Begin
 

FindEdgeNunber(Edges,Edge;Count,Surface.Vertices[k],
 
Surface.Vertices[k+l] ,EdgeNt.Jnber,Found) ;
 

Edges[EdgeNunber].Flag := True ; 

Fnd ,•
Fro ,•

Procedure lli1D:i<SurfaceF.dges(Var Edges:EdgesType ; EdgeS.bunt: Integer ; 
Surface:SurfaceRecord) ; 

( Given a pnticular surface, this procedure sets the process flag for all 
the edges defining this surface to FAlSE. ) 

Var k,F.dgeNl.Inber : Integer ; Found : Boolean ; 

Begin 

For k := 1 To Surface.NlInVertices Ih
 
Begin
 

FindEdgeNunber(Edges,Fdgeabunt,Surface.Vertices[k],
 
Surface.Vertices[k+l ] ,EdgeNUmber,Found) ;
 

Edges[EdgeNunber].Flag := False ; 
Fnd ,•

Fnd ,•

Procedure Proces9Jverlap(oldtl ,0ldt2,newtl ,newt2:Real ; 
Var uniontl,uniont2:Real ; Var Overlap:Boolean) ; 

Begin 

Overlap := True ; 

If oldtl >oldt2 Then SldtchRea1s(oldtl,oldt2) ;
 
If newtl >newt2 Then Sw.itchReals(newtl,newt2) ;
 

If «newtl >= oldtl) And (newtl <= oldt2)) And (newt2 >= oldt2) Then 
Begin
 

uniontl := oldtl ;
 
uniont2 := newt2 ;
 

Fnd 
Else
 
If «newt2 >= oldtl) And (newt2 <= oldt2)) And (newtl <= oldtl) Then
 
Pegi.n
 

uniontl := newtl ;
 
uniont2 := oldt2 ;
 

Fnd
 
Else 



100 

If	 (newt1 <= oldtl) And (newt2 >= oldt2) Then 
Begin
 

uniontl := newt1 ;
 
uniont2 := newt2 ;
 

Fnd
 
Else
 
Overlap := False ;
 

Fnd; 

Procedure RaIDveErasure(Var Fdges:FdgesType ; FdgeNunber,k: Integer ) ; 

Var Nmfrasures,p: Integer; 

Begin 

Nmfrasures := Fdges[FdgeNunber].NmfrasJres ; 

p := k+1 ; 

While p <= Nmfrasures IX>
 
Begin
 

Fdges[FdgeNunber] .Erasure[p-1] := Fdges[EdgeNunber] .Erasure[p] ;
 
p := p+-1 ;
 

Fnd; 

Ntmfrasures := NmfrasJres - 1 ;
 
Fdges[FdgeNunber].NmfrasJres := Nmfrasures ;
 

Fnd	 ; 

Procedure FatTestEdge(TestF.dge:UneType ; FdgeNunber:Integer ; 
p1,p2:R2Vector ; R2Vertex:R2VerteXrype ; 
Var Fdges:FdgesType) ; 

( Given a }Erti.cular edge and a portion of that edge to be erased (called 
an erasure), this procedure does tre follOOng: 

1.	 If there are 00 existing erasures to be prefoI'llEd on this }Erti.cular 
edge, then tre erasure is stored. (ie. tre very first erasure). 
Gato step 3. 

2.	 If there are existing erasures to be prefornEd on this }Erti.cular edge, 
then tre new erasure is 001I{lU'ed to tre existing ooes. 

a.)	 If tre new erasure is contained ~letely inside one of tre 
existing erasures then tre new erasure is d:i.s::art:ed. Gato step 
3. 

b.)	 If tre new erasure overlaps an existing erasure, then rarove 
tre existing erasure fron tre erasure table and DBke 
new erasure = (new erasure) union (existing erasure) and 



101 

repeat step 2. 

c.) If the new erasure does rot overlap an existing erasure, then 
add the new erasure to the erasure table. Gato step 3. 

3. Exit Procedure 

label 1,2,3 ; 

Var Discard,Overlap: Boolean ; NuIf.rasures,k,nv1,nv2 : Integer ; 
x1,y1,x2,y2,newt1,newt2,unionl,unioo2 : Real ; 

Begin 

If Not R2VectorsEqtB1(p1,p2) Then 
Begin 

nv1 := Edges[EdgeNunber].nv1 ;
 
nv2 := Edges[EdgeNunber].nv2 ;
 

xl := R2Vertex[nv1].x ; y1 := R2Vertex[nv1].y ;
 
x2	 := R2Vertex[nv2].x ; y2 := R2Vertex[nv2].y ; 

newt1 := Find t(x1,y1,x2,y2,p1.x,p1.y) ;
 
newt2 := Find-t(x1,y1,x2,y2,p2.x,p2.y) ;
 

If newt1 >newt2 Then SwitchReals(newt1,newt2) ;
 

NuIf.rasures := Edges[EdgeNunber] .Nmfrasures ;
 

If Ntmfrasures =0 Then
 
AddErasure(Edges,EdgeNumber,newt1,newt2)
 

Else
 
Begin
 

Discard := False ;
 
k := 0 ;
 
NuIf.rasures := Edges[EdgeNumber].NuIf.rasures ;
 

Repeat 

k := k + 1 ; 
If (newt1 >= Edges[EdgeNumber] .Erasure[k].t1) And 

(newt2 <= Edges[EdgeNumber].&asure[k].t2) Then Discard := True ; 

Until ( Discard ) Or ( k =Nmfrasures) ; 

If Not Discard Then
 
Begin
 

1:	 k:= 0 ;
 
NuIf.rasures := Edges[EdgeNunber].NunErasures ;
 



102 

2: k:= k + 1 ; 

Pr~lap(&lges[&lgeNunber ] .Erasure[k]. tl, 
&lges[&lgeNtJnOOr] •Erasure[k] •t2, 
newtl,newt2,union1 ,uni0n2,Overlap) ; 

If Overlap Then 
Begin 

RaIDveErasure(&lges,&lgeNunber,k) ; 
newtl := min(union1,uni0n2) ; 
newt2 := lIBX(union1,uni0n2) ; 
If newtl >newt2 Then SwitchRea1s(newtl,newt2) ; 
If &lges[&lgeNumber].Nmf.rasures >0 Then Goto 1 Else Goto 3 ; 

End ; 

If k <Nmf.rasures Then Goto 2 ; 

3: AddErasure(&lges,&lgeNllnber,newtl,newt2) ; 

End ; 
End; 

End ; 
End; 

Procedure RMidPoint(a, b:R2Vector ; Var midpoint:R2Vector) ; 

Begin 

midpoint.x := (a.x + b.x)/2 ;
 
midpoint.y := (a.y + b.y)/2 ;
 

End ; 

Procedure R:Mi.dPoint(a, b:R3Vector ; Var midpoint:R3Vector) ; 

Begin 

midpoint.x := (a.x + b.x)/2 ;
 
midpoint.y := (a.y + b.y)/2 ;
 
midpoint.z := (a.z + b.z)/2 ;
 

End; 

Procedure Nothing ; 

Begin 
End; 

F\mctioo Inbetween(a,b,x:Rea1):fuolean ; 

Begin 
Inbetween := (x >= Min(a,b)-Q.OOl) And (x <= M:Jx(a,b)iO.OOl) ; 

End ; 



103 

Fuocticn R21ignitude(Vectorl :R2Vector):Rea1 ; 

Begin 
RJvBgnitude := Sqrt(Sqr(Vectorl.x)iSqr(Vectorl.y» ; 

End ; 

Fuocticn R2Ang].e(vl:R2Vector):Real ; 

Begin 

If (vl.x = 0) And (vl.y >0) Then R2Ang1e := Pi./2 
Else 
If (vl.x = 0) And (vl.y <0) Then R2Angle := 3*P.i./2 
Else 
If (vl.y >= 0) And (vl.x >0) Then R2Ang1e := ArcTan(vl.y/vl.x) 
Else 
If (vl.y >= 0) And (vl.x <0) Then R2Angle := ArcTan(vl.y/vl.x) + Pi. 
Else 
If (vl.y < 0) And (vl.x <0) Then R2Angle := ArcTan(vl.y/vl.x) + Pi. 
Else 
If (vl.y < 0) And (vl.x >0) Then R2Angle := ArcTan(vl.y/vl.x) + 2*Pi. ; 

End ; 

Functicn Det2x2(a,b,c,d:Real):Real ; 

Begin 
Det2x2 := a*d - b*c ; 

End ; 

Fuocticn Det3x3(a,b,c,d,e,f,g,h,i:Real):Rea1 ; 

Begin 
Det3x3 := a*(i*e - h*f) - b*(i*d - g*f) + c*(h*d - e*g) ; 

End; 

Procedure CranersRule2x2(al,bl,c1,a2,b2,c2:Real ; Var ooluticn:R2Vector ; 
Var Inccnsi.stent,Dependent : Boolean) ; 

Var d,nl,n2 : Real ; 

Begin 

Inccnsistent := False ; 
Dependent := False ; 

d := Det2x2(al,bl,a2,b2) ; 
nl := Det2x2(c1,bl,c2,b2) ; 

Ifd=OThen
 
Begin
 

If n1 = 0 Then Dependent := True Else Inconsistent := True ;
 
End
 



104 

ELse 
Begin
 

n2 := Let2x2(al,el,a2,c2)
 
solution.x := nl/d ;
 
solution.y := n2/d ;
 

Fnd; 
End ; 

Procedure CalcR3P1ane(pl,p2,p3:R3Vector ; Var e,t,g,h : Real) 

Var xl,yl,zl,x2,y2,z2,x3,y3,z3 : Real ; 

Begin 

xl := pl.x ; yl := pl.y ; zl := pl.z ;
 
x2 := p2.x ; y2 := p2.y ; z2 := p2.z ;
 
x3 := p3.x ; y3 := p3.y ; z3 := p3.z ;
 

e := ~t3x3(l,yl,zl,1,y2,z2,1,y3,z3) ;
 
t := ~t3x3(xl,l,zl,x2,l,z2,x3,l,z3) ;
 
g := ~(xl,yl,1,x2,y2,1,x3,y3,1) ;
 
h := ~t3x3(yl,xl,zl,y2,x2,z2,y3,x3,z3)
 

Ifh<OThen
 
Begin
 

e := -e ; f := -f ; g := -g ; h := -h ; 
Fnd; 

End ; 

Procedure CalcR2Line(pl,p2:R2Vector ; Var a,b,c : Real) 

Begin 

a := (pl.y - p2.y)
 
b := (p2.x - pl.x) ;
 
c := (p2.x * pl.y) - (pl.x * p2.y)
 

Fnd; 

Procedure Ca1cR2Intersection(Edgel,Edge2:Li.neType ; Var Point:R2Vector ; 
Var I.nc.oos:ist:ent,~pendent:Boolean ); 

Var al,bl,c1,a2,b2,c2: Real ; 

Begin 

CalcR2Line(edgel.endl ,edgel.end2,al, bl ,el)
 
CalcR2Line(edge2.endl,edge2.end2,a2,b2,c2)
 

CrarersRu1e2x2(al,bl,el,a2,b2,c2,point,I.nc.oos:ist:ent,~pendent) 

End ; 



105 

Procedure R2Di.ff(v1,v2:R2Vector ; Var diff:R2Vector) ; 

( NIJnber : O~ ) 

&gin 
diff.x := v1.x - v2.x ; 
diff.y := v1.y - v2.y ; 

Fnd ; 

Fuocticn Sgn(x:Real) :Integer ; 

&gin 
If x >0 Then Sgn := +1 
Else 
If x <0 Then Sgn := -1 
Else 
Sgn ..-- 0 • , 

Fnd ,•

Fuocticn InsidePoly(NmPoints: Integer ; Points:VerticesType ; 
Point:R2Vector) :Boo1ean ; 

( Given a point and a polygcnal surface, this :functicn deterlIIi.res 
whetle" the point is located inside or ootside of the surface. ) 

label 2 ; 

Var Ang,TotalAngle : Real ; K : Integer; v1,v2 : R2Vector ; 

&gin 

InsidePoly := False ; 

For K := 1 To N1JIi>oints Ih
 
If R2VectorsEqua1(Point,Points[K]) Then Gato 2 ;
 

TotalAngle := 0 ; 

For K := 1 To NmPoints Ih
 
Begin
 

R2Di.ff(Points[K] ,Point,v1) ;
 
R2Di.ff(Points[K+1] ,Point,v2) ;
 

Ang := Abs(R2Angle(v1) - R2Angle(v2)) ;
 
If Ang >Pi. Then Ang := 2*Pi. - Ang ;
 
If Abs(Ang-Pi.) <0.001 Then Gato 2 ;
 
TotalAngle := TotalAngle + Sgn(fut2x2(v1.x,v1.y,v2.x,v2. y))*Ang ;
 

Fnd ; 

If Abs(Abs(TotalAngle) -2*Pi.) <0.001 Then InsidePoly := True ; 

2: 
Fnd ; 



i 

106 

,Procedure RectangularBotmdry(NrnPoints:Integer ; Points:VerticesType ; 
Var minpolyx,n:axpolyx,minpolyy,n:axpolyy:Rea1) ; 

Var i,p : R2Vector ; k : Integer ; 

Begin 

:= Points[l] ; 

minpolyx := i.x ; nmcpolyx := i.x ;
 
minpolyy := i.y ; n:axpolyy := i.y ;
 

For k := 2 To NmPoints Ib
 
Begin
 

p := Points[K] ; 

If p.x <minpolyx Then minpolyx := p.x ;
 
If p.x >n:axpolyx Then n:axpolyx := p.x ;
 
If p.y <minpolyy Then minpolyy := p.y ;
 
If p.y >n:axpolyy Then n:axpolyy := p.y ;
 

End ; 
End ; 

Fuoction <btsideBox(edge:LineType ; 
minpolyx,n:axpolyx,minpolyy,n:axpolyy:Rea1) :Boolean ; 

Begin 

<btsideBox :=	 «roge.erxIl.x <= minpolyx) And (edge.end2.x <= minpolyx)) Or 
«edge.erxIl.x >= n:axpolyx) And (edge.end2.x >= n:axpolyx)) Or 
«edge.erxIl.y <= minpolyy) And (edge.end2.y <= minpolyy)) Or 
« edge.erxIl.y >= n:axpolyy) And (roge.end2.y >= n:axpolyy)) 

End ; 

Procedure FindIntersectiooPoints(TestF.dge:LineType ; NrnPoints:Integer ; 
PolyPoints:VerticesType ; Var pl,p2:R2Vector ; 
Var NumInt:Integer ; Var ~}Bldent:Boolean) ; 

Var	 T: Integer ; PolyFdge : LineType ; intpoint : R2Vector ; 
Inconsistent : Boolean ; 

Begin 

~pendent := False ;
 
NtJnInt := 0 ;
 

T := 1 ;
 

Repeat
 

PolyFdge.endl := PolyPoints[T] ;
 
PolyFdge.end2 := PolyPoints[T+l] ;
 



107 

CalcR2Intersection(Test:Erlge,PolyEdge,intpoint,
 
Iocoosistent,Iependent) ;
 

If (Not Iependent) And (Not Iocoosistent) 'Ib2n
 
Begin
 
If InbebEen(PolyEdge.endl.x,PolyEdge.end2.x,intpoint.x) And 

InbebEen(PolyEdge.endl.y,PolyEdge.end2.y,intpoint.y) And 
Inbetween(Test:Erlge.endl.x,Test:Erlge.end2.x,intpoint.x) And 
Inbetween(TestF.dge.endl.y,TestEdge.end2.y,intpoint.y) 

'Ib2n 
Begin 

Case NtlnInt Of 

o : Begin
 
NunInt := NunInt + 1 ;
 
pI := intpoint ;
 

End ; 

1 :	 Begin 
If (Not R2VectorsFqual(pl,intpoint» 'Ib2n 
Begin 

NunInt := NunInt + 1 ;
 
p2 := intpoint ;
 

End ,•

Fnd ;
 

End ;
 
End ;
 

End ;
 

T := T+l ; 

Until	 (T >Nmfuints) Or (Iependent) Or (NunInt = 2) ; 

End ; 

Function BehindPlane(Point:R3Vector ; e,f.g,h : Real):Boolean ; 

Begin 
BehindP1ane := (Point.x * e + Point.y * f + Point.z * g + h <0 ) ; 

End ; 

Functioo InfrontP1ane(Point:R3Vecmr ; e,f,g,h : Real):Boolean ; 

Var t	 : Real ; 

Begin 

t := Point.x * e + Point.y * f + Point.z * g + h ; 

InfrootP1ane := t >= 0 ; 

End ; 



108 

Procedure FindPreInBge(Theta,Phi.,ROO,D:Rea1 ; 
R2Find:R2Vector ; 
R3d. ,R3<2:R3Vector ; 
R2k.1,R2k2:R2Vector ; 
Var R.3Find:R3Vector) ; 

( Given a point P' on a projected line segnent R'S', this procedure finds the 
point P located on the actual segtIEIlt RS tlBt projects onto P'. A binary 
search netlxxi is used. ) 

Var	 R2m,Di..ff,R2FindDiff,R2mDi.ff: R2Vector ; Ian : R3Vector ; 
Fourd : &olean ; 

Begin 

Fourd := False ; 

Repeat 

R:J1i.dPoint(R3k1,R3<2,Ian) ; 

ScreenXY(Theta,Phi.,ROO,D,Ian,R2m) ; 

R2Di.ff(R2m,R2Find,Di..ff) ;
 
R2Di.ff(R2FiM,R2k1 ,R2FindDi.ff) ;
 
R2Di.ff(R2m,R2k1,R2mDi.ff) ;
 

If ~tude(Di..ff) <= 0.2 Then Found := True
 
Else
 
If ~tude(R2Fi.ndDi.ff)<R21:lgn:ituie(R2mDi.ff) Then R3<2 := Ian
 
Else
 
R3d. := Ian ;
 

Until Found ; 

R3Find := Ian ; 

End ,•

Procedure ProcesSI'estF.dge(TestF.dge:LineType ; EdgeNunber:Integer ; 
R3Fndp1,R3Fndp2:R3Vecmr ; 
R2Vertex:R2VertexType ; intp1,intp2:R2Vector ; 
mmint,Nm1x>ints:Integer ; 
PolyPoints:VerticesType ; 
e,f,g,h,Theta,Phi,ROO,D:Rea1 ; 
Var Edges:EdgesType ; 
Behind1,Behind2,Inside1,Inside2:Boolean) ; 

Var	 R:Hi.dpt: R3Vector ; R2midpt : R2Vector ; 

Begin 



109 

If NunInt =0 Then
 
Begin
 
~dPoint(TestFdge.Endl,TestEdge.Fnd2,R2mi.dpt) ; 
If InsidePoly(NmPoints,PolyPoints,R2mi.dpt) Then 

FatTestEdge(TestF.dge,FrlgeNtmber,TestFdge.Endl,TestEdge.Fnd2,R2Vertex, 
Frlges)
 

fud
 
Else
 
If NunInt = 1 Then
 
Begin
 

If Insidel Then 
Begin 

If Behindl Then 
FatTestEdge(TestF.dge,FrlgeNunber,intpl,TestEdge.endl ,R2Vertex,Frlges) ; 

End
 
Else
 
If Inside2 Then
 
Begin
 

If Behind2 Then 
FatTestEdge(TestEdge,FrlgeNtJnber,intpl,TestEdge.end2,R2Vertex,Frlges) ; 

End ;
 
fud
 
Else
 
Begin
 

If (Pehindl) And (Behind2) Then
 
FatTestEdge(TestEdge,FrlgeNunber,intpl ,intp2,R2Vertex,Frlges)
 

Else
 
Begin
 

~dPoint(intpl,intp2,R2mi.dpt) ;
 
F:indPreIImge(Theta,Phi,ROO,D,R2midpt,R3endpl,R3endp2,
 

TestF.dge.endl,TestEdge.end2,R:Ei.dpt) ;
 

If Pehi.ndPlane(R:Ei.dpt,e,f,g,h) Then 
FatTestEdge(TestEdge,FrlgeNtJnber,intpl,intp2,R2Vertex,Frlges) ; 

End ; 
fud; 

End ; 

Procedure CalcR3EyeVertex(R3_SINRD_VFRrEX:R3VerteXI'ype ; 
Vertex<hmt:Integer ; 
Var R3 EYE VElmX:R3VerteXI'ype ; 
Theta,Phi,ROO,D:Rea1) ; 

Var K : Integer ; 

Begin 

For K := 1 To VertexC'.otmt Ih
 
EyeXYl(Theta,Phi,ROO,D,R3_SINRD_VERnX[K],R3_~VFRrEX[K]) ;
 

End •, 


