AN ABSTRACT OF THE THESIS OF

John Dennis Albers for the Master of Science

in Mathematics presented on July 27,1988

Title: HIDDEN LINE REMOVAL - MORE THAN MEETS THE EYE

) " # L
Abstract approved: {(- (Zjhsz

The purpose of this thesis is to investigate a method

in which three-dimensional objects can be geometrically
modeled and realistically displayed on a two-dimensional
view screen. When a computer generates an image, without
special programming instructions, all parts of the object
including the hidden parts are displayed. The
identification and removal of the hidden parts of an object
plays a major role in the production of realistic images.
Along with a development of the basic concepts involved
with three-dimensional graphics, this thesis presents three
hidden 1line removal algorithms. These algorithms will
correctly remove all hidden lines from any object that can

be modeled as a polyhedron.

HIDDEN LINE REMOVAL - MORE THAN MEETS THE EYE

A Thesis
Presented to
the Division of Mathematics

EMPORIA STATE UNIVERSITY

In Partial Fulfillment
of the Requirements for the Degree

Master of Science

By
John Dennis Albers

July 1988

el

Approved by the Graduate Council

Kbproved by the Major Department

464058 . . -

ACKNOWLEDGEMENTS

I would like to thank Debra for her support while I was
preparing this thesis.

TABLE OF CONTENTS

Chapter Page
I. INTRODUCTION ...:.cceceeesoscsncssosnasanecassca 1
A Brief Historyciiveeeeecnanns eens 1
Applicationscccveteeeccnscnccscnnns 3
Overview Of The Thesis ceeenaa 3
II. THREE-DIMENSIONAL REPRESENTATIONS 5
Object Representation Tables 6
Data Verificationiiiiieeeencnnnn 8
III. BASICS OF THREE-DIMENSIONAL GRAPHICS 10
The Viewpointccciitiieiiinnnnennnns 10
The Eye Coordinate System A
Projection cestssssssaessnanas 14
The Viewing Parametersccceevuee 18
IV. HIDDEN LINE REMOVAL ...t cccvecececnocnccnscs 19
Algorithm Number One (Back Face

RemoOval) .cieieeeceeoeanconcasansosana 19

Algorithm Number Two (Clipping Edges
Against Surfaces)cccvvetrcccnns 23
Algorithm Number Threecccc0000000. 35
Line Processingccceeceeeencecoacas 38
V. CONCLUSION ..ccooccesaacaacscnsacs cececens 44
Summary Of The Thesisccevieeieenns 44
CONClIUSIONS .ttt veeevecccsccccnoannsossasns 45
Recomendations For Future Study 47
BIBLIOGRAPHYccceececsossos s eececccssenssns e o s e 48
APPENDIX A c e e s s es s s e s s e s ecossescecesessesene 49
APPENDIX B .¢cceceaaacasse e e s s sssscsssscssecccssrans 51
APPENDIX C (.cvcvcecacans e s e e s s e s e s s s encccsasaseecacne 54
APPENDIX D tcveeesvcoccccoscosoososssscscacocosssaccaceses 56
APPENDIX Eccc0 e e s s s s e e e essesescecasacanece 61
APPENDIX F ..cceeeves S et s e e s s e s sesseessecaseassace 69
APPENDIX G (ceceancccscsens cereccerreecnce ces s e s 79

APPENDIX H ..ceeccececccecssosccossacscsosccscccsascsnnss 89

http:��.................�
http:�.......�
http:�......�

Table

ITI.

IIT.

Iv.

VI.

VII.

VIITI.

IX.

LIST OF TABLES

Page
Surface Table ...ccceeeeeeeecccnsas creeeennns 7
Vertex Table G et s esesesescecssnre s 7
Edge Table ceesessscessescsens s ceee 7
Surface Orientation Tableccceeeeecncens 21
Edge Table With Erasure Information 38
Edge Two (Zero ErasureS) ..cccecceesescscss ces 41
Edge Two (One ErasuUre)ceececessrrsocossca 41
Edge Two (Two Disjoint Erasures) 42

Edge Two (Three Overlapping Erasures
Resolved Into Two Disjoint Erasures) 42

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

LIST OF FIGURES

Page
Reqgular Tetrahedronc.ceeeescenrecsocsns 7
The Eye Coordinate Axes certeisereenanaan 12
Translate Origin to (Theta,Phi,Rho) 12

Rotate (90-Theta) clockwise about Z’ Axes ... 12

Ratate (180-Phi) clockwise about X’ Axes 12

Convert to Left-Hand Systemc.cc00. 12
The Projection of an Edgeccceeevecscsses 15
Finding Screen Coordinatesc00cce0eee 16
Octahedron ctseeecessaensaaenan 22
Concave Polyhedronccciieiieceeceencanns 24
Transparent Objectc.ciiiiiiiiinenneenn 24
Algorithm II, Cas€ 1 ...ceeereccennencsscnnsns 27
Algorithm II, Case 2 ..ccceveeescascnsonosnes 28
Algorithm II, Case 3 ...t eeieessonnsascnnsnsa 29
Algorithm II, Case 4@ ...cevevvecocnscnnacnns 32
Algorithm II, Case 4bcvecteccsncsncscsn 33
Algorithm II, Case 4b ...eveeereenoncccnssnns 34
Algorithm II, CaSe@ 4C .cvieveveccanssansssnnns 36
Point Located Interior To The Polygon 52

Point Located Exterior To The Polygon 53

LIST OF PROCEDURES AND FUNCTIONS

Procedure Or Function Pages
AQAEAGEe . it vt tetrtonesnscsocnssossssnscssscssssescsans 73,84
AdAETraSUYe ...t eceteecsssoasscscesonssossscssscssanssscs 97
BehindPlanecceteeeeessecesassocassacosssssacnsss 107
BuildEdgeTableccceteveecescsssscscascocssannsa 73,84
CalcNOrmalVeCtor ...cceeeeecesccscscccsccscscsccsssosscs 83
CAlCNOTIMALS caccvvsvvsossrsoscsccsssossscssscaasasssnasesss 64
CalcR2Intersectionceeeeeneessencccnsnccssnnses 104
CalCR2LINE .iiiveesssneenncscanasssccssssssssssssssss 104
CalCR2VErteX ..vieeceesoscssesosososcososasosscsosssassas 95
CalCR3EYEVErteX .vieieescesrsososssoescassosassccncnsen 109
CalCR3PlanNecceeteesocesosscsnononacscnscscscsonscocns 104
CalcViewVectorviiiiersseenseeocscocnsosscosnccncns 95
o 15 1) « YR 92
CramersRULE2X2eeeereocscsosssanossssaoscsascscasasse 103
DEC .cveeevvvoscscces ceeecssecceesesseesrssesenoesens e 92
DecodeFunctionKeycceeeeeeecseactscnaocsosssacnsss 94
= o I 89
Det2X2 t.iiiiiiiereeeeeerscnaceacssoessccsosossnssenocnos 103
Det3xX3 .veeercecnnnnenas e e s e cserses e s essaecccessn e 103
DYQWAXES . osececoacscccssassecscosssonsoecsesoscssossosnsoosss 94
DrawBorderccceeetrroccscscccccnsancsosocscnnsacaes 91
DrawBoX cecees oo Ceesecccrssreeesescs s 95
DrawEdgecc0ceee.. cecesnasse cesesessesans cee. 72,83
DrawObject e et eesssecen s eer e s e s e asnanaenennn 65

DrawSUYrfaCe ...t ieeeeeeeeossosaosccsoscossossssssncsncseasa 64

Procedure Or Function Pages

DrawSurfaces C e e eeecsces s sesesssensneos oo 65
EatTestEdge cesesea et eessessssecasasses s eaaesse 100
EraseStats ...cieciinseeitcnesceasncsscsncenssassanascs 89
EXitProgramceceeeeeecoascsossccnnacssansosanssaans 90
EyeXYZ ceenen st eececcnssecsecsassaacscnonnnann 91
FindEAgeNumberccceececocescsocsccascsccscsscocs .. 98
FindIntersectionPointsc.citeieienrencecnncansas 106
FindPreImage T e ec e s e esseceass st acessss s annsans 108
FIindSlopececceessocnerscssaonas ceceersane ceceencan 96
Find tccieieennvenes et e s ccseccccssseessssaennne 96
GetKeySeqUeNCecsseretaacesssscssossescsscsosnssose 94
Inbetweencccciiieecenacnnna Ceesreeesesensenens e 102
INC c et eececocorsecccsansessncasccsssccssssnssssscssssccas 92
INfrontPlaneuiiiiiereeeceeceeocasosoncssnasencanscos 107
Initializevieeeeeeennn ceecereseecseesoaens ... 66,76
INSidePOly tiviieessonsecenscsosocccoosnns cecraeeenns 105
LoadsSurface C s s e s s e s ssser s esees s casenseennen 90
LoadVertexcccee.. e e e rssessscesaaans s cesesnee s 89
MarkSurfaceEdges c e s eiseesasssessesescsenee e 98
MaX .cceeeenannsns ceeaen Gt st s s seeasencnencsssnonn oo 97
Min e s e s s eecassecssssenesstes s s eeas ceee s eeece. 96
NOthING civvveeeeenensoeossosassssccssnccaconococssosaes 102
OULSIideBOX .civeeeoerioosaacnosssscsssccenasssscssss ... 106
ProcessObjectciiteeeecsccnssoosnocoooasocsoccas 75,87

ProcessOverlapco000000 teccsceccnnonocas tesseanen 99

Procedure Or Function Pages

ProcessTestEdge ...cccveeevccss et eeesescasesseses s 108
R2ANGLlE . tvtieeesssonssnseassososssosnssescsascssanasensacse 103
R2DIiff ...iveeeecnnans eececccccsssencreecsnn secseecesse 105
R2Magnitudeccciveeeeosacceccsacsnssanscs essessess 103
R2VectorsEqual cee st essecaesasans ceessaneseanan 97
R2MidPOiInNt ..iceiieieeeeeeenassceocoaanaccaonnosssaconsa 102
23 3 1 1 s ceesenssessssss 91
R3DOLProductciciietiereececescaccacnasccnscccses 94
RIMIidAPOINtiiiireereeasonosssecooccssacassacansns 102
RectangularBOUNAAYY ccccesceescccscscasscocsaes ceassen 106
RemoveErasure e esaceacecescnsescssennoeeans 100
RemoveHiddenLinesc.vcceeeecocenosccacnnsonnnccns 74,85
ScreenXYeecceccscesccsaccssocossaccssacessocsocsooe 92
Set_ Backedge FlagsScececriocecsosccsoacacscnssns ... 86
5T o 5 o T, 105
ShowStats ..cicieetienecencaccccscnannnns Ceeceeecesona 89
SOrtErasuUrecceeeeeeeccceeecscsscsososnsossscocssnss 98
SwitchIntegerscceeeeevvsescesascaccssosscnnsss 97
SwitchReals cesetcesesen et cseseennetctensse s 97
UnmarkSurfaceEdges tecessccnone ceeses e ceteas s 99
WrapAroUundDEeCeeeeeeeccecsecaanccsnococnocscscssass 92
WrapAYOUNAINC . eoecerocecoscscoscoscsascsocnconsosnossoecos 92

ZAPSCYECLN ¢ . et eseacsosnsos c e recesessesesesessesensas s 91

CHAPTER I

INTRODUCTION

When 1looking at an object, the viewer may think that
he 1is seeing it in its entirety, but actually he is only
seeing about one-half of the object. It is the opaqueness
of the <closer surfaces that prevent portions of the
surfaces located further away from being seen. When a
computer generates an image, no such automatic elimination
of the hidden parts takes place. Instead all parts of the
object, including the parts that should be hidden from
view, are displayed. Hidden line removal refers to the
task of identifying and removing the hidden parts of an

object.

A Brief History

Towards the end of the era of the second generation

computer, interactive computer graphics made its first
appearance. While working on his PhD at the
Massachusetts 1Institute of Technology, Ivan Sutherland

introduced the concept of using a keyboard and a hand-
held 1light pen for selecting, pointing, and drawing
[4, pg. 12]. Most significantly, he developed a data
structure based on the topology of the object rather than
on the picture. In 1963, Sutherland introduced a
computer program called sketchpad. People were excited
because this program was able to display a three-
dimensional object with the hidden lines removed. A

documentary film about the techniques used in this program

was sent to nearly every computer center in the United

States.
General Motors was the first user of an elaborate

graphics system developed by IBM [4, pg. 15]. The system

was called DAC-1 (design augmented by computer). This
system was eventually made public at the 1964 Fall
Joint Computer Conference. The DAC-1 was the birth of

computer aided design (CAD) systems.

The first major reasearch center for computer graphics
was established at the University of Utah [4, pg. 15].
In 1972 several breakthroughs were made. Ed Catmull
directed reasearch towards finding ways to generate
images of curved surfaces. The solution consisted

of dividing each surface into very small patches whose

relationships to one another could be defined
mathematically. Dr. James Blinn developed methods
for effective surface modeling. Starting with a
wireframe drawing composed of lines, color and texture

are then added to the surfaces to give them a realistic
appearance.

By 1984, computer graphics technology had advanced so
much that it enabled a skilled user to match photographic
reality [4, pg. 18]. A picture of an article could be
so accuratly simulated on a computer that it was almost
impossible to distinguish between the computer generated
image and the actual photograph. By the turn of the
century it is very probable that computer graphics

will begin to replace conventional photographic

technology.

Applications

Many real world applications that involve computer
graphics require the display of three-dimensional images of
objects and scenes. For example, flight simulation is an
application which requires the rapid and continous display
of realistic images relative to the pilot and aircraft [6,
pg. 23]. A few of the many applications requiring the
generation of realistic images include molecular modeling,
animation, and computer-aided design (CAD) systems [10,
pg. 294]. Because of the continuing need and desire for
more and more realism in computer generated images, hidden
line removal becomes a very important aspect in the

design of computer graphics software.

Overview Of The Thesis

The purpose of this thesis 1is to investigate a
method in which three-dimensional objects can be
geometrically modeled and displayed realistically on a two-
dimensional graphics display screen. Chapter I is the
introduction which introduces the idea of hidden 1line
removal, gives a short account of the history of computer
graphics, lists applications, and finally gives an overview
of the thesis. A method for organizing and checking a
polyhedral model’s vertices, surfaces, and edges is given
in Chapter II. In the third chapter, the processes
involved in displaying a three-dimensional object are

discussed. Chapter IV presents several elementary hidden

line removal algorithms. The fifth and final chapter
includes a summary of the thesis, conclusions, and
recommendations for future study. Following this chapter,
is the bibliography, and then eight appendices. Appendices
A,B, and C contain supplementary information pertaining to
the second and third hidden 1line removal algorithms.
Appendix D contains instructions for using the programs
located on the program disk. Finally appendices E,F,G, and
H contain the source code for each of the hidden line

removal algorithms.

CHAPTER IIX
THREE-DIMENSIONAL REPRESENTATIONS

Any three-dimensional object can be modeled by a

polyhedron [10, pg. 309]. Objects that have curved
surfaces (cylinders,cones, spheres,...) can be partitioned
into a number of flat polygon surfaces. If the object

can be partitioned into an adequate number of these flat
polygon surfaces, usually an acceptable modeling of the
actual object can be achieved. The main components
(vertices, edges, and polygon surfaces) of this polyhedral
model must be organized in such a way that the computer can

use themn.

Definition 1. A polygonal path is determined by

a number of points, Pl’Pz’ .o ’Pn—l’Pn called

the vertices, given in a definite order. The

path 1is the set of points on the segments P.P,,

P ,P_ P [2, pg. 144].

SPas ee

n-1"n
Definition 2. A polygon is a polygonal path
whose beginning and end coincide. If the

vertices are all different and no two sides have
a peint in common (other than a vertex of two
adjacent sides), then the polygon 1is called

simple [2, pg. 145].

Definition 3. A polygonal cell is the set of
points on, or interior to, a simple plane polygon

Pl’Pz’ .o ’Pn-l’Pn‘ The edges of the cell are

the sides P1 X P2P3... of the polygon [2, pg.

2447.

Definition 4. A polyhedron is the set of points
on a finite number of polygonal cells joined
together in the following way:

1.) Any two cells have either no points in
common, exactly one vertex in common, or
exactly one edge in common.

2.) Every edge is on precisely two cells.

[2, pg. 244].

Definition 5. A polyhedron is called convex if
the segment Jjoining any two points of the
polyhedron 1lies either on the polyhedron or in
its interior. A polyhedron is reqular if it is
convex and all faces are congruent regular

pelygons [2, pg. 244].

Object Representation Tables

One way to organize the main components of a
polyhedron, 1is to create three lists: a vertex table, an
edge table, and a polygon surface table [6, Pg. 190].
Tables I,II, and III organize the components of the reqular
tetrahedron in fiqure 1. First of all, each polygon
surface is defined in the polygon surface table as a list
of edges. Second, the R3 standard coordinates for

each vertex of the object are stored in the vertex table.

Lastly, the edge table 1lists the endpoint vertices

Figure 1.

Table 1. Table II. Table III.
Surfaces Vertices Edges
f1 0 B o vt (xpeypezy) (v2¥p)
Eo o By Voi (Xpa¥pa2,) (vy2vg)
F3 2 By o V3P (x3:¥3:25) (v22vg)
e I Vai (Xg2¥g02y) (v3¥y)

(v,,v3)

(vysv3)

defining each edge.

All information about the polyhedral model can be
derived from the polygon surface and vertex tables.
However without the edge table, the model would have to be
processed using the polygon surface table causing some
edges to be processed twice. Listing the data in three
tables provides an efficient way for the computer to access
the major components (vertices,edges, and polygon surfaces)
of a polyhedron. The edge table could also include
pointers into the polygon surface table so that common
edges between surfaces could be found more rapidly [6, pg.

191].

Data Verification

As the complexity of the polyhedral model increases,
so does the possibility for the distortion of the model due
to errors in the represention tables. The following five
tests can be used to help check for the consistency
and completeness of the data in the representation tables

(6, pg. 192].

1.) Make sure that every vertex is listed as
an endpoint for at least two edges.

2.) Verify that every edge is part of at least
one polygon.

3.) Check to see that every polygonal surface
is closed.

4.) Verify that each polygonal surface has

at least one shared edge.
5.) If the edge table contains pointers to
the polygon surface table, make sure that
the polygon surfaces actually share those
common edges.
The author also suggests an additional way to help check
for the consistency of the data in the representation

tables:

6.) If the polyhedron is convex, then the
the number of vertices: v, number of
edges: e, and number of faces: £, nmust
satisfy the Euler Descartes formula: v - e

+ £ = 2.

CHAPTER III

BASTCS OF THREE-DIMENSTONAL GRAPHICS

The focus of this chapter is to discuss and
explain the process in which different views of a three-
dimensional object modeled by a polyhedron can be displayed
on a two-dimensional view screen. The process is the same
for all polyhedra and involves projecting the edges
onto a flat surface called the projection plane.
Before this projection process takes place, the eye
coordinates (coordinates relative to the viewer’s eye)

for each vertex of the polyhedron must be calculated.

The Viewpoint

The 1location of the viewer’s eye relative to the
object is commonly referred to as the viewpoint. The

viewpoint will be identified by spherical coordinates

(Theta,Phi,Rho). Imagine that a line 1is drawn from the
origin to the viewpoint. The third parameter Rho
represents the distance along this 1line. The first

parameter Theta represents the angle that the plane formed
by the line and the Z axis makes with the plane formed by
the X and Z axes. The second parameter Phi represents the
angle that the 1line makes with the Z axis. Increasing Rho
will have the effect of moving the viewer farther away from
the object, while decreasing Rho will have the opposite
effect. The direction from which the viewer will see the
object can easily be changed by altering the wvalues of

Theta and or Phi.

11

The Eye Coordinate System

It will prove to be more convenient for projection and
hidden 1line removal, to think of an object’s vertices in
terms of coordinates relative to the eye instead of
coordinates relative to the standard coordinate axes. For
this reason the eye coordinates of an object’s vertices
need to be calculated.

The eye coordinate system, [Xe:Ye:Z consists of

el
three mutually perpendicular axes intersecting at the
viewpoint and is shown in figure 2. The eye coordinate
system 1is always orientated so that the positive Z, axis
points towards the origin of the standard
coordinate system [8, pg. 139]. The positive Xe axis
points to the viewer’s right, and the positive Y, axis
points upward. Also note that the eye coordinate system
is a 1left-handed system. The vertices of a polyhedral
object can be represented by coordinates relative
to the standard coordinate system, or by coordinates
relative to the eye coordinate axes.

Transfering coordinates relative to the standard axes
system to coordinates relative to the eye coordinate system
is accomplished by a sequence of four transformations [8,
pg. 141]. The intermediate axes systems are each referred
to as [X’:Y¥’:27]. Note that for scaling and rotation a (3
X 3) transformation matrix is all that 1is actually

required. However to make matrix multiplication compatible

between the (4 x 4) translation matrix A and the (3 x 3)

12

Z)

,
&<

() -

/Xe

Z VIEWPOINT

r—<

Figure 2.

o

74
ZI
O
X Figure 5.

AN

X Figure 6.

13

tation and scaling matrices B,C, and D, an extra row and

olumn have been added.

t 1.) Translate origin to (Theta,Phi,Rho):

1 0 0 0
0 1 0 0
0 0 1 0
A=
-Rho -Rho -Rho 1
cos (Theta) sin(Theta) cos (Phi)
sin(Phi) sin(Phi)

Refer to figure 3.

2.) Rotate through (90 - Theta) clockwise about the 2z’

axis:
sin(Theta) cos(Theta) 0 0
B = [-cos(Theta) sin(Theta) 0 0
0 0 10
0 0 01

Refer to figure 4.

3.) Rotate through (180 - Phi) clockwise about the X’

axis:
1 0 0 0
C = 0 =-cos(Phi) =-sin(Phi) O
0 sin(Phi) -cos(Phi) O
0 0 0 1

Refer to figure 5.

4.) Convert to left-hand system:

COOoORr
oOCOoORrOo
oOr OO
P OOO

Refer to figure 6.

14

e matrix product ABCD is given below:

-sin(Theta) -cos(Theta)cos(Phi) -cos(Theta)sin(Phi) 0
cos(Theta) -sin(Theta)cos(Phi) -sin(Theta)sin(Phi) 0
0 sin(Phi) —-cos (Phi) 0
0 0 Rho 1

If the standard coordinates (x,y,2) of a vertex are
bknown, the eye coordinates of that vertex may be obtained
through the matrix product (x,y,z,1l) ABCD. Note that since
the matrix product ABCD is a (4 x 4) matrix, a dummy forth

coordinate must be attached.

Projection

Up until now all that has been accomplished is to
convert the coordinates of the object’s vertices relative
to the standard axes system into coordinates relative to
the eye axes system. The final step of getting a
representation of the object that can be shown on a two-
dimensional computer screen is to actually project the
edges of the object onto the projection plane. Referring
to figure 7, the points on the edge AB when projected
form the 1line segment A’B’ on the projection plane.
This type of projection is known as a
perspectivity. Such a projection is popular because

it is very similar to the way that images are

formed by the human eye and by lenses on
photographic film [10, pg. 295]. Perspective
projection conveys more depth information than
other types of projection. This 1is because distant

objects will appear smaller than the nearer ones under

15

PROJECTION
Z PLANE
A
3 G YIEWPQINT

A
OBJECT ::::>»“§

Figure 7.

this type of projection.
Refer to figure 8, point P which could represent a

vertex on the object projects to P’, a point on the

projection plane. The X, and Y coordinates of P’ are
called the screen coordinates of the point P. Given any
point (x,y,z) relative to the eye coordinate axes, the

screen coordinates (Sx,sy) can be calculated [8 , pg. 137].
Again referring to figure 8, right triangles OBA and ODC
are similar triangles. Notice also that right

triangles OBF and ODE are similar.

Therefore:

16

' PROJECTION PLANE

Figure 8.

VIEWPOINT

17

DC/OD = BA/OB and DE/OD = BF/OB.

. By substitution:

Sx/D = xe/ze and Sy/D = Ye/ze.

Solving for Sx and Sy:

S, = D(X/2,) and S = D(Y/Z,).

From the matrix product (x,y,z,1) ABCD:

X, = X sin(Theta) + y cos(Theta)

Ye = =x cos(Theta)cos(Phi) - y sin(Theta)cos(Phi)
+z sin(Phi)

Z, = X cos(Theta)sin(Phi) - y sin(Theta)sin(Phi)

-z cos(Phi) + Rho

Once the screen coordinates have been determined, the
polyhedral model can be displayed on the graphics display
device. However, the programmer should be aware of the
coordinate system used by the particular dispay device
he intends to use. First of all, the resolutions of the X
and Y axes are typically not the same. If this fact is
neglected, distorted images can occur. For example squares
will appear as rectangles, or circles can appear as
ellipses. To correct the problem, one of the coordinates
of the points to be plotted is multiplied by a scaling
factor (known as an aspect ratio) to compensate for the
differences in the resolutions. Second, the origin is not
located in the center, but typically is located in the

upper left hand corner of the viewing area. Third, the Y

18

xis usually increases from top to bottom. Finally, the X

i and Y axes can only represent discrete integer quantities.

i The Viewing Parameters

It is worthwhile to consider how changing the
viewpoint parameters (Theta,Phi,Rho) and D (the distance of
the projection plane from the viewpoint) affect the image
generated on the graphics display device [8, pg. 146].
First of all by changing Theta and or Phi, views of the
object from different angles can be generated. Second, the
image size of the object can be controled by changing Rho
(the distance from the viewpoint to the [X:Y:2] origin).
Increasing Rho will make the image appear smaller, while
decreasing Rho will make the image appear larger. Changing
the value of D is a second way of changing the image size
of the object. Increasing D will enlarge the image size,
while decreasing D will reduce the image size.

It is necessary to have two parameters Rho, and D to
control the image size [8, pg. 146]. Increasing Rho
will decrease the effect of perspective, but the
object’s image size will appear smaller. To compensate
for the smaller image size, increase the value of
D. Decreasing Rho will increase the effects of
perspective, but the object’s image size will become
larger. To compensate for 1larger image size,

decrease the value of D.

CHAPTER IV

HIDDEN LINE REMOVAL

It is relatively easy to display a three-dimensional

object on a two-dimensional graphics screen. However, in
order to generate a truly realistic image, the 1line
segments and surfaces which are not visible to the viewer
must be identified and removed. Many algorithms for hidden
line removal exist, some simple and some very
sophisticated. This thesis will discuss three elementary
algorithms that will correctly remove all hidden lines from

any object that can be modeled as a polyhedron.

Algorithm Number One (Back Face Removal)

The following algorithm removes the hidden lines from
an object by eliminating the back surfaces [8, pg. 156].
Appendix E contains a complete source listing written in
Turbo Pascal for this algorithm. Refer to Appendix D for
instructions on how to use the programs contained in this

thesis.

Assumptions
The back face removal algorithm operates

under the following assumptions about the object:

1.) The object being processed is modeled by a
convex polyhedron.

2.) The polyhedron 1is constructed in such a
way that the viewer cannot see the

interior of the object from any viewpoint.

20

3.) There are no obstructions in the line of

sight from the viewpoint to the object.

Theory Of Operation

As one 1looks at a convex polyhedron, the visible
surfaces are the ones facing the viewer. This is because
light traveling from these surfaces has an unobstructed
path to the viewer’s eyes. The other surfaces, the ones
that are not visible, are called back surfaces. These
back surfaces are facing away from the viewer, and the
light from these surfaces is blocked from reaching the
viewer’s eyes by other surfaces.

Two normal vectors can be associated with each surface
of a polyhedron. One normal vector points outward away
from the polyhedron; the other points inward. The outward
normal vector will be used as the orientation vector for
each surface, and is denoted by N. The outer normal vector
ot and Vs
are any three properly ordered vertices belonging to the

N is given by: N = (vz—vl) x (v -vl) where ViV

3
surface. The proper ordering of the vertices of a surface
is very important and will be discussed later. A second
vector W the line of sight vector will be associated with
each surface. This vector W is directed from a vertex on
the surface to the viewpoint. For each surface, beta
represents the angle between W (the line of sight vector)

and N (the surface orientation vector). The visibility of

?’
:
¢
2

a given surface is determined by the following:

21

1.) 1f o°

<= beta <= 90 (ie. We N > 0), the
surface is facing the viewer and should be
displayed.

2.) If 90° <= beta <= 180°

(ie. W+ N <= 0), the
surface is facing away from the viewer and

should not be displayed.

Care must be taken in how the vertices of each surface

are labeled in order for the outer normal orientation
vectors to be calculated correctly [8, pg. 159]. Referring
to the octahedron in figure 9, the identification of the
first vertex of each surface is completely arbitrary.
However once this identification has been made, it is vital
that the listing of the remaining vertices continue in a
counterclockwise direction as viewed from the outside of
the object (in this case the octahedron). Table IV gives

one example of how the surfaces of the octahedron could be

oriented.
Table IV.
Surface Orientation
51 Vo17Y02' Y03 Vo4 Nl o Ez02:301; : 2303:301;
g2 . 04’03’ 06’ 05 N2 = (vO3-v0%) ¥ (v06-v04)
g3 . 077,08’ 05’ 06 NS = (voa_vo7) % (Vo5_ 07)
g4 . 107,09’ 08’ 07 N = (vO2-v10) % (vOByl0)
g5 ; 117,127 09’ 10 MO = (vi2ov1l) x (v02-ull
g6 . Jl17,027 017 12 NS = (v02-v11) ¥ (vOl-yll)
g7 ; 02,047,057 08’ 09’ 12 7 _ (vO4-v02) ¥ (v05_y02)
8 ° "02'°11'710’' 07’ 06’ 03 8 11 02 10 02

If, instead, the vertices are given in a clockwise

direction as viewed from outside the object, then the

22

Figure 9.

23

rientation vector N will be pointing inward, and
desired results will occur when using this hidden 1line
p removal algorithm.

Figure 10 gives an example of a concave polyhedron in
;fwhich algorithm number one will not correctly remove all
§30f the hidden lines. All of the back surfaces will be
correctly identified and removed. The problem with concave
% polyhedra is that the front surfaces are not always
4 completely visible. For example, the surface PQR is facing
1 the viewer but is not completely visible.

Figure 11 gives an example of a convex polyhedron in
which algorithm number one will also not correctly remove
all of the hidden lines. The hexahedron is constructed in
such a way that the viewer can see the interior of the
object from certain viewpoints. Consider the surfaces
ABCD,BCGH, ABFG, EFGH , ADEF to all consist of opaque
materials while the surface CDEH consists of a transparent
material. Algorithm number one will incorrectly
identify surfaces EFGH and ADEF as being back

surfaces (surfaces that are completly hidden from view).

Algorithm Number Two (Clipping Lines Edges Surfaces)

The following algorithm removes hidden 1lines by
comparing all edges of the object with each surface [5,
pg. 230]. Appendix F contains a complete source listing

written in Turbo Pascal for this algorithm.

Assumptions

24

5
P X N
\ 4
/R(Ne ////
‘-‘\ - “‘ ’/I .___________} N
—_—— . RT 3

Figure 10.

3

Figure 11,

25
The edge clipping algorithm operates under the

following assumptions about the object:

1.) The object being processed is modeled by
a concave or convex polyhedron.

2.) The surfaces that make up the polyhedron
are all convex polygons.

3.) The polyhedron is constructed in such a
way that the viewer can possibly see the
interior of the object from certain
viewpoints.

4.) There are no obstructions in the line of

sight from the viewpoint to the object.

Theory Of Operation

Before the algorithm begins, all edges of the
polyhedron are initialized or marked as being visible to
the viewer. Each surface is then taken one at a time, and
all edges defining the other surfaces are compared one by

one to this surface to determine if the visibility of the

edges are blocked. Any portion of the edges that are
blocked are marked as being erased. After all the edges
have been processed with respect to each surface, all

visible portions of the object are then drawn.

Given an edge PQ and a polygonal surface A1A2 .o An
the following four steps will determine if the visibility
of the edge is blocked by that particular surface, and if

so, exactly how much of the edge PQ will have to be erased.

1.)

2.)

3.)

If both endpoints P and Q of the edge are

in front of the actual surface AlAZ e

A then the edge is completly visible

nl

relative to the surface. No further

testing of the edge 1is necessary with

respect to this surface. Refer to
figure 12.
If the projected edge P’Q’ is

completely exterior to the projected

surface A&A; ... A; then the edge
PQ is completely visible relative

to the surface. No further testing of
the edge is necessary with respect

to this surface. Refer to figure 13.

If the projected edge coincides with

any of the projected surface edges
27 t 57/ / 4
A1A2,A2A3, .o ’An—lhn’ then the edge

should not be erased. No further testing
of the edge is necessary with respect to

this surface. Refer to figure 14.

26

27

Figure 12.

VIEWPOINT

28

Figure 13.

VIEWPOINT

29

Figure 14.

VIEWPOINT

4.) Find any intersection points where the

projected edge intersects the projected
surface edges. Remember that the
intersection points of the line
segments defined by the edges 1is desired
rather than the intersection points of
the infinite lines defined by the edges.
Refer to appendix A for an explanation of
how to find these intersection points.
Since by assumption all surfaces are
convex polygons, there will be at most

two intersection points.

a.) Zero intersection points.
If the midpoint M’ of the
projected edge is exterior to
the projected surface then the
projected edge is completely
exterior to the projected surface
and therefore the actaul edge is
completely visible with respect to
the surface. If M’ is interior
to the projected surface then the
projected edge lies completely
interior to the projected surface.
Since at least one endpoint of
the actual edge is behind the

actual surface, the actual edge

30

lies completely behind the surface
and therefore should be erased.

Refer to figure 15.

b.) One intersection point.
The pre-image of a point R located on
the projected edge P’Q’ is defined to
be the point located on the actual
edge which projects onto R.
Determine which endpoint P’ or Q’ of
the projected edge is interior to
the projected surface. If the pre-
image of this endpoint is behind
the actual surface then erase the
portion of the projected edge from
the intersection point Ia to the
projected endpoint located
interior to the projected surface.

Refer to figure 16. If neither

endpoint P’ or Q’ is interior to

the projected surface then the
projected edge lies completely
exterior to the projected

surface and should not be erased.

Refer to figure 17.

c.) Two intersection points.

If both endpoints P and Q of

- 32

Figure 15.

VIEWPOINT

33

Figure 16.

VIEWPOINT

34

Figure 17.

VIEWPOINT

35

the actual edge are behind the

actual surface then erase the

portion of the projected edge
from 11 to Ié. If endpoints P

and Q are not both behind the
actual surface then let M’ be the
midpoint of the projected edge
pP’Q’. 1If M is behind the actual
surface then erase the portion

of the projected edge located

/
1

and Ié. Refer to figure 18. If

between the intersection points I

M is 1in front of the actual

surface, then the actual edge
is completely visible with
respect to the surface and

should not be erased.

Refer to appendices B and C for information on how to

determine whether or not a given point P is located in
front or behind a surface and if the point P is located in

the interior of a plane polygon.

Algorithm Number Three

The following hidden 1line removal algorithm is a
combination of algorithms one and two. Appendix G contains
a complete source listing written in Turbo Pascal for this

algorithm.

36

Figure 18.

Ve
\ ‘ r’/////z/”’llliiz
VIEWPOINT

37

sumptions

{ Algorithm number three operates under the following

»ﬁassumptions about the object:

1.) The object being processed is modeled by
a polyhedron.

2.) The polyhedron 1is constructed in such a
way that the viewer cannot see the
interior of the object from any
viewpoint.

3.) The surfaces that make up the polyhedron
are all convex polygons.

4.) There are no obstructions in the line of

sight from the viewpoint to the object.

Theory Of Operation

All 1lines on the object are first marked as
being hidden. Algorithm number one 1is then used to
determine the surfaces that are facing the viewer. All
edges on these front surfaces are marked as visible.
Each of the front surfaces are taken one at a time, and
all edges belonging to the other front surfaces are
compared one by one (using the four steps outlined in
algorithm number two) to this particular front surface to
determine if the visibility of the edges are blocked by
this surface. Any portion of the edges that are blocked
by this surface are marked as erased. After all the
edges have been processed with respect to each surface,

all visible portions of the object are then drawn.

38

Line Processing

When implementing algorithms number two and three, in
f;theory the entire object could have been drawn on the
‘graphics display device including the hidden lines. Then
the necessary line segments could be erased to produce the
final image. Because of round-off errors in the
calculation of intersection points and screen coordinates,
lines are often not entirely erased. Thus leaving an
unwanted trail of stray points in the final output of the
object. Another disadvantage of this technique could not
be used in connection with those graphics output
devices which are unable to erase lines, such as plotters
and printers. This section explains and outlines a
technique for storing and processing the object in
computer memory before displaying the final version of
the object with the hidden 1lines removed.

To effect the task of storing and processing the
object in computer memory, the edge table needs to be
expanded to hold the necessary erasures to be performed on

each particular edge. Refer to table V.

Table V.
L;, Edge Table

4]:
Edge |Vertex | Number Erasurel | Erasure2 | Erasure3 | Erasure4
No. £ vj Erasures t1 t2 t1 t2 tl t2 tl t2
0001 {01 03 | 000000 - - -- -] -- - | -- -
0002 [03 04 | 000003 (.12 .13(.97 .99 1].10 L11 | -- -
0003 | 07 10 | 000002 |[.01 .50 (.52 .87 | =-- -— | -- -
0004 (11 15| 000001 |.11 .87 | —-- -—| -- - =-- -

i
g
?

39

I The edge table is constantly being updated while hidden

§line removal algorithms two or three are executing. Every

time a hidden line removal algorithm calls for a portion of

a projected edge to be erased, the edge table is updated

? with this information. Finally after the hidden 1line

algorithm has completed executing, the visible portions of
the object are drawn using the information from the edge
table.

The equation for each projected edge (Vi'vj) of an

object can be represented in the parametric form:
R(t) = (x,,¥)) + B(x,-%,,¥,-y,) , 0 <=t <=1

where (xl,yl) and (x2,y2) are the endpoints of the
projected edge (vi,vj). If a portion of the projected edge
(Vi’vj) needs to be erased, then the endpoints of the line
segment to be erased, t1 and t2 are stored in the edge
table. Note that t1 and t2 are the parameters associated
with the parametric equation R(t) representing the
projected edge (vi,vj).

As an example, let edge number two, namely (v3,v4)
have endpoints (xl,yl) and (x2,y2). Suppose that the
portion of projected edge (V4/Vy) from point P having
coordinates (pl,pz) to point Q having coordinates (ql,qz)
needs to be erased. Rather than store the four coordinates
(pl,p2) and (ql,q2) of this segment, the parameters t1

and t2 that correspond to points P and Q respectively are

stored in the edge table. Later on (pl,pz) and

40
ql,qz) can be decoded from t1 and t2 by the following:

(Py/Py) = (X1,Y9) *+ & (X57%X,,¥,7Y,)

(qllqz) = (xllyl) + tz(xz_xllYZ_Yl)'

Remember that there is often round off error in the

calculation of the endpoints P and Q to be erased,

therefore P and Q are often very close to but not exactly
located on the projected edge (v3,v4). Approximate values

for t1 and t2 can be obtained in the following way:

Let m denote the slope of the projected edge

(V3 Iv4) e

1.) If Abs{(m) = 1 then

Ky = ((Py=%X,)/(X,=X1) + (P, = ¥1)/(¥,=Y;))/2

o
|

2 ((ql-xl)/(xz-xl) + (q2 - Yl)/(yz_yl))/z
t. = Min {kl’kz} and t2 = Max {kl’kz}

2.) If Abs(m) < 1 then

kl = (pl_xl)/(YZ-yl)

o
|

2 (ql_xl)/(YZ-yl)

t
il

Min {kl,kz} and t2 Max {kl’kz}

3.) If Abs(m) > 1 then

P
I

1 - (pz-yl)/(xz-xl)

ot
!

M1in {kl’kz} and t2 Max {kl’kz}

The last problem that must be solved is the potential

for overlap in the erasures on a particular edge. This

41

problem can be best illustrated with an example. Suppose
that edge number two, (v3,v4) has projected endpoints
(122,130) and (200,200) and no portions of this edge are

to be erased yet. Refer to table VI.

Table VI.
Edge Table
= — =
Edge | Vertex | Number Erasurel |Erasure2 | Erasure3 | Erasure4
No. v vj Erasures t1 t2 tl t2 tl t2 tl t2

0002 | 03 04 | 000000 |-- -—|-- -—|-- - -- --

Now suppose that a hidden line removal algorithm calls for
the portion of the projected edge from (137.6,144) to
(153.2,158) to be erased. The parameters corresponding to

the endpoints of this erasure are stored in table VII.

Table VII.

Edge Table I
Edge |Vertex | Number Erasurel [Erasure2 | Erasure3 | Erasure4
No. v vj Erasures tl t2 t1 t2 tl t2 tl t2
0002 | 03 04| 000001 |.20 .40 —— - - - -- -

Next suppose that the portion of the projected edge from
(184.4,188.3) to (188.3,189.5) needs to be erased. The
parameters corresponding to the endpoints of this erasure

are stored in table VIII.

,,
s
g

42

Table VIII.

Edge Table
'!dge Vertex | Number Erasurel | Erasure2| Erasure3 | Erasure4
{No. v v_j Erasures tl t2 tl t2 tl t2 t1 t2

i1 0002 | 03 04 | 000002 |.20 .40| .80 .85 == - == --

g Lastly, suppose that the portion of the projected edge from
(145.4,151.0) to (161,165) needs to be erased. Finally a
problem results, which 1is that this erasure (.30,.50)
overlaps the first erasure already stored in the table.
Two solve the problem, simply remove the first erasure
(.20,.40) from the edge table and substitute (.20,.50) in

its place. Refer to table IX.

Table IX.

Edge Table =J

Edge | Vertex | Number Erasurel | Erasure2|Erasure3 |Erasure4

No. vi vj Erasures t1 tz tl t2 tl t2 t1 t2

0002 | 03 04| 000002 |.20 .501.80 .85 == -] -- --

Let t, and t2 be the endpoints of an existing erasure
on an edge. Suppose that n, and n, are the endpoints of a
new erasure. There are basically four types of overlap

that can occur:

If this type of overlap happens, then remove (tl,tz)

43

from the edge table and add (tl,nz) to the table.

If this type of overlap happens, then remove

from edge table and add (nl,tz) to the table.

If this type of overlap happens, then remove

from edge table and add (nl,nz) to the table.

If this type of overlap happens, then ignore

and do not update the edge table.

(nllnz)

CHAPTER V

CONCILUSION

Summary Of The Thesis

The purpose of this thesis was to explore how three-
* dimensional objects can be modeled and realistically
displayed on a two-dimensional view screen. All man made
images are either moving or static. These images are
either obtained through construction or by a recording
device. For example, photography deals with the recording
of static images, while cinematography is concerned with
the recording of moving images. However cinematography and
photography are not well suited for the construction of
three-dimensional images, the reason being that an object
must first exist before a picture can be taken. One
alternative 1is the traditional method of drawing and
painting to produce images of real world objects. The
other more viable alternative is to use a computer for
image generation. Hidden line removal is an important
aspect in the generation of realistic three-dimensional
computer images.

The first chapter was an introduction to the thesis.
In it was discussed the idea of hidden line removal and its
applications. Also given was an overview of the thesis
along with a short account of the history of computer
graphics. Chapter two presented the notion of using
polyhedra to model three-dimensional objects. Also

contained in this chapter was a method for organizing the

45

' edges, vertices, and polygonal surfaces of a polyhedral
odel. The third chapter dealt with the concept of

projecting the edges of the polyhedral model onto the view
Eiscreen thus producing an image of the object. A major step
in this process was the conversion of the coordinates of
. the object’s vertices relative to the standard coordinate
system into coordinates relative to the eye coordinate
system. Chapter three concluded with a discussion of the
viewing parameters which control the size of the object and
the direction from which the object will be viewed. Three
elementary hidden line removal algorithms were presented in
chapter four. The first algorithm was for use with convex
polyhedra. The second and third algorithms could be used
to remove the hidden lines from both concave and convex
polyhedra. Following chapter five are a bibliography
and eight appendices A,B,C,D,E,F,G, and H. Appendices A,B,
and C contain supplementary information pertaining to the
second and third hidden line removal algorithms. Appendix
D contains instructions for using the programs located on
the program disk. Finally appendices E,F,G, and H contain

the source code for the hidden line removal algorithms.

Conclusions

Throughout the course of implementing the hidden line
removal algorithms on the computer, several conclusions

became evident to the author.

1.) Although theoretically an object can be

approximated to an arbitrary fine

2.)

3.)

4.)

precision by a plane faced polyhedron,
this method of surface modeling is not
always practical. For example, a
polyhedral approximation of a coffee cup
could contain many surfaces and would be
difficult to generate and to modify. A
simple alteration of any kind would
result in having to recalculate many of
the coordinate values.

To test the hidden 1line removal
algorithms contained in this thesis,
several polyhedral models were
constructed. A considerable amount of
time (much more than was expected)
was spent generating the coordinate
values and surface orientations

for these very simple models.

It 1is very important to understand how
the viewing parameters (Theta,Phi,Rho,
and D) affect the computer generated
images. It took some practice in
adjusting the viewing parameters in order

to get a particular view of the object.

Hidden line removal is very important in
the generation of realistic images.
Before the hidden line removal algorithms

were tested, objects were displayed on

46

47
the view screen in their entirety.
Almost without exception the computer
generated images were very confusing and
difficult to interpret. Most of the
ambiguities were resolved when the hidden

line removal algorithms were applied.

5.) Due to the nature of convex polyhedra,
the removal of hidden lines is easily
accomplished. The surfaces of a convex
polyhedron are either completely visible
or completely hidden from view. Because
of this fact, the first hidden 1line
removal algorithm executes very rapidly
as compared to the significantly
slower execution speeds of the second
and third hidden line removal
algorithms designed primarily for concave

polyhedra.

Recomendations For Future Study

It is the opinion of the author that a
subsequent study involving parallel processing could help
increase the characteristically slow execution speeds of
hidden 1line removal algorithms in general. Future
studies might also include enhancing an object’s realism
further through the use of special effects such as shading,

transparency, shadows, and textures.

47
the view screen in their entirety.
Almost without exception the computer
generated images were very confusing and
difficult to interpret. Most of the
ambiguities were resolved when the hidden

line removal algorithms were applied.

5.) Due to the nature of convex polyhedra,
the removal of hidden lines is easily
accomplished. The surfaces of a convex
polyhedron are either completely visible
or completely hidden from view. Because
of this fact, the first hidden 1line
removal algorithm executes very rapidly
as compared to the significantly
slower execution speeds of the second
and third hidden line removal
algorithms designed primarily for concave

polyhedra.

Recomendations For Future Study

It is the opinion of the author that a
subsequent study involving parallel processing could help
increase the characteristically slow execution speeds of
hidden 1line removal algorithms in general. Future
studies might also include enhancing an object’s realism
further through the use of special effects such as shading,

transparency, shadows, and textures.

(1]

[2]

[3]

[4]

(3]

[6]

[7]

[8]

[9]

[10]

BIBLIOGRAPHY

Angell, I. O. A Practical Introduction to Computer
Graphics, HALSTEAD PRESS, New York, NY, 1982

NY, 1982.

Brumfiel, C. F. Eicholz, R. E., and Shanks, M. E.
Geometry, Addison-Wesley Publishing Co., Inc.,
Reading, MA, 1962.

Demel, J. T. and Miller M. J. Introduction to

Computer Graphics, Brooks/Cole Engineering
Division, Montery, CA, 1984.

Hearn, D. and Baker, M.P. Computer Graphics,
Prentice-Hall, Englewood Cliffs, New Jersey,
1986.

Hearn, D. and Baker, M.P. Computer Graphics for the
IBM Personal Computer, Prentice-Hall, Inc.
Englewood Cliffs, NJ, 1983.

Lewell, J. Computer Graphics, Van Nostrand Reinhold
Co., Neew York, 1985.

McGreagor, J. and Watt, A. The Art of Graphics for
the IBM PC, Addison-Wesley Publishing Co.,
Reading, MA, 1986.

Mufti, A. A. Elementary Computer Graphics, Reston
Publishing Co., Inc., Reston, VA, 1983.

Myers, R.E. Microcomputer Graphics, Addison-Wesley
Publishing Co., Reading, MA, 1982.

Newman, W. M. and Sproull, R. F. Principals of
Interactive Computer Graphics, McGraw-Hill Book
Company, New York, NY, 1979.

APPENDIX A

Obviously in order to calculate the intersection point

L of two lines, the equations of both lines must be known.

The standard form for the equation of a straight line in RZ

is A X+ By +C=0 where A,B, and C are constants.

Given two distinct points (x) and (x) the constants

1:Y1 2’y2
A,B and C can be calculated by the following [9, pg. 45].

One way to find the intersection point of two lines

is to solve the following system:

Al x + B1 Y = —C1 (line one).

Az X + 32 Y = —02 (line two).

By Cramer’s rule:

- r 7
-C B W -C
Det 1 1 Det 1 1
L'Cz B, | P2 'cz_
X = y =

I B, (A, B

Det 1 1 Det 1 1

: | *2 B, (A, By

Remember that the intersection point of two finite 1line
segments is desired and not the intersection point of the
infinite 1lines defined by the two line segments. Assuming

that the two line segments are not dependent or

;

nconsistent,

50

the following three possibilities exist [9,

pg. 48].

1.) The intersection point 1lies between the
endpoints of both line segments. In this
case the two 1line segments actually
intersect.

2.) The intersection point 1lies between the

endpoints of one 1line segment and not the
other. In this case the two line segments do

not actually intersect.

3.) The intersection point does not lie between
the endpoints of either line segment. Also
in this case the two line segments do not

actually intersect.

|
f

APPENDIX B

The following algorithm can be used to determine if a
given point P 1is located interior or exterior to of a
plane polygon [8, pg. 143]. The algorithm is best
explained by using figures 19 and 20. Consider the
following angles where the vi’s represent the vertices of

the polygon.

Al =A VPV, , A, = A V,PVy , ..., A=A VPV,

If the rotation about the point P from v to Vi is
clockwise then A, is given a negative value; otherwise A,

is given a positive value.

1.) If P is interior to the polygon, then
the sum of the Ai’s will eqaul plus
or minus 360°. Referring to figure 19,
since P is 1inside the polygon the angles
A, +A, +A, +A, + A+ A, + A add up

to a sum of -3600.

2.) If P is exterior to the polygon, then the
sum of the Ai’s will equal 0°. Referring
to figure 20, since P is outside the
polygon the angles A + A + A, + A, +

1 2 3 4

As + A6 + A7 add up to a sum of 0°.

52

FINISH

Figure 19.

53

FINISH

Figure 20.

NEGe

4

. is defined to be in front of a plane if and only if the

o

APPENDIX C

Considering the viewpoint to be the origin, a point P

é;point P is on the same side of the plane as the origin or

is contained within the plane. 1In any other case P is

. defined to be behind the plane.

The standard form for the equation of a plane is A x +
By+C2z+D= 0 where A,B,C, and D are constants. Given
three non collinear points (xl,yl,zl), (x2,y2,zz), and
(x3,y3,23) the constants A,B,C, and D can be determined by

the following [6, pg. 195].

= yl(z2 = 23) + Y2(23 - zl) + y3(zl - zz)

(x2 x3) + zz(x3 - xl) + z3(x1 - xz)

g 0 = >
I
N

= "X (Y25 = ¥32)) - X,(¥32) - ¥y23) “X3(¥,2;, - ¥,Z,)

Consider a plane that does not contain the origin
and having the equation: AXx+By+Cz+ D = 0
where D > O. This plane partitions r3 into three

disjoint sets of points [1, pg. 54].

1.) The set of points 1lying on the same
side of the plane as the origin. Any
point (x,y,2z) in this set will satisfy:

Ax+By+Cz+D>O0.

2.) The set of points contained within the

plane itself. Obviously any point (x,y,2z)

55
in this set will satisfy:

Ax+By+Cz+D-=0.

3.) The set of points 1lying on the side
opposite the side of the plane containing
the origin. Any point (x,y,2z) in this
set will satisfy:

Ax+By+Cz+D<O.

Therefore the point P having coordinates (i,j,k) is
defined to be behind the plane having equation: A x + By +
Cz + Dwhere D >0 if and only ifA i + B j +Ck + D < 0.
On the other hand, point P is defined to be in front of the

plane if and only if A i + B j + Ck + D >= 0.

4
:
3

APPENDIX D

What follows are some guidelines and helpful

information on how to use the programs on the program disk.

Vertex And Surface Definition Files

In order to display the image of any polyhedral model
two files must exist. The first file 1is the vertex
definition file. The vertex definition file contains a
listing of the standard three-dimensional coordinates for
each vertex. This sequential file consists of an ordered
sequence of records, one record per line, and each record
having three fields. The three fields contain the X,Y, and
Z standard coordinates respectively for each consecutive
vertex. Examples of vertex definition files are HOUSE.VER,
DODEC.VER, SIXTY.VER, SPHERE.VER, and TETRA.VER which are
all 1located on the program disk. To obtain a listing of
the contents of any vertex definition file simply type the
following at the DOS prompt:

A> copy filename.ext con
For example, if the user wanted to look at the contents of
the vertex definition file TETRA.VER he would simply type

A> copy TETRA.VER con
and the following output would be produced:

5.77350269 10.00000000 0.000000000
5.77350269 -10.00000000 0.000000000
-11.54700538 0.00000000 ©0.000000000
0.00000000 0.00000000 16.329931620

The above file TETRA.VER 1is a discription of the vertices

of a regular tetrahedron. In the above file, records 1,2,3

57

and 4 correspond to the three-dimensional coordinates of
MIACIALY and Va4 (vertices 1-4) respectively.

The second file, the surface definition file contains
a listing of the edges that form each surface. This
sequential file consists of an ordered sequence of records,
one record per line, and each record not necessarlily
having the same number of fields. The first field always
lists the number of edges that form each surface,
and the remaining fields 1list the vertices defining
each of the edges that make up that particular surface.
Examples of surface definition files are HOUSE. SUR,
DODEC.SUR, SPHERE.SUR, SIXTY.SUR and TETRA.SUR which are
all 1located on the program disk. For example, if the
user wanted to view the contents of the surface

definition file TETRA.SUR he would simply type

A> copy TETRA.SUR con
and the following output would be produced:

03 01 04 02 01

03 01 03 04 01

03 03 02 04 03

03 01 02 03 01
The above file TERTA.SUR is a discription of the surfaces
of a regular tetrahedron. Records (1-4) correspond to
surfaces (1-4) of the object respectively. The first

field indicates the number of edges that form the surface.

The remaining fields list the vertices that define each of

the edges that make up the surface. For example,
surface number one is formed by three edges. The first,
second, and third edges are v.v,,vV,V and v,V

14’472’ 21

58

respectively. Note that when using hidden line removal
algorithms number one and three, the vertices of each
surface must be ordered in such a way that the normal
vector associated with each surface points in an outward
direction away from the center of the object. Refer to
chapter four for more information on the proper
ordering of the vertices of a particular surface.
The names of the vertex and surface definition files

corresponding to a particular object must be the same
(preferably the name of the object that they discribe) and

the extentions must be .VER and .SUR respectively.

Function Keys

The three programs HLRQ01.PAS, HLR02.PAS, and HILRO3.PAS
on the program disk are controlled exclusively by the
function keys (F1 - F10). The following is an explanation

of what each function key does.

Function Key Operation
) . Ceeeeeen Decrease Theta.
Shift F1cccevveenens Decrease Theta rapidly.
Ctrl F1 ceceeaeee cees e Turns status information

on or off.

F2 (i iiieecenoesoccnas ceeseasnn Increase Theta.
Shift F2 ceesseen Increase Theta rapidly.
Ctrl F2civeveconce eeees.. Turns coordinate axes

on or off.

2 ... Decrease Phi.

59

Function Key Operation
Shift F3 ceescscennns Decrease Phi rapidly.
Ctrl F3ciitreeenncncnnnns Turns the hidden 1line

removal algorithm on or
off.

Increase Phi.

Shift F4ccvevennes «e+.. Increase Phi rapidly.

= ceeens ... Decrease Rho.

Shift F5 ...iieeeeeeennsa «.... Decrease Rho rapidly.

F6 ...viieeneeennnnnns ceeeeen . Increase Rho.

Shift Fé6 cecene cecraes ... Increase Rho rapidly.

F7 cieiereeecsenes ceescens ... Decrease D.

Shift F7cc00e0.. ceeeaes . Decrease D rapidly.

F8 ..iuieeieerrtenannns cesescas . Increase D.

Shift F8c000u0n cesaoan Increase D rapidly.

F9 (veeeees Crecescsseeassecanns Draws object. *

2 «+.... Exits the program and

returns control to the
Turbo or DOS command
prompt.

* The object will be drawn according to whether or not
hidden line removal is turned on or off. It may take
several minutes for an image of the object to appear
on view screen.

Executing The Programs
To run the programs HILRO1.PAS, HLRO2.PAS, or HLRO3.PAS

do the following:

1. Insert the program disk into drive A.

2. Turn the computer on. If the computer is

60
already on then restart the computer by
pressing the three (3) keys Ctrl,Alt, and Del
simultaneously.

3. Depending on which program the user wants to
run, (HLRO1l,HLR02, or HLRO3), type one of the

following at the DOS prompt:

A> HLRO1 objectname
A> HLRO02 objectname

A> HLRO3 objectname

For example, if the user wanted to remove the hidden
lines from a regular dodecahedron by using the first hidden
line removal algorithm, he would simply type the following:

A> HLRO1l DODEC
and the program HLRO1l would begin executing and would load
vertex and surface definition files DODEC.VER and DODEC.SUR

respectively.

APPENDIX E

The following 1is the source code written in Turbo

fkascal for algorithm number one. Refer to appendix D for

‘instructions on how to run the program.,
peran Hidden Line Removal O1 (Input,Output) ;

TURBO Pascal 3,01A
IMM FC or compatibles

Copyright(C) : Permission is granted by the author to use, reproduce,
: modify all or part of the computer programs contained
herein for the readers own persomal use, This
permission is not to be construed as a license to
distribute or sell all or any part of the programs to
others in any shape or form,

| Disclaimer : The author has spent a great deal of time and effort
; in preparing this thesis and the programs contained
herein, This includes meny hours of research,
development and testing of the programs to determine
their effectiveness, The author shall not be liable
in any event for incidental or consequential damages
in conection with or arising out of the furnishing,
performance or use of all or any portion of these
programs.

{ Palette O color constants,)}

Black = 0;
Green = 1;
Red = 2;
Brown = 3;
{ Display window boundary constants. }
Xmin = 1;
Xmax = 310;
Yorin = 20 ;
Ymax = 199;

{ Roughly the center of the display window. }

CenterX = 155;

89 ;

0.93 ; { the approximate aspect ratio for the IBM PC
graphics screen. }

(These constants determine how much the viewing parameters Theta,Phi,Rho,
and D will increase or decrease when the respective function keys are
I pressed that control each of these parameters.)}

0.0175 3 { roughly one degree. }

f DelTheta .
i 0.0175 ; { roughly one degree. }

53
: =
E DM = 53: { The minimwm value for D, }
. RhoMin = 53 { The minimm value for Rho. }
I Vertextax = 30 ;: { The maximm mumber of vertices that an
3 object can have. }
SurfaceMax = 30 ; { The maximum mmber of surfaces an object
;‘, can have, }
. MaxSurfVertices = 2 ;: { The maximm number of vertices that can
form a surface. }
. BorderColor = Red ; { The color of the display window border. }
ObjectColor = Green ; { The edges that form the object will be
, displayed in this color.}
R3Vector = Record
X,Y,2 ¢ Real ;
Fnd
RVector = Record
X,y ¢ Real ;
End ;

SurfaceRecord = Record
Vertices : Array[l..MaxSurfVertices] Of Integer ;
MunVertices : Integer ;

End ;
R3VertexType = Array[l..VertexMax] Of R3Vector ;
NormalType = Array[l..SurfaceMax] Of R3Vector ;
SurfaceType = Array[l..SurfaceMax] Of SurfaceRecord ;
R2VertexType = Array[l..VertexMax] Of R2Vector ;
FileNameType = String[8] ;
StatsRecord = Record

StatsOn,Axis,Hidden : Boolean ;
Th,Ph,Rh,Dist : Real ;
ObjName : FileNameType ;

End ;

62

SINRD VERTEX ¢ R3VertexType ;

R3 SINRD VFRTEX[i] contains the standard three-dimensional coordinates for
the i~-th vertex. }

: RVertexType ;

R2Vertex[i] contains the two-dimensional screen coordinates for the i~th
vertex,)

¢ SurfaceType ;

jf { Surface[i].NunVertices contains the mmber of vertices that form the i-th
i surface.

Surface[i].Vertices[j] contains the j~th vertex in the formilation of
the i-th surface.)

Normal : NormalType ;

({ Normal[i] contains the normal vector associated with the i-th surface.)
VertexCount : Integer ;

{ The actual mmber of vertices that form the object.)

SurfaceCount : Integer ;

{ The actual mmber of surfaces that form the object.)

FunctKey : Integer ;

{ Contains a number assocaited with the function key that was pressed.)
Theta,Phi,Rho,D ¢ Real ;

{ The viewing parameters.)

A,B : Char ;
i { Holds the sequence of characters generated when a function key is
pressed. }

Stats :+ StatsRecord ;

{ Contains the status information which is displayed on the first two lines
of the display screen.)

0Ob jectName : FileNameType ;

{ Contains the name of the object being displayed.)

63

: ($T GRAPHI.TRU)

e CalcNormals(R3 STNRD VERTEX:R3VertexType ; Surface:SurfaceType ;
SurfaceCount : Integer ; Var Normal:NormalType) ;

8,b : R3Vector ; n : Integer ;

For n := 1 To SurfaceCount Do
RADiff(R3 SINRD VERTEX[Surface[n].Vertices[2]],
R3_SINRD VERIE([Sm‘face[n] JNertices[1]],a) ;

RADLEF(R3 STNRD VERTEX[Surface[n].Vertices[3]],
R3 SINRD VERTEX[Surface[n].Vertices[1]],b) ;

Normal[n].x := a.y * b.z - b,y ¥ a.z ;

Normal[n].y := b.x * a.z - a.x ¥ b.z ;
Normal[n].z := a.x * b,y - b.x ¥ a.y ;

Procedure CalcR2Vertex(R3 VERTEX:R3VertexIype ; VertexCount:Integer ;
) VarRZVertexRZVerteﬂ‘ype Theta,Phi ,Rho,D:Real) ;
Var k : Integer ; R3Eye : R3Vector ;
Begin
For k := 1 To VertexCount Do
Begin
EyeXYZ(Theta,Phi,Rho,D,R3 SINRD VERTEX[k],R3Eye) ;
ScreenXY(Theta, Phl Rho,D,R3Eye,R2Vertex[k]) ;
End ;
End ;
Procedure DrawSurface(Surface:SurfaceRecord ; RZVertex:R2VertexType ;
Color:Integer) ;
Var k,vnl,vn2 : Integer ;

Begin

64

Pior & := 1 to Surface.NumVertices Do

E vl := Surface.Vertices[k]
w2 := Surface.Vertices[k+l] :

| Clip(RNertex|wnL].x,RVertex{vnl].y,R2Vertex[w2] .x,R2Vertex[n2].y,
Color , Xmin, Xmax, Yarin, Ymax) ;

ocedure DrawSurfaces(Surface:SurfaceType ; SurfaceCount,Color:Integer ;
- Normal:NormalType ; R3 SINRD VERTEX:R3VertexType ;
RZVertexRZVert@ﬂ‘ype Theta,Phi,Rho,D : Real ;
Stats:StatsRecord) ;

ViewVector : R3Vector ; n : Integer ;

| For n := 1 To SurfaceCount Do

Begin
CalcViewVector(Surface[n],R3 STNRD VERTEX, Theta, Phi, Rho, ViewVector) ;
If Stats.Hidden Then

If R3DotProduct(ViewVector ,Normai[n]) > O Then
DrawSurface(Surface[n],R2Vertex,Color) ;
Fnd
Else
DrawSurface(Surface[n],RZ2Vertex,Color) :

-~ Procedure DrawObject(R3 SINRD VERTEX:R3VertexType ; VertexCount:Integer ;
' Surface:SurfaceType ; SurfaceCount Integer ;
Normal :NormalType ; Color Integer ;
'Iheta,Phi,Rho,D:Real ; Stats:StatsRecord) ;

Begin
CalcR2Vertex(R3_SINRD VERTEX,VertexCount,R2Vertex,Theta,Phi,Rho,D) ;
Write(Ghr(7)) ;
ZapScreen ;
DrawSurfaces(Surface,SurfaceCount ,Color,Normal,R3 STNRD VERTEX,
R2Vertex, Theta,Phi ,Rho,D,Stats)

If Stats.Axis Then DrawAxes(Theta,Phi,Rho,D) ;

65

e Initialize(Var R3 SINRD VERTEX:R3VertexType ;
Var Surface:SurfaceType ;
Var Normal:NormalType ;

Ob jectName:FileNameType ;
Var Theta,Phi,Rho,D:Real ;
Var VertexCount,SurfaceCount:Integer ;
Var Stats:StatsRecord) ;

Infile : Text

| Assign(Infile,ObjectName + '.Ver') ;
| Reset(Infile) ;

 LoadVertex(Infile,R3 STNRD VERTEX,VertexCount) ;
} Close(Infile) ;

 Assign(Infile,ObjectName + '.Sur') ;
Reset(Infile) ;

LoadSurface(Infile,Surface,SurfaceCount) ;
Close(Infile) ;

CalcNormals(R3_SINRD VERTEX, Surface,SurfaceCount,Normal) ;

Theta := 0
Phi := Pi/2;
Rho := 425
D = 1549
With Stats Do
StatsOn := True ;
ObjName := ObjectName ;
Axdis 1= False ;
Hidden = True ;
Th += Theta ;
Ph s=Phi
Rh :=Rho ;
Dist =D
End ;
ZapScreen ;
End ;
Begin

et

Begin

01
02
03
()
05
06
07
08

0

11
12
13
14
15
16
17
18
21
22
23

67

 ObjectNeme := ParanfStr(1) ;

%Iniuahze(msmknvmm&mfacemmala)ﬁctuanenetannmnn
: VertexCount,SurfaceCount ,Stats)

Stats,Th := Theta ; Stats.,Rh := Rho ;
Stats,Ph := Phi ; Stats,Dist :=D

If Stats.StatsOn Then ShowStats(Stats) Else FraseStats(Stats)
GetKeySequence(A,B) ;

If Ord(A) = 27 Then
FunctKey := DecodeFunctionKey(B) ;

If Ord(A) = 27 Then

Case FunctKey Of

: WrapAroundDec(Theta,DelTheta,0,2%Pi) ;
¢ WrapAroundInc(Theta,DelTheta,0, 2Pi) ;
¢+ WrapAroundDec(Phi,DelPhi,O,Pi) ;

¢ WrapAroundInc(Phi,DelPhi,0,Pi) ;

¢+ Dec(Rho,DelRho)

: Inc(Rho,DelRho) ;

¢ Dec(D,DelD) ;

+ Inc(D,DelD) ;

¢ DrawOb ject(R3_STNRD VERTEX,VertexCount,Surface,SurfaceCount,

Normal ObJectColor Theta,Phi ,Rho,D,Stats) ;

+ WrapAroundDec(Theta,DelTheta*10,0,2%Pi)
+ WrapAroundInc(Theta,DelTheta*10,0,2%Pi)
: WrapAroundDec(Phi,DelPhi*10,0,Pi) ;

¢ WrapAroundInc(Phi,DelPhi*10,0,Pi) ;

¢ Dec(Rho,DelRho*10)

: Inc(Rho,DelRho*10) ;

¢ Dec(D,DelD¥10) :

¢+ Inc(D,Dell¥*10) ;

: Stats.StatsOn := Not Stats,StatsOn ;

: Stats.Axis := Not Stats.Axis ;

: Stats.Hidden := Not Stats.Hidden ;

68

APPENDIX F

The following is the source code written in Turbo

fPascal for algorithm number two. Refer to appendix D for

i instructions on how to run the program.

(languoge/Campiler : TURBO Pascal 3.01A
: IBM PC or compatibles

Copyright(c) : Permission is granted by the author to use, reproduce,
modify all or part of the computer programs contained
herein for the readers own persomal use, This
permission is nmot to be construed as a license to
distribute or sell all or any part of the programs to
others in any shape or form.

Disclaimer : The author has spent a great deal of time and effort
in preparing this thesis and the programs contained
herein. This includes many hours of research,
development and testing of the programs to determine
] their effectiveness. The author shall not be liable
E in any event for incidental or consequential damages
4 in conection with or arising out of the furnishing,
performance or use of all or any portion of these
programs. |

Const

{ Palette O color constants. }

Black = 0
Green = 1
Red = 2
Brown = 33
{ Display window boundary constants. }
Xmin = 1
Xmax = 310
Ymin = 20
Ymax = 199

{ Roughly the center of the display window. }

CenterX

155 ;
CenterY 3

89 ;

AspectRatio

ErasureType
EdgesRecord

EdgesType

R3Vector

R2Vector

LineType

= 0,93 ; { the approximate aspect ratio for the IBM PC
graphics screen. }

;{'Ihseconstants determine how much the viewing parameters Theta,Phi,Rho,
- and D will increase or decrease when the respective function keys are
pressed that control each of these parameters., }

0.0175
0.0175 ;
53

5 s { The minimm value for D, }
5 ; { The minimum value for Rho. }

100 ; { The maximum muber of vertices that an object
can have, }

{ The maximum mmber of surfaces an object can
have. }

{ The maximum number of vertices that can form
a surface, }

Red ;3 { The color of the display window border.

; { The edges that form the object will be

displayed in this color.)}

{ The maximum mumber of disjoint erasures that
an edge can have, }

= 100 ; { The maximum muber of edges that an object

wwonnonun
w

[
2

]
o

0
o

can have. }
= Record
tl,t2 : Real ;
End

= Array[l..FrasureMax] Of ErasureRecord ;

= Record
nvl,nv2 : Integer ;
Erasure ¢ ErasureType ;
NumFrasures : Integer ;

Flag : Boolean ;
End ;
= Array[1l. .EdgesMax] Of EdgesRecord ;
= Record

X,Y,Z ¢ Real ;

= Record
endl,end? : R2Vector ;
Fnd ;

70

71

; VerticesType = Array[l. MaxSurfVertices] Of R2Vector ;

| SwrfaceRecord = Record
Vertices : Array[l..MaxSurfVertices] of Integer ;
NunVertices : Integer ;

End ;
| RiVertexType = Array[l..Vertexax] Of RdVector ;
RVertexType = Array[l..Vertextax] Of R2Vector ;
SurfaceType = Array[1. .SurfaceMax] Of SurfaceRecord ;
FileNameType = String[8]
StatsRecord = Record

StatsOn,Axis,Hidden : Boolean ;
Th,Ph,Rh,Dist : Real ;
ObjName : FileNameType ;

End ;

Var
R3 SINRD VERTEX : R3VertexType ;

{ R3 SINRD VERTEX[i] contains the standard three-dimensional coordinates for

R3 EYE VERTEX + R3VertexType ;

{ R3 EYE VERTEX[i] contains the eye three-dimensional coordinates for the
i"th Ver'teX. }

R2Vertex ¢ RNVertexType ;

{ RWVertex[i] contains the two-dimensional screen coordinates for the i-th
vertex, }

Surface : Surfacelype

{ Surface[i].NMumVertices contains the j-th vertex in the formulation of the
i-th surface. }

Edges : EdgesType ;

{ Edges[i].nvl contains the number of the first vertex defining the
i—th Gige.

Edges[i].nv2 contains the number of the second vertex defining the
i—th al@-

Edges[i].Erasure[j].tl contains the the first endpoint defining the j-th
erasure of the i-th edge.

72

,- Edges[i].Erasure[j].t2 contains the second endpoint defining the j-th
| erasure of the i-th edge.

, Edges[i].NunFrasures contains the number of erasures currently on the
F' i-th edge,

Edges[i].Flag is a process flag, If Edges[i].Flag = TRUE then the i-th
edge will not be processed (ie. tested for visibility with respect to the

. surfaces of the object). }
VertexCount : Integer ;

‘ { The actual number of vertices that form the object. }

Sm'face(bmt : Integer ;

* (The actual number of surfaces that form the object. }

, Theta,Phi ,Rho,D ¢ Real ;

E (The viewing parameters,)

FunctKey : Integer ;

{ Contains the mumber associated with the function key that was pressed. }

i AB : Char ;

{ Hold the sequence of characters generated when a function key is pressed. }
Stats ¢ StatsRecord ;

{ Contains the status information which is displayed on the first two lines
of the display screen.)

ObjectName : FileNameType ;
{ Contains the name of the object being displayed.)}

($1 GRAPH1.TPU }
($I GRAPH2.TPU }

Procedure DrawFdge(Edge:EdgesRecord ; R2Vertex:R2VertexType ; Color:Integer) ;
Var xl1,yl,x2,y2,ql,q2 : Real ; k : Integer ;
Begin

x1 := RVertex[Edge.nvl].x ; yl := R2Vertex[Edge.nvl].y ;

73

fz := RVertex[Edge.nv2].x ; y2 := R2Vertex[Fdge.nv2].y ;

jIf Fdge.NunFrasures = O Then
b Clip(xl,yl,x2,y2,Color,Xmin, Xmax, Ymin, Ymax)

=
SortErasure(Fdge.Erasure, Edge Nunfrasures)

ql := Edge.Erasure[1].t1 ;
Clip(x1,yl,x14ql*(x2—x1),yl+q1*(y2-yl),Color , Xmin, Xmax, Ynrin, Ymax) ;
k:=1;

While k <= Edge NuFrasures - 1 Do

ql := Edge.Frasure[k].t2 ;

q2 := Edge.Frasure[k].tl ;

Clip(x1+q1*(x2-x1),yl+q1*(y2-y1) ,x14q2¥(x2-x1) ,y14q2*(y2-y1) ,Color,
Xntin, Xmax, Ymin, Ymax) ;

ql := Edge.Frasure[Edge.NurErasures].t2 ;
Clip(x14q1*(x2—x1),yl+ql*(y2-y1),x2,y2,Color,Xmin, Xmax, Ymin, Ymax) ;
- Pnd ;

P:medm*e AddFdge(Var Edges:EdgesType ; Var EdgesCount:Integer ;
nvl,nv2,NurFrasures: Integer ; Flag:Boolean) ;

Begin
If EdgesCount < EdgesMax Then
Begin
EdgesCount := EdgesCount + 1 ;
If nvl > nv2 Then SwitchIntegers(nvl,nv2) ;

Edges| EdgesCount] .nvl s=nvl
Edges[FdgesCount] .nv2 t=nv2 ;
Edges{ EdgesCount] . Flag := Flag ;
Edges| EdgesCount] Nurfrasures := NunFrasures ;

End ;
End ;

Procedure BuildFdgeTable(Var Edges:EdgesType ; Var FdgesCount:Integer ;
Surface:SurfaceType § SurfaceCount:Integer) ;

bt j,k,nv1,nv2,EdgeNumber : Integer ; Found : Boolean ;

| BigesCownt 3= 0 ;
Forj = 1 To SurfaceCount Do
For k := 1 To Surface[j].NMunVertices Do
Begin
nvl := Surface[j].Vertices[k] ;

nv2 := Surface[j].Vertices[k+l] ;

FindFdgeNumber (Edges, EdgesCount ,nv1,nv2, EdgeNumber, Found) ;
If Not Found Then AddEdge(Edges,EdgesCount,nvl,nv2,0,False) ;

R2Vertex:R2VertexType) ;

;:Vark : Integer ;

- For k := 1 To EdgesCount Do DrawFdge(Edges[k],R2Vertex,Green) ;
End ;

Procedure RemoveltiddenLines(R3 STNRD VERTEX,R3 EYE VERTEX:R3VertexType ;
RIVertex:] R2Verteﬂ‘ype Surface:SurfaceType ;
Var Edges:EdgesType ; Edgeﬂ]ount Vertex(btmt,
SurfaceCount Integer s Theta,Phi ,Rho,D:Real) ;

Var Surf,K,Mumlnt,ntvl,ntv2,NuSurfVertices,EdgeNumber : Integer ;
e, f,g,h,minpolyx,maxpolyx,minpolyy,maxpolyy : Real ;
TestEdge, PolyEdge : LineType ;
pl,p2 : R2Vector ;
PolyPoints : VerticesType ;
hl,h2,h3 : R3Vector ;
Dependent ,Found, Behindl ,Behind2, Insidel ,Inside2 : Boolean ;

Begin
For Surf := 1 To SurfaceCount Do
Begin
NulSurfVertices := Surface[Surf].NumVertices ;

For X := 1 To NulSurfVertices+l Do
PolyPoints[K] := R2Vertex[Surface[Surf].Vertices[K]] ;

74

MarkSurfaceFdges(Edges, EdgesCount ,Surface[Surf]) ;
RectangularBoundry(NurSurfVertices, PolyPoints,minpolyx,maxpolyx,
minpolyy,maxpolyy) ;

hl.
h2 3
h3 :

R3 EYE , VERTEX[Surface[Surf].Vertices[1]] ;
R31 3 EYE L VERTEX[Surface[Surf].Vertices[2]] ;
=R3 1 } EYE \ VERTEX[Surface(Surf].Vertices[3]] ;

CalcR3Plane(hl,h2,h3,e,f,g,h) ;
For EdgeNumber := 1 To EdgesCount Do
Begin
ntvl := Edges[EdgeNumber].nvl ;
ntv2 := Edges|EdgeNumber].nv2 ;

If Edges[EdgeMurber].Flag Then
Nothing
Else

TestEdge.endl := R2Vertex[ntvl] ;
TestEdge.end2 := R2Vertex[ntv2] ;

Behindl
Behind2

BehindPlane(R3 FYE VERTEX[ntvl],e,f,g,h) ;
BehindPlane(R3 EYE VERTEX[ntv2],e,f,g,h) ;

If ((Not Behindl) And (Not Behind2)) Or
(OutsideBox(TestEdge,minpolyx,maxpolyx,minpolyy,maxpolyy)) Then
Nothing
Flse
Begin
FindIntersectionPoints(TestEdge, NunSurfVertices,PolyPoints,
pl,p2,Nunlnt,,Dependent) ;

If Not Dependent Then

Begin
Insidel := InsidePoly(NumSurfVertices,PolyPoints,TestEdge.endl) ;
Inside? := InsidePoly(MuSurfVertices,PolyPoints,TestEdge.end2) ;

ProcessTestEdge(TestEdge, Edgelumber,
R3 EYE VERTEX[ntvl],R3 EYE VERTEX[ntv2],
RAVertex, pl, p2,NumInt ,NumSurfVertices,
PolyPoints,e, f,g,h,Theta,Phi ,Rho,D,Edges,
Behirxil,Belﬁ.miZ,Insidel,Insid&) :

UnMarkSurfaceEdges(Edges, EdgesCount ,Surface[Surf]) ;
End ;
End ;

Procedure ProcessObject(R3 SINRD VERTEX:R3VertexType ;

75

R3 EYE VERTEX:R3VertexType ;
R2Vertex:RZVertexType ;

VertexCount :Integer ; Surface:SurfaceType ;
SurfaceCount : Integer ;

Edges:EdgesType ; EdgesCount:Integer ;
Theta,Phi ,Rho,D:Real ; Stats:StatsRecord) ;

| CalcRaEyeVertex(R3 STNRD VERTEX, VertexCount ,R3 FYE, VERTEX,
Theta,Phi, Rho,D) ;

CalcR2Vertex(R3_EYE VERTEX,VertexCount ,R2Vertex, Theta,Phi,Rho,D) ;

 If Stats.Hidden Then
Begin

For K := 1 To EdgesCount Do
Begin

Edges[K].NurErasures := 0 ;
Edges[K].Flag := False ;

Write(Gr(7)) ;
RemoveltiddenLines(R3 STNRD VERTEX,R3 EYE VERTEX,R2Vertex,Surface,Edges,
ngesComt VertexComt SurfaceCount ,Theta,Phi ,Rho,D) ;
End ;

Write(Gw (7)) ;
ZapScreen ;
DrawObject(Edges, FdgesCount ,R2Vertex) ;

If Stats.Axis Then DrawAxes(Theta,Phi,Rho,D) ;
End ;

Procedure Initialize(Var R3 SINRD VERTEX:R3VertexType ;
Var R‘3 EYE | VERTEX: R3VertexType ;
Var Surface: SurfaceType ;
Var Edges:EdgesType ;
ObjectNaue:Filel\laxeType H
Var Theta,Phi ,Rho,D:Real ;
Var EdgeCount,SurfaceCount, VertexCount:Integer ;
Var Stats:StatsRecord) ;

Var Infile : Text ; k:Integer ;
Begin
Assign(Infile,ObjectName + '.Ver') ;

76

'Pwet(lnfile) :

| LoadVertex(Infile,R3 SINRD VERTEX,VertexCount) ;
Close(Infile) :

b Assign(Infile,ObjectName + ".Sur') ;
 Reset(Infile) ;

| LoadSurface(Infile,Surface,SurfaceCount) ;
' Close(Infile) ;

Theta := Pi/4 ;
b Phi = Pi/2 ;
E Rho = 425 H
D = 1549 ;
With Stats Do
Begin
StatsOn = True ;
Axis := False ;
Hidden = True ;
ObjName := ObjectName ;
Th 3= Theta ;
Ph = Phi ;
Rh = Rho ;
Dist =D
End ;

BuildFdgeTable(Edges, EdgesCount ,Surface,SurfaceCount) ;
End ;
Begin
If ParanCount = O Then
TextMode(C80) ;
Write("Object : ') ;
Readln(Ob jectName) 3
End

Else
ObjectName := ParamStr(l) ;

Initialize(R3 SINRD VERTEX,R3 EYE VERTEX,Surface,Fdges,ObjectName,

Theta, Phi,, Rho, D, EdgesCount , SurfaceCount , VertexCount
Stats)

ZapScreen ;
Repeat

Stats,Th := Theta ; Stats,Ph := Phi ;

77

Stats,Rh ;= Rho ; Stats,Dist :=D ;

If Stats.StatsOn Then ShowStats(Stats) Else EraseStats(Stats) ;
GetKeySequence(A,B) 3

If Ord(A) = 27 Then
FunctKey := DecodeFunctionKey(B) ;

If Ord(A) = 27 Then

Begin

Case FunctKey Of

0l

¢ WrapAroundDec(Theta,DelTheta,0,2¥Pi) ;
¢ WrapAroundInc(Theta,DelTheta,0, 2#Pi) ;
: WrapAroundDec(Phi,DelPhi,0,Pi) ;

: WrapAroundInc(Phi,DelPhi,O0,Pi) ;

: Dec(Rho,DelRho) ;

¢+ Inc(Rho,DelRho)

¢ Dec(D,DelD) ;

: Inc(D,DelD) ;

¢ ProcessObject(R3 SINRD VERTEX,R3 EYE VERTEX,R2Vertex,

VertexCount ,Surface , SurfaceCount,
Edges, EdgesCount , Theta, Phi ,Rho,D,Stats) ;

¢ WrapAroundDec(Theta,DelTheta*10,0,2¥Pi) ;
¢ WrapAroundInc(Theta,DelTheta*10,0,2%Pi) ;
: WrapAroundDec(Phi,DelPhi*10,0,Pi) 3

¢ WrapAroundInc(Phi,DelPhi*10,0,Pi)

¢ Dec(Rho,DelRho¥10) ;

¢ Inc(Rho,DelRho*10)

s+ Dec(D,Dell¥*10) 3

: Inc(D,DelD*10) ;

: Stats,StatsOn := Not Stats.StatsOn ;

: Stats.Axis := Not Stats.Axis ;

: Stats.Hidden := Not Stats.Hidden ;

Until (FunctKey = 10) And (Ord(A) = 27) ;

ExitProgram ;

End,

78

{2
]

The

Computer
Copyright(c)

Const

APPENDIX G

following 1is the source code written 1in

Pascal for algorithm number three.

instructions on how to run the progranm.

* Program Hidden Line Removal 03 (Input,Output) ;

j[Ianglage/(hmpiler ¢ TURBO Pascal 3.01A

: IlM PC or compatibles

: Permission is granted by the author to use, reproduce,
modify all or part of the computer programs contained
herein for the readers own persomal use. This
permission is not to be construed as a license to
distribute or sell all or any part of the programs to
others in any shape or form,

: The author has spent a great deal of time and effort

in preparing this thesis and the programs contained
herein, This includes many hours of research,
development and testing of the programs to determine
their effectiveness. The author shall not be liable
in any event for incidental or consequential damages
in conection with or arising out of the furnishing,
performance or use of all or any portion of these
programs, }

{ Palette O color constants. }

Black
Green
Red

Brown

nwunan

0

1
2
3

{ Display window boundary constants,)}

Xmin
Xmax
Ymin
Ymax

1;
310 ;
20 ;
199 ;

{ Roughly the center of the display window. }

CenterX
CenterY

[

155
89

Turbo

Refer to appendix D for

? AspectRatio = 0,93 ; { the approximate aspect ratio for the IBM PC
graphics screen.)

{ These constants determine how much the viewing papameters Theta,Phi,Rho,
' and D will increase or decrease when the respective function keys are
pressed that control each of these parameters.)

DelTheta = 0,0175 ;

| DelPhi = 0.0175 ;

. DelRho = 5;

DelD = 53

Min = 5 3 { The minimm value for D. }

RhaMin = 5 3 { The minimm value for Rho. }

VertexMax = 32 ; { The maximm mmber of vertices that an object
can have, }

SurfaceMax = 60 ; { The maximm number of surfaces that an object
can have, }

MaxSurfVertices = 7 : { The maximum mmber of vertices that can form
a surface. }

BorderColor = Red ; { The color of the border of the display
window, }

ObjectColor = Green ; { The edges that form the object will be
displayed in this color. }

ErasureMax = 10 ; { The maximm mumber of disjoint erasures that
an edge can have. }

EdgesMax = 120 ; { The maximum number of edges that an object
can have, }

FErasureRecord = Record
tl,t2 : Real ;

End ;
ErasureType = Array[1. .ErasureMax] Of ErasureRecord ;
EdgesRecord = Record

nvl,nv2 : Integer ;
Erasure : ErasureType ;
NumErasures : Integer ;
BackEdge : Boolean ;

Flag : Boolean ;
End ;
EdgesType = Array[l. .EdgesMax] Of EdgesRecord ;
R3Vector = Record

X,¥,2 ¢ Real ;

R2Vector = Record
X,y : Real ;
End ;

80

- LineType = Record
' endl,end? : R2Vector ;
End ;
- VerticesType = Array[1l. MexSurfVertices] Of R2Vector ;

SurfaceRecord = Record
Vertices : Array[l..MaxSurfVertices] of Integer ;
MunVertices : Integer ;

End ;
R3VertexType = Array[l. .VertexMax] Of R3Vector ;
R2VertexType = Array[l. .VerteMax] Of R2Vector ;
Surfacelype = Array[1. .SurfaceMax] Of SurfaceRecord ;
FileNameType = String[8] ;
StatsRecord = Record

StatsOn,Axis,Hidden : Boolean ;
Th,Ph,Rh,Dist : Real ;
ObjName : FileNameType ;

End ;

Var

R3 SINRD VERTEX : R3VertexType ;

{ R3_SINRD VERTEX[i] contains the standard three-dimensional coordinates for

R3 EYE VERTEX ¢ R3VertexType ;

{ R3_ EYE VERTEX[i] contains the eye three-dimensional coordinates for the
i—tl.l veI‘tex. }

R2Vertex : RVertexType ;

{ R2Vertex[i] contains the two~dimensional screen coordinates for the i-th
vertex, }

Surface ¢ Surfacelype ;

{ Surface[i].MuVertices contains the j-th vertice in the formilation of the
i-th surface, }

Edges : EdgesType ;

{ Edges[i].nvl contains the number of the first vertex defining the
i_th &?o

Edges[i].nv2 contains the number of the second vertex defining the
i_th &?o

81

82

b Fdges[i].Erasure[j].t1 contains the the first endpoint defining the j-th
erasure of the i-th edge.

Fdges[1i].Erasure[j].t2 contains the second endpoint defining the j-th
erasure of the i~th edge.

Edges[i] .NurFrasures contains the mmber of erasures currently on the
i"th ej@.

Edges[i].BackEdge is a back edge flag for the i-th edge.
If Fdges(i].BackFdge = TRIE then the i-th edge is a back edge and
therefore should not be displayed.

Edges[i].Flag is a process flag. If Fdges[i].Flag = TRIE then the i-th
edge will not be processed (ie. tested for visibility with respect to the
surfaces of the object). }

VertexCount : Integer ;

{ The actual mumber of vertices that form the object. }

SurfaceCount ¢+ Integer ;

{ The actual mmber of surfaces that form the object. }

EdgesCount ¢ Integer ;

{ The actual number of edges that form the surface.)

Theta,Phi,,Rho,D : Real ;

{ The viewing parameters.)

FunctKey : Integer ;

{ Contains the mmber associated with the function key that was pressed. }

A,B ¢ Char ;

{ Holds the sequence of characters generated when a function key is
pressed. }

Stats ¢ StatsRecord ;

{ Contains the status information which is displayed on the first two lines
of the display screen. }

ObjectName ¢ FileNameType ;
{ Contains the name of the object being displayed.)

{$1 GRAPH1,TPU)
{$1 GRAPH2.TPU}

x1,y1,x2,y2,q1,q2 : Real ; k : Integer ;

i If Not Edge.BackEdge Then
i} Begin

xl := RVertex[Edge.nvl].x ; yl := R2Vertex[Edge.nvll].y ;
x2 := RVertex[Edge.nv2].x ; y2 := R2Vertex|[Edge.nv2].y ;

If Edge.NumFrasures = O Then
Clip(x1,yl,x2,y2,Color,Xnrin, Xmax, Ymin, Ymax)
Else

Begin
SortErasure(Edge.Frasure,Edge . Nurfrasures) ;

ql := Edge.Frasure[1].tl ;

v ocedure DrawEdge(Edge:EdgesRecord ; R2Vertex:R2VertexType ; Color:Integer) ;

Clip(x1,yl,x14q1*(x2-x1),yl+ql*(y2-yl),Color,Xmin, Xmax, Ymin, Ymax) ;

k=1;
While k <= Fdge.Nurfrasures - 1 Do

gl := Edge.Frasure[k].t2 ;
q2 := FEdge.Frasure[k].tl ;

Cllp(X]-'*'ql*(xz"d) ’ y1+q1*(y2—y1))X-H'qzk (xz‘)d) ’ y1+q2*(y2—y1) ,CO].OI',

Xmin, Xmax, Ymin, Ymax) ;
k :=ktl ;
End ;

ql := Edge.Erasure[Edge.Nunfrasures].t2 ;

Clip(xl4+q1*(x2-x1),yl+ql*(y2-yl),x2,y2,Color ,Xmin,Xmax, Yirin, Ymax) ;

Procedure CalcNormalVector(R3 _SINRD VERTEX:R3VertexType ;
Surface:SurfaceRecord ;
Var Normal:R3Vector) :

Var a,b : R3Vector

Begin

KSDj_ff(RB_S'INRD_Vﬂ?I'EX[Sm’face.VertiC&G[Z] 1,
R3_STNRD VERTEX[Surface.Vertices[1]],a) ;

R3Diff(R3 SINRD VERTEX[Surface.Vertices[3]],

R3 SINRD VERTEX[Surface.Vertices[1]],b) ;
Normal.x := a.y * b.z - b.y * a.z ;

b Normal.y := b.x ¥ a.z2 - a.x * b,z ;
. Normal.z := a,x ¥ b,y - b,x ¥ a,y

é, ocedure AddEdge(Var Fdges:EdgesType ; Var EdgesCount:Integer ;
nvl,nv2,NunFrasures: Integer BackFdge,Flag: Boolean)

b If RlgesCount < Edgesax Then
Begin
EdgesCount := EdgesCount + 1 ;
If nvl > nv2 Then SwitchIntegers(nvl,nv2) ;

Edges[EdgesCount] .nvl :=nvl ;

Edges[EdgesCount] .nv2 =nv2 ;
Edges[EdgesCount] BackEdge := BackFdge ;
Edges[EdgesCount] .Flag := Flag ;

Edges| EdgesCount] NurFrasures := NunErasures ;

End ;
End ;

Procedure BuildFdgeTable(Var Edges:EdgesType ; Var EdgesCount:Integer ;
Surface:SurfaceType ; SurfaceCount:Integer) ;

Var j,k,nvl,nv2,EdgeNumber : Integer ; Found : Boolean ;

Begin
EdgesCount := 0 ;
For j := 1 To SurfaceCount Do
Begin
For k := 1 To Surface[j].NumVertices Do
Begin

nvl := Surface[j].Vertices[k] ;
nv2 := Surface[j].Vertices[k+l] ;

FindEdgeNumber (Edges, EdgesCount ,nv1,nv2, EdgeNumber ,Found) ;
If Not Found Then AddEdge(Edges,EdgesCount,nvl,nv2,0,False,False) ;

84

Begm
" For Surf := 1 To SurfaceCount Do
Begin

?A-:- DrawOb ject (Edges:EdgesType ; FdgesCount:Integer ;
] R2Vertex:R2VertexType) 3

k:Integer;

or k := 1 To EdgesCount Do DrawEdge(Edges[k],R2Vertex,Green) ;

.
b4

procedure Removettiddenines(R3 SINRD VERTEX,R3 EYE, VERTEX:R3VertexType ;
1 RNVertex:] R2Verteﬂ‘ype Surface:SurfaceType ;

Var Edges:FdgesType ; Edg&d‘mmt VertexCount,
SurfaceCount : Integer ; Theta,Phi,Rho,D:Real) ;

far Surf ,K,NumInt,ntvl,ntv2, MmSurfVertices,EdgeNumber : Integer ;
e,f,g,h,minpolyx,maxpolyx,minpolyy,maxpolyy : Real ;
TestEdge,PolyEdge : LineType ;

pl,p2 : R2Vector ;

PolyPoints : Verticeslype ;

hl,h2,h3,View,Normal : R3Vector ;

Dependent , Found ,Behindl ,Behind2, Insidel , Inside2 : Boolean ;

CalcViewVector(Surface[Surf],R3 SINRD VERTEX,Theta,Phi,Rho,View) ;
CalcNormalVector(R3 SINRD | VERTEX, Surface[Surf],Normal) ;

If R3DotProduct(View,Normal) > O Then
Begin
NurSurfVertices := Surface[Surf].Nuwertices ;

For K := 1 To NunSurfVerticestl Do
PolyPoints[K] := R2Vertex|[Surface[Surf].Vertices[K]] ;

MarkSur faceFdges(Edges, EdgesCount ,Surface[Surf]) ;

RectangularBoundry(MuSurfVertices, PolyPoints,minpol yx,maxpol yx,
minpolyy,maxpolyy) ;

hl := R3_EYE VERTEX[Surface[Swurf]. Vertices[1]] ;
h?2 :=R3 1 EYE, Vﬂ?I'EX[Surface[Sm'f] Vertices[2]] ;
h3 R3 EYE, VERTEX[Surface[Surf] JNertices[3]] ;
CalcR3Plane(hl,h2,h3,e,f,g,h) ;

For EdgeNumber := 1 To EdgesCount Do
Begin

If (Not Fdges|EdgeNumber].BackEdge) And

85

86

(' Not. Edges| FdgeMumber | .Flag) Then
Begin

ntvl := Edges[EdgeNunber].nvl ;
ntv2 := Edges[EdgeNumber].nv2 ;

If Edges[FdgeNumber].Flag Then
Nothing
Flse

TestEdge.endl := R2Vertex[ntvl] ;
TestEdge.end2 := R2Vertex[ntv2] ;

Behindl :
Behind?2 :

BehindPlane(R3 EYE VERTEX[ntvl],e,f,g,h)
BehindPlane(R3 EYE VERTEX[ntv2],e,f,g,h) ;

If ((Not Behindl) And (Not Behind2)) Or
(OutsideBox(TestFdge, minpolyx,maxpolyx,minpolyy,maxpolyy)) Then
Nothing
Else
Begin
FindIntersectionPoints(TestFEdge ,NunSurfVertices,PolyPoints,
pl,p2,Numint,Dependent) ;

If Not Dependent Then
Begin
Insidel := InsidePoly(NMumSurfVertices,PolyPoints,
TestEdge.endl) ;
Inside? := InsidePoly(NumSurfVertices,PolyPoints,
TestEdge.end2) ;
ProcessTestFdge(TestEdge, EdgeNumber,
R3 EYE VERTEX[ntvl],R3 EYE VERTEX[ntv2],
R2Vertex, pl,p2,NumInt ,NumSurfVertices,
PolyPoints, e, f,g,h,Theta,Phi ,Rho, D,
Edges,Behindl ,Behind2, Insidel , Inside2)

g

End ;
F‘-ﬂ.
End ;

End

ASur faceRdges(Edges, EdgesCount ,Surface[Surf]) ;
End ;
End
End ;

Procedure Set BackFdge Flags(Var Edges:EdgesType ; EdgesCount:Integer ;
R3 STNRD VERTEX:R3VertexType ;
Surface:SurfaceType ; SurfaceCount:Integer ;
Theta,Phi ,Rho,D:Real) ;

Var View,Normml : R3Vector ; EdgeNumber,J,K : Integer ;
Found : Boolean ;

Begin

'~ For K := 1 To EdgesCount Do Fdges(K].BackEdge := True ;
ForK := 1 To SurfaceCount Do

CalcViewVector(Surface[K],R3 SINRD VERTEX,Theta,Phi,Rho,View) ;
CalcNormalVector(R3 _SINRD VERTEX ySurface[K],Normal) ;

If R3DotProduct(View,Normal) > O Then

For J := 1 To Surface[K].MuVertices Do
Begin
FindFdgeNumber(Edges, FdgesCount ,Surface(K] . Vertices[J],
Surface[K].Vertices[}1],EdgeNumber,Found) ;
Edges|EdgeNumber].BackFdge := False

Procedure ProcessObject(R3 SINRD VERTEX:R3VertexType ;
R3 EYE \ VERTEX:R3VertexType ;
RVertex:R2VertexType ;
VertexCount:Integer ; Sm'face:Surface'I‘ype H
SurfaceCount: Integer ;
Edges:EdgesType ; EdgesCount:Integer ;

Theta,Phi ,Rho,D:Real ; Stats:StatsRecord) ;
Var K : Integer ;
Begin

CalcR3FyeVertex(R3_STNRD VERTEX,VertexCount,R3 EYE VERTEX,
Theta,Phi,Rho,D) 3

CalcRVertex(R3 EYE VERTEX,VertexCount R2Vertex, Theta,Phi,Rho,D) ;

If Stats.Hidden Then
Begin
For K := 1 To EdgesCount Do
Edges[K] NunErasures := 0 ;

Edges[X].Flag := False ;
Fdges[K].Backfdge := False ;
End ;

Set Backfidge Flags(Edges, EdgesCount,,R3 SINRD VERTEX, Surface,
SurfaceCount, Theta, Phi, Rho,D) ;

Write(Chr(7))
Ramvel-hddenhm(RB SINRD VERTEX,R3 EYE VERTEX,R2Vertex,Surface,Fdges,
EdgesCount , VertexCount, Sur faceCount, Theta, Phi, ,Rho, D)
End ;

87

‘ ZapScreen ;
| Write(Chr(7))
. DrawObject(Edges,EdgesCount ,R2Vertex) ;

' If Stats.Axis Then DrawAxes(Theta,Phi,Rho,D) ;
i ;

 Procedure Initialize(Var R3 SINRD VERTEX:R3VertexType ;

Var R3 EYE VMEX :R3VertexType ;

Var Surface:Surfacelype ;

Var Fdges:Ed H
ObjectName: FlleNaxeType

Var Theta,Phi,Rho,D:Real ;

Var EdgeCount ,Sm’faceCov.mt,Vertex(hmt:Integer ;

Var Stats:StatsRecord) ;
Var Infile : Text ; k:Integer ;
Begin

Assign(Infile,ObjectName + '.Ver') ;
Reset(Infile) ;

LoadVertex(Infile,R3 STNRD VERTEX,VertexCount) ;
Close(Infile) ;

Assign(Infile,ObjectName + '.Sur') ;
Reset(Infile) ;

LoadSurface(Infile,Surface,SurfaceCount) ;
Close(Infile) ;

Pi/4 ;
Pi/2 ;
425
1549

Theta
Phi
Rho
D

WOW W

With Stats Do

Begin
StatsOn

-e

£

-e

Hidden

-e

T
f

Eomyuen
E® 7

Bui1dEdgeTable(Edges, FdgesCount , Surface,SurfaceCount)

End

88

APPENDIX H

The following ©procedures and functions are located in
the include files GRAPH1,TPU and GRAPH2,TPU. These
procedures and functions are all common to the programs

HLRO1.PAS,HLRO2.PAS, and HLRO3.PAS.
{ GRAPH1.TFU)
Function Deg(x:Real):Real ;

Deg := x * 180/pi ;
End ;

Procedure ShowStats(Stats:StatsRecord) ;
Begin
Wlth Stats Do
If S.»tatdh Then

GotoXY(01,01) ;
Write("Theta Phi Rho D Object HIR Axes') ;
GotoXY(01,02) ;
Write(' I
GotoXY(03,02) ; Write(Deg(Th):3:0) ;
GotoXY(07,02) ; Write(Deg(Ph):3:0) ;
GotoXY(11,02) ; Write(Rh:5:0)
GotoXY(17,02) s Write(Dist:5:0) ;
GotoXY(23,02) ; Write(ObjName) ;
GotoXY(32,02) ; If Hidden Then Write('ON') Else Write('GFF') ;
GotoXY(36,02) ; If Axis Then Write('ON') Else Write('OFF') ;
End ;
End ;
End ;

Procedure EraseStats(Stats:StatsRecord)

Begin
GotoXY(01,01) ; Writeln(’) s
GotaXY(01,02) s Writeln(' DI
End ;

Procedure LoadVertex(Var Infile:Text ; Var R3 SINRD VERTEX:R3VertexType ;

90
Var VertexCount:Integer) ;

¥ { This procedure reads the vertex definition file from the disk. The

- vertex definition file contains a listing of the standard three-dimensional
coordinates for each vertex, Examples of vertex definition files are
HOUSE.VER, DODEC,VER SIXTY.VER, SPHERE.VER, and TETRA.VER which are all
located on the program disk. }

VertexCount := O ;
While (Not Eof(InFile)) And (VertexCount < VertexMax) Do
Begin

VertexCount := VertexCount + 1 ;

Readln(InFile,R3 STNRD VERI‘EX[Vertememt].x,

i R3 SINRD VFKI'EX[Vertememt].y,

F R3 STNRD VERTEX[VertexCount].z) ;

Procedure LoadSurface(Var Infile:Text ; Var Surface:SurfaceType ;
Var SurfaceCount:Integer) ;

{ This procedure reads the surface definition file from the disk. The
surface definition file contains a listing of the vertices that form each
surface., Examples of surfac definition files are HOUSE.SUR, DODEC.SUR,
SIXTY.SUR, SPHERE.SUR, and TETRA.SUR vhich are all located on the

program disk.,)
Var k : Integer ;
Begin
SurfaceCount := 0 ;

While (Not Eof(Infile)) And (SurfaceCount < SurfaceMax) Do
Begin

SurfaceCount := SurfaceCount + 1 ;
Read(Infile,Surface[SurfaceCount] NumVertices) ;

For k := 1 To (Surface[SurfaceCount].NumVertices + 1) Do
Read(Infile,Surface[SurfaceCount].Vertices[k]) ;

Readln(Infile) ;

£

'~ Draw(Xmin, Ymin, Xmax, Ymrin, BorderColor) ;

' Draw(Xmax, Yerin, Xmax, Ymax,BorderColor) ;

-~ Draw(Xmax, Ymax, Xmin, Ymax, BorderColor) ;
Draw(Xmin, Ymax, Xmin, Yorin, BorderColor) ;

d :

Procedure ZapScreen ;

Begin
GraphColorMode ;
Palette(0) ;
ShowStats(Stats) ;
DrawBorder ;

End ;

Procedure R3Diff(a,b:R3Vector ; Var diff:R3Vector) ;
Begin

diff.x := a.x - b,x ;

diff.y :=a.y - b.y ;

diff.z := a.z - b.z ;
Ed ;

Procedure EyeXYZ(Theta,Phi,Rho,D:Real ; Standard:R3Vector ;
Var Eye:R3Vector) ;

{ Given the standard coordinates of a point in three-space, this procedure
calculates the eye coordinates for that particular point. }

Var sl,s2,cl,c2,x,y,z : Real ;
Begin

X := Standard.x ; y := Standard.y ; z := Standard.z ;
sl := Sin(Theta) ;

cl := Cos(Theta) ;

52:=Si.n(Phi);

c2 := Cos(Phi) ;

Eye.x :=x *sl +y *cl ;

Eye.y t==x*¥cl ¥c2 -y *¥sl ¥c2+2z %352

Eye.z t= x ¥cl ¥g2 -~y * gl ¥52 -2z *%c2 4+ Rho ;

End ;

91

92

| Procedure ScreenXY(Theta,Phi,Rho,D:Real ; KiEye:R3Vector ;
, Var Screen:R2Vector) ;

{ Given the eye coordinates for a point in three-space, this procedure
calculates the screen coordinates for that particular point,)

Begin
Screen.x := CenterX + D * R3Eye.x/R3Eye.z ;
Screen.y := CenterY - D * R3Eye.y/R3Eye.z * AspectRatio ;
End ;
Procedure WrapAroundDec(Var x:Real; Delta,lower,Upper:Real) ;
Begin
X 1= X - Delta ;
If x < Lower Then x := Upper ;
End ;
Procedure WrapAroundInc(Var x:Real; Delta,lLower,Upper:Real) ;
X := x + Delta ;
If x > Upper Then x := lower ;
End ;
Procedure Inc(Var x:Real; Delta:Real) ;
Begin
X = x + Delta ;
End ;
Procedure Dec(Var x:Real; Delta:Real) ;
X = x - Delta ;
End ;
Procedure Clip(x1,yl,x2,y2 : Real ; Color,Xmin,Xmax,Ymin,Ymax : Integer) ;
label Return ;

Type Edge = (Left,Right,Bottam,Top) ;
OutCode = Set of Edge ;

Var c¢,cl,c2 : OutCode ;
X,¥ : Real ;

Procedure Code(x,y : Real ; Var ¢ : OutCode) ;
Begin []

If x < Xmin Then c := [left]

Else
If x > Xmax Then c := [Right] ;
c + [Top]

If y < Ymin Then c :
Else

If y>Ymx Thenc :
End ;

Begin

Code(x1,yl,cl) ;
Code(x2,y2,c2) ;

¢ + [Bottam]

While (c1 & [Or (2O [1) Do
If (cl * c2) O [] Then Goto Return ;
ci=cl;Ifc=[]Thenc :=c2;
Ifl.eftInc'I‘hen

y =yl + (y2-y1)*(Xmin—x1)/(x2-x1) ;
X := Xmin ;

If Top In c Then

x 1= x1 + (x2~x1)*(Ymin-y1)/(y2-yl) ;
y = Ymin
End ;

If ¢ = cl Then
Begin
xl :=x ; yl :=y ; Code(x,y,cl) ;
End
Else
Begin
X2 :=x 3 y2 :=y ; Code(x,y,c2) ;
End ;
End ;

93

| Draw(Trunc(x1), Trunc(yl), Trunc(x2) , Trunc(y2) ,Color) 3

[Procedtn‘e DrawAxes(Theta,Phi,Rho,D:Real) ;
Const Axislength = 10 ;
Var i3s, j3s,k3s,i3e, j3e,k3e: R3Vector ; i2,j2,k2 : R2Vector ;

Begin

i3s.x := Axidlength ; i3s.y = 00 ids.z =0 ;
j3s.x =00 ; j3s.y := Axislength ; j3s.z := 00 ;
k3s.x == Q0 s k3s.y =00 ; k3s.z := Axdslength ;

EyeXYZ(Theta,Phi ,Rho,D,i3s,i3e) ;
EyeXYZ('Iheta,Hxi,Mn,D,st,jBe) H
EyeXYZ(Theta,Phi ,Rho,D,k3s,k3e) ;
ScreenXY(Theta,Phi ,Rho,D,i3e,i2)
ScreenXY(Theta,Phi ,Rho,D, j3e, j2) ;
ScreenXY(Theta,Phi ,Rho,D,k3e,k2)
Clip(CenterX,CenterY,i2.x,12.y,Green, Xmin,Xmax, Ymin, Ymax) ;
Clip(CenterX,CenterY, j2.x, j2.y,Red ,Xmin,Xmax,Ynin, Ymax) ;
Clip(CenterX,CenterY,k2,.x,k2,y, Brown, Xmin, Xmax, Ymin, Ymax) ;
End 5
Function R3DotProduct(Vectorl,Vector2:R3Vector):Real ;
Begin
R3DotProduct := Vectorl.x ¥ Vector2.x +
Vectorl.y * Vector2.y +
Vectorl,z * Vector2.z ;
End ;

Procedure GetKeySequence(Var A,B:Char)

Read(Kbd,A) ;

If Ord(A) = 27 Then Read(Kbd,B) ;
End ;

Function DecodeFunctionKey(A : Char):Integer ;

{ This function is used to decode the two consecutive characters
returned after a function key has been pressed, }

94

95

If Ord(A) > 103 Then

DecodeFunctionKey := Ord(A)-103+30 (Alt F1 - FI0 : returns 31-40 }
Else
If Ord(A) > 93 Then

DecodeFunctionKey := Ord(A)-93+20 (Ctrl F1 - F10 : returns 21-30)}
Else
If Ord(A) > 68 Then

DecodeFunctionKey := Ord(A)-83+10 (Shift F1 - F10 : returns 11-20 }
Else
If Ord(A) > 58 Then

DecodeFunctionKey := Ord(A)-58 ; ({ F1 - F10 : returns 01-10)}
End ;

Procedure DrawBox(x1,yl,x2,y2 : Real ; Color:Integer) ;

Begin
Clip(x1,yl,x2,yl,Color,Xmin, Xmax, Ymin, Ymax) ;
Clip(x2,yl1,x2,y2,Color ,Xmin,Xmax, Ymin, Ymax) ;
Clip(x2,y2,x1,y2,Color ,Xmin, Xmax, Ymin, Ymax) ;
Clip(x1,y2,x1,yl,Color ,Xmin, Xmax, Ymin, Ymax) 3

End ;

Procedure CalcViewVector(Surface:SurfaceRecord ;
R3 SINRD VERTEX: R?Verte:d‘ype
'Iheta Phi, ,Rho:Real ;
Var ViewVector: R3Vector) :

(Given a particular surface, this procedure computes the view vector
which is the vector directed from the first vertex of the surface to the
viewpoint whose spherical coordinates are (Theta,Phi,Rho). }

Var x : R3Vector ;
Begin

X.x ¢= Rho * Sin(Phi) * Cos(Theta)

X.y t= Rho * Sin(Phi) * Sin(Theta) ;

x.z := Rho * Cos(Phi) ;

R3Diff(x,R3 SINRD VERTEX[Surface.Vertices[1]],ViewVector) ;

End ;
(GRAPH2,TPU }

Procedure CalcR2Vertex(R3 EYE VERTEX:R3VertexIype ; VertexCount:Integer ;
Var R2Vertex:R2VertexType ; 'IhetaPtuRhoDReal) ;

¥ar k : Integer ;
Begin

For k := 1 To VertexCount Do
ScreenXY(Theta, Phi,Rho,D,R3 EYE VERTEX[k],R2Vertex[k]) ;

End ;

Procedure FindSlope(xl,yl,x2,y2:Real ; Var m:Real ;
Var Undefined:Boolean) ;

Begin

Undefined := True ;

If (x2 -x1) © 0 Then
m = (y2 - y1)/(x2 - x1) ;

Undefined := False ;
End ;
End ;
Function Find t(x1,yl,x2,y2,px,py:Real):Real ;

(A line segment with endpoints (x1,yl) and (x2,y2) can be defined by a
parametric equation R(t) = (x1,yl) + t(x2-x1,y2-yl). Given a point
(px,py) not necessarily on this line segment but resonably close, this
procedure calculates a value for t such that R(t) is approximatly equal
to the point (px,py).)

Var slope : Real ; undefined : Boolean ;
Begin

FindSlope(x1,y1,x2,y2,slope,undefined) ;

slope := Abs(slope) ;

If Abs(slope - 1) < 0,01 Then
Find t = ((px = x1)/(x2 - x1) + (py - y1)/(y2 - y1))/2

Else

If (slope >= 0) And (slope < 1) Then
Find t = (px - x1)/(x2 - x1)

Else

Find t := (py ~ y1)/(y2 - y1) ;
End ;
Function Min(x, y:Real):Real ;
Begin

If x <= y Then Min := x Else Min :=y ;
i&rl;

:chtim Max(x,y:Real):Real ;
If x >= y Then Max := x Else Max :=y ;
Bd ;
Function R2VectorsEqual(vl,v2:RZVector):Boolean ;
Begin
RVectorsEqual :=
End ;

Procedure AddFrasure(Var Edges:EdgesType ; EdgeNumber:Integer ;
newtl,newt2:Real)

Var Nunfrasures : Integer ;
Begin
Murfrasures := Fdges[EdgeNumber] .Nurfrasures ;

If Nurfrasures < ErasureMax Then
Begin

Nurfrasures := Numfrasures + 1 ;

Edges[EdgeNumber] . Erasure[NumFrasures].t1l := Min(newtl,newt2) ;
Edges[FdgeNumber] .Erasure[NurErasures].t2 := Max(newtl,newt2) ;
Edges[EdgeNumber] .MsFrasures := Nurfrasures ;

End ;
End ;

Procedure SwitchReals(Var a,b:Real) ;
Var Temp : Real ;
Begin
Temp :=a; a:=b; b:=Temp ;
End ;
Procedure SwitchIntegers(Var a,b:Integer) ;
Var Temp : Integer ;
Begin
Temp :=a; a:=b; b :=Tem ;

97

End ;
Procedure SortFrasure(Var Erasure:Frasurelype ; N:Integer)
Var i,j : Integer ;
Begin
For i :=1 To N-1 Do
For j :=1 To N-i Do
If Erasure[j].tl > Erasure[j+1].t2 Then
SwitchReals(Erasure[j].t1,Erasure j+1].t1) ;
SwitchReals(Erasure[j].t2,Frasure #+1].t2) ;
End ;
End ;
Procedure FindFdgeMumber(Edges:EdgesType ; EdgesCount:Integer ;

nvl,nv2:Integer ; Var EdgeNumber:Integer ;
Var Found:Boolean) ;

Begin
Found := False ;

If FdgesCount > O Then
Begin

FdgeMumber := 0 ;
If nvl > nv2 Then SwitchIntegers(nvl,nv2) ;
Repeat

EdgeNumber := EdgeMNumber + 1 ;

If (Edges[EdgeNumber].nvl = nvl) And
(Edges[EdgeNumber].nv2 = nv2) Then Found := True ;

Until (Found) Or (EdgeNumber = EdgesCount) ;
End
End ;

Procedure MarkSurfaceFdges(Var Edges:FdgesType ; EdgesCount:Integer ;
Surface:SurfaceRecord) ;

{ Given a particular surface, this procedure sets the process flag for all
the edges defining this surface to TRUE. Thus none of the edges that
define this surface will be tested for visibility with respect to this
surface. }

Var k,EdgeNumber : Integer ; Found : Boolean ;

98

99
Begin
For k := 1 To Surface.NumVertices Do
Begin

FindFdgeNumber(Edges, FdgesCount , Surface, Vertices(k],
Surface,Vertices{k+1],EdgeNumber ,Found) ;

Edges| EdgeNumber] .Flag := True ;

End ;
End ;

Procedure UnMarkSurfaceFdges(Var Edges:EdgesType ; EdgesCount:Integer ;
Surface:SurfaceRecord) ;

{ Given a particular surface, this procedure sets the process flag for all
the edges defining this surface to FALSE,)

Var k,EdgeNumber : Integer ; Found : Boolean ;
Begin

For k := 1 To Surface.NumVertices Do

Begin
FindEdgeNumber (Edges, EdgesCount ,Surface. Vertices[k],
Surface.Vertices[k+1],EdgeNumber,Found) ;

Engdges[I‘?dgel\hmber].l‘lag := False
Fnd ; ’

Procedure ProcessOverlap(oldtl,oldt2,newtl,newt2:Real ;
Var uniontl,unjont2:Real ; Var Overlap:Boolean) ;

Begin
Overlap := True ;

If oldtl > 0ldt2 Then SwitchReals(oldtl,oldt2)
If newtl > newt2 Then SwitchReals(newtl,newt2) ;

If ((newtl >= 0ldtl) And (newtl <= oldt2)) And (newt2 >= 0ldt2) Then

uniont] := oldtl ;
uniont? := newt?2 ;
End
Else
If ((newt2 >= oldtl) And (newt2 <= oldt2)) And (newtl <= oldtl) Then
Begin
uniontl := newtl ;
uniont2 := oldt2 ;
End
Else

If (newtl <= oldtl) And (newt2 >= oldt2) Then
Begin
uniont]l := newtl
uniont? := newt2
Frd
Else
Overlap := False ;

we we

End ;

Procedure RemoveErasure(Var Edges:EdgesType ; EdgeMumber,k:Integer) ;
Var MNunfrasures,p ¢ Integer ;

Begin

NunErasures := Edges[EdgeNumber] NunErasures ;

p := kil ;

While p <= Nunfrasures Do

Begin
nges[FxligeMmher].Erasm'e[p-l] := Edges|[EdgeNumber] .Erasure[p] ;
p :=pHl 3

End ;

NunFrasures := NumFrasures — 1 ;
Edges|[EdgeNumber] .NMunFrasures := Nunfrasures ;

End ;

Procedure FatTestldge(TestEdge:LineType ; EdgeNumber:Integer ;
pl,p2:RVector ; RZVertex:R2VertexIype ;
Var Edges:EdgesType) ;

{ Given a particular edge and a portion of that edge to be erased (called
an erasure), this procedure does the following:

1, If there are no existing erasures to be preformed on this particular
edge, then the erasure is stored. (ie. the very first erasure).
Goto step 3.

2, If there are existing erasures to be preformed on this particular edge,

then the new erasure is compared to the existing ones,

a.) If the new erasure is contained completely inside one of the
existing erasures then the new erasure is discarted, Goto step
3.

b.) If the new erasure overlaps an existing erasure, then remove
the existing erasure from the erasure table and make
new erasure = (new erasure) union (existing erasure) and

100

101
repeat step 2.

c.) If the new erasure does not overlap an existing erasure, then
add the new erasure to the erasure table. Goto step 3.

3. Exit Procedure }

Label 1,2,3 ;

Var Discard,Overlap : Boolean ; Nurfrasures,k,nvl,nv2 : Integer ;
x1,y1,x2,y2,newt1,newt2,unionl ,union? : Real ;

Begin

If Not R2VectorsEqual(pl,p2) Then
Begin

nvl := Edges[EdgeNumber].nvl ;
nv2 := Edges[EdgeNumber].nv2 ;

x1 := R2Vertex[nvl].x ; yl := R2Vertex[nvl].y ;
x2 := RVertex[nv2].x ; y2 := R2Vertex[nv2l.y ;

newtl := Find t(x1,yl,x2,y2,pl.x,pl.y) ;
newt2 := Find t(x1,y1,x2,y2,p2.x,p2.y) ;

If newtl > newt2 Then SwitchReals(newtl,newt2) ;
Nurfrasures := Edges[EdgeNumber | .NunFrasures ;
If Nunfrasures = O Then
AddFrasure(Edges, EdgeNumber ,newt 1, newt2)
Else
Begin
Discard := False ;
k:=0;
Nurfrasures := Edges|EdgeNumber] .NurFrasures ;
Repeat
ke=k+1;
If (newtl >= Edges[EdgeMumber].Erasure[k].t1) And
(newt2 <= Edges[EdgeNumber].Erasure[k].t2) Then Discard := True ;
Until (Discard) Or (k = NunFrasures) ;

If Not Discard Then
Begin

l: k=0
Nurfrasures := Edges[EdgeNumber | .NumFrasures ;

2t ki=k+1;

ProccessOverlap(Edges| EdgeNumber] .Erasure[k].t1,

Edges[EdgeNumber] . Erasure[k].t2,
newt1,newt2,unionl ,union2,0verlap) ;

If Overlap Then

RemoveFrasure(Edges, EdgeNumber k) ;

newtl := min(unionl,union2) ;

newt2 := max(unionl,union2) 3

If newtl > newt2 Then SwitchReals(newtl,newt2) ;

If Edges[EdgeNumber] NutErasures > O Then Goto 1 Else Goto 3 ;

If k < NunErasures Then Goto 2 ;

3: AddErasure(Edges,EdgeNumber,newt1,newt?)

Procedure RMidPoint(a,b:R2Vector ; Var midpoint:R2Vector) ;
Begin

midpoint.x := (a.x + b.x)/2 ;
midpoint.y := (a.y + b.y)/2 ;

End ;
Procedure RMidPoint(a,b:R3Vector ; Var midpoint:R3Vector) ;
Begin

midpoint.x := (a.x + b.x)/2 ;

midpoint.y := (a.y + b.y)/2 ;
midpoint.z := (a.z + b.z)/2 ;

Function Inbetween(a,b,x:Real):Boolean ;

Begin
Inbetween := (x >= Min(a,b)-0.001) And (x <= Max(a,b)+0.001)
End ;

102

Function R2Magnitude(Vectorl:R2Vector):Real ;

Begin
RMagnitude := Sqrt(Sqr(Vectorl.x)+Sqr(Vectorl.y)) ;
End §

Function R2Angle(vl:R2Vector):Real ;

Begin
If (vlxx= 0) And (vl.y > 0) Then R2Angle := Pi/2
}]-:Z:lfs?vl.x = 0) And (vl.y < 0) Then R2Angle := 3*Pi/2
}%lfs(evl.y >=0) And (vl.x > 0) Then R2Angle := ArcTan(vl.y/vl.x)
}%lfs‘(evl.y >= 0) And (vl.x < 0) Then R2Angle := ArcTan(vl.y/vl.x) + Pi
%lfs‘(avl.y < 0) And (vl.x < 0) Then R2Angle := ArcTan(vl.y/vl.x) + Pi

Else
If (vl.y < 0) And (vl.x > O) Then R2Angle := ArcTan(vl.y/vl.x) + 2¥Pi ;

End ;
Function Det2x2(a,b,c,d:Real):Real ;
Begin
Det2x2 := a¥d - b¥c ;
End ;
Function Det3x3(a,b,c,d,e,f,g,h,i:Real):Real ;
Begin
Det3x3 := a*(i%e - h¥*f) — b¥(ikd - g¥f) + c¥(b¥d - e¥g)
End ;

Procedure CramersRule2x2(al,bl,cl,a2,b2,c2:Real ; Var solution:R2Vector ;
Var Inconsistent,Dependent : Boolean) ;

Var d,nl,n2 : Real ;
Begin

Inconsistent := False ;
Dependent = False ;

d := Det2x2(al,bl,a2,b2) ;
nl := Det2x2(cl,bl,c2,b2) ;

If d =0 Then

If nl = O Then Dependent := True Else Inconsistent := True ;
End

103

Else
Begin
n2 := Det2x2(al,cl,a2,c2) ;
solution.,x :=nl/d ;
solution.y :=n2/d ;
End ;
End ;

Procedure CalcR3Plane(pl,p2,p3:R3Vector ; Var e,f,g,h ¢ Real) ;

Var x1,yl,z1,x2,y2,22,x3,y3,23 : Real ;

£

pl.x ; yl :=pl.y ; 2l :=pl.z ;
P2.X 5 ¥2 := p2.y ; 22 3= p2.z ;
P3.x 3 y3 :=p3.y ; 23 :=p3.2 3

Det3x3(1,yl,21,1,y2,22,1,y3,23) ;
Det3x3(x1,1,21,x2,1,22,x3,1,23) ;
Det3x3(x1,y1,1,x2,52,1,%3,y3,1) ;
Det3x3(yl,x1,z1,y2,x2,22,y3,x3,23) ;

LR
WO

000 Hh O
Wwow

=
=
AN
S
5

s fe=—Af;g:=—g;h=xh;

???‘g

End ;

Procedure CalcR2Line(pl,p2:R2Vector ; Var a,b,c : Real) ;
Begin

pl.y - p2.y) 3

(
gpz.x - pl.x) 3

a
b:
c p2.x * pl,y) - (pl.x * p2.y) ;

End ;

Procedure CalcR2Intersection(Fdgel,Edge2:LineType ; Var Point:R2Vector ;

Var Inconsistent,Dependent:Boolean)
Var al,bl,cl,a2,b2,c2 : Real ;
Begin

CalcR2Line(edgel .endl, edgel .end2,al,bl,cl) ;
CalcR2Line(edge2.endl,edge2.end2,a2,b2,c2)

CramersRule2x2(al,bl,cl,a2,b2,c2, point,, Inconsistent ,Dependent) ;

End ;

104

Procedure R2Diff(vl,v2:R2Vector ; Var diff:R2Vector) ;

{ Number : 050)

Begin
diff.x := vl.x = v2.x
iff.y := vl.y — v2.y ;
End ;

Function Sgn(x:Real):Integer ;

Begin
If x > 0 Then Sgn := +l
Else
If x <0 Then Sgn := -1
Else
Sgn :=0;

End

Function InsidePoly(NumPoints:Integer ; Points:VerticesType ;
Point :R2Vector) :Boolean ;

{ Given a point and a polygonal surface, this function determines
whether the point is located inside or outside of the surface.)

Label 2 ;

Var Ang,TotalAngle : Real ; K : Integer ; vl,v2 : R2Vector ;

Begin
InsidePoly := False ;
For K := 1 To NumPoints Do

If R2VectorsFqual(Point,Points[K]) Then Goto 2

TotalAngle := 0 ;
For K := 1 To NumPoints Do

R2Diff(Points[K] ,Point,vl) ;
R2Diff(Points[K+1],Point,v2) ;

Ang := Abs(R2Angle(vl) - R2Angle(v2)) ;

If Ang > Pi Then Ang := 2*Pi - Ang ;

If Abs(Ang-Pi) < 0.001 Then Goto 2 ;

TotalAngle := TotalAngle + Sgn(Det2x2(vl.x,vl.y,v2.x,v2.y))Y*Ang ;

End

If Abs(Abs(TotalAngle) -2¥Pi) < 0.001 Then InsidePoly := True ;

2:
End ;

105

106

Procedure RectangularBoundry(MumPoints:Integer ; Points:VerticesType ;
Var minpolyx,maxpolyx,minpolyy,maxpolyy:Real) ;

Var i,p : R2Vector ; k : Integer ;
Begin
i := Points[1]

minpolyx := i.x ; maxpolyx := i.x }
minpolyy := i.y ; maxpolyy := i.y ;

For k := 2 To MurPoints Do
Begin

p := Points[K] ;

If p.x < minpolyx Then minpolyx := p.x ;

If p.x > maxpolyx Then maxpolyx := p.x ;
If p.y < minpolyy Then minpolyy := p.y ;

If p.y > maxpolyy Then maxpolyy := p.y ;

End ;
End ;
Function OutsideBox(edge:LineType ;
minpolyx,maxpolyx,minpolyy,maxpolyy:Real) :Boolean ;
Begin
OutsideBox := ((edge.endl.x <= minpolyx) And (edge.end2.x <= minpolyx)) Or
((edge.endl.x >= maxpolyx) And (edge.end2.x >= maxpolyx)) Or
((edge.endl.y <= minpolyy) And (edge.end2.y <= minpolyy)) Or

((edge.endl.y >= maxpolyy) And (edge.end2,y >= maxpolyy)) ;3
End ;

Procedure FindIntersectionPoints(TestFdge:LineType ; MumPoints:Integer ;
PolyPoints:VerticesType ; Var pl,p2:R2Vector ;
Var NumInt:Integer ; Var Dependent:Boolean) ;

Var T : Integer ; PolyEdge : Linelype ; intpoint : R2Vector ;
Inconsistent : Boolean ;

Begin

Dependent := False ;
Numint := O ;

Te=1;
Repeat

PolyEdge.endl := PolyPoints[T] ;
PolyEdge.end?2 := PolyPoints[T+l] ;

107

CalcR2Intersection(TestEdge,PolyEdge, intpoint,
Inconsistent,Dependent) ;

If (Not Dependent) And (Not Inconsistent) Then

If Inbetween(PolyFdge.endl.x,PolyEdge.end2.x,intpoint.x) And
Inbetween(PolyEdge.endl.y,PolyEdge.end2.y,intpoint.y) And
Inbetween(TestEdge.endl.x,TestEdge.end2.x,intpoint.x) And
Inbetween(TestFdge.endl.y, TestEdge.end2.y,intpoint.y)

Then
Begin
Case NumInt Of
O : Begin
Numlnt := Munlnt + 1 3
pl := intpoint ;
End ;
1: i
If (Not R2VectorsFqual(pl,intpoint)) Then
Begin
NumInt := NumInt + 1 ;
p2 := intpoint ;
End ;
End ;
End ;
End
End
T =T+l 3

Until (T > NumPoints) Or (Dependent) Or (Numint = 2) ;
End ;
Function BehindPlane(Point:R3Vector ; e,f,g,h : Real):Boolean ;
BehindPlane := (Point.x * e + Point,y * f + Point.z * g+ h <0) ;
End ;
Function InfrontPlane(Point:R3Vector ; e,f,g,h : Real):Boolean ;
Var t : Real ;
Begin
t := Point.x * e + Point,y * £ + Point.z * g+ h ;
InfrontPlane = t >=0 ;

End ;

108

Procedure FindPrelmage(Theta,Phi,Rho,D:Real ;
R2Find:R2Vector ;
R3k1,R3k2:R3Vector ;
R%1,RZk2:R2Vector ;
Var R3Find:R3Vector) ;

(Given a point P' on a projected line segment R'S', this procedure finds the
point P located on the actual segment RS that projects onto P'. A binary
search method is used. }

Var R2m,Diff,R2FindDiff,R2mDiff : R2Vector ; R3m : R3Vector ;
Found : Boolean ;
Begin
Found := False ;
Repeat
RMidPoint(R3k1,R3%2,R3m) ;
ScreenXY(Theta,Phi,Rho,D,R3m,R2m) ;

R2Di ff(R2m,R2Find,Diff) ;
R2Diff(R2Find,R2k1,R2FindDiff) ;
R2Diff(R2m,R2k1,R2mDiff) ;

If RMagnitude(Diff) <= 0.2 Then Found := True

Else

If RMagnitude(R2FindDiff) < R2Magnitude(R2mDiff) Then R3k2 := R3m
Else

R3]l :=Rm ;

Until Found ;
R3¥Find := Rim ;
End ;

Procedure ProcessTestEdge(TestEdge:LineType ; EdgeNumber:Integer ;
R3Endpl ,R3Endp2:R3Vector ;
R2Vertex:R2VertexType ; intpl,intp2:R2Vector ;
numint, Numpoints:Integer ;
PolyPoints:VerticesType ;
e,f,g,h,Theta,Phi ,Rho,D:Real ;
Var Edges:EdgesType ;
Behindl ,Behind2,Insidel, Inside2:Boolean) ;

Var RMidpt : R3Vector ; R2midpt : R2Vector ;

Begin

109

If Numint = O Then

RMidPoint(TestEdge . Endl,TestFdge . End2,R2midpt) ;
If InsidePoly(NumPoints,PolyPoints,R2midpt) Then
EatTestEdge(TestEdge ,EdgeNumber , TestEdge .Endl , TestFdge.End2,R2Vertex,
Edges)
End
Else
If Numint = 1 Then

If Insidel Then

If Behindl Then
EatTestEdge(TestFdge,EdgeNumber, intpl , TestEdge.endl,R2Vertex, Edges) ;

Else
If Inside? Then
Begin
If Behind? Then
EatTestFdge(TestEdge, EdgeNumber, intpl , TestEdge.end2, R?Vertex, Edges) ;
Fnd
Else

If (Behindl) And (Behind2) Then
EatTestEdge(TestEdge, EdgeNumber, intpl, intp2,R2Vertex, Edges)

Begin
RMidPoint(intpl,intp2,R2midpt) ;
FindPrelmage(Theta,Phi ,Rho, D, R2midpt ,R3endpl ,R3endp2,
TestFdge.endl, TestFdge.end2, R3midpt)

If BehindPlane(R3midpt,e,f,g,h) Then
EatTestEdge(TestEdge,EdgeNumber , intpl, intp2,R?Vertex,Edges) ;
End ;
Fnd ;
End

Procedure CalcR3EyeVertex(R3 SINRD VERTEX:R3VertexType ;
VertexCount : Integer ;
Var R3 EYE VERTEX:R3VertexType ;
Theta,Phi ,Rho,D:Real)

Var K : Integer ;

Begin

For K := 1 To VertexCount Do
EyeXYZ(Theta, Phi ,Rho,D,R3 SINRD VERTEX[K],R3 EYE VERTEX[K]) ;

End

