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CHAPTER 1

Introduction

The rational number field does not contain the solution to

x¥ - 2 = 0; the zangle g cannct be trisected by 2 stra

Rt

0

edge and compass; the polynomial equation x° — 4x 4+ 2 = O
cannct be solved by the elementary arithmetic operations
and extraction of rocots; and a polygon of 17 sides can ke
contructed with a straight edge and compass. These
seemingly unrelated problems all have a common bond in the

field of mathematics known as Galcecis Theory.

Evariste Galaois (1311-1832) was able to estaclish &
necessary and sufficient condition for the sclvability of =
polynomial eguation by radicals. He associated a3 group
with each polynomial, and proved that a polynomial equation
could be sclved ky radicals if and only if the associated
group i= a sclvable group. This was the first use of the
word "aroup” in mathematical literature. Earlier, Abel
{180Z~18Z9) had proved that fifth degree and higher polano-

mials could not be solved by radicals in the general cacse

Galois’'s road to mathematical ogreatness was characterized
by mang detours. That he was able to accomplish anything
at all was & tribute toc his mathematical ability. His
ability was rot readily apparent when he first started
school . Most of his early school teachers considered him a

dim-witted troublemaker with no aptitude for mathematics.
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He cared little for his classwork, and his work remained
mediocre. Had his teachers known their dim-witted goung
student was too busy reading Legrendre’'s Geometry to bother
with the routine classwork they would have surely changed
their opinions of him. His ability to comprehend not conly
Legrendre’s work, but later the works of Lagrange and

Caurhy led ygoung Galeois teo attempt admission to L'Ecole

Polytechnique, the premier mathematical school of France.
It was there he hit his first potheole, as he was denied
entrance due to his lack of formal training. This did not
step him from his mathematical work and at the age cf
seventeen he submitted a paper to Cauchy which was to te
presanted to the Académie des Sciences. Cauchy already had

one temporarily micesplaced paper from Abel to his credit,

u

but he ocutdid this deed by completely losing Galois’

paper. Galoi now had nat only the examiners from L'Ecolse

u

Folytechnique erecting barricades to his progress, but the
academicians as well. A second attempt to gain admission
to the school also ended in rejection. As if these evernts
were insufficient to fuel Galcocis’s hatred of authority, he
received news of his father’s death. Galois‘s father wmas
the mayor of the town where Galois grew up and a staunch
opponent of the clergy. False rumors spread by a priest had
caused the clder Galols to lose his job and in despair, his

father commited suicide.
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g2lois made ne more attempte to gain entrance to L'’Eceole
Polytechnigue, and csettled for L’Ecolz Normale, where he
wernt into training to become a teacher. He did not stop
his research in mathematics however, and in 1830 submitted
a paper to the Académie in competition for its prize in
mathematics This time Fourier had the honor of losing
Galois’'s paper, although he had to die toc do it. By rnicow
Galeois was a very bitter young man and threw his efforts
into the revolution then occuring in France. By way of a

letter dencuncing the administration of L'Ecole Mormale, he

mariaged to get expelled from the school . He still
continued his mathematical writings and submitted ancther
pap2r to the Académie, this time throuah Foisson. Poisson.

at least, did not lose the paper, what he did do was find
it "incomprehensible” and returned it to Galois Thi=
paper contained some of the important results of the field
of study that riow bears Galois’'s name. Galois did not
attempt to submit any more papers to be presented to the
Académie. Instead Galois became a leader of Lhe
revslution. His popularity with the pecople probably saved

him from worse treatment than he received at the hand=zs of

the authorities. As it was he was arrested twice and the
second time spent six months i jail. Shortly after his
release he was challenged to a duel. It is nrnot clear

whether it was over a woman or his political activities,

only that he did not survive it. The night before the dusl
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he stayed up writing a letter in which he attempted toc =et
down his mathematical ideas. Galois had intended his oocst-
humus letter and manuscripts for the Académie, but they
ended up with Licuville. They were edited and published in

his Journal in 41846, fourteen years after Galois's death.

Galeois Theory has roots that go back at least as far as
1700 B.C., for the Babylocnians had a method of solving qua-
dratic eaquaticns. We do not know how the Babylonians came
up with their version of the quadratic formula, or whether
they understocod why it worked or if they merely followed a
recipe that gave correct answers. The Babylonians did rnot
possess knowledge of negative numbers, =so they had a courle

ocf versiocns of the process toc deal with =sums and dif-

ferernces. In mcdern algebraic terms, they wanted toc find
solutions to x + 4y = s and x3 = g, where s and p are given
numbers. The steps the Babylonians used are:

1Y Take half of =

2) Saguare the result

3 From this subtract p

4) Take the square rooct of the result

5) To this, add one half of s for one of the numbers;
then subtract this number from = to get the cther number.
In sumbolic form: X = w(gr - P + %, and w4 = x — S, In
cther words, the Babylonians knew how toc complete the

square
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It was rnot until the 15Sth century during the ltalian Renais-
sance that any majior progress was made in the field of
algebra, the Ancient Greeks had worked mainly in geometry.
For mathematics, the Renaissance was not a rebirth, but a
periocd of new growth. In the sixteenth century an alge-
braic =olution aof cubic eauations was discovered. The Arabs
had solved the cubic, but as points of intersection of
conic sections, not by any algebraic methods. In 1545
Geronima Cardano (1501-1576) of Italy published both the
sclution toc the cubic and to the aquartic equations. Far
this reason the year 1545 1is frequently taken as the
beginning of the modern era of mathematics. Cardanc was
not the originator of the discovery, he having obtained =&
himt, through bribery and fraud, for solving the cubkic from
Miccolo Tartaglia <(ca. 4500-1557). Cardanc had promized
not to reveal the sclution since he knew Tartaglia plarmned
ta make his reputaticn by publishing it. Tartaglia himself

had a habkit of gpublishing material that was not his own

without giving credit to the originatcrs, S0 little
sympathy is due him; at 1least Cardano gave credit to
Tartaglia inm his publication. There is also evidence that

Tartzglia had received a hint for solvirng the problem from
g third source, ample evidence that plagarism and intel-
lectual theft have a long history. The credit for keing
the first toc soclve the cubic is generally given to Scipione

del Ferro (ca. 1463-1526) who did not publish his findinas.
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The sclution of the quartic equation was accomplished by a

student of Cardanc’s, lLudovico Ferrari. Again, since they
did not use negative numbers, they had twenty =separate
cases toc consider. His method was toc reduce the qguartic

egquation tc a cubic, known today as the "“resclvent cubic”.

which could then be solved by methods already kniown.

Finding the general solutions to the cubic and guartic
egquations were the first real advances made in the theoryg
of eguations since the time of the Babylonians. Howewver ,
we should emphasize that these were only an =advance 1in
theoretical mathematics. Approximate sclutions to =ome
cubics were known in antiguity. For example, al-Kashi
{ca 14386) could find an approximate solution to ang cubic
equation to any desired degree of accuracy. S0 these
theoretical discoveries did not help in the solution of anyg
practical prablems. What they did do was to csuse a lot of
mathematical attention to be focused on the field of
2lgebra. It was only logical that mathematicians would
attempt to extend the methods of sclving the cubic and
guartic eguations to solving the aquintic equation. This
problem was to occupy mathematicians for the next couple of
centuries as they were faced with an unsolved algebraic
problem comparable to the classical geometric problems of

the Greeks.



The eighteenth century inm France was a time of great

turmoil and of great mathematical discoveries. This was
the time of Lagrange, Laplace, Legrendre, Carrnot,
Condorcet, and Monge. It had the misforturne to fall
between the seventeenth {The Century of Genius) and
nineteenth (The Golden Age) centuries. Much of what was

discovered during the eighteenth centurgy pointed the
directiorn for what was to follow. This is especially true
for the topic of this paper. In 1770 Lagrange pubkilished =
paper where he considered the solvability of eaquatiors in
terms of permutations of their roots It was to the works
cf Lagrange, Legendre, and Cauchy that the fifteen year cld
Galeois turned when disgusted with the algebra texts his

boarding school provided.

To summerize, Galois’s work wazs published posthumously by
Liocuville in 18486 in his Journal. Abel (1802-41829) had al-
ready shown the fifth degree polynomial was unsolwvable by
radicals. Galois was able to show that a polynomial
equation was solvable by radicals if and only if the
symmetric group on its rcots is a sclvable group. Although
Galois Theory provides an algorithm for finding the rocots
of & polynomial that is =oclvable by radicals. the main
thrust of Galois Theory is the algebraic structures of the
systems arising from the poclyromials. It was the ideas of

Galeis that led to the careful postulational treatment of
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algebraic structures. Galois and Abel had the concept of
fields implicit in their work, but the explicit definition
of & number field did not occur until 1879 by Dedekind
(1831-1916) . This led to the ideas of integral domains, a
generalization of the idea of the integers. As described
the search for the solution to the problem of solving
polynomials of any degree has led to many important dis-

coveries.

In this paper we are mainly concerrned with establishing the
Fundamental Thecrem of Galocis Theory for finite, normal,
separable field extensions. The proof that fifth degree
and higher polgnomials cannot ke solved by radicals, while
probakly the most famous result of Galois, i1s beyond the
scope of this study. In Chapter Z we will present some
background information on ring thecry in a3 form designed
for the material developed in the later chapters on field
gxtensions. This is the subject of Chapter 3 and the main
body of work in the paper. In it we will examine finite
field extensions, algebraic extensions, splitting fields
for wolynomizls and the concept of normal extensicns, and
finally separable extensions. Chapter 4 is the Fundamental
Theorem of Galcis Theory, where we show there is a orne-to-
one correspondence between the intermediate fields of =
finite normal separable field extension and the subgroups

of the Galois group of the field extension.
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CHAPTER 2

Rinas and ldeals
This chapter will present some 1i1deas, definitions, and

theorems which will be useful in the following chapters.

Def 2.1%1: A ring is a triple (R, +, ) where R is a set and
4+ and ¢« are binary operations aon R. (R, 4+ is a Abelian
Group and (R, ¢«) is a semi-group and the operations are
related by the distributive laws;

1) a{b 4+ ¢c) = ab 4+ ac

2) {a + blc = ac + bc.

I1f ab = ba for all a, b € R, then R i a commutative ring.
If there exists an element e of R, such that ae = ea = a
for all a € R, then R is a ring with unity. In what

follows & will be dencoted by 1.

Examplesi (Z, -+, ')l (07 + . '); (R! + ')‘ (c- + '."’I.‘
(Ze, 4+, ) 3are all examples of commutative rirnogs with

identities with respect to multiplication.

Homomorphisms and isomorphisms between rings are loogicsal

extensions of the same concepts for g9roups.

Def 2.2: A ring homomorphism between two rings R and R’ s
2 mapping ¢: R =+ R’ where, for all a, b € R;
1) ¢(a 4+ b)) = ¢(a) + ¢(b)

2) ¢(ab) = ¢lale(b).
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1f R and R’ are ringas with unities 4 and 1’ respectively,

then we require #(1) = 1°’.

Def 2.3: 1f ¢ is a ring homomorphism and ¢ is 1-1, then #

i a ring isomorphism.

Def 2.4: Two rings R and R’ are said to be isomorphic iff
there exists an isomorphism ¢ from R to R' and ¢ 1is onto.

This will be dencted R = R’

Def Z.95: A subring of R is a =subset 5, of R, which is a
ring itself with respect to the same binarg operations as

R.

Examples. Z i= a subring of Q, R, and €; OQ is a subrirng of

R and €, R is a subrirng of T.

Thm 2.4%: Let S be a non-empty subset of a rimg R, then S
is a subring of R i1ff for all a, & € S, we have a - b € €
and ab € S.

Example: The set Z[Jﬁ] = im + nJE /S m, n € Z)Y i€ a subrina

of the ring of real numbers.

Def Z2.6: & commutative ring (R, 4+, ) is an integral domain

iff whenever ab = 0, then either a = 0 or b = 0.
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Remark : If a # 0 € R and there exists b # 0 € R and ab = 0
then a arnd b are zero divisors. So an integral domain is a

commutative ring with no zero divisors.

Def 2.7: If a € R and there exisgsts b € R such that ab = 1,

then a is a unit of R.

If every norn-zero element of R is & unit, then we have the

group structure ocn R — {0} under the operaticon of multipli-
cation.
Def Z.3. A ring (R,4+,') is a diwvision ring iff (R - (03,

is a group.

To get to the field structure we must require the multipli-

cative aroup to be commutative.

Def 2.9: A ring (R, 4+, ) is a field iff (R - (02, ) is an

Abelian groug.

Def 2.40: Let (R, 4, ) be a ring and C be the set:

c=tn€zY s ar =0 far all r € RY.

If € = @ then R is said to have characteristic zero. If
C # @ then the smallest number in C is the characteristic

of R. The definition for the characteristic of & field is
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the same as for a ring.

Examples: 1) Let R be the ring of integers, Z. Since
there does not exist arn n € ZY such that tn = 0, Z has

characteristic zeroc.

2) Consider Zz. C will be the set {3, 6, 9, 12, 4
since 3k(z) = O for all k € Z' and for all z € y 2 So the
characteristic of Zz is 3. In fact, for any n, Zs will have

characteristic n.

Def R O A Let (R, 4+, ) be a ring. A non-empty subset A of

RN

R is a two-=sided ideal of R iff:

1) a, — a; € A for all a,, a; € A

Z2) If 2 € A, then ra € A and ar € A for all r € R.

Let R be & ring and ! an ideal of R. Let be the set of

—.0

zl]l the distinct cosets of | in R obtained by considering I
as a subgroup of R under addition, i.e
? = {(a + 1 / & € R}. We know ? is an abelian group under
the addition of cosets which is defined by;

{a 4+ 1) + b+ )Y = (a + b)Y + 1
Similarly if we defire multiplication in ? by ;

fa 4+ 1){b 4+ 1) = (ab + 1)
One can prove this is a well-defined binary operation and
?, with respect to these operations, is a ring and it will

be called the aquotient ring of R with respect to the ideal
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Thm 2. 2: Let ¢: R =+ S be a ring homomorphism between ring

R and S, then:

1 ker- ¢ is an ideal of R,
2) ¢ is an isomorphism iff ker ¢ = {01,
3) I U is a3 subring or ideal of R, then ¢(U) is a sub-

ring or ideal of S,
4) [f T i= a subring of S5, then #ﬂiT? is a subring of

R, morecver if T is an ideal of 5§, then ﬁd(T} ig an idezl

cf S.
Thm 2.3: {Fundamental Theorem of Ring Homomorphisms) Let
$: R 4+ S be a ring homomorphism. Then there existz =&
. B ) , - R _
uniague ring igzomorphism ¢: kar @ -+ S such that the
following diagram commutes.
R 45 =
i /////~
R
kereg
Iri particular #(R: Eé%? Here n is the canonical homcmor-
. . R ; ' —
phism n: R = EEFZ’ given by n{a) = a + ker ¢.
Def Z2.12: An ideal P is a proper ideal of a rinmg R iff
P #Ror P # {0)

In a non-commutative ring we must differentiate between
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left ideals and right ideals, but in this paper we will be
dealing with commutative rings, so all rings can be assumed
to be commutative unless otherwise specified. NMow we want
te look at an ideal that is generated by a subset of a

o

ring. Let 5 be an arbitrary subset of a ring R. The cset

-

of elements of the form Eﬁﬁsy* r. € R and 5, € S and af

finite 1lergth form an ideal. It is called the idezl
generated by 5. I 8§ = {531 Sz, ... sn} then the ideal
generated by S is deroted <{sx, Sz, ... sﬂ) The elements

of S are called the generators of the ideal.

Def 2.13: A ideal that is gernerated by a single =lement

is knowrn as a princigpal ideal.

Def Z.14: Let R be a commutative rina. A ideal P # R 13

a prime ideal iff whenever ab € P then either a € P or

L e P.

Def 2.15: An ideal M is a maximal idezal of a ring R 1ff

-

M # R and if U is an ideal of R where M 2 U < R, then

either U = M or U = R.

Given & rimg R there is no guarantee that it has any
maximal ideals. However 1if R has a unit element then it
has a maximal ideal (the Axiom of Choice is needed to prove

this). Also there may be more than one maximal ideal in &



ring R.

Example: Let R = Z and let g be a prime, then | = pZ ia a

maximal ideal.

Thm 2.4: If R is a commutative ring with wunity, and M is
an ideal of R, themn M is a maximal ideal of R iff 5 is =
field.

Corcllary 2 1: A commutative ring with unity is a field

iff it has no proper non-trivial ideals.

Thm 2Z2.95: Let R be a commutative ring with unity, and let
P # R be an ideal in R. Then P is a prime ideal iff g is

an integral domain.

Since every field is an integral domain, we have the

following corcllary.

Corollary 2.%: Every maximal ideal in a commutative ring R

with unity is a prime ideal.

Def 2.16: A field P is a prime field iff it has no

subfield other than itself.

Example: 1Y @ is a prime field. I E € @@ then Z € E so



I'J,-'EE tor all n» € Z, N = O andP.}EE for all m € Z, =
E =0Q.

2Y Zp i35 a prime field.

Zr = Z_ = { n + pZ / n € Z and p is a prime }.

{o

E<CZ =1 + pZ € E but,

~

n +pZ =n (41 + pZ) son + pZ € E and E = Z¢.

Thm 2.6: A field F of characteristic 0O is prime iff F ~ Q.
A finite field F of characteristic p is prime iff F~ 2, for

some prime o.
Folyriomial Rings

Let R be a ring Define the set P(R) = {(ag, .. , a, ;w/

a,e R, ¢ € Z+ and a finite number of the & ’'s are not zero}

Let a = {a. .. , an, ... Y and b = (bpo, ... , bse, ... ). Define
a = b iff a = b, for all i € Z+. Addition can bes defined
on P(R) by ¢ = &a + b = (ag + o, ... , 8 + b , .. ), 1. &.,
e, = &, + b, Clearly c € P(R). Multiplication can be
defined on P(R) by c = ab;, where c, = zani—J- Again
c € P(R. P(R) is called a polynomial Fi::Javer R. FiR)

is commutative iff R is commutative and P{(R) has unitygy iff

R has unity. (i, O. 0O, ... ) is wunity for P(R). ke can
define & mapping ¢: R 4 P(R) by ¢{r) = r' = (r, 0O, 0Q, ...,
then R = #(R). So we can think of R as a subring of P{R)

under the identificatien r & (r, 0O, O, ... ).



Let R be a ring with unity 1. Define x = <0, 1, O, .. 1,
then

x* = (0, 0,1, O, )

x* = (0, 0, 0. L, O, ;

x" = 40, 0, .. , L, .. ) where the i1 is in the n + 1
place. Then

ayx = (0, a,, 0, ...}

a-;xz = (0, 0, az, 0, ...}, etc.
Hence an element a € P(R}) can be written as a = {(a;, a;, ..}
= 35 + 3;¥x + aixz + ... We call x an indeterminate and the
a,'s coefficients. In the remainder of the paper the
polynomial ring P(R) will be dencted RIx1]. An element
f(x) € RIx] will ke dercted by
Flx) = ag + 23%x + 3zx2 4+ ... + ax". The degree of fix} is

the largest wvalue of nn for which an is not zero and will be
denoted by deg{#(x)] = n. The zero polyriomial 15 the

poclunomial with all the a;'s equal to zeroc and it’s degree

shall be the symbol -0 and we will adopt the usual
conventions that, —o < n for every n, {—o0) 4 (=) = -~ o,
- 4 n o= -0 1§ fix) = 25 + a;%x + 2:%° + ... 2;x" and

deg(f‘(x)] = nrn, then as is called the leading ccefficient of

fix).

Thm 2.7: I1f £, g € RIx], where R is a ring with 1, then

1) deg(f + g9) = max {(deg f, deg g9}, and
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2) degi(fg) & deg f + deg g9.
The eguality in (2) will hold if R has no zero divisors.
In particular the eqguality holds in a polynomial ring cover

an intearal domain.

A constant polynomial 1s one where 3a; equals zero for all
i oz 1. We should note here that the degree of a non-zero
constant polynomial is 0. The only units of RIx] are the

constant polynomials which correspond to the wunits in R

under the embedding r -+ (r, 0, 0, ... ).
Thm 2.8: {Division Alacrithm?) Let R be a commutative ring
Wwith unity and fi(x), g{x) € RI[x1]. If 9{x? has a leadinga

coefficient b, then there exists & non-negative integer k
and gf(x), rix) € RIx] such that:

1) EYFix) = alx)gix) + rix) with dea{r(x)) < dea(a(x))
2) If b is not a zero divisor in B, then aix! and rix)

are unigue.

3) If b is a unit in R we may take k = 0.

In the following we will be concerned with poluriomials over

fields, in which case we have the following corcllary.

Corollary 2.3: Let F be a field. For any polygnomials
fi{x), ag(x) 1= Flx1, there exists unigue pvolyncmials

al{x), rix) € Flx]l] such that f(x) = aq{(x)g(x) + r{(z) and
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eg(r‘(x )] < deg[g( x )).

Corollary 2.4 (Remainder Theorem) Let F be a field. 1If

"

fi{x) = agp + ... + anx’ € Fix1 and a € FIxl, then there existz
a unique polynomial a(x) € FIx] such that
fix) = (x — a)g({x) 4+ f{a), where:

f(a) = a3, + a3 + 3za® + ... + apa", (i.e. fta) is the
value of fi{x) at a in the classical sense).
Corollary 2.5: {Factor Theorem) Let F be a field. 1f

f(x) € FIx] and a € F, then (x — a) is & factor of f{x) (in
the sense that f{x) = (x — a)ga(x) for some gi{x) € Flx]) iff

f{a) = 0.

Def 2.17: Let F be a field and f{(x) € Flx]. Angy element

a € F such that f{a) = 0 1€ called a zeroc of fix! in F.

A consequence of the preceeding two corollaries is a limit

orn the number of zero that a polgynomial can have.

Corollary 2.6: A4 non-zero polynomial fi(x!) € Flx] of deoree

n can have at most r zeros in F.

Qur next definition singles ocut a type of polynomials in
the polynomial ring Flxl that is of major importance in the

remainder of the paper.
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Def 2.18: Let F be a field. A non-constant polynomisl
fizx) € FIx]) is said to be irreducible over F iff fi{x) carnnot
be expressed as the product of two polynomials g(x), hix! €
Fix) where deg{a(x)) < deg(fix)) and deg(h(x)) < dea{#ix)) 1+

f{x) is not irreducible it ig called reducible over Flx]

A polynomial which is irreducible over aone field may be
reducible over a2 different field. x* — 2 is irreducible
over the rationals, but 1is reducikle cover the reals. Im
other words, the irreducibility of a polynomial depends sis
much on the field in question as the polynomial itself.

In FIx1 the urits are precisely the non-zero elements of F.
therefore we could have defined an irreducible polynomial
fix) in Flxl as a non-constant polynomial where aryg

factorization f(x) = g{(x)h{(x), must result in either al(x)

or hix) being a unit in FI[x1].

NMumercus sufficient conditions for a polynomial to be irre-

ducible are known. We will present only one of them here.

Eisenstein’s criterion for irreducibility:

Let #(x) = ag + a;x + apx® + ... + apx" € ZIx]. If there
exists a prime p such that plag, play, ..., pla,_;, but pla, and
eNa;, them $(x}) is irreducible in ZIx] and alsc is

irreducible over Q.



Example: Let f{x) = 25x° — 9x* + 3x*- 12, and let p = 3,

then f(x) is irreducible over Q.

Corollary 2.7 For any prime p € Z, the cyclotamic
polyriomial
— 4 p=1 =2

WP
¢p(X)=£X—‘——_—-—f=X + X + ..+ x 4+ 4

is irreducible over 4.

Eisenstien’s criterion holds when Z 1is replaced with a
unigque factorization domain D and O is replaced by the

field of quotients of D.

Def 2.19: 4 commutative rinmg R is & principal ideal ring
iff every ideal of R is a principal ideal. A principal

ideal ring which is an integral domairn is a principal ideal

domain.

Example: (Z, 4+, ) is a principal ideal domain.

Thm 2.9: If F i a field, F{x) is a principal 1ideal
domain.

Thm 2.10: Let F be a field and let pi(x) € FIlx]), p(x} # 0.

The ideal <pi{(x)>» is maximal iff p(x) is irreducible over F.
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Proof: Assume <p(x)> 15 maximal.
Assume pi(x) is not irreducible, then there exists gfix),

rix) &€ FIx] with degrees less than the degree of pl(x) such

that pix) = ai{x)ri{x). Consider <gi{x)>. Since
p(x) = g(x)rix), any element in <p{(x}> can be written as
plxlgfix) = af{x)r(xdalx), for aix) € FI[x), and s=soc i=s in
<a{xix». So <pi{x)> € <Lalx)r>. We can assume g(x) 1is

irreducible over F, sirce if it isn't we can write 1t as

the product of two polynomialzs with lesser degree and

continue until we have an irreducible polynomial.
1 & <aix)>. If it were, then g{x) would be a constant
colynomial and would have degree equal to zerco. But then

deg(pr(x)) = deglrix)] which scontradiots the definition of
rix}. Since 1 £ <g(x)>, <Latx)> % Flx]. This implies the
degree of g9{x) eqguals the degree of pi{x), which contradicts
the definition of g@i{x).  So p(x) must be irreducihkle.

Assume pix} is lrreducible.

Assume there exists an i1deal | where <pl{x)>» < I < FILx1. I
is a principal ideal, so0 | = <g9{x)> for some g(x) € Flxl.
Since every element in <g(x)>» 1i1s of the form g(x)fi{x), for
some fix) € Flx]l, the deﬂg(x)) is less than or equal to the
degree of zangy other non-zero element of <gix)>. By the
Division Algorithm there exists uniogue polynomials ogfz),
r{x) € FI[xl =such that pi{x) = o(x)ai{x) + ri{x). So
rix) € <g(xi>. But since degﬁ%x)) < dedg(xfy r(x) must be

zero, which means p(x) = aql(x)g(x). But pi{x) is irreductible
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so | does nmot exist and <p(x)>» is maximal.

Corollary 2.8: [f p(x) € FIx] is irreducible ocver F, than

F[.;l

: 1 a field.
IR is a3 fie




CHAPTER 3

Field Extensions

In this chapter we wWill ke loocking at finite field

extensions, introducing the concepts of algebraic
extensions, normal extensions, and separable extensionz.
It will lead to the Galois theory of finite, normal,

separable field extensions.

Some books define a field K to be an extension of a field F
if F is a subfield of K, however this would exclude the
case where K contains a subfield that is isomorphic to F,
but rot necessarily equal to F. The following definition

will allow that possibility.

Def 3.1: Llet F be a field. An extensicn of F is a pair
(K, i) where K is a field and i: F = K is a ring
monomorphism (1-1). K:F will mean that K iz an extensicon
of F.

The field F is called a ground field with respect to K. 1

K is an extension field of F with respect to ring mcono-
morphism i: F 9 K, then F is embedded as a subfield of K viz
the identification of a € F with i(a). For the sake of
brevity unless i 1is specifically needed for purposes of
ctlarity we will not list it and just consider F as a sub-

field of K.
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Examples: 1) The field of real numbers is an extension of
the field of rational numbers and the field of complex
numberes is an extension of both real and rational numbers.

2) Q(ﬁ) = { p + qﬁ / p, a € Q } is an extension of G.

[f we consider a field F and the family Mz, o« € I, of all
subfields of F, then the intersection ™M of sll1 these
subfields will be the prime field of F. But, as we will
cee in the next theorem, this prime field is isomorphic to
either Q or Z, for some prime p. S0 we can view every field
F, as an extension of a field isomorphic to either QG or Z;
depending on whether the characteristic of F is 0 or some

prime p.

Thmn 3.1: Let F be a field. The prime field of F is
isomorphic to Q or Zg.

Proof: Let F be a field whose unity is denoted e and let Z
be the ring of integers. Let A be the prime field of F.

Define ¢: Z - F by:

ne if n» O
¢${n) = ne, where ne = 0 if n =20
—(~—nje if n ¢ 0

¢ is a homomorphism from Z into F. Since e € A, # maps Z in-

to 8. The kernal of ¢ is not all of Z since ¢{(1) = e % 0.

Suppose ¢ is an isomorphism. Then A has a subring
isomorphic to Z and therefore a subfield isomorphic to the
field of aquotients of Z, namely Q. But since A is the

smallest subfield of F, A is the subfield and 8 =~ Q.



Suppose ¢ has a non-trivial kernal. This kermnal 135 a
principal ideal. Let ab € ker ¢, so $(ab) = 0 = ab = 0 =
a=0o0or b =0 since charZ = 0. Assume a = 0, so ¢(a) =0
sand a € ker ¢. Ker ¢ is a prime ideal and lc:_e—%_tt is an
integral domain and ker ¢ 1s generated by a prime p. Sc 4
has a subring isomorphic to Zp. But Z, is a field, so

Let K:F, then K can be considered as a vector space over F
where addition is the uswuwal addition in K and scalar multi-

plication is the usual field multiplication aa, where a € F

and a € K.

Def 3.2: The degree of the extension K:F is the dimension
of K as a vector space over F. If dimg(K) is finite then
K:F is= called a finite extension, and is infinite

othernwise. The degree of K:F i=s dencted [K:F1.

Lemma 3.1: [K:F]l] = 1 iff K

[}
-

Thm 3.2: tet M:L and L:K, then [M:K] = [M:LI[L:K1.

Proof: We will prove this theorem by loocking at the
extension ase & vector space over the base field. Let
{aﬂ'i € I} be a basis for M as a vector space over L and
{ﬁﬂ’j € J} be a basis for L as a vector space over K. We

shall show {aﬁJ/ i €1, 19 ¢€ J} iz a basis for M as a3 vector



. space over K.
First, to show linear independence assume » 3>7. a8, = 0.
81 JEJ

where 7;; € K. This can be written 3 [ Z'VNBJ\'a‘- = 0. Since
& GED :

218, € L, ¥ i €1, Z’Y‘.JQJ = 0, Vi€ 1, and hence 7, = O

JEd JEd

for each i € ! and j € J, and we have linear independence.

Then {a,,-/ i <€ I} and {.@J/j € J} are bases for the respective

vector spaces. Let § € M, then §=3n« where 1, € L and
i€l
i € I and 7, = 3,8, for i+ € | where £, € K. Therefore
)

§ = 3 FE,.8,2; and the a8; span M over K.

£ JEJ

Example: lL.oocking at Q(Jﬁ, 45]11, {1, NZ, 43, 4@} is a basis
for Q(VZ, 43) over @, so (G(d2Z, 43): @1 = 4
Corollaryg 3.1: {M:K]l is finite iff (M.L) and [(L:K] are
finite.
Corollary 3.2: Let Fp € F, € F; € ... € Fr be & seaquence of
subfields, then

[Fr'—Fo] = [Fr:F’-_‘t][Fr..i'»Fp_zl [FI:Fol.
Corollarg 3.3: If [K:F]l] = p, where p is a prime, then the

only subfields of K are K and F.

Adjunction

In this section we will examine different types of
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extensions and see how to construct them. We will be
primarily concerned with finite extensions. The autocmor-
phisms of such extensions play an extremely important role

in Galois theory.

Let K be a field and S a subset of K. Consider all
subfields of K which contain §S. The intersection of all

these subfields is the smallest subfield cf K which

Y
contains 5. | |L £ K

LEK

SCL
Def 3.3: Let K:F and let S5 be a subset of K. Let
Y = 8§ LJ F and consider the intersection of all subfields of

K which contain Y. r]L = F{(S). This is the field obtained

from F by adjoining S to F.

Remarks: 1 In general F(S) is larager than FUS

2) If a subfield F, of K, contains 8, then it contains
all polynomials in finitely many elements of S with
coefficients in F and the aquotients of such polynomials.

Thus we have,

FIS) = { ‘;‘(:'* ;:’;/ Flxy, .., Xa) € Flxy, ... xnl,
8(xy, ..., Xe) &€ Flxy;, ..., %2}, 3,, b €S, alby, ..., bal! D}

3) If S = {51, o s,,} then F(S) = F({si, e, s,.}) Will
be dencted Fis,, .. , s} In sarticular F({a})) = Fiar
From the definition of F(S8), 8 € F{(S) and F £ F{(8) and F{g)



is the smallest subfield of K that contains both F and 5.
4) If 8 and 8; are subsets of K, then we have

F(S,JSp) = (F(Sp]\'sz). Note that F(S,) € F(SJS;? and

F(S2) € F(S,JS;). Therefore [F(S))(S) € FiSUS). 0On the

other hand F € [F(S))(Sz) and SUS; € (F(S))(S).  Therefare

FsUSz) € (Fis.))(Se).  Thus FisUSy) = (F(50))(S). MWe can

therafore write F(S;, S;) instead of F{(S5,JS;).
We will now define a special kind of field extension.

Def 3. 4: Let K:F. K is a simple extension of F 1iff

K = Ffa) for s=ome a € K.

It follows then, that any extension of F obtaired by
adijoining a finite set to F can be okbtained by a seguence

of simple extensions.

It is our objective to classify all possible simple exten-
sions First we reed toc introduce the coricept of
isomorphism of extensions to classify all possible simple

extensions up to isomorphism.

Det 3.5: Let i: K =+ ¥ and j: L 4 L¥ be field extensions.
A field extension isomorphism between them is &a pair of
maps (¢, ¢*) where ¢: K 4 L and ¢': k¥4 L¥ are isomorphisms

and ¢* o i = j o ¢. That is, if the following diaagram



comutes,

“l de
-
-y K-u

What this means is if the field structure is preserved by
isomorphism ¢ . K 9 L then the embedding of the smaller

field in tre larger one is alsoc preserved by &.

Def 3.6: Let K:F. An element a € K is called algebraic

over F iff there exists a non-zero polynomial f{x) € Flx}

such that f(a) = 0. Otherwise a is transcendental over F.
Example: Jﬁ i algebraic over 0O since F(J?} = 0 where
f(x) = x2 — 2. e and ® are transcendental over q.

Def 3.7: F(a) is a simple algebraic extension of F iff =
is alagebraic cver F. Othernise F(a) is a simple

transcendental extension of F.

We now want to look more closely at the structure of Fia).

Let FI{x1 be the polynomial ring over F.
F[a]={co+cla+...+cnan/c;€F,n'zD}

1s an integral domain. It therefore has a aquotient field

that contains a and F, but F(a) is the smallest field which

contains both a and F so F(a) is the guotient field of

Flal. Hence, it can be characterized,
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Fla) = {ﬂé-’/ £, g € FILx1, afa) w D}.

al{a)
FIx]l, being all polynomials in one indeterminant over F,
catisfies the requiremernts for an intearal domain. Let

¢: Flx) = Flal be defined by,
$(cyg + c4x + ... 4+ eax") = ¢ + €13 + ... + caa”.
It i= an onto ring homomorphism. The kerrnal of ¢ is an

ideal . By the Fundamental Theorem of Ring Homomorchisms we

Flx] FIx1 . ; ;
know ker & = Flal. So ker & : is an integral domain and ker ¢

ime ideal in FI[x]. Also ker ¢ # Flx) since {1 # 0.

e
is a pr
Since F i1is a field, FIx] is a principal ideal domain, sc

ker ¢ = <«<0»> or ker ¢ = <<p{x)> where p{(x}) 1is a non-zero

poluynomial in FI[x]. Let us examine these two cases.

Case |: ker ¢ = <0>

Then FIx]l] =~ Fl[al and the guotient fields F{(x) and F(a) are
isomorphic. a must be transcendental, since ker ¢ = <0>.
Moreover [F(a):F] = o. Assume [F(a):F] = n, n finite, then
the n + 1 elements 1, a, ... , a" are linearly dependent cver
F. This implies there exist c; € F, i1 = 414, ... ,n, such that
o 4+ c18a + ... + cpa” = 0 arnd ¢; # 0O for some i. But then
fix) = g + £3x + ... + o©px” is a non-zeroc polyromial inm Flx3

where f{a) = 0 a contradiction of the assumptiocn thzat =z i=s

transcendental .

Case J1: ker ¢ # <0

Since FIx] is a principal ideal domain, ker ¢ = <Zp{(x)> for
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j some pi{x) € Fix]. Therefore all polynomials in FI[x1 that
ghave a as a root are of the form p(x)fix), where f(x) is an
] arbitrary polynomial in F{x1. p{x) is the lowest degree
polyriomial in Fix] which has a as a root, since
degﬁ:(x)#(x)] = deg(p(x)) + deg(F(x)) z deg{p(x)). We alzc
claim that p{(x) is irreducible. 1f pix) 1s reducible, then
plx) = py(xipg(x). Therefore pfa) = pgfalp{a) = 0, but
this implies that either p;(a) = 0 or pzia) = 0. Then we
have a as a root of a polynomial in F{x] that has a =z=maller

degree than p(x), but we have already seen that cannot

happen. Since p(x) is irreducible, the ideal <{p{x)» 1is
maximal and hence Elx] is a field. Now, =zirmnce Fia) is the
<plx)y
smallest subfield of K containing F and a and since
F(a) 2 Flal = —,E-LX-L, we must have F(a) = FIlx].
<plz)>
If u is a non-zero element of F, then <pix)> = <upi{x)>. So
p(x) is not uniquely determined by the ideal, ker ¢. But ne

may normalize p(x) to a monic polunomial.
The pi{x) which generates ker ¢ is uniquely determined by:
1) pix) € FLx1,
2) pta)y =0,
3) pi{x) is monic,
4) pix) is irreducible over F,
3) if f¢(x) € FIix] where f(a) = 0, then pf{x) divides
fix).
To show unigueness, assume there exists an f(x) € Flx]

satisfuing 1) through &) and that p(x) and f{x) are
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relatively prime. Then there exists g(x), hi{x) € FIxl such
that ga(x)pi(x) + hi{(x)f(x) = 1. But the left side of this
equation evaluated at a eqguals zero so f(x) does not exist.
From the preceeding discussion we have establizhed the fact
that if a is algebraic over F, then F(a) =~ Flal. Therefcre
every element of F{a) is of the form f(a) for some

fix) € Flx1.

Def 3.8: The irreducible polunomial p{(x) of a over F will
ke denoted Irrf{a, F). The dearee of Irr{a, F) is called
the degree of a over F and is denoted dea(a, F).

Examples: 13 pix) = x2 — 2 is monic irreducibles cver 0,
so Irr(d2, @) = x* - Z and deg(dZ, O] = 2.

2 a =J 1 + 43 € R is a zero of

pix) = x* — 2x* — 2 € @Cx1,
snd by Eisenstien’s irreducibility criteriorn with p = 2,
ol{x) is seen to be irreducible over Q. Therefore

iPP(J 1 + 45, Q) = x? - z2x2 - 2 andJ i+ 45 is algebraic of

dearee 4 over Q.

As has been pointed out before, if F(a) is an extension

field of F, then F{a) is a vecteor space over F.

Thm 3.3: Let Fi{a) be an simple algebraic extension of F

Wwith deg(lrr(a, F)} =n. Then 8 = {1, a, a4, .., a”*} is s
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basis for F(a) as a vector space over F.
Proof: It must be shown that 8 spans F(a) and the elements
cf B are linearly independent.
Let ¥ € F(a), so 7 = f(a) for some f{x) € Flx], where

fFlx) = by + byx 4 ... + bax", b, € FIx]J.

So Y = by + bja + bya® + ... + b.a". By the division
algorithm there exists aqf(x), r{x) € FIx} such that
fix) = al{x)pix) + rix), p{x) = Irr(a, F) and
deg“ﬁx)] < deﬂﬁ(x ) = n. Therefore f{(a) = qgtal)p(a) 4+ rfa:?
and since pital = 0, f{a) = rta). Since r has degree lecs

[N

than r £iah - =
vian ! v Lald &

1 -

4+ Cja 4+ ... + a2 where k £ n -~

[=(]

Therefore 7 is a linear combination of the elements of 8.

To shaow the linear independence of 8 over F, let

This implies f(x)} = by + byx + .. + bpyx"* has a root in
Fla). But deg(f(x)) < n — 1 50 f(x) =0
Corollary 3. 4: Let F(a) be a simple algebraic extension of

F, then [F{a):Fl = deg(lrr(a, F)) = n.

Corollargy 3. 5: For all 8 € F(a), 8 can be written uniguely
as B = cg + c;3 + ... 4+ Cpya"t, g, € F.
Corollary 3.6: Every a of the simple algebraic extension

F{a) is algebraic over F.

Proof: Consider the elements 1, a, ... , a" in F(a). by the



precesding ceorollary gach of the powers o (04 k £ n) may be
written as,

o' = boy = bd + ... + bpoy za"Y k=0, &, ...,
Thus we have n + 1 equations in the elements 1, a, ... . a
and by eliminating these latter elements it follows that
there exists co, €y, ... ., Go € F, not all zero for which

Co'lt + cyra + ... + cad" = 0.
Thus fi{x) = og + o3x + .. + cex" € Flxl is a non-zero

polynomial with fia) = 0. Hence « is algebraic over F.

The next theorem 1s & summary of the previous results when
K is a simple algebraic extension of F and a € K is

algebraic over F.

Thm 3.4: If K:F is a field extension and a € K is
algebraic over F, then:

i) F(a) = where pi(x) € Fix] is an irreducible

<n(%)}'
monic polynomial of degree n * 1 uniquely determined by the
conditions that p(a) = 0 and gf(a) = 0, for o(x) € FIxl iff
p(x)lai{x).

2 F(a) =~ Flal

"1y is a basis for F{a) as a vector

3) {1, a, a%, ... ., a
space over F
4) [F{a):F]l] = n

S) Every element of F(a) can be written uniquely in the

: n~1 ;
form o'l 4+ o538 4+ 0 4+ Ce-j2 T, with o € F.
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Example: Llet ¥ = R and F = @ and pi(x) = x° — 3x - ¢ €
Qlix1. p(x} is irreducible and monic over G. It has at
least one real root a € R. Let 8 € Q(a) and loock at how 8
can be written as 8 = c; + ci8 + czaz.

Take 8 = a* + 2a® + 3, so

Fix) = x* + 2x® + 3

= (x® — 3x — 1)(x 4+ 2) + (3x2 + 7x + 5., so

2 2

a 4+ 23" 4 3 = (a@ — 3x — 1)¥(a + 2) + (32a° + 7x + 9.

Therefore 8 = 3a* + 7x + 9.

The multiplicative inverse of 3a? 4+ 7a 4+ 9 in QG(a!) may be

calculated as follows,; since x2 - 3x — 1 is irreducible in
Qix1, the polynomials p{x} = x? - 3x - 1 and
fix) = 3x2 4+ 7x 4+ 5 are relatively prime in Gl{x]. Hence

there exists polyriomials g(x), h(x) € Q{x] such that

ix® — 3x — 13g(x) + (3x% + 7x 4+ Thix) = 4 =
(a® — 3a - 1)agiay + (3a% + 7a + S)hita) = L =

(3a® + 7a + S5yhia) = 1.

Therefore, h{(a) € Q(al is the inverse of 3a® + 7a 4+ 5. One
. - 7 .2 _ 25 28 ; ~
can compute h{a) = ITTa fTIa + 111 by the Euclidean

Aloacrithm.

1f two fields are isomorphic, what conditions on extensiaons

of these fields will make the extensions isomorphic.

Thm 3.5: Let ¢: E 9 F be a field isomorphism and a is an
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' element of some extension field of E and B8 is an element of
;some extension field of F. Assume that either:

1) @« and B are both transcendental over E and F respec-
tively, or

2) & is the root of an irreducible polynomial
f(x) € EIx] and 8 is the root of #(f(x)) € Fixl, where
#: E[x] o Flx] is the extensiocn of ¢: E 4 F.
Then ¢ extends to an isomorphism e}: E(a) =+ F(8), where
$a) = 8.
Proof: 1) Let ¢: E - F be a field isomorphism. It has an
extension to a ring isomorphism ¢: Elx] = Flx] defined by:

3((F(x)) = #lcg + C3x + ... + cax™) ©; € E

= (#(co) + #Cci)x + .. + #ca)x") € FIx].

First we will show ¢ is an isomorphism. Assume m < k

E(\'co + o3x + ... + cax¥) + {(bg + byx + .. + b,,x"‘)]
= #(co + bg) + (og + bdx 4+ ..+ (ca + ba)x® + .. + byx‘)
= ¢(cg 4+ bg) + #(cy + by)x + ... + #(ca + ba)x" + ... + #ib)x"
= ¢$ice) + #(bg) + ... + #(cadx + #(ba)x" + ... + ${byrx*
= ¢lcg) + ¢lcy)x + ... + ¢lcadx" + #(by) + ¢(by)x + ... +

¢ (b, )x"
= @(cg + ©yx + ... + cax") + F(byp + bx + .. + bx¥), and
addition is preserved.
Consider 5{(c° + cyx + ... + cax")ilbyg + byx + ... + bkx“)y
Multipluing inside the parenthesis, the terms of the
product will have the form (ZcibJ)x', whare i1 4+ jJ = r and

r £m + k. Then ¢ acts on this product by #(3c;b;)x" and



henoe (T#¢c,2¢¢b;))x" But this will faoctor to

[¢cc) + #toix + .+ ¢carx){#(bo) + #(bx + . + #ibIx) =
$lco 4+ ©C3x + ... + cax")F(by + byx + ... + bx*), and
multiplication is preserved. Assuming ¢ is not 1-1 or onto
will force ¢ to also not be 1-1 or onto.

# can be extended to ¥: E(x) - F(x) on the auotient fields

af Elxl and FIx] by w*(X) = f(F(X)y
9(x) ¢(9(x))

We will pow show that

¥ is an isomorphism.

Let mix), nix) € E{x), so0 mix) = L{X) amd ni(x) = LX), for
glx) jlx)
came f(x), g(x), h(x), j(x) € E[x], where gi{(x), j{x) # 0.
\ 1) = F(x) hix)) - fFix)3i(x) + g(x)h{x) =
Ynxr + nix)) oo + Fix0 v 3(x) 3 ()
Fecorito + atont)  FHroo)Eion) + FHaco)g(nao)
E[g(x)j(x';) 3(g(x))3(j<x))
F#Heix) Fnix) - ,
LFex0) + _l ) _ o B+ o2 = ylmeo) + Ynio)
¢[g(x)] ¢(j(x)] atlx Jix '
and addition 1is preserved. For multiplication, let mix}

and nix) be as described for addition, then

JELORGO) L BRG] Froonoo)  FfooRhoo)
g0 3y = Ugcoioo Faxritn)  FeexafF(ix)

E(F(x)) E(h(x)) _ [*(x))w(h(x)
E(Q(x))a(j(x)] g(x )i (x)
and multiplication is preserved.

HNow we have, E(a) = E(x) = F(x) =~ F(8), so E(a) = F(3).

2} Let f(x) € E[x] where f(a) = 0 and f(x) is monic irredu-
cible.

To show E(F(x)] is irreducible over FIlx], we assume it is=

not . Then there exists f;(x), fa(x) € FIx] such that
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Ehix)] = F{x)fzi(x). Since ¢ is an isomeorphism, there
exists E“[ﬂ(-f.)], #(f2(x)) € Elx) and
£(x) = FHf00)F Y #2(x)) and is reducible.
The maps w: Elx) |, E(g) =~ E(a) and

<Fix)»

v: —EL2 ., Fre) = F(8),
G F o) ,
where w(g(x) + {F’(x‘;)) = gl(a) and U)lh(x) + <E(F(x)]>] = h{8)

are isomorphisms.

The map o: -EBLlxl  __Flx] given by
K> Gleoo)s |
ﬂg(x) + {F(x)}] = ¢{9(x)] + <¢“Wx)]> is an isomorphism.
Therefore the composition
-1 .- a r..n 1
Ela) ﬂ# 4%%£%— -+ f:Eiii—- i F(R)Y is an isomor-
<Hix)r>» {¢(F(X))}

ohism of fields such that (W o & o n *J(a) = 6.

A corollary of this thecrem is that an iscomorphism of a

field extension existe which =ends rcoots of an irreducible

polynomial to each other, but leaves the base field
urichanged.
Corollary 3.7: Ltet K and L be extensicn fields of F and

let « € K and 8 € L be algebraic over F. Then &« and B are
roots of the same irreducible polynomial f{x) € Flxl iff
there is an isomorphism of fields Fl(a) =~ F{(£) which sends «
ontoc 8 and is the identity on F. {In particular if K = L)

Proof: For the "if” part of this theorem we can apply the
previous theorem with ¢ being the identity on F, so that

£(f) = £, for all & € Fix1.
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For the "only if"” part, suppose 7: Flal 3 FIB] with wiag: = 8

and RL) = & for all u € F. Let f(x) € FI[x]l be the
irreducible polynomial of ¢the algebraic element «. I
Ixd . * .
fix) = 3 wux', where u, € F, then 0 = fila) = Zu;".
=0 =0
therefore
<4 R ® . <1 . I s -.‘A i -
0 = ‘n(zu‘-a‘] = Zﬂ(u,-a‘) = >niuyinia’) = Eu,-l??(a)j = >uip’ =
‘=0 =0 {=0 =0 i=0

The point of the previous theorem 1is that aiven an
isomorphism ¢: E =+ F between fields, it can be extended to
an isomorphism between the larger fields E(z) and F({#)
Such extension theorems, sayging that, under suitable
conditions, maps between “sub-objects” can be extended to
maps between "objects”, constitute an important technique
in mathematics. Since, wWith the given hypotheses, the
extensions E(a):E and F(8):F are isomorphic, we can iderntify
E with F and Efa) with F(8) wvia the isomorphism between
them.

So far we assumed we are given an extension field K of F
and adjunction of elements to F took place in K. Qur next
two theorems show it is really not necessary to have K

given in advance.

Thm 3.6: 1f F is a field, then there exists a simple trans-
cendental extension of F.

Proocf: Let F(x) be the field of all rational funtions of
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an indeterminate x with coefficients in F, i.e. F{x) is the
field of Qquotients of the integral domain FIx1. So F(x) is
a simple transcendental extensiocn of F. The uniqueness of

F(x) up to isomorphism follows from the previous thecrem.

NMow we want to loock at algebraic extensions of a field. As
we have seen previously, if we have a simple algebraic
extension Ftla), there exists an irreducible polynomial
p(zx) € Fix] such that p(a) = 0. We will now start with an
irreducible polynomial in FIx] and then construct an exten-

sion field of F in which the polynomial has a root.

Thm 3.7 (Kronecker): Let F be a field and p{x) be an irre-
ducible polynomial over F. Then there exists a simple =x-
tension, E of F, such that p{(x) has a zero in E.

Proof: Since pix) = ap + a;x + ... + asx" is irreducibie in

F, <pi{x)> is maximal ideal in FIx], so 2%%%%; is a field.

F oo ELX] by pia) = a + <plx)y.

<p{x)>
Let ¢$fa) = ¥i(b), S0 a 4+ <pix)>» = b + <Kp(x)>», which implies

Let E = Define ¢:

Fix]
<plx)>»’
a — b € <p(x)>», which in turn implies that a — b = p(x)agfx)
for scme g(x) € FIlx] with deﬂa(x)) < n. But a — b € F, =o
a — b =04and a =b. Thus ¥ is one-to-one.
¥la 4+ b) = (a + B) 4 <p(x)>

= (2 + <rx)>) + (b + <P(x)>) = ¥(a) + ¥ib), alsc
Ulab) = ab + <p(x)> = (a + <pCI3)b + <p(x)3)

= Yal¥Pib),
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"'so Y is a homomorphism.

. = ) Fix]
- Let @« = x + <p(x)>» € CIEAR
pl{a) = ag + aix + {p(x)))-+‘_ + 34x + {pix)>y =

(a3g + 2;%X 4+ ... + azx") 4+ <pix)>» = pix) + <pix)> =

plx)> = 0

Example: Let F = R, and let fi{x) = x* + 4. This is irredu-
cible in R, 55 <{x> + 1)y is maximal in RI[x] and _%LLLLI_
<t o+ 1>

i a field. Fach r € R is identified with

o+ o<x? 4+ 1> € —RIxd
x5+ 1>

50 R can be viewed as a subfield of -—giil——. 1f we let
<x5 4+ 1>
a = X + <x2 + 1>, then
a® + 1 = (x 4+ <x? + 12%F + (4 + <x2 4+ 1y =
( x2 + 1) + <x2 4+ 1> = 0, and @ is a zero of %2 + 1.
——?iil—— is isomorphic to the field of complex numbers.
<X 4+ i

Splitting Fields

I1f f{(x) € FIx] is an irreducible polynomial over F, we know

there exists a field F(a), where f(a) = 0. fix) will
factor in this field to f{(x?) = (x — a)gi(x), where g{x) may
or may not be reducible over F(a). If it is irreducible

over F(a) we can continue and find a field in which gi{x)
will factor. We want to find the smallest field where f{x)

will factor completely.
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 Def  3.9: Let f(x) € FIx], where dea(f(x)} 2 1. An
Eextension field E:F is a splitting field for f{(x) over F

‘ iff:

1Y f(x) = clx — ry){x — rg) ... {x — ra) r, € E, c gF
2) E = Firy, rz, ... , ra), 1.e. E is generated by the
roots ry, ... , rp of f{(x) in E.
Examples: 1) QHE] is a splitting field for fix) = x® — 2

in Qlx) since fi{x) = (x - Jﬁ“x + JE}

2) € is the splitting field for fi{x) = x* + 1 over R.

As ucual, it is nice to know something exists before we

spend much time talking about it.

Thm 3.3: If F is a field and f{(x) € F[x] is of positive
degree n, there exists a splitting field E for f{(x) over F.
Proof: Let f{x) = © fi{x) fa{x) - fu{x) be the

factorization of f£(ix) into monic irreducible factors.

k £ n = dea(f(x)). 1# n — k = 0 then all the factors #;(x)
are linear, and F is the splitting field of f{(x). Assume
n — k » 0, so0o that one of the factors, f,(x), is of dearee
less than one. We can further assume that it is f (x). Let
K = :Eg?f%%;. Since f; is irreducible, K is an extension

field of F and K = Firy), where r; = x 4+ <f;{x)>» is a root
of f,{x) = 0. Since F C F{r;) = K and f(z) and the factors

f,(x) € Flx]l C KIx], we obtain the following factorization
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?DF f(x) into monic irreducible polynomials in Kix1.
’ fix) = e{x ~ rg) g3{x) gzix) - g(x),
;where 9y, ... , @& are irreducible over K = Fir,). If all the
; 9;'s are of degree 1, then F(r,) contains all the roots of
b f(x) = 0. Otherwise, let g9,(x) be of dearee » 1. By
adjoining a root rp of g9,(x) to F(r;) we obtain the field
F(ry, re) and f{x) will factor in F(ry, rg)ix]l to the
following form,

fix) = € €x — rg) €x = rg) hyix) - hetx).
If not all the irreducible factors h;(x) are of degree 1, we

can continue in the same manner. Each adjurnction of a root

of an irreducible factor of f{(x) will add at least ocne new

? linear factor of f(x). Hence after a finite number of
? adjunctions we obtain a field F(ry, ... , re), such that in
Firy, .. , redIxl the polynomial fi(x) splits intc linear
factors,
Fix) = o (x - rg) ... (X = rg).
In other words Firy, ... , ra) contains all the roots of fi{x),
i.e.
F¢ry, ... ,ra) = Fi{ry, ..., g, Pupgs ... + rl.

Clearly the number of adjunctions which 1is necessary to

arrive at F{ry;, ... , rn) does not exceed n — 1.

After we establish existence, the next question to look at

is uniqgqueness. To do s0 we first look at the following.
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iLemma 3.2: Let o0 F 4 F’ be a field isomorphism. Let
.p(x) € FIixl and o(p(x)) € F'Ix1]. Let E be a splitting field
for p(x) over F and E' a splitting field for cr(p(x)). Then ©

": carn be externded to an isomorphism ©: E =<+ E’', such that

Proof: The proof is by induction on the number k of roots
of p{(x) outeide F. Let p(x) = c{x ~ rg){x — rg) -« (X — rg)
be the factored form of p(x) 1n E. If all the roots of
p¢x) are in F, i1.e. k = 0, then E = F. Since isomorphisms

preserve operations cr[p(x)) = cr(c)(x - cr(r'l)) - (x - cr(r-n)] is

‘ the factored form of c'(p(x)) in E'. This is a polynomial in
§ F' and E' = F'. So o is itself the reauired extension.
| To proceed by induction, we will make the following

assumption. Let K and K’ be fields such that F C K € E and
Fr € K* €© E’', and let o, be an extension of oc toc an
isomorphism of K onto K'. If fewer than k roots of pi(x)
are outside K, then there exists an extension of o, to an
isomorphism © of E onto E'.

Factor p(x) into f,{(x)fa(x) - fal{x), all irreducible in F.

Mot all these factors can be of degree i, since then p(x)

would split in F. Let deg(ﬁ(x)] = r >» 1, where r < k.
ofp(x)) will factor to cr[F,(x)) - offatx)) in Fr o{fy(x)) must
be irreducible in F'. If it were not, o' would induce a
factorization of f,(x) in F. deg(o‘[ﬁ(x))) must also be
greater than 1. Let «, and ao’'y be roots of f,(x) and

v(f‘l(x)]. Let K = F(a) and K’ = F’'(a’',). By Thm 3.5, ¢ can
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:%be extended to an isomorphism o, K = K'. We now regard
i p{x) and o{p(x)) as polynocmials in Kix]l and K'I[x]. The
number of roots of p{x) outside K is less than k, thus by
our induction hypothesis we can extend oy and hence o to an

isomorphism ¢: E =+ E’.

By taking the identity isomorphism i{: F 2 F, we have the

following theorem.

Thn 3.9: 1f E is the splitting field of f(x) over F, then

E is unique up to isomorphism.

Proof: Let E’' be any other splitting field of f{x) over F
and let i: F -+ F be the identity automorphism of F. The
above lemma implies there exists an extemnsion of ¢ to an

isomorphism i: E =« E*.

Examples: 1) Let fix) = (x2 - 3)»(x® + 1) € @lx].

Foo = (x + 43)x - AB)x + 1)(x - =L ;iﬁ){x - =t iV3
The splitting field of f(x) is 0[4'3', =1 + N3 ;‘ﬁ] = u(ﬁ, i)

)

2)  f(x) = (x2 - 2x - 2)[x2 + 1). The splitting field of
f{x}) is again ﬂ{ﬁ. i)
3) Let f(x) = x2 + x + 1 and F = Z, = (0, 1)

f(0) =1 and f(1) =1 + 1 4+ 1 =1

s 22[13
N = Z
£x" + x + 1>
r=x+<x* 4+ x + 1> is a zero of fix)

The elements of the splitting field are:
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0D + <x* + x + 1> This i=s the Galois Field

(]
il

<x2 + x + 1> GF(22%)

i
]
-

+

-

r=ox 4+ <x° 4+ x + 1>
P+ L= (4 o+ x) + <xf 4+ x + 1>

f will facteor as f{x) = (x 4+ r)ix - r

Algebraic Extensions

In studying the zercocs of polygnomials in Fi{xl, we shzall be

interested in extension fields of F wWwhich contain only

elements that are alaebraic over F.

Def 3.10: E:F is an algebraic extension iff every a € E is

alagebraic over F.

Again we examine the question of existence with the

following thecorem.

Thm 3.10: Every finite externsion is algebraic.
Proof Let E:F be finite, i.e., [E:F} = n and let a € E
The n + { elements {1, a, a%, .. , 2"} are linearly dependent
over E. So there exists cy, c;, ... , €a € F such that

Co + €33 + ... + cCad" = 0 and at least one c; # 0. So let
Fix) = o + C3x + ... + cax”" € Fix] and f(a) = 0. So a is

algebraic over F.
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;The converse of this is not true, there exists algebraic
' extensions that are not finite. We will examine =z few
facts about algebraic extensions, and then look at an

example of an infinite algebraic extension.

As a corollary to Thm 2.40 we have:

Corollary 3.8: Every finite extension of F can be obtained
by the adjunction of finitely many algebraic elements toc F.
Conversely, every extension field obtained by the
adjunction of finitely many algebraic elements to F is of

finite degree and hence alaebraic.

So if [E:F} ¢ o=, then E = Ffl{a,, az, ... , as), where each a;

is algebraic over F.

Corollary 3.9: Let E:F be any extension. If a, b € E are
algebraic over F, then a + b and a/’b (b  0) are algebraic
over F.

Proof: Fta, b) is an algebraic extension of F and a + b,

a/b € F(a, b) and F(a, b) € E.

This is eaquivalent toc saving the set of all algebraic ele-

ments in E:F is a subfield of E.
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;ExampleA Let A be the set of all algebraic elements of C
?over a. A:0 is algebraic and we claim [A:8)] = . Consider
the sequence cof primes 2, 3, S, 7, ... , Pr, ... [f we
consider the sequence of extensions Kn = (ﬂ{i, N3, .. ,JEH,
then [K;.B1 = 2° and [A:Q) 2 [K::B1 for all n. A is an

algebraic extension of infinite deagree.

Thm 3.11: Let L:E be algebraic and E:F be algebraic, then

L:F is algebraic.

Proof: We need to show [L:F]l ( oo, so let a £ L. Let
plx) = co + C4x + ... + cax" be the minimal poluynomial of «
over F. a is algebraic over Flcg, €y, ... , Cr).

[F{cag, C©y, ... , Cadfa) : Ffcp, Cy, ... , Cal)l =

[F{cg, ©y, ... , Ca, &)  Flop, Cys ... 4+ CGall £ w
Also [Ficg, 3y ... , Cr)y + F1 £ oo,

[F{a):F1 £ [F(gg, ... , Cu, @) = F1 =

(F{cg, ... . ©a, w) : Flcpg, ... , CadI[F{cy, ... , G} : FJ <
oo

So & is algebraic over F and L:F is alagebraic.

Normal Extensions

In this section and the next we will examine two important
properties of an extension. The first ensures good be-
havior for splitting polynomials and for the extendibility

of monomorphisms.
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Def 3.11i: Let E:F. E is a normal extension of F iff E is
algebraic over F and 1if f{(x) € FIlx] is irreducible, then

either f(x) splits in E or f(x) has no roots in E.

This is equivalent to saging: E is normal over F iff E is=s
algebraic over F and every irreducible polynomial
f(x) € Flx]l that has a rooct in E, splits 1in E. A third
eguivalent definition 1is: E is normal over F iff E 1is
algebraic over F and the minimal irreducible polynomial

over F of every element in E splits in E.

Examples:

1) € is a normal extension of R.

2) R i not a normal extension of Q4. To see this
consider f(x) = x® — 2 € QIx1. fix) is irreducible over §
and has one rcot in R, namely °4Z. But it deces not split in
R since the other two roots are complex.

3) If E:F and [E:F] = 2, then E is a normal extension
of F. Let a € E, a €& F. Let p(x} be the minimal
irreducible polynomial of a over F. Then [F(a).Fl =
deg(p(x)) > 1. [E:F] = [E:F(a)lIF(a):F]l] = Z, =0 [E:F{a}l =
1 and (F{a):Fl = 2. So E = Fta) and deﬂn(x)) = Z. Since
one root of pi{x) is in E, the other root must alsoc ke in E.

So p(x) splits is E amd E is nmnormal over F.
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Not all finite extensions are normal extensions, for exam-
rle QPJE]JJ is not normal over Q. The next theorem gives a
necessary and sufficient condition for a finite extenszion

to be narmal.

Thm 3.12: tet E be an extension of a field F. The
following are equivalent.

1) E is a finite normal extension of F.

2) E is the splitting field over F of some f(x) € FI[x].
Proof: Let E be & finite normal extension of F. Then
E = F(a;, ... , &s) where a; € E. Each a; is algebraic over F.
Let f, be the minimal polynomial of & over F and let
f = f; » f5 « o« fau. By construction each f; splits in E.
Since E is generated by F and the zero’s of f, it is the
splitting field for f.

Suppose E is the splitting field over F for some
fix) € Flxl. Thern [E:Fl1 « o™, so E is algebraic over F.
tet g9 be an irreducible polynomial over F with a zero in E.

Let M be the splitting field for f{x)a(x). Since E is the

splitting field of f{x) over F, we may assume E € M. Let
Yy, b, be two zeros of g in M. Consider the following tower
of fields:



Faor i = 1 or Z
[E¢b;} .EIIE.F1 = [E(b;):F)1 = [E(b;) Fib,»1[Fib,):F]l.  Alsc
[F{by):F1 = dea(f(x)) = [F(bp):F]

There exists an isomorphism, ¢: F(by) =<+ F{(bz), such that

¢l = lde. E{by;) is the splitting field for fi{x) over Fib;}
ard E(bp) is the splitting field for #(f(x)] cver Eib,) S50
¢ extends to an isomorphism ¢ Ei{by) -+ Ef(bz?. S0 we have

[E{by) .Fiby)1 = [E{by):Fiby)]

Simple arithmetic gives [E(b;):E]l = [E(by):E]. If b, is in
E, [E(by}¥:E] = 1. This will force b, to be in E, since
[E{E;):EJ = 1 and therefore E is normal cover F.

Thm 3.13: Let K be a field Let L be arn extensiaon of K
and M an extension of L. So M:L:K. If MK is normal, then

M:L 1s normal

Proof: Since [M:K] = [M:LIIMK] < =, M:L i=s alagebraic
Let a € M The minimza)l polyrnomial of a over L is a factor
in L{x) of the minimal polgyrnomial of a over K. Sirnice the

latter splits in M so does the former.

Monomorphisme, Automorghisms, and Normal Closures

In the last theorem we have seen if MK iz a ncrmal
extensiocn then ™M is normal over any intermediate field L.
However, L is not automatically normal over K, as seen in

the next example.
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Example: Let w be the complex cube root of 4, =sc w =
_é——%?ljg QFJE. tﬂ:ﬂ is normal since GFJE, u} is the
splitting field for fix)> = x* — 2, but G°42):@ is rot
rnormal since f({x) = x° — Z does not split in QPJE}

We will rnow loock at conditions that will force LK to be

normal .

Def 3.12: Suppose K is a subfield of the fields M and L.
A K-monomorphism of M intc L is a field moromorghism

£: M =+ L such that ¢ik) = k for all k € K.

If the mapping 4 in the preceeding definitiocn happens to be
an automorphism, then ¢ will be called a K-automcrphism. If
K = M € L, then any K-automorphism of L can be restricted
te a K-monomorphism of M into L. We will look at when this

process can be reversed.

Thm 3.14: Let L:K be a finite normal extension and M an
intermediate field. Let ¢#: M < L be a K-monomorphism.
Then there exists a K-automorphism o: L 4 L such that
Thy = ¢

Proof: Let L:K be a finite normal extension. Sc L i=s a
splitting field over K of some polynomial f{x) over K.

Since K € M, L is a splitting field of f{(x) aover M and alsc
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a =zplitting field for ¢“Wx)] over ¢(M), but & = ldy, sco
¢(F(x;\) = f(x). Consider the diagram:
M — L
$l o
g{M) — L

By the uniqueness of splitting fields, there exists an isoc-
morphism o L = L, such that ci,= ¢. Therefore ¢ is an auto-

morpghism of L. Since ol = #i = Ide, ¢ is a K-automorphism.

This allows us to construct K-automorphisms as follows.

Thkm 3.15: Let L:K be a finite rnormal externsicon and &, B are

Zeros in L of the irreducible polynomial p{(x) over K. Then

there existse a K-automorphism o: L -+ L such that c(a) = 8.

Procf: Sirnce « and B are zercs of the same irreducible
polynomial p(x) < Kix1, there is an isomorphism
¢: K(a) = K@) such that kg = Ild, and #x) = g, By the

crevious theorem, ¢ extends to a K-automorphism o: L = L.

If an extension is not normal, we would like to recover
normality by making the extension larger. If it is not
rnormal, thern it does not contain all roots of & polynomial.
So perhaps by adding elements to the extension we can gain
all the roots. As 1s usually the case, we would like to

add as little as possible to obtain a normal extension.
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Def 3.13: Let L be an algebraic extension of K. 4 rnormal
closure of L:K is an extension N:L such that:
1) N:K is nermal
2) 1+ L EMECNand MK is normal then N = M.

That is, N is the smallest externsion that is normal over K.

This definition implies that i1if L:K is a normal extension.
then the normal closure of L:K 1is L. We will beginrn by
loocking at the existence and uniqqueness of the normal

closure with the following thecrem.

Thm 3.16: If L:K is a finite extension, then there exists
a normal closure MW which is a finite extension of K. IfF ™
is another normal closure of L:K, then MK and HN:K are

isomorphic.

Proof: Let {al, a8z, ... a& be a basis for L over K and let
m;{x) be the minimal polynomial for a; over K. Let N be the
splitting field for f{(x) = my(x)mpi{x)e -~ m{x) over L, then

N is the splitting field for f{(x) over K and MN:K is normal
arnd finite. Let P:K such that L € P £ N and P:K i1s normal
Each polyrnomial m;{(x) has a zerc a; in P, and sc splits in
F. Since N is the splitting field, P = M, and N is the
normal closure.

Let M and N be normal closures of L:K. f{x) splits in both
M and N, so M and N each contain a splitting field for

fix). These splitting fields contain L and are normal over
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K, so they must be equal M and N respectively. By

uriigueness of splitting fields M:K and M:K are isomorphic.

temma 3.3: Let K € L €N €S M be fields where L:K is finite
and M is the normal closure of L:K. tet #: L » M kbe a K-
monomorphism. Then $#(L) € N.
Proof: Let « € L and let m{(x) be the minimal polyrnomial of
& over K. Then

0 = mia) = ¢{m(a)] = m{eﬁ(a)),
so0 ¢{a) is a zero of m{(x) and must lie in N since MN:K is

rnormal . Therefore ¢{(L) € M.

This result allows us to concentrate on the normal closure
when looking at monomorphismese of extensicns. We get sort

of a converse of this with the next thecorem.

Thm 3.17: For a finite extension L:K, the following are
eaquivalent:

1) L:K is normal

2) There exists a normal extension M of K containing L
such that every K-monomorphism ¢: L 9 N is a K-automorphism
of L.

3) For every normal extension M pf K containing L, every
K-monomorphism ¢: L 4 M is a K-automorphism.
Proof: 1) =2 3) Let L:K be a rnormal extension, then L is

the normal closure of L:K. So for a K-monomorphism
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¢. L =+ L, gL € L. But ¢ is a K~linear map on the finite
dimensional vector space L over K. So ¢(L) has the =ame
dimension as L, therefocre ¢(L) = L and ¢ is a K-
automorphism.

3) =2 2) The existence of the normal closure N is given by
a previous theorem.

2) =23 1) Let f be an irreducible polynomial over K with =a
zero &« € L. Then f splits over N since M:K is normal. If 8
is a zero of f in N, there exists an automorphism o: N 2 N,
such that ocla) = §. By hypothesis o is a K-automorphism of

L so 8 = ocla) € ocf(L) L. Therefore f splits in L and L i=s

normal over K.

Separable Extensions

We now look at a property of extensions called
separability. Galois did not mention the concept of
separability explicitly since he worked only in the field
of complex numbers, in which separability is zautomatic. I
fact any field of charateristic zero is automatically
separable. Problems arise is fields of non-zero charac-
teristic. Separability deals with the lack of multiple

roats of irreducible polynomials over the field.

Def 3.14: Let K be a splitting field of a polyriomial

fix) € Fix]. Let ¢« be a root of f(x). o is said to be of



=8
multiplicity r iff r 1is the greatest integer such that
{x - a) dividaes f(x) in KIx1. If r = 1, then a is a simple

root of f(x), and if r > 1, then a is a multiple rooct.

Thm 3.18: Let f(x) € Fi{x] be irreducible over F. Then =al1l1
roots of f(x) in a splitting field K of f(x) have the same

multiplicity.

Proof Let « and B8 be two roocts of f¢(x) in K. There exists
an isomorphism ¢: F(a) =+ F(8), where #(x) = 8, which will
extend to &: K o K. If @ has multiplicity r, then (x — a3"
is the highest power of (x — «) that divides fi{x) in Kix].
But #((x — a)} = (x - 8) and Ff(x)) = fix). So B has
multiplicity of at least r. A symmetric argument gives the

inequality in reverse, so the multiplicity of & equals r.

Corollary 3.410. If K is the splittirng field of the
polynomial f(x) € Fix3l, then f(x) has a factorization in
KLx) of the form:

Fix) = afx — a;) ix — az)" (x — an)’

where the a,'s are distinct roots of f(x) in K and a € F.

We need to determine which polynomials have multiple roots.
For a polynomial in Rix], differentiation provides a nrice
method to answer this auestion. This method will also
serve in arbitrary fields, but first we need to define the

derivative of a polynomial over an arbitraryg field in a



purely farmal wag, without refering toc limits
Def 3.15: Let fi(x) = ap + aix + .. + =asx" € FIx1, The

derivative of f{(x) is the polynomial f’'(x) where

F'{x) = a; + Z2azx + ... + nanx™t.
The mapping D: FIx]l] o+ FIx) defined by DUWx)] = f’'{(x) 1is
rather easily recognizable as a linear transformation. In

particular, for f(x), g9(x) € FIx], and a, b € F:

1> Dlafix) + ba(x)) = aD(f(x>] + bD{atx))

2) plfixraix)) = p(fex2)acx) + fixD(acx))

3) D¢a) = 0.
Now, we establish a criterion for determining whether a
pclynomial has multiple roots without knowing the value of

the roots.

Thm 3.19: A non-zero polynomial f(x) € FIlx] has a multiple
roct in the splitting field of f(x) iff f(x) and f'{(x) have
a non-trivial (i.e. with positive degree) common factor in
FLx1.
FProof: Let f(x) have a multiple root a in the splitting
field of f{(x). Then

f(x) = (x — a)?a(x). This means that

F'(x) = 2(x — adal(x) + (x — a)?g’'(x)

= (x - a%Zg(x) + (x - a)g'(xﬂ

and f(x) and f’'{(x) have a common factor, namely (x — a), in

KIix]. So the minimal polynomial of a over F is a common



factor of f{(x) and f'(x) in FI[x1].

For the only if part of the proof we wWill use the contra-

positive statement. Let f{(x) have no multiple rocots in K.
Then fix) = al{x — ag){z — @z} - {x — &) where a £ F snd
the a;’s are all distinct. Then

7
f'{x) = aE (x — @y) - (x — a;) - (x — an},
=1

where the means the ¥ factor is deleted. 1t remains

nrow to be shown that f{x) and f’{(x) have noc roots on

commar: . If «, is any root of f{(x), consider f’'(x;).
{(x — a;) appears as a factor in all but ocrne term of £’(x)
Since all the roots of f(x) are distinct, f’'{a;) # 0. If

f(x) and f’'{(x) have a non-trivial common factor they would
have a common rocot (of the common factor). So f(x) and

f'{x) have rno non-trivial common factors.

Corcllary 3.11: If f(x) € FIx}) is irreducible, then:
1) 1f char F = 0, then f(x) has no multiple roots

2) If char F = p # 0, then f{x) has a multiple rcot on-

ly if it has the form f(x)} = g(x’) = a; + 2;," + - + ax"".
Proof: Let f(x) € FIx] be irreducible, then the only
factors of f{x) in FIx] are a and fix). If f{(x) has =z

multiple root then f{(x) and f'{(x) have & non-trivial common
factor in FIx]. Therefore F(x)/F’(x)A But deg(f’(x)) <
deg“%x)], so f'(x) = 0. In a field of characteristic zero,.
this implies f(x) is constant and therefore has no roots.

In case char F = p # 0, then fi{x) = g(x’).



This corollary does rot rule ocut the possibility that, in &
field of nan-zero characteristic, an irreducible polyro-
mial miaoht have multiple roots. This leads to mang inter-
esting results; which, unfortunately, reaquires a more
sophisticated approach than this paper will attempt. So
for the remainder of this studyg, all fieldes will be assumed

to have charateristic zeroc unless octherwise rioted.

The concept of separability is applied to both polunomials

and extensions.

Def 3.16: Let F be a field. An irreducible polynomial in
FI{x] is called separable iff it has no multiple roots in
any extension field of F. An arbitrary polyriomial i1n Flx]
is separable iff all of ite irreducible factors are
separakle. Let K:F and « € K be algebraic over F, then « is
separable over F iff 1its minimal polynomial over F is=s
separable. An algebraic extension K:F is a separable
extension iff every a € K is separable over F. Polyrio-
mials, alagebraic elements, or algebraic extensions that are

not separable are inseparable.

From our discussicn earlier concerning multiple roots of ir-
reducible polynomials, it follows that any algebraic exten-

sion of a field of characteristic zero is separable.



Def 3.47. A field F is perfect iff all of its zlogebraic ex-

tensions are separable.

A couple of immediate results of this are the following.

Corollary 3.12: Every field of characteristic zero is=s
perfect.
Corollary 3.13: Let F be a field with char F = p # 0 and

let f(x) € FIx] be irreducible, then f(x) is riot separable

iff fixr = g(xp) for some g{(x) € Fixl}.

Thm 3.20: Every finite separable extension of a field F is

a simple extension.

Proof: Let E = F(7y, ... , 7Ta) be a finite separsable
extension of F. e must show there exists a 7 € E such
that E = F(7). We shall make the additional assumption
that F has infinitely many elements. We will proceed by

induction.

Suppoge m = 2, sc E = F(a, B) is a separable extension cof
F. Let f(x) and g(x) be the minimal polynomials of &« and &,
respectively, over F. Let K be an extension of F where
fi{x) and gl(x) split. Since E is separable, all roots of
f{x) and 9(x) are distinct. Let &y, ... , & be the rocots of

fix) and 8., ... , By be the roots of ga(x). So



fix) =f]'1(x — «;) and g(x) =f]’1(x - B;).
i= J=
Consider the r{(s — 1) linear eguations
w, + uB; = a3 + why G =141, .., Fr; ¢ =2, ..., 8)
Each equations has at most orne solution y in F. Since we

assumed F is infinite, we can find a ¢ € F where o 1is
distinct from all the soclutions to our eguations. So
x, + cB; # a; + 8, U =1, ..., r; =2, ..., 8)

We eclaim that 7 = a + cf; = a + cB8 and hence
Fia, B)Y = F{7). Clearly 7 is in Fla, B) since c &€ F. e
have g(8) = 0 and f(7Y — cB) = f(a) = 0. Therefcore 8 is a
common roct of the polunomials gi{x) and f{(7 — cx). It is
the only common root since substituting any other root
Bz, ... , Bs of a(x) for x in {7 - e¢ex} is nct zerc, for by
construction ¥ - cB, # «;, for k = 2, ... , 5. Since £ i=s a

eimple roct of g(x), the gareatest commocn divisor of gix)

and f{Y — cx) ig (x — g). g{(x) and f{(Y -~ cx) are both
polynomials in F(Y)[x]. The Euclidean Algorithm tells us
that x — 8 € F{T)YI[x1. Therefore 8 € F({(7) and soc is

& =7 — cB € F(7). Bo Fla, 8) = F(7).

Te complete the proof we must show F(7,, ... , Te) = FI{7).
Assume F{F,, ... , Tpmy) = F(7’') is simple, then

FOYy, oo 0 Vet Tad = FIT', Ta) = F(7),
Corollary 3.14: If F is a field of characteristic zerc and
if %, ... , T» are algebraic over F, then there exists a

Y€ F(Yy, ..., Ta) such that F(7,, ... , Ta) = F(7).
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Example: Consider Q(ﬁ, 4—3} 1f we let ¥ = N2 + 43, =o

7 = 11J§ + 9{5. So JE and J§ can be written as a linear

combination of Y and 7, namely A2 = -37 + %73 and
L

Jﬁ = %%7 - %79. Therefore Q{Jﬁ, 45] = Qf{i + J@}

Thm 3.21: Let L:¥ be a separable extension and M an inter-

mediate field, then M:K and L:M are separable.

Proof: MK is separable, since any multiple rcocots that
showed up in M would alsc show up in L.

Let « € L and let m(x) be the minimal polynomial of a over
M and mz(x) be the minimal polynomial of a over K. Let N:M
ke the splitting field for mei{x) aver ™. Since mzix) 1is

separable over K, it factors as

me(x) = (x — ag) - (x — &), where
oy, .. y @ are distinct elements of N. But mi(x)/mz(x) in
MEx], =0 Mmytx) = {x - @a;,) - (x = a;) where esach
@, = (ai, e a*, and all ®;; are distinct, therefore myix)

15 separakble and L:M is separable.

Thm 3.22: Let L:K be a finite separable extensicn of
degree n. Then there are exactly n distinect K-monomor-
phisms of L into a normal closure N of L.

Proof: We will use induction on [L:K1. If [L:K] =1, then
the identity is the only one.

Let [L:K] = k » 1, and let a € L, o € K with minimal

poluynomial pi{x) aover K. deﬂp(x)) = [K{a):K] = r s 1. pix:?
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is a separable irreducible poluynomial with one zero in the

1

normal closure N, so pi{x) =splits in KW and 1ts =zero

n

&y, ... , ar are distinct. By induction there are precisely =
distinct K{a)-monomorphisms 03, ... , Jf¢: L - W where
s = [L:K{a)]1 = ‘r-f- There are r distinct K-automorphisms
Ty, . .+ Tr 0of Ny such that 7,(a) = a,. The composition maps
¢,; = TH; @ives rs = k distinct K-monomorphisms L - N. Let
7 L - N be any K-monomorphism. 7(a) is a zeroc of p(x) in
N, so 7ia) = a, for some i. The map 4 = T;'t is a Kla)-
monomorphism L -+ N and so ¢ = Q; for some . So
T = T,0; = ¢;; and there are exactly k K-monomorphisms of

L - N.



CHAPTER 4

Fundamental Theorem of Galois Theory
The basic idea of Galois Theory is to relate a field
extension L:K to the group of automorphismes of L that fix
each element of K. This chapter will present the
Fundamental Theorem of Galois Theory, which states there
exists a one-to-one corresponderce between the intermediate
fields of a separable normal extension L:K of finite degree
and the subgroups of the group of automorphisms of L that
fix K elementwise. This theorem allows us to translate
problems and properties of fields, polynomials, and field
extensions intc problems in group theory, which zare often

easier to solve.

We will again define the corncept of a K-automorphism and
then show that the K-automorphisms of L form & group under

the operation of composition of mappinas.

Def 4.1 Let K be a subfield of a field L. A K-
automorphism of L is an automorphism ¢: L 4 L such that

¢ik) = k, for all k € K.

Thm 4.1: If L:K is a field extension, then the set of K-
automorphisms of L form a 4group under compositiorn of
mappings.

Proof: Associativity follows from the fact that

composition of mappings is always associative, and the
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identity autcomorphism is obvicusly a K-automcocrphism, so wWe

rneed to estaklish closure and inverses.

Let ¢ and ¢ be K-automorphisms of L. ¢ is an automorpghism
of L Let k¥ € K, then o¢{k) = o(k) = k, =so of is & K-
automorphism of L. alsc ¢ ' is an automorghism and for any
k € K, k = ¢ 'glk) = 0 *(ki, s ¢ * is a K-autemcrohism of L.

Def 4. 1: The Galois group, T(L:K), of the extension L:K is=s
the ogroup of K-automcrphisms of L, under composition of

magcpings.

Examples.

1) Consider C:R. The only automorphisms of € that fix
R are the identity and complex conjugaticn,

Cu(x + wi) = x 4+ ui

Ceix + gyl = x — yi,

so FN(C:R? is the cyclic group of order 2.

2) Consider u{ﬁ, 45):(1. The automorphisms that fix O
are: ¢y, which 1s the identity

vydZr = =AZ vz = A3
trg( E) ‘Jri v3( 'J_é) - ﬁ
rgiN2) = —AZ vadd = —A3

The Galocis group of IJJE, Jﬁ}(} 1z of order 4 and iscmorphic

to the Klein 4-group.

I1# M is a field such that K € M € L, then we have the
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Galois groups F(L:M) and T{L:K). Since each M-automcocrphism
of L 1s a K-automorphism of L, T{(L:M) £ TiL:K)J Irn the
remainder of the paper for each i1ntermediate +field M of

Lok, we will dencte T(L:M) by M With thisz neotation if

]

K 2 M & M € L, then N € M*  Clearly K* is the entire
Galois group and Lt¥ is the identity subgroup. Conveaersely,
let H be any sukbarcup of T(L:K). With H we can assoclate
the set of elements x € L where o(x) = z for all o € H.

We will derncte this set by:

HT = {x E L /S olx) = x, for all o € H },
1.2, HT is the set of all elements of L that are not moved
oy any element of H. First we will show that HT is =a

subfield of L.

Thm 4. 2: I+ H is a subgroup of T{(L:K}, then HT is a
subfield of L containing K.

Froof: Asscciativity, commutztivity, and the distributive
property are inherited from L. Since 0 and 1 are in ¥,

they are fixed by every element in NNL:K) and thus are fixed

T

by every alement im H. Let a € H and o € H,

0 =c(0) = o'((a + (-a)] = ol{a) + o0(—a) = a + cl—a),

£0 0{—~a) = -—a, and —-a € HT. Similarly faor all a & § € Hﬂ

T, Finally we need to show closure, which is rather

easy since ¢ € H is a morghism.

T

Let x, vy € H and ¢ € H.

cl{x 4+ y) = 0c(x) 4+ oly) = x 4+ y,
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+
S0 X o+ W € HT. Similarly, xu € HT. Thersefore H 1s a sub-
field of L. Since v € T(L:K), otk) = k for all k € K, zand
K o H

Example: The Galocis garoup for the extension (ﬂ{E, Jﬁ{{l is
the Klein 4-group {vy = 1, vz, Vg, 4. A subgroup of
rojdz. ¥3) G is S = {w,, va). So S is the subsst of Q42 {3
not moved by wg. These are alements of the form a 4+ 042
Therefore ST = Q{J§y

Def 4 2: if H is a subaroup of TF(L:K}, then HT is called

the fixed field of H.

It is the relationship between the intermediate fields of
the extension L:¥ and the subaroups of the Galois group
FriL:K)Y that we wish to examine. We will do this by
introducing the concept of a Galois connection between
partially ordered sets (we are assuming the reader is=s

familiar with this corcept).

on ]

1S
=

4 3

-+

Let (P, <) and (Q, i*) bhe partially ordered sst

U]

& Galois connection between P and Q@ is a pair of mappirgs,
c. F - Q arnd v @ 9 P, satisfying:

\ . . ¥
1y if p; € 2; Ry, P2 £ P, then olipz) £

Tip;?
2y if q; <* az gy, Q € Q, then Tigz? £ 7(q;)

3) B € Toip) Y p €P



4 g P oriar ¥V g € Q.

So ¢ and T are order-~reversing and extensive mappings

In our case, the set of intermediate fields of an extension
and the set of subgroups of the Galcocis groug of the

extension are partially ordered by set inclusion.

Thm 4.3. let P be the set of all intermediate fields of
the field extencsion L K. Let @ be the set of all subarcugs
cf the Galcocis group F(L:K). Define o: P -+ @ and 7 4 =+ F
by

v(F' = { ® €F(L:K) / ¥(a) = a V¥ a €F}, where F € F,
and

T{H) = { a €L / ¥ta) = a v € H}, where H € G.

¥ and 7¢HY = H

That is, otF) = F
Then ¢ and 7 define a Galois connection betwee P and Q4.
Proof: Let F and Q@ be as defined above and ¢ and 7 also.

1) Let K € P € P, € L. Let Y € 0(P;). Since 7 fixes

everygthing in Pz and Py € Pz, 7 fixes everdthing in P; and

T € c(Py) So oc(P;) € o(Py).

m

2) tet @;, Q € Q and G, € Q;. et a € 7(G;). a i
fixed by every element in G and since O is contained in
Bz, & is fixed by every element in Q. and & € T(O.’. So
TG € 7(G,;) .

3) Let F € P and a € F. Y{a) = a for z2ll 7 € g{(F)

To0iF) is all a € L, where Y(a) = a for all 7 € oc(F), so



a € roiF} and F £ 7oi(F).

4) Let H € 4. T{H) is the fixed field of H So every
T £ H will fix everg element in T7(H). oT1{H) i1s all zutomor-
phisms that fix 7(H) and so must contain 7 S5c H <€ oriH),

and our thecrem is proved.

e have the relaticonship pictured below (1 1s the ident:ity

subgroup of T(L:K).

T e

-

C{L:K)

If we apply ¢ to L and K and 7 toc 1, the results are rather

obvious. giL) = 1, o(K) = F(L:K), and T{1) = L. But
TiC{L:K})! may be larger than K. e are interested in when
T{C{L K») = K. Having a normal extensicon of a field of

characteristic zeroc will do the trick (Kaplansky defines

rnormal extensions as: given ¢« & L but ao & K there ex:sts
an automorphism fixing K but moving &). To prove the
Furndamerital Thecorem cf Galois Theory We need same

preliminary theorems relating the order of the subgroug to
the degaree of the field extension. We will start witk =a

thecrem due to Dedekind.

Thkm 4. 4: If K and L are fields, then every set of distinct
monomorohizsms from K to L is linearly independent cover L

Froof: Let Xy, ... ., »s be distinct mornomorphisms K - L.



Assume there exists &, ... , 8s € L, not all zerc and n is

the mirnimum value, such that

(LY aghgix) + ... + aphsixd = 0 for all x € K
We mayg assume that a, #£ 0 for all ¢ = 4, ... , n. There

exists a y € K such that XN (x) # M{x) =since the »'s are

distinct. Therefore gy # 0. Since uyx € K,
aynglygx) + . 4+ ashafux) = 0 or
127 al)\l('ﬁ).}\l(X) + ... + an}~.ﬁ~('5))‘\n(X) = 0.

Multiplying (4) by X (g) and subtracting (2) we obtain,

azhz (X 0h (ur = dalxDa(w)) + .+ AN i) = RGO (W)
= 0.
The coefficient of Apix) is an()\l(g) — .\n('_-_;)) and =ince
i) — Apfy) = 0 we have arn expression with fewer terms
than (13, which contradicte the assumption of o s35 least
value. Therefore Ay, ... , »» are linearly indegendent.
Thm 4 5. Let H be a finite subarocup of the group of

automorphisms of a field K, and lat HT be the fixed field of

1

H. then [K.H] =‘H|.
Proof: Let n = | H | and H = {gl, cee gn} where g = 1
Part I1: Suppose [K:H'] =m > n. Let {xl, . x.} be a basis
for K over Hr By a well-knocwn thecrem from linear algebrs
we can find y;, ... Yo € K, not all zeroc such that,

(X049 + .. + @{xX,;)4ys = 0 for j =14, ... , m.
Let a € K, then a = a1xy + ... + &axe, wWhare @;. .., & £ HTY S0

gy¢alyy + ... + Galadus = gi[Za;x;]ul + ...+ gn(z’lﬂlj"ﬁn
{ ! 1 !
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¥

L3

= ;“3(91(3(;)‘:!1 + ..+ E'n':xj)‘dn} = 0

Therefcre 9., ... , an are linearly dependent contrary to
Dedekind’s Thecorem. Therefaore m < n.

Fart I1- Suppose [K:HT] > n. Then thare 2xists 3, .. &gy
£ ® linearly independent owver Hr By the previous well-
known theorem from linear algebra, there exists 9;, ... , Ynsy
£ K not all zerc. such that for § =41, ... , n

@ {xydy + .+ i{xpegddaey = 0.

Let us deal strictly with the non-zerc y,’'s and renumber so
Yy .. » ¢ #= 0 and vy, .. . He+y = 0, so
1) g,{xy 0y + ..+ 9;(xrd9 = 0
Let 9 € H and cperate aon (1) with g. We get the system.
99, (x,'giay) + .. 4+ g99;(xda(y) = 0.
As § wvaries from 1 to n (by a well-krnown thecrem from arsup
trheory! this system is eguivalent to
L2 ;%3909 + .+ g9;(x09(g) =0
Multiply (1) by giyy) and {(Z2) by y; and subtract, agetting.
g,;(xa)[uggiyﬂ - 9(92391] + ...+ gJ\’xr)[uwa(u;) - 9':‘5!)‘:!1}
= 0.

Thiszs has ferer terms than (1} and contradicts the fact that

r was chocosenn to be the least wvalue. Thus we must have
each 9,9{(4,) - gigo9;, = 0. However, in that case
wui' = 9tuuil) and yui' € H'.  So there exists z,, .. , z €
K and Kk € K , k % 0 such that u, = kz, for all i With
i =1, 11) becomes,

Xik2y + ... + xskz, = 0.



Dividing by k we get a linearly dependent Lasis. Sc
[k H'1 < n.

Therefore [K.HT] = | H I

Corcollary 4.1: I'f T{L:K} is the Galois group of the finite
extension L:K and H is a finite subgroup of T{(L:K), then
[H K1 = [L.KI1/lH |

Proaf-  [L-HIIH K] = [L:K], so

K1 = [L:KIALH D = (L-KI/IH L

The proof of the last two parts of the Fundmental Theorem

cf Galois Theory will reguire the following lemma.

Lemma 1: let L' K be a finite, separable, normal eztension,
4 an intermediate field, and A = reL . ki, then

cr()\i.'H)) = x{am,\]x“‘.

Froof Let 7 € oiHM) and x; € W(M). Therefare xg = Z(x! for
some » & M. 8¢,
AT i (x, s o= OMT)(x) = A (x) = x,, s0

Let x € M and % = MN{x), then

MMy (xy = 2Mrox

1.
%o )

Y o= W Tlxg

= X, EC
x“(c{x(m'j)x C oM.

Multiplying on the right by 2! and on the left by » we get

s(x(M)}) € Me(MIPT', and the eaquality holds.
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We rnow have the cieces necessary t o establish the

Fundamental Theorem of Galois Theory.

Thm 4.6. {Fundamental Theorem of Galois Theory) Let L be a

field of characteristic zero that is a finite normal

gextensicn of a field K Let T(L:K) be the Saleocis group of L
over K. Let P be the set of intermediate fields bhetween L
arnd K and let O be the set of subgroups of TM{L:K). Define

c. P -+ Q and 7 @ - FP where:

ciM) = I'{L:M) for all M &€ P, and

T{H) = {a €L / ¥ia) = a for all ¢ € H} for all H € O
Then:
1) | F(L:K) | = [L:K]
2y 7c(M) = M and ocT7{H}) = H
3) If KE€MCL, then [L:M] = | o(M) | and
(M:K] = | T(L:K) |/ o{M) |

4) An intermediate field M is a normal extension of K
if and only if oc{M) is a normal subgroup of T{L:K).

5? If an intermediate field M is a normal extension of
K then the Galois group of M:K is isomorphic to Eé%ﬁﬁuA
Prcof: 11 Since L:K is finite, normal, and separable
there are precisely n distinct K-automorphisms of L, where
n = [L.K), sc{Ti{L:K) | = n.

Z) Let M be an intermediate field of L:K. L:M 1= separ-

¥

able and normal. Let M be the fixed field of TCiL. M.

tL.M1 = | F(L:M) |. But CL:M] = | FCL:M) |.
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Since M C oM} =M, M = To0(M).
NMow consider & subagroup H of T(L:K). We know H € c1iH?
From the preceeding argument 7iH) = 7o7{(H). Since 7Ti(H) 1=
the fixed field of H, | H | = I[L:7{H)], which 1implies
f HY = I[L 7o7{H)]. Since 7o7{H) is the fixed field of oriH),
fLiror(H)] = | or(H) |. Soe | H} = | c7(H)Y | and since theze
are finite groups, H = oT7{(H).

3) Again LM is separable, finite, and normal, so
fLM = | FiLM) | = | o(tM) | and the second follows from

Corollary 4.1.

4 Let M be an intermediate field of L:kK and let M K be
a normal extension. Let 7 & TF{L:K). Then 7y 13 a K-
mancmorphism M -+ L and ig therefore a K-automorphism of M.
8¢ Y(M) = M and by Lemma 1, ﬂﬁ(MﬂTﬂ = (M) and oci{M) is a

ricrmal subgroup of T{(L:K).

Let c{(MM) be a rnormal subgroup of T(L:K) and let 7 be any K-

monomorghism M < L. We know there exists a K-zutomorphism
cf L such that Xy = 7. Sirce oc(M) i= a normal subgrcup,
Me M)t = o(M) and by Lemma 1, o(x(M)) = oc(M) By part 2)
of this thecrem, “(M) = M. This means T(M) =M and 7Y is =&
K-automorphism of M. Hence M:K is a normal extensicon.

=) Let M be an intermediate field of L:K and M:K be &
normal extension. Let G = I'({L:K) and G' = TI'{tM:K). Define

a map ¢: G = G by (7)) = 7h4 for all 7%

M

3. Since'ﬂH is =
K-automorphism of M, ¢ will preserve the operation of

composition of mappings and is a homomorphism. The identi-



-
[

~]

ty for G is the identity mapping on M, zo ker % will ke
those 7T € G that fix M. In other words ker ¢ = I'(L M) By

the First Fundamental Theorem of Group Homomorghicsms,

G':——‘l—.
T M)

Examples: 1) Let ¥ = @Q and let L be the extension field

of QG formed by the adjunction of the seventeenth roote of

unity. L iz the szplitting field over O of fix) = x'7 - t.
Simce fix) and $£'(x) = 17x' have no non-trivial factors in
17 . . 17 )
commaon, all the roots of x — 1 are distinct. X - 1 will
) . 16 15 . : >
facter in §Q to (x - iXMx + x + ... + x + 1. I we let =z
be the primitive seventeenth rcoot of unityg, then L = GLiz}.
. ) . _1€ i£ . .
The irreducible polynomizal =x 4+ x 4+ ...+ x 4+ 1 is the
minimal polynomial of z over O and [Q(z):Q] = 16 = KNGz O}

fix) is the 17th cdclotomic polynomial, @&,;, and its Galois=s

group is cyclic. Thus MQ(zy:Q) =1 7, o G , T = 1) and we
have the chain of subgroups:

MOz 0y = <¥> 2 G = <7 2 G = <> 2 G = <7 2 G =
£1] The recspective orders are 1&, 8, 4, 2, and { The

Galois Connection gives us a sequence of subfields:

Q =F; CF;, CFy CFy CFg = Q(2),
where each F; corresponds to G; in the Galois Connection.
There are, therefore, exactly three intermediate fields
between G and Q(2). Since the Galois group is abkelian all
of its subgroups are normal, therefore every subfield of Q(z}

is normal over Q.
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21 Let f(x) = x¥Y - 2z € Glxl. and let L be the splittinag
field for f over Q. f{x) factors as:

(x - ox + Wax - HDx + D, where *dZ € R zand
i = J:I. Therefore L = ﬂﬁ{i, 0. For ease of notation let
§ = %z, so L = GE&, H. To calculate the degre=e of B, o 0

we note: (G, H:4Q] = [QE, §:GE)] [QH:G].

The minimal polunomial of { cver 8 is x2 + L. Since 2% + 1

has no roots in QE), it is irreducible over G and

(ag, H:4061 = 2. By Eisenstein’s criterion for irre-
ducibility with o = 2, x* — 2 is irreducible over O, so
Q). Q] = 4. This o9ives [OE, #:8) = 2 + 4 = 8 and the order

cf the Galeois group @S, §:Q) is 8.
The Galois group will be generated by the two automorphisms
o and 7 where:

oii) =i c{g) = ¢

Ti{)Y = —i T(g) = ¢

These two generators yield the following G-automorphisme

automorphisms § - P
1 N i
c i$ '
o2 - ¥
o —i¢ :
T ¢ —i
o i -
oir —$ -



r@Qe, :Q) can be expressed in terms of generators and rela-
tions by MOE, #0) = < o, T / o' = % = 1, 1071 = ¢® = 71y,

which is isomorphic to the dihedral grocup of order 8, D,.

The subgroups of Dy are as follows:

Dy
order 4: A = [i, ¢, oF, &°)
2 1
B={i, ¢, v, o7
C =11, ¢, or, o°m
- ] 3 ] L)
ordar 2 D = {i, ¢
E =101, 7
F = {1, or]
S o= 1 oEe
3 1, &7
H = {1, ¢°n)

order 1: | = {1}

The lattice of subgroups is given by:

The corresponding tower of subfields is given by:

There are three subfields of Q&, { of degree 2 over 0.
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They are the splitting fields of the irreducible polsno-

mials x2 4+ 1, x2 + 2, x* - 2z € GQix]. They are Q4. OHEd2,
- 1 1 1 .
and GN_Z), and they are fixed by A, C, and B respectively.
- o _ ot 1 1 1 1 , . _
The fields G, E, D, F . and H can be calculated in the
following manrner.
If = € G, o, then:
2 3 . . 2 2
o= Bp + 0238 4+ a8t 428 4+ a2t + a2l 4+ 258t + ang,
where a; € Q. Consider E'. It is the field fixed by {1, 7).
Tix} = 3ap + 3,8 + at® +a8° — ag — agif — agft — ang”.
Trerefore ag, ... , &z are arbitrary and a;, ... , a; = 0, so

X = 3y + 319 + aagz +33§3_. and ET = ﬂ(gl
Similarly we can find G = Qig), D = QNZ, o, Fl = QL + i,

1

ard H = Q1 - i),

The normal subgrcugs of D; are Dy, A, B, €, D, and 1, so the

corresponding subfields 4. A’, ET, CT, DT, and Gi¢, @ are Lhe
arly normal extensions of Q. These are the zplitting
fields of x., %2 — 2, < + 2, ¥ = x® - 2z, x* - 2, respec-
tively.

According to part S5 of the Fundamental Theorem of Galois

Theoray, since DT is a normal extension of § the Galois arocup

of ﬂfu is isomorphic to [ﬂﬂ&ﬁjﬁ!ﬂ. The Q-automorphisms of

1

D = Q4Z, § are {1, a, &, af), where ali) = i, a{42} = -

2

Biir = —i, BN2Z) = AZ, aBi} = ~i, aBid2) = —AZ. The

Eﬁﬂ&ﬁjhjﬂ contains the cosets ﬁi, c%,

e

guotient aroup (&, c%,

(7, Uzﬂ. cT, oaﬂ}. We have the isomorphism:

1w (L, oo
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Soc kboth of these groups are iscomorphic to the Klein 4-group
or €; & €¢;.

The Galois connection ketween the lattice of =ubgroups and
the tower of subfields can be seen graphically if either

cne is inverted.

Summaryg

Through the Fundamental Thecrem of Galois Theory the
prcblem of solvability of polynomials canm be locked at from
the wview of group theory rather than the more difficult
standpcint of field theory. We have seen that, starting
with a polygrnomial pi(x) irreducible over a field F, =
splitting field E exists. This splitting field iz a finite
normal extension of F. If F has characteristic zero, then
for everg subgroup of the Galcis group of the extensiorn E:F
there exists a intermediate subfield of E. Conversely, for
every intermediate subfield between E and F there exists &
subgroup of the Galois group of E:F which fixes the
intermediate field.

In this paper we have not attempted toc answer the guestion
of whether a polynomial is solvable by radicals. To answer

that aquestion, one needs to examine the structure of the



gz
Galois group of the splitting field of the polynomial ocver
the base field. [f the Galois group i=s soclvable then the

polynomial is solvable by radicals. By cshowing the exicst -

erice of a fifth degree polynomial which has as a Galois

arocup Sz, which is not solvable, the quintic 1s seen toc ke
noct solvable by radicals. This did not stop the search for
a solution to the general fifth degree polynomial eguation.
Jerrard in 1834 was able to show that the guintic :is
solvable by radicals and ultraradicals, where the ultra-
radical *J3 is defined to be the real root of x° + x — 2.
Harmite (1822-1902) was able to solve the aguintic wusing
elliptic modular furictions, which arose in the context of
intearation of algebraic funrctions. The connection Galo:is
found between the subgroups and subfields was generalized
and applied in many different areas of mathematics. The
idea of a Galois connection has been applied to commutative
rings. divisicon rings, and differential equations. Each of
these areas has its own Fundamental Theorem corresponding
to the Fundamental Theorem of this paper.

The problem of s=solving a polynomial eauaticon has cocccupied
mang of the most brilliant mathematicians =since Cardanc

first published the s=soclution to the cubi and aguartic

0

equations. It is a problem which continues toc generate

much in the way of “good” mathematics.
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