AN ABSTRACT OF THE THESIS WRITTEM BY

John David Keighley for the Master of Sciance

Mathematics presented cn July 21, 1989

Title:

Abstr

The Exact Approximation Method in Distribution Simulation

in

act approved: WC/G%

An alaorithm for generating random variates gquickly, called the
axact approximation method is the subject of this thesis. Two
other zalgorithms, the acceptance rejection method., and the inver-
sion method for generating random variates are also included. The
exact approximation methcd uses the acceptarnce rejection method.
The inversion method is a special case of the axact approximation
method.

To aenerate random variates oguickly using the exact approxi-
mation method a function which is a close approximation to the
inversa cummulative probability function must be found. The

choice of this functiocn 1= a comprimize between it's =ase of

]

computation, and it's closeness to the inverse cummulative distri-
bution function. Since., both factors affect the efficiency of the

axact approximation algorithm.

THE EXACT APPROXIMATON METHOD

IN DISTRIBUTICN SIMULATION

A Thesis

FPresented to

The Division of Mathematical and Phusical Sciences

EMPDORIA STATE UNIVERSITY

In Partial Fulfillment

of the Reguirements for the Dearee

Master of Science

By
John David /Keighle'g

July 1989

Qas 1 ot

Arb/cfrolv'ed for the Graduate Council
N

et

/
Approved for the Major Department

468564

ACKNOWLEDGHMENTS
I would like thank Cr. Larrg Scott for his time, assistant, and patiance
throughout the writting of this paper. Also | want to thank Dr. Zorabi
Honargohar, Dr. William Simpson, and Dr. Charles Greenlief.
Finally, | would like to thank my parents for their faith and

encouragement .

TABLE OF CONTENTS

Chapter PAGE
I . INTRODUCTIOMN e e 1
Statement of the problem Lo 1
Example of an Application Lo i
II . DEFINITIOMS AND THEOREMS 3
11 . DESCRIPTION OF THE ALGORITHMS i0
The Acceptance Rejection Method i0
The Inversion Method oo L 11
The Exact Approximation Method 13
IV . APPLICATIONS i8
Voo CONCLUSION e 48
BIBLIOGRAPHY 50
APPENDIX A . . . a1
APPENDIX B 58
APPEMDIX C . . . =53]

APPENDIX D S e &9

LIST OF FIGURES

Figure

2.1 Graphical Description of a Random Variable . . .
2.2 Figure showing fy{y) for each value of gy
2.3 Graphical Representation of a continuous pdf . .
2.4 Figure showing Fy(y) for all values of gy

31 Figure showing the acceptance rejection method

LIST OF TABLES

Table
4.1 Table of Run Times for the Different Algorithms

42 Table of Run Times for the Different Algorithms

Chapter 1

INTRODUCTION

As computers become more powerful scientists are using them more
freguently to simulate or model stochastic events. 7o simulate an svent a
probability density function that describes the occurrances of that avent
must be found. Then an algorithm that wwill generata random variates having
the cbserved probability density function must be written.

The purpose of this thesis is to look at some of the many methods that
can be used to generate random variates from a desired distribution. This
chapter states the problem and gives an example. In Chapter Z some basic
definitions and thecrems of probability and real analysis will be stated.
Chapter 3 covers the theory of random wvariate generation that this paper
uses with Chapter 4 aiving some applications and results. Chapter S is a
summary of the paper.

Statement of the problem

This paper explains an efficient method for generating random variates
Many random variats generators reguire the use of tables or complex
algorithms. The disadvantage of table-aided procedures is the large amount
of memory needed to hold the tables. The problem with complex algorithms is
that with increasing complexity in the code it becomes wvery difficult to
debug 3 program. The exact approximation mathod developed by Georae
Mardsaglia(1961) avoids major programming cproblems and promises to use
=mall rumbers of uniform deviates.

Applications

As an example of where the exact approximation method could be used

think about a traffic simulation. Assume that the flow of traffic has been

observed long snough to determine that the time kbetwween arrivals of cars can

]

be described by an exponential distribution. The easy way to generate
random variates in this case would be to find the cummulative distribution
function and then invert it to get the inverse cummulative distribution
function. Since the cummulative distribution function of any probability
density function must be uniformly dense from O to 1. To generate random
variates that will have the desired probability density function [0, 1) uniform
deviates can be generated and put into the inverse cummulative distribution
function. This is a description of the inversion method which has a 1-1
relationship between the number of [0, 1) uniform deviates used and random
sariates oenerated. The difficulity with this method for the exponential
distribution is that the inverse cummulative distribution function will use
the natural logrithm function to generate random variates. Computation of
the natural logrithm function is relatively slow. With a small increase in
programming complexity the exact approximation method can be used which

should generate random wvariates in less time.

Chapter I

DEFINITIONS AND THEOQOREMS

This paper explains a method of generating random variates. Some basic
definitions and theorems in probability and real analysis needed to under-
stand Chapter 3 are explained in this chapter. The first definition is the
concept of a random variable.
Definition 2.1: A random variable is a function which maps the sample space

S to the real line. Random variables will be denoted by uppercase

letters.
An 1llustration of Definition Z.1 is given in Figure 2.1

Y(s) =¥

Fig 2.1
The random variable iz considered to be a discrete random wvariable if the
range is finite or it contains a countably infinite number of wvalues. A
continuous random wvariable has a range which includes an interval of real
numbers, bounded or unbounded.

For every discrete random variable there exists a probability distri-
bution function (pdf) f {g). Pdfs are either discrete or continuous and they
are defined in different ways.

Definition 2.2 : For any discrete random variable Y, f, (g is the sum of
probabilities that maps all s € S to g by the random variable Y.
That is:

fola) = Ps € S | Y(s) = gl).

For ang point 5 € S £ () = 0.

Also, as is true with any probability function, the summation of f.(y) over all
possible outcomes must be equal to one.

For example, to find the probability that the sum of two dice is 6.
Define the random variable Y such that Y(s) = Y(ab) = a+4+b where a and b
are the numbers on the dice. Then

fylw) =P({s €S| Y(s) = 6N

PKL, D, @2, 4), (3, 3, 4, 2, (G, 1)

=P, 5 + P2 4 + P33 + P4, 2 + PGS, 1
= 1/36 + 1/36 + 1/36 + 1/36 + 1/36

= 5/36

Figure 2.2 shows f. () for all u:

1

0.

2 3 4 5 6 7 8 9 10 11 12
Fig 2.2 Dice Sum y

I[f Y is a continuous random variable there exists a probability density
function pdf) £, (2.
Definition 23: For any continuous random variable Y, f () is a continuous
curve over the sample space S which contains the points a and b such
that;
5

Pa<Y<h)=P{s €S| a¢Ys ¢<bh= J flar du.
2

Where £, must satisfy the following two conditions.

F Y 2 0
and
J f iy dy = 1.
s
Figure 2.3 gives a araphical representation of the definition.
o)
/ Area = P(a £ Y £b) = J. fy(y) dy
a
£, (y) :

Fig 2.3
Note that from the definition for a continuous random variable P{Y(s) = y) =

0 where s € S since

Y
PIY(s) = u) = _{ £,09) dy = 0.
Y

Associated with every random variable Y whether discrete or continuous
is a cummulative density function cadf) F ().
Definition 2.4: For any random variable Y defined on a sample space S with
probability function P. The cummulative density function (cdf) F () is
the probability corresponding to the set of sample points in S that are
mapped by Y into values on the real line less than or equal to y.
More formally.
Fyig) = Ps € S| Yis) ¢ y).

For a discrete random variable

Foly) = E f gl

S4y
and for the continuous random variable.

y
-0
Remembering the previous dice example
Fy& =P{s €5 | Yis)g 6 = E f i)
546

= PY(8)=2) + P(Y(s)=3) + P(¥(s)=4) + P(Y(si1=D) + PY(s)=5)

1/36 + 2/36 + 3/36 + 4/36 + S5/36

15/36
= 5/12

Figure 2.4 shows F. () for all Y.

w
(o)}

w w
[26)

Fyiw)

= Wl W
W G| O

etc.

WlE W
|> sl s

w
(o)}

Fig 2.4 Dice Sum y
As Figure Z.4 shows, when Y is a discrete random variable F (g) will be a
step function with steps occuringa at values of y for which f (W > 0.

When Y is a continuous random wariable, the following assertions can be
made about F (W) First, F (g is continuous and second, F,{y is monotonicly
increasing.

Definition 2.5 is the the definition of a function that is pointuwise
continuous. For F () to be continuous it must at least satisfy definition 2.5.

Definition 23: Suppose S C R and that g: S9R. If x4 € 5, then g is

continuous at xg iff for each ¢ » O, there is a § > 0 such that if
|x — xo| <8, x €5,
then
Ig(x) - g(xo)l < €.
If g is continuous at x for every x € S, then g is continuous.
From Definition 2.3 fy(v) i3 continuous, if fy(y) is defined over a closed
interval [a,bl, then f.{y) must also bounded. This leads to Theorem 2.1.
Theorem 2.1: For all y € [abl with f (W : [a,blaR with f (4) bounded and
fyw €R. Define F (y) = Jw fylyidy for a ¥y < b. Then F (W
a
is continuous on [abl.
Proof: Choose M»0 such that | f () | < M for all y € [a, bl. Choose ¢ > O.
Let § = ¢/M. Thus, if | x-y 1< §, x, 9 € [a, b], then

x 4
| Fyx) — Fylw) | = { f o) dy — J f i) dy
Ja]

4
f(9) dy

x

$Ix —y9lM
< M = (&/MXM) = ¢
Therefore F) is continuous on [abl. In fact, Fy(w is uniformly
continuous on [abl.
To orove that F. (9 is monotonicly increasing we look at any two events g,
and Y, with 9; < yp. Since u, <y, if the event y < u, has occured, then the
event y < y, has also occured, since y < y; < Yz.

By definition

Y
Fogy) = PY ¢ y) = [fylady
9

92 Y2 91
Fulug) = PY g g;) = I fludy = J folw) dy + J £ (wdy
Y Y

Y92
Folag) — Fyu) = I fyluldu : 0.
9y

A useful property of cdf's that we will use often is the relation between
a continuous pdf and it's derivative. Mote that the following theorem is only
proved for the case when f {y) is defined over a closed interval [abl. The
case where f. () is defined over an open interval or f/) is piecewise
continuous or piecewise monotonic is beyond the scope of this thesis.
Theorem 22: Let f,(9) be an integrable function on [abkl. For y € [a,b], let
Fylw) = j ’ £,(9) dy.
a
Then F(3) is continuous on [abl. If f (v} is continuous at y, in [3,b] then
Fy(u) is differentiable at yp and
Filde) = fy(dg).

Proof: Suppose that fy(y) is continuous at y,€ [a,bl. MNote that

Fv(H) _— Fv(Ho) _ 1 d
(Y — yg) T 9 =Y |y, fylo) dy
for y £ y, .
Fyly) — Flug) 1 Y
- - 1 _ , .
(Y — uo) Fyluo) 9= |y,) dy — fylug 2.4
and since
1 Y
fyldg) = o -9, I'ﬁo fyldg) dy
[7
P = Fyldo) Foiua) = i gcr.\. gcr. Ygy |
9 — Yy Py = 5= Yo | Jy, Fyleh dy 4o Fldg! dy —}
| [_
= 9 — Yg] 90[F\'(H) 'F\',(HD)] d\:‘

Chose ¢ > 0 Since fyi{w is continuous at 4, there exists § » O such that
y €@b and |y — ypo| < & imply | Fw) — Fyiug | < &

therefore it follows from (2.1) that

Folw) — Flgg

. — fyldg) .
(4 — yo) vido?| < €

Showing that

Lim Fy(‘:}l) - ’Ty(go)
g u4g Y — Yp

= fylyy)
or

Filug) = fylug)
Again note that what is shown is only proven for the case where f (u) is
continuous over a closed interval. In other words Theorem 2.2 is a proof
that Fi{yp = f,{yp when definite integrals are being used. The proof for
indefinite integrals is beyond the scope of this paper although indefinite
integrals are used. The definitions and theorems in this chapter will be

used in Chapter 3.

Chapter 11

DESCRIPTION OF THE ALGORITHMS

The Acceptance Rejection Method

The first algorithm for random variate genaration is the accaptance

rejection algorithm. This method was first suggested by John ‘Von
Neumann(1951). To implement this algorithm, the probability density function
must be known. In it’s simplest form the acceptance rejection method requires

that the probability density function be bounded from above by some constant

which will be called © on a closed interval [ab]l. The definition of c is
c=max {f i lagy bl

Figure 3.1 is an example of a pdf bounded by c.

Fig 3.1 o

When these conditions are met the followina algorithm will generate a random
variable with the same pdf as f£.{).

1) Generate x where X is uniform on [a,bl.

2) Generate gy where Y is uniform on [o.cl.

3) If g ¢ f,00. then output », else aoto step 1.
The probability that u g f.(x) will be equal to f (x)/c. To minimize the number
of points rejected, ¢ must be the lszast upper bound of f,.(w). Two thinas
should be noted about this algorithm. First, it requires a minimum of two [0, D
uniform deviates to gererate one random variate. Second, if £, iz small in
comparison to © such as in the tail of f,{u in Figure 3.1 the probability of

accepting x will be small thereby wasting two [0, 1) umiform deviates. “he

11

advantage of this method is, as long as f.,{g) is known this algorithm is very
easy to implement.

The Inversion Method

To implement the inversion method the probabiltiy density function,
cummulative density function, and the inverse cummulative density function
must all be known. If all three functions are known the implementation of the
inversion method will be trivial. Starting with a known pdf, f (g) the cdf, F (g
is found. Then the inverse of F(g) is found. The domain of the inverses cdf
will be the range of F (J) which implies that the domain of FT\,‘(g) will be tha
interval [0,1). By generating a random variatz 4 from the range of F.{g and
placing 9 into F;l(g) the random variate will have the same pdf as ().
DeGroot(1373) gives a theorem showing the random variables Y must have a
uniform distribution.

Theorem 3.4: If a random variable X has a continuous cumulative distri-
bution Fyx(x), and ¥ = Fx(x) the distribution of Y must be a uniform
distribution on the intarval (0, 1).

Proof: First, since Fgix) is the cdf of a random variable, then 0 ¢ Fy(x) ¢ 1

for —o < x < oo, Therefore, P(Y <«) = P{Y > 1) = 0. Next, for any

given value of y in the interval 0 < g < 1, let xq be a3 rnumber such that

Fylxg) = 9. If Fylo is strictly increasing, there will be a uniague number

Xa such that Fyixq) = 4. However, if Fy(xy) = 4 over an entira interval

of values of %, the x5 can be chosen artibrarily from this interval. If

Gy(w) denotes the cdf of Y, then

Oulg) = PY ¢ gl = PX £ xp) = Fxlxg) = 4.

Hence, Gwy) =y far 0 <y < 1. Since this function is the cdf of a

uniform distribution of the interwval (O, 1), this uniform distribution is

the distribution of Y.

The following illustrates how to generate random variates from the

exponential distribution using the inversion method. The general form of the

exponential pdf is

E]

5
fuly) = ; e, y»0O.
A

The cdf is found by intearating f,(g) aiving

=]
‘=li N
0/'\
2
hy
= —-— = 0
-3 -2
= |— 8 —(—e‘\
-
=it —e M

The inverse cdf F,”'y) can be found by setting

_g
X =Fyp =1 —e‘)‘,
and solving for y in terms of
-2
x =1 —e "
_d
L —x =4 A
Inl - x = —§
g = — x ln{i — xJ. (3.1

The random variable X has a range of 0, 1). In fact from Theorem 2.1, ¥ must

13

be uniformly distributed oaver the interval {0, 1). This implies that the
difference (1 — X) is also distributed uniformly over (0, 1), therefore
replaceing (1 — X) by X removes one more calculation. So the final form of
(3.0 is

y = —x Inx)
where X is uniformly distributed over {0, 1). A random wvariate gy from an
exponential distribution could be generated using a simple Turbo C statement
like

y = - log {random(seed))
where randomiseed) returns a 0,1) uniform variate. The problem with the
inversion method is that the pdf, cdf, and the inverse cdf must be known to
implement it. Sometimes the cdf or the inverse cdf are impossible to
determine thereby excluding inversion as a possible means to generate random
variates from that distribution. Another problem with inversion is that
sometimes functions like 1ln, sin, cos, etc.. must be used. The computation of
these functions are relatively slow when compared to addition, subtraction,
multiplication and division.

The Exact Approximation Method

The exact approximation method will use an easy to calculate approx-
imation of the inverse cdf which doesn’'t need to be known. Even though the
procedure will use an approximation to the inverse odf the random variates
generated will have the requiraed distribution. Since the function being used
to gernerate the random wvariates is an approximation to the inverse cdf the
uniform distribution can’t be used to generate the random variates since the
random wvariates would not follow the pdf =xactly. A function gy will be
used to adjust the aprroximate inverse cdf to generate random wvariates that

have the required pdf.

14

The basic idea nf exact approximation is as follows: let wyw be a
monotonicly increasing differentiable function where the derivative is
gontinuous on the interval [0, 1). The transformed random variable Xew(w
Will have the desired probability density f.(x) if the density of the U-
derviates is g W) = f (W Wwiw. Hoag and Craig(l965) gives the following
theorem.

Theorem 3.1: Let X be a random variable of the continuous tupe having

pdf fx(x). Let A be the one dimensional space where fy(x) » 0. Consider

the random variable ¥ = 1XX), where g = ux) defines a one to one

tranformation which maps the set A onto the set B. Let the inverse of y
= ulx) be denoted by x = w(y, and let tha derivative dx/dy = w’iy) he
continuous and not vanish for all points y in B. Then the pdf a.(y of

the random variable ¥ = u(X) is given by

g\.-(g) 'Fx[w(\:))]'lwl(‘:l)li y € B

0 elsewhere
Proof:
Gyly) = PY s u) = PIL) ¢ v
= P] £ umtg)
= P(X ¢ utgy
= P(X < W) since u W = wiy)

= Fylwig)

x
Fylx) = ‘[£ dx def” of cdf

15

wiy
Fulx) = Fxlm(y)) = j frlw(y)) Wiy dy change of variable theorem
wla)

dx wig? - Y g’ ¢ o8
1= WI(E)] dy folWw(u)) wiw) du def’ of pdf

wia)

Fylmly)) Wiy fundamental theorem
of Calculus.
As long as w(y) is a monotonicly incr2asing function
av(y) = fxlw(wl Wiy
Since w/(y) » O for all y

An interesting side note is what happens when wyw = F;‘(g) First from

(Gaughan(1973) the inverse-function theorem.

Theorem 32: Suppose Flabl-+R is continuous and differentiable with
F/x) # O for all x € [abl. Then F is 1—1, F~! is continuous and
differentiable on F({a,bl, and

FHFx) = I__—i(:
for all x € [abl.

Proof: Since f(x) # 0 for all x € [a,bl, F is 1—-1. Let us suppose that F{la,bl
= [c,d]. Choose yg € [c.dl and {ynA21 arny seaquence in [o,dl\{yg)
converging to yo. Let

X0 = F Myp
forn =01, 2,.... Since FlablaR is continuous and 1-1 and {ab]

compact F~! must be continuous and {302, converges to xp = F'_l(gu),

and, since F™'is 1—1, xn # xg for 31l n. By the differentiability of F,

{ Fixn) — Flxg) }°°

n — Xgo .
n=

converges to f(xg). By hupothesis, f(xg) # 0 and

F(Xn) — F(x.:.)
Xn — Xp

#0

forn =012 ... Hence

{ F ™ an) — F 7Yy ‘I“’" B { Xn — Xg }°°
On — 3 =) — Fixg)
n] | - Fixn) Fixg) =

converges to 1/ F'ixg). Thus, F~' is differentiable and

(F™Y9%¢ Fixg) = —b—. (3.2)
F{xg)

Then Egquation 32 can be rewritten as

1

{ F—l.\)'(yoj = —, -1
FOF Hdgih

Theorem 3.3: If wylw = Fxlup) where Fy(x) is a function that satisfies the
conditions of Theorem 3.2 the g,u} in Theorem 3.1 will be the uniform
distribution and exact approximation reduces to the inversion method.

gl = Fylgiw) e wilw

where Fux) = FGO = uy, fx) = F{x = f0odx, and ww = Fillyy = F—L(gg)
X o Tx X X ‘Yo

(F (g = ——L
O T FCF gy
=31
Fx(Fx (goh
FxlFxitue) = 1

F3Yiygg

aulw) = FFMug) FY (g

= R |
x\F o \dp

17

=1

This implies that g, (w must be the uniform distribution.

Theorem's 322 and 3.3 together implies that exact zpproximation is a
generalization of inversicn. If the function Fillyy) can’t be found then w,iw a
function that approxiamtes Fi'(yp will be used. From Theorem 3.1 any function
that is monotonicly increasing, and has a continuous derivative that exists
over the interval [0, 1) will suffice. Although any function in this class will
work a function that will generate the random variates as quickly as possible
is desired. If wyu) is close to the inverse cdf than gy(y) will be close to
uniform This allows gy(w to be expressed as a mixture of a dominarnt uniform
and a residual density. Define the constant p such that p =
minfayiyr | O ¢ v g 12 Define another constant r such that r =
max{av(uw | 0 ¢ 9 g 1). Also let h = r — p which from the definition of p and r
means p £ (9 ¢ r for 0 <y < 1. To implement the algorithm a uniform
deviate U is generated and checked for U <« p. If U < p then U is also less
than 3.(y) therefore accept !} and use U/p in wyluw to generate a random
variate. ¥ U » p a random variate needs to be taken from the region p ¢ gylw
ir Jse the the acceptance rejection method to generate another wariates.
Specificly agenerate U and determine a.(U) then generate ancther uniform
deviate U’ and find U'h 4+ p. If Uh + p 5 g l) accept U and use U in wyw to
generate another random variate. If U'h + p » a,(UJ) then generate two uniform

deviates to be used in U'h + g ¢ g,/ and continue until it’'s accepted.

Chapter IV

APPLICATIONS
This chapter will demonstrate the application of the exact approximation
method as it is explained in Chapter 3. Two different probability density
functions will be usad. For each of the pdf's at least two different approx-
imations for each inverse cdf will be demonstrated. Also where possible the

inversion and acceptance rejection methods will be used. The time it takes

the different methods will be tabled for comparison.

In Chapter 3 the exponential distribution was inverted and it was shown
that random variates that have a exponential distribution can be gensrated
using the eguation

x = — » In{randomise=d)).
If % = 1 then gernerating x simplifies to

¥ = — In{randomi{seed)).
Where random(seed) would generate a (0.1) uniform deviate. This function will
generate one exponential distributed random variate for s=ach 0,1 uniform
deviate used. The problem with this is the time reguired to determine the

value of ln(random(seed)).

In this chapter, two functions approximating the truncated inverse cdf
of the exponential distribution will be used. The first approximation to the
truncated inverse cdf was suggested by Ahrens and Dieter(1988). The

exponential distribution e_g can be rewritten as

Ak + 1)

)

£ lgr = a’F, 4.1}
where

Z2 =4 — k 1In(2), k=04,..and 0 ¢ z g In(Z).

Then 2™*Y is a geometric distribution where PK = k) = }*Y The leading

19

bit zeros of a (0, 1) uniform deviate has this distribution. The second half
of equation (4.1) is a truncated exponential distribution with pdf hy(z) = 2e™
in the interval [0, In(2)] . Inverting hx(z) = 2e % we obtain

Hylz) = I 2e2dz = -2 l:e" I;] =-2fe*-1]=2[1- &7
0

this implies that H;YXW = — In(1 — w2) where u is a [0,1) uniform deviate.
Ahrens and Dieter(i988) used the following function as an approximation for

HZ)

Wyll) = —2— 4+ ¢ u~K0, L 4.2
where

Wiyl =0 and wll) = In(@)
gince HZMQY =0 and WML = i),

The conditions w (@) = 0 and wy (1) = In(2) results in

Wy = 25 +c =0
% +c=0
a = -—bc
Wy = =f— +c = 1n@
5 2 1 =1n@ -c
a =& — 1XIn@) —)
Setting a = — bc and a = (b - 1XIn(2) — c©) equal to each other and

solving for c wields

—bc =®b - M2 - c)

- bec =b In(2) — In2) —bc + C

0= — 1) 1I2) + C
c =~ — 1) In(2).
Solving a = — bc in terms of b gives

a = — b{=ib — 1) In(2)
a =bb — 1) 1n(2
The last free parameter b must be fixed such that the minimum of
(W = hof w,w T)
£l z| Wl g
-y, () A
= Ze T (9))
is close to one for 0 < u < 1. Where g, i has a distribution that iz clese to

the uniform distribution.

Solving w,) in terms of b gives:

bbb — 1) Int&)

wuxu) = .

+ (= - D IND]

=B — 0 In@ | [=tb — D In @ b — w)
- b —u b —u

2 (bbb — L — & = Db — w]
b —u

1In(2) [b2 —b -2 —bu-—5b +u)]
b -y

@ (0% — 6% —b +b + bu — u]
b - u

2 [u o — 1]
D —u

Solving w{,{u) in terms of b aives

W = 1n@ b — 1 %[ub — w]

21

In@ 6 — 0 [b = wt +(—-Dub - w?]

= 1In@} (b

v —wt Fub -]

= 1ln(2) (b

|
Lo
o !
P |-
C
+
o
I e
c
[5)
[I |

Ini2) (o — 1) [b‘“-_” J

In@ ® - 1| —b]

_ bl — L In@
b — Ww*

Thus the form of g,{w in terms of b is

in@) u b - 17]]

g, W) = 2e T [b(b -1 1n(2):|
b — w*

The values p, r, and h are found from g). The value of b must be found
such that p will be maximumized and r will be minimumized. To determine the
conditions that will maximumize np the function aw was graphed using

several arthitary wvalues of b The resulting curve was a parabola opening

downward. This implies that the maximum p will occur when g,0) = g,

[@ g s - u j\
2 e-e Mo — 1) In@)]

)
Y b — O)*

=220[w<_2>}
b

_2b — 1 In@
[a)

I: ni2) [- 1 jl
B-1 { 1% v]
g, (1) = 2e [b«b = 1 102]
b — 1%

S @11 B in
- L)

= b In(z) 4.4

Setting Equations 4.3 and 4.4 equal to esach other and zolving for b results

in

2 — 1) In(@ _ b InGh
b ih — 1)

2b - b - L =b

2% ~2b + 1) —b2=0

J
]
[}

762 — p? — 4b +

AV}
]
]

b? - 4b + ;

Using the quadratic formula to solve for b gives

4 4 Ni—d)? — MDD
-
F-

4 + 4 16 — 83

= =

z

_4x48

b 242 _ 547

181 1IN}

The value b = 2 — 42 must be discarded since gylu) will generate neaative
values for that value. Thus the values of the three parameters are

a =blb — 1) 1Ini2)

(%]

=1(Z 4+ NZ M2 + N2 — 1 1In@
=2 + 42 1 + 42) 1n@
=2 + 32 + 21D

=& + 32 In@

b =2+ A2

c = —b - 11D
= —2 +42 - L1l
= -1 + 42 In@
The p value for gyWw can be found by solving g, or g{1) since the curve is

a parabola opening downward and g,(0) = g,,(1). From Eguation (4.3}

2b — 1) 1In&

gU(D) = b

22 + N2 — L 1In@
2 + N2)

201 + {2) In@

2 + 42

09802581434

The value of r can be found by setting g(_,(u) = 0 and =olving for u.

r a
“lg=utc
aw=0=24 ‘\’Ze [b N] '—_3_]

b — u}z

A [

Lo S :

]
»

- []

since & >0 for all u it can be canceled out leaving

a |z 2a
({(b - ._1':.2} b - w?l |

[.

)

0

A E

= a® 2a
o -wr ®b-uw
__at 2alb — w
b — w o —

Multipling both sides by &6 — w?
0 =a% + 2alb - w
= a" 4+ Zab — Zau

Zau = a° + Zab

fu

+ b

]
(ST

So the maximum value r of g,u) occcurs when u = b + % and that value is

r = gy +3 = 1010089582
The last constart h = r - n is
h = 0.0298314386
The exact approximation method is used to generate observations from
ho(z) = Ze™® for 0 : = ¢ In(@ as follows. Generate a [0, L) uniform deviate U,

if U < p then use U/p as a new (0, 1) uniform deviate and calculate wgy(w:

a

Wy (w = E—Z—LT,D

+c =

B —uU

where

A =ap and B = bp.
The acceptance rejectance method will only be needed if p » U. This has a
probability of 1 in 3065 = 141 — p). To use the acceptance rejectance
method generate a new [0, 1) uniform deviate J and calculate wylu) from
Equation (4.2). Then aenerate another [0, 1) uniform deviate U’ and accapt

wolw) if U ¢ (aywd — pi/h or UW'h + D ¢ a,lu. The time needed to make =ach

25

comparison of walues cam be shortened by simplifing U'h + p 4 a,w in the

following manner.

- Wu(u)

gulwy = 2e Wi W)
L L) ,
Z2e syl 2 U'h + o
E—WU(U) U'h 4+ n
2w
Uh + p
e
2 | —2—
b -~ W*
(U'h 3 r‘\b — U}E-I
2 + o’ L—z—a—Jl
‘h B _p2
2 |:U 53 + ‘Za:l (b w
: (UH + PXb — w?
where
H = ial and P= ,.—9-.
2a Za
X fx(x) Xof g (x)
i p 1p
. 1 — p| 31 — pi*
{4 — 2 — Bl
3 (1) T =
- ~)
s| «—p _i—p} [1—9] SLh—f+p”|<17o»
L h h] 4 al
r r 12 T, r 2 I, .2
- : , 1-p l—l—.o ayh—-i+o_‘ l-u—.o)]
g l _—] 1 ;
A S o B B st e

Fia 44

The number of [0, 1) uniform deviates used per random variate generated is
of ogreat importance. For the algorithm to generate random variates quickly
the number of random variates generated compared to the [0, 1) uniform
deviates used must be close to 1-1. This value can be found bu finding some
probability distribution function which describes the number of [0, 1) uniform
random deviates used. Figure 4.1 shows this distribution. Since this is a

pdf, the summation over all x must be equal to 1.

=] . Ak =
N Fo) =p + N l_(i — 0)2] l-(h -1 + D)-l(N
all x - ‘ k=1. L h 'J L h _l

lettingL =K —1 =2 L 4+ 1 =K

= [t —p?|[h -1 + o]
- _ ~ — o {th — P
felxd) = p + [" :| h
all x L=0 =
- - ;
Cp 4t =0? S lh-t+o
L h h
=0 - -

il
o]
+
—
[
!
=)
M
| ——|
[
P
|
o
| IR |

V]
~J

p+ 1 -p

=1
Since the summation of f.(x) = 1, f+{x) is a pdf and the expected value of fx)
can be found. The expected number of uniform deviates used per random
variate generated which is shown in Figure 4.1 under x:f¢(x) can bea
determinad in the following manner. The x corresponds to the number of
uniform deviates used and f, (x! is the probability of acceptance for usina x
number of uniform random deviates. The expected number of [0, 1) uniform

deviates EC) = E x+Fy(x) can be expressed as
all x

o>

2 P
oy) 4 —pflfh—1 +0
Lofe(X) = 1p + E 2k + i){- ;
S L~ JL g J

k-1

ah x k=1

Lettimg L =K —1 = L +1 =K

2 = . 7L
z xofylx) = o + [““Tm} E 2L+ 3 ["‘—:—h—“"”} (4.5)
Al x L=0

To determine whether the summation converges the ratio test iz used aiving a

result of

])
. !(2]_ + 5 [\h——#}
Lf_i-rynoo ka_.:i'= Lf_l-rpnoa [- vl L
v 1 (2L+3>|_‘-—"‘§+”'} 1

2L + 5 [(h — 1 + ol

. n]

—]

= e L+ D ,
o + 51T =1 +n]

= ln |2 -t
t=+w | {ZL + 3% | Fi

ol +Esmlifh—-1t +p]
- 'T.l—r?m|(2+3/l_) \[2] J
=,2+D) h -1 4+p

| 2 + i

Therefore the sequence is converaent and the sequence can be split into the
sum of two sequences, making it easier toc find the sum of the seguence.

Splitting Equation 4.5

S ehit0 = o + ((1 - Qﬂ Z‘” P,_,L) =t +o]" , gfh=t+o]-]

Xt lx) = n = '_ h i i l

i x - - L=0 = - -
¥ 2] [&= L = L

_) Sy [th—1 +p) h—1 +0

-0 [152] 3 @ fempre] s 0 [ropsel]]

2 [<= . L
=g + i_f?ﬁ E '(EL)[!‘_—h_Lj'_E] + (3 _ 4 :
L R]| & i_{(h—i+p)}
h
e = _"_\0
— r o v L ~ I B
=p + (i__ﬂ_’} S (2L)| w—! +3 | — 1 -
= o 4 \{h—h+i—p}
h

L

i
s}
.|-
1
FL
my |
LI.
AN
N
r
1
o
|
e~
+
2]
| W
-
+
@
[e
’_.
b
I
2!,
| I |

Letting

Il
)

il
1%]

|
)

13}

+

2p

Zp

2p

2] = L
s S afooteo) iau
L=0
[~ =]
a o an o 4= o] afh =1 + o]t
o, o v |- }-] _l‘ ;T h _,;
L=0
= h—_é TP aives
(24 — p? L
20 + (S L)
L =0
r . 2 :
70 + _Z‘ih_m](g +29° +35° + .
- Z .
20 + |= (ih_ D)} W1 + 2y +39° + ..
20 + __2(1——‘3)2 |'o=;‘l—d—l' gy + ‘:02 + ‘43 +)
2y WLy Fg? o)
. R
2 + (24 —of ‘i_p)-|";ui'—d—r L]
L h 1 7dg [1 —y |
rH.{ — 32 k
Zo + L‘ ih D)](w[L 2]
4 —w
_— [2(1-—0)2-” Y
A N TR
{h—i +o}]
- 32 n
2p o+ | 24 = 0f] . _
L I ’

{2(1—;:)2”5—1+o}- L
+ h)] :
| h—h +1 —p
n
211—9)‘“‘-{h—i+0}— 1
i h § h , 1t —p |®
n
L J
2 —p®|fh =1 +p n :
G h Jli-0p
- . Z] 2
+ -<iz =} D th -1 4@
n JU L — o
2th — 1 +

30

=3 -2 ~-2p + 20 + Zh

=1 + 2Zh
Since the probability of using x uniform deviates iz dependent ucon p and h
it is independent of the function being used for w,iw. The expected number
of uniform deviates used to generate a random wvariate is I + 2h for any
waw. For (4.2) the expected number of [0, 1) uniform deviates used to
generate one random variate is

1 + Zh = 1.0596628772999.
To test the first approximation of the inverse cdf against anothar

z

approximation, a second approximation for Ze * was derived. Let

3

. 2 ‘A £
Wylu) = Syu + Szut 4+ cgu u~iK0, 1) 4.6

where

W@ =0 and wytl) = In(2)

since HzYUD =0 and HZUD

iglvaR
The conditions w{0) = O and W (L) = 1lni2) results in

Wy(D) = @ + cx® + %= 0

Wyll) = o) + ozi® 4 g = In@

Cy + Cz 4+ Ca 1In(2)
Sz = Il — oy + Ca 4.7
Finding wilu) and) ()

2
Wilu) = cy + 2c3u + 2czu

Wi

2C2 + BCQU
Solving g,{0) and g i) gives
- W H =
gy =2e T (cy + Zcad + 3c505)

= 29001

= ZC!_

34

Ry,

2 1 1
= [o ~ e =t
1]
© [T }" .
c = In(2@)

The pdf that will be used for all three approximations to the invercse cdf is
he(z) = ln@ 2%, 0szg 1

For the first approximation let

wylu) = cqu + Czuzf
then
Wwglul = cy + 2cpu
Wil = 2o,
and
Wu(u) ,
guiuw) = 1In(@) 2 W(W).

The values that wy(uw takes on at u=0and u =1 are

wi(O) 0 and wyld) = 1

i
=

since Hz ()

0 and Hz(1)
Sclving W) = 1 results in
Wyll) = 1 = o) + caid?
1 =cy +cC2

Cp =1 — cy.

therefore
au@ = 1n@ 2% ¢, + ze00
= 1n2 2° (cp
= 1In(2) cy ‘4 8)
and
wiy(l)

gu(i;‘ = In2) 2 (cy + 2C2(1))

34

- Wyl
g =28 "o, + 2exd) + el

-1
= %e n(2)

(cy + 2 An(2 — oy — G3) + 3cg)
= 2[—,;1;,— } ey — 20y + 3cg — 20 — 2 1IN
=(—cy +ca — 2 1n@»

Imposing an egual wave effect results in

a® + guld) =2
28,4+ { — €y +c3 —Z21In(@) =2
ey +cx +21In@ =2

Cy 2 — 21In2) - ca.

To find the value of c5 that would give the maximium value of p set the

derivative aj(u) = 0 and solve
- - wylu) |,
ajw) =0 =2 c?—u l:e HU(U):I

- wylw) - Wl
2 {:e Wy u((W (=)) + e Wt Wy (1) :l

- ()
=2e "0 @b —wiun) + wiw]
— . - W{_|(U) _ . . . - - W|_|(U) L
Since Z e > U for all u divide both sides by Z = aiving
0 = [(iU ~wiun) 3 + wijw)
2 3 2 2 - . .
= (cqu + C3u” 4 cau—cyu — cpu” — zau”) + { 263 + 3cau)
= —90§u4 — 12(3;3|:2u3 — (6cacy + 4c>§)u2 + (—4cec; + Bezlu + Cf + 2c;3
Rather then trging to solve this equation, a direct search was used to find
the wvalues
o, = 0.3000000000,
ce = 00734415416,
ca = 0.1137056389.

Using these values in (3) results in

32

p = 0.9829974429,

r

1016422347,

h = 0.0334249041.

To use the exact approximation method generate a [0, 1) uniform deviate U,

if U < p then use U/p as a new [0, 13 uniform deviate and calculate wiw as

follows:
2 3
Wyll) = Ciu + Cau” + cau
Wyl = Ciu + Cou® + Caul®
where
» c - o
C, ='—‘:'1 and G, = —2 and O3 = ——
p

When sampling from the region above p as before two [0, 1) uniform deviates
will be reouired for each test for rejection. Simplifing U'h + p ¢ a.{w to

reduce computations gives

’ e TY)]
L)h+;:>$E U

> wWlu)
- ()
UH +F ¢ e Hu Wyl
where
__h .
H = T and P = T

Note, that although the p value for this function is larger than the p value
for the first approximate cdf resulting in the acceptance rejection method
being needed with a2 probability of 1 in 5881 = 1/1 — p). The expected
number of [0, 1) uniform deviates used per random variate is

1 + 2Z2h = 1.066845808.
Ancther disadvantage for this function iz the time of computation. The
function is more computation intensive than the first approximate cdf which

will slow it down.

S T R A

33

A table of the different methods for generating random variates is given
in Table 4.1. The numbers in the columns refer to time taken to generate
10,000 random variates. For example under the [BM PC column 1562 is 16

seconds and 6Z hundredths of a second.

Table 4.1
Method of generation IBM PC! Zenith? AT&T 6300°
Inversion 16 62 11424 37.79
Acceptance Rejection > 1 hour > 4 hours > 2 hours
Exact Approximation 1° 22.33 144 63 54 .45
Exact Approximation 2° 24 65 191.57 71.73

The second probability density function was solved using the exact
approximation method for 3 different approximations of H;(z). The pdf hz(z)
=c22 D £ Z £ 1 had to be solved for c first.

b3
Hz() = J c2%dz =1
[x}

L BM PC running at 4.7 Mhz with a 8083 processor and a

83087 coprocessor.
2 Zenith running at 5 Mhz with a 8088 processor

3 AT&T 5300 running at 10 Mhz with a 8028¢& processor.

4

The exact approximaticon method using ba? + ¢ as the

approximation to the inverse cdf.

5 . . , :
The exact approximation method using c,ul + cu® + cu as

the approximation to the inverse cdf.

35

= In2 2* (c; + 2cp

= 1In@ 2, + 204 — ;)

il
r

1n{2) (C1 + 2 - ZC_‘_)

il
N

In@) (2 — cyp 4.9
Since the function gy(w is a parabola to find the values for c; and c; that
will give the maximium p value set (4.8) and (4.9 egual and solve for c,.
In(2) c; = 2 In(2) (2 — cy)
cy =4 — 2cy
Cy +2c; =4

Cy 4/3

Sincecp, =1 — o,
ce =1 — 4/3
c, = — 1/3
Using the c; and c; to find

p = gy 1n(2) c,

0.9241962407

To find r take the derivative of gyiu), set it equal to 0 and sclve for u.

WU(U)

w
1n@ [2% an@it wigun? + 249 Wil

c?_u [guw] =0

w
= 1n@ 2™ [an@) Wi + wijw |

) {u)
Wutd > 0 for all u divide by 1n(2) ZWU 4 to get

Since 12 2
0 = 1In2) { W) + Wi
= In(@) {c, + 2C2U}2 + 2c;
= Ini2) {c; + Zcgu¥c,; + Z2cu) + 2cg

2 2 2. ;
= In(2) (2] + 4oy0zu 4+ dozu’) + 2o;

36

2 2C2

— =2 2
= C1 + 155

+ 4c cu + 4C§u

Using the quadratic formula to solve for u gives

— 440, + 4 (4c,c — HACH Ze2/1In@) + D)
2 1

u =
2(4cd
— 40,0 £ 4 (doycp® — (16D Zep/In@ + oD
u = z
BCZ
U= = 4cicy £ 4 iGcfcg - 3202;’1n(2) - iéc% cf
8(:2
L = e E 4 (46} — 263/1n@»
1 = 2
8C2
~dcyop + 4 4 —263/1n@)
u = 5
8C2
U= CiCp £ Cz A —Zcé/ln(Z)
= P
2C2
_ —ocy % J —2ca/1n(2)
Y= 2C2
Using the value
—cy — AJ —2c5/1In(2)
4 =

2C2

in wylu) gives negative values so it is discarded, and the following value of u

is kept

— Oy + J —an/ln(Z)

2C2

u 0.32893149.

The wvalue of r is
r = a052893149 = 1.038946508.
Therefore the value of h is

h = 0.1147302673.

To generate random wvariates from hz(z) can be done as follows. Generate
a [0,) uniform deviate U, if U < p then use U/p as a new [0, 1) uniform
deviate and calculate w,w as follows:
2
Wlu) = cyu + Cau

- 2
Ciu + Cuu

where

Ci
o

c
and Cp = —2-
8]

The acceptance rejection method will be used approximately 1 in 871 =

C1=

1/4 — p) trials. When sampling from the region above p as before two [0, 1)
uniform deviates will be reguired for each test for rejaction. Simplify tha

test U'h + p < gyiV) by

Uh + o Wyl

T Wit
UH + P ¢ 2 Y
where
- _h —-_ P
H=—"m 3dP =&

The expected number of [0, 1) uniform deviates used per random \variate
aenerated is
1 + 2h = 1.22950053S.
Since 1 + 2h is relatively large this function might be expected to run
relatively slow. Figure 4.3 shows this is the case when the computer has a
math coprocesser. When the computer doesn't have a math coprocesser the
function may run faster than a function that has a larger minimum, if it's
harder Lo compute.
The second approximation to the inverse cdf is
Wyl = c;u + c.zu2 + csus.

The first and second derivative of w,u) are

38

WOiU) = Cy + 2Cau + 3cau’,
wylw = Zcz + 6cyu,
with
gyiw) = In(@) ZNU(U) W),
The values that wyu) takes on at u=0and u =1 are
w0 = Q0 and Wwyll) =1
since HzD) =0 and Hz{1) =1 .
Solving w1 = 1 results in
Wyl = 1 = cyfl) + cx(? + cgt)®
1l =cy +Cz + Ca
g =1 —cy — ez
Solving g,w at 0 and 1 aives
au® = 1@ 2% ¢, + 20,0 + ca@®
= 1n@ 2° @
= 1n@) ¢,
and

guil) = 1n@

In(2) 2 (cy + 24 — =y — =2} + 3c3)

2 1In(@) '-'.C_l + 2 - ch - 20'3 + 3C3)

21n2) 2 - oy + ca)

Imposing an equal wave effact results in

Z

3,0 + gylds

N
i

1n{2) C1+ Z2In@) i 2 — Cy + C‘B)

2 =1n@ [o; +4 ~ 20, +

(W
[9)
G)
1

39

2 - A
Iy — %~ 1+ 20
L 2
St=4 - oy tEee
o = A IN@ + 2o, In@ — 2
L= 1In@
e =1 —c; — ca

Setting the derivative a{{(w) = 0 and solving gives

(w
aiw) =0 = In(@) &‘ [2 it w(,(u)]

) Wy
In(2) Ez MA@ WG o Wi) + 2 W]

WUl

= 1n(@ 2 [An@) witu X wh) + wiw]

NU(U

) wyw)
Since 1ln(2) 2 > 0 for all u divide both sides by 1n(2) 2 u 3iving

0 = {1n@0 wGnl wilw) 1 + W)

{(In(2) (cyu + t:.zu2 + csus)(—ciu — (:,.;gu2 - t::auS J + { 2cp + 3cgul

Then by using a direct search the values

p = 0.983009354
r = 1.01699045
h = 0.033980852
oy = 1.442680
o = — 0.606713
Ta = 0.164035
were found. The exact approximation method for sampling from hziz) = 1In2)

-z . - . . ,
2 can now procceed as tollows. Generate a [0, 1) uniform deviate U if U < p

then use U/p as a new [0, 1} uniform deviate and calculate ww as follows:

40

wylw) = cu + czuz + |:3u3
-~ ~ 2 ~ 3
Wyl = Ciu 4+ Cau™ 4+ Cau

where

The acceptance rejection method will be used approximately 1 in S886 =

1/(4 — p) trials. To use the acceptance rejection method simplify U'h + p g

gylu) to
Uh +p - W,
LA ol — (
1n(2) § Wiyt
. e)
UH + P g 2 Y
where
— h =_P
H=T1m@ 2P =1a

The expected number of [0, 1) uniform deviates used to generate one random
variate is
1 + 2h = 1.067961784.
The third and last function approximating the inverse cdf is

Wil = +c -~ L 410

where
W@ =9 and Wyl =1
since H3'O) =0 and Hz'L) = 1.
The conditions w (0} = 0 and w, (1) = 1 results in

wu(0)=bio+c=0

a — bc

[l

41

wui1)=b_i+c=i
a 3 —
E—T1 = i c
a=({b - 11 -0
Setting a = —bc and a = (b —~ 1)Xi ~ c) equal to each other and solving

for c yields

—bc =k - 1 —c)

—bc=b—-1—-—bc +c

O=b—-1+4+c¢
e =—b -0

Solving a = — bc in terms of b gives
a=-bl—b - 1)
a=bb -1

The last free parameter b must be fixed such that the minimum of
gyl = hz[(W)]-[w,’_,(u)]
= 1@ 2w
is close to one for O ¢ u <« 1. Where g,w is the modified uniform
distribution.

Solving W in terms of b gives:

, bbb — 1) .
Wuku)=ﬁ1—[(-— b - 1]

bo —) [(=b — b — wy]
b —u b —u

Cbb — 1) — b —)Xo — W]
b —-u

42

62 — 6 —®® —bu —b + w
b —u

62 —0® —b +b +bu — u]
b -

fTuww - 1]
b —u

Solving w/iw in terms of b aives
., . d ; =1
Wiy = b — 1) d—u[ub — wt]
= -0 b - =0 e — W

=b-b[b-w!+ue -

—_ _ i u
= b D\:b'u-*-(b—u)zjl

=i — 1) M
n - u

[a)

= b — 1} i_

Lib —w® |
_ bbb — 1
b — ui

Thus the form of g,w in terms of b 15

i_ [u(b—l)]-l

L o -u ar o .
9, = 1n@) 2 { bbb = 1)]

N2 {

L tb — w

The walue of b must be found such that o will be maximumized and r will be
minimumized. To determine the conditions that will give a maximumized p the

function a{w was graphed with several artbitary values of b. The resulting

43

curve was a parabola opening downward. This implies that the maximum p will

occur when a0 = g,_,(i).l. (O - 1)']
L =0 1pr ., y

gD = In(@ 2 L%H%— 1,

3 —_— b _J

= 12 2° [—‘b =L]

= An@&Xb — 1) 1D
h
[e - 1]
B-1 i
9,1 = 1In(@ 2 (bio — 1; 'l
Lth = 0%

~1 ‘— [a 1

= 1n@ 2t |
LD =D |

Z2 lntZ) b 4 1*7)

= = 2lbhel M b.la

b - U

Setting Equations 4.11 and 4 12 equal to =ach other and solving for b agives

h — D Ini2) _ Z2Int@) b
n T b -

b — 1b — 1) = 2b°

22 L 2p -4 =0

Using the guadratic formula to solve for b aives

44

b =2 A@R - E—b)
= 5

-2 4+ 44 + 3
z

-2 + 48

8]

—21?2«!2 =—ii~f.?’._

The value b = -1 + E_ must be discarded since gylu) will gensrate negative
wvalues. Thus the values of the three parameters are
a =hbb — 1
=(-1 — NZ }=1 -2 -1
= (=1 — N2 %=2 — {2 3
=2 +3d2 + 2
= @& + 32

b = -1 — 2

5= —b - 1)
= (=1 — N2 -1
= (=2 — 42

The p value for g,u) can be found by solving g, since the curve 15 a

Lwarabola opening downward and 9,0 = a,(1). From Equation 4 11}

oy b = 1) 1n(2)
‘EU\\.}/ =2 b

(=1 — N2 — 1) 1n(2)
(—1 — N2

45

(=2 — N2) 1n@
(=1 — d2)

09802581432

The value of r can be found by setting g,:,(u) = U and solving for u.

Erhli
gjw=0=4 (ln(Z) 2 [[Lz
vl b — W

—i +cC ’ —a_ + c-1 - ‘ —ll
2 |2 [b "]{1n(2)}{—é—_,}2 + 2 I:b T {_La_} J
b — w*

b — W

]
e
3

N

[N

) “[ﬁn]][Cln(Z)}{—a -}2 + { <3 -} -!
b —)] |

b — w7
>0 for all u it can be canceled out lzaving

[W)]

since 1In(2 2

In(?) a* Za
4 N
b — w b — w

_ 1n@ al Zalb — w
i e —
(b — w b — w

Multiplina both sides by (b — Ww?*

= 1n(2y 2% + Zalk — w

(]
|

= 1n(2y a° + Zab — Zau

2au = 1@ =% + 2ab

u=An@a .y
So the maximum value r of g (u ccours when u = b + ﬂ%‘_a_ and that value

is

r o= g,6+ 282 - 1010089592

46

The last constant h = r — p is
h = 00298314385

The exact approximation methad can now proceed using

3

Wy U = m

+c= +c

where

A

ap and B = bp.

The acceptance rejectance method will only be needed if p > U or a
probability of 1 in 3065 = 1/{1 — p). To use the acceptance rejectance
method generate two [0, 1) uniform daviates 1) and U’ and accept wyiw if U ¢
(agu) — p)/hor UWh + p ¢ g,w. The time needed to make each comparison of

values can be shortered by simplifing J'h + p £ g,{w in the following manrer.

W)
agW) = 1n@ 2 7w
ANU(U) [;
() 2 cwplw =R +p
Syl U'h + p
Z R 7T A
IN(Z) wy lui
5 U'h + a]
In@ [—2—
b — W2

L3

R Y
U'hH + o [—?nF)“a)]
L

. \2
o =)

o
L.

: UH + P — u?

where

47

H = and P=

—h b
In(2) a In2 a -’
The expected number of uniform deviates used to generate cone random
variate is
1 + 2h = 1.039662877.
Table 42 gives the various run times for the different methods and different
approximations to the inverse cdf. The different methods ran as expected
with the exact apoproximation method running the fastest. Mote that this

distribution is over a closed interval where the exponential distribution is

owar a open interval.

Table 42
Method of generation iBM PC Zanith AT&T 5300 |
Inversion 1757 131 .40 43.74
Acceptance Rejection 4776 296.96 95.34
Exact Approximation 1 20.18 109 54 40.44
Exact Approximation 2° 18.95 122 80 44 34
Exact Approximation 3° 17 .33 81.71 3143

! The exact approximation method using clul + c2u2

(U
n
r
T
(1]

approximation to the inverse cdf.

2 : : . 2 ;
The exact approximaticn method using cut + cu” + c3u3 as

the approximation to the inverse cdf.

? The exact spproximation method using —2— +¢ as the

approximation to the inverse cdf.

Chapter v

COMNCLUSIOMNS

The results of Ahrens and LDieter(1988) showed that the exact approx-
imation method generates random variates al a considerablly faster rate than
the inversion method. Using FORTRAM on a Seimens 7760 the axact
approximation method is approximately 34% fasted than the inversion method.
Using (360/370) Assembler on a Seimens 7760, the results were nearly the
same as algorithm SAl1972] fourd by Ahrens and Dieter. Algorithm SA is also
faster than the inversion method. This paper shows that the exact approxi-
mation method is not always more efficient then the I1nversion method.
Saveral possibilities that could explain the discrepencies are, a different
language was wsed, different uniform generator, and a different type of
machine.

The algorithms were implemented using Borland Turbo C version 20. The
uniform generator used in this paper is a linear congruential generator,
while Ahrens and Dieter(i988) used a multiplicative congruential generator.
The linear congruential generator will generate uniform deviates slower than
the multiplicative congruential gererator. This will cause the axact
approximation method to run slower compared to the inversion method. The
machines used were a [BM PC 3088 with an 8087 coprocessor, a Zenith with an
8088 processor, and a AT&T PC6310 without a E0287 coprocessor.

The ratio of uniform dewviataes used per random variate gererated is one
indicator of how efficiently a proaram will generate random wariates.
Howewver. it isn't the only importarnt measure of efficiency. For example, tha

3

function cyu + c2u2 + 23u” has a much =maller ratio of uniform deviates used

~

to random variates gererated than c;u + opu”. Thics 1= due to how closely

2 3 . ‘ N .
o4u 4+ Cout + Cgu” approsimates the irwverse cdf. The function cyu + 02u2

T TR R

doesn’t approximate the inverse cdf as closely as cju + C2U2 + caua, but it is
more efficient on the Zenith due to the ease of comoutation. This clearly
indicates a need to limit the complexicity of the function used to approximate
the inversa cdf.

In conclusion the exact approximation method is a method that can be more
efficient than the inversion method but factors such as the language,
hardware, and the complexicity of tha function used to approximate the

inverse cdf must all be considered.

BIBLIDGRAPHY

AHREMNS, J. H,, and DIETER, U., (Oct. 1972), "Computer Methods for Sampling from
the Exponential and Normal Distributions,” Communications of the ACM
15, 10, 872-882.

AHREMS, J. H., and DIETER, U, Nov. 1988), “Efficient Table-Free Sampling
HMethods for the Exponential, Cauchy, and Normal Distributions,”

Communications of the ACM 341, 11, 1330-1337.

DEGROQOT, M. H,, (1973), Probability and Statistics, Addison-Wesley Publishing

Company, Reading, Massachusetts.

GAUGHAN. E. D, (1979, Introduction to Analdysis, Brooks/Cole Publishing

Company, Monterey, California.

HOGG, R. V., and CRAIG A. T, (1965, Introduction to Mathematical Statistics,
The Macmilllan Company, New York, New York.

MARSAGLIA, G, (1961), "Expressing a Random Variable in Terms of Uniform
Random Variables,” éAnnals of Mathematical Statistics 32, 894 -898.

YON MEUMANM, T, (1951), “VYarious Tachnigues Used in Connection With Random

Digits,” U. S. National Bureau of Standards Applied Mathematics Series

Mo. 12, 36-38.

APPENDIX A

Program listing of the exact approximation method for the exponential

a

- - + c as the approximation to the inverse

distribution function using

cdf.

52

/EEEEEEKEEEEEEEXEEEEEERE XX EEERERREEXXEEEREEEXEEERRXERE R R XXX RN/

7%
7%
/%
/¥
s

This is a program to test the speed of generation of random
variates. The pdf is exponential with lambda = 1. The exact
approximation method is being used with the approximate inverse

ndf heina a + -
gy heina = T

*/
*/
*/
*/
¥/
xs

/EERREEEREEEREREEREEEREEEEREERERERREEE XX EXERERRRREERREEEERERERRXER/

#include (stdio .hy;
#include (math.h};
#include (dos.h);

#include <(conio.hy;

typedef struct

{

unsigned char hours;
unsigned char minutes;
unsigned char seconds;
unsigned char hundred;
} time_diff;

vold gettime(struct time ¥timep);
void elapsed_time(struct time ¥timereci,struct time *timerecZ.time_diff
*time_elapsed);

double acceptance_rejection(long ¥seed),
float linear_conagruential_generatori{long ¥seed),
double approximate_cdf_inverse(double u);

g 3
/¥
/¥
/¥
g 3
P 3
e
/"*
/¥
/%
/¥
/¥
/¥
e 3
e 3
/¥
g 3
/¥
¥
e
g

Description of main function.

The function main will control the number of random variates
generated and determine whether the uniform deviate U ig in the
region [Op). If =0, then accept the uniform deviate and use

U/p to generate a random variate from the approximate inverse
cdf wu). If yp than the acceptance rejection method must be
used to generate a random variate which will be exponentially
distributed.

Description of constants and variablas.

repts : the number of random variates to be generated.
seed : the initial seed value used in the linear
congruential genarator.

P : upper bound on the value of the uniform deviate.

u - [0, 1) uniform deviate.

z : random variate from a truncated exponential
distribution.

naturallog : the value of the natural log of 2.

timereci : the time when started to generate random variates.

timerec2 : the time when finished generating random variates.

time_elapsed : the time used to generate the random variates.

EREEEREEEEEEEEERREEREEREERREERERER XXX REEXEFERRXEXXXERERERREXERRRXR/

*/
*/
*/
¥/
*/
¥/
*/
*/
*/
*/
*/
*/
*/
*/
¥/
*/
*/
%/
*/
*/
*/
*/
¥/
*/

53

/¥ c : constant for the approximate inverse cdf. */
e g g = k¥In(2) + ¢ where k is the number of leading */
¥ bit zeros of a [0, 1) uniform deviate. */
/¥ */

SEEREEREEEREERERXEREREKERERE KRR REEREE XX ERXEEREREERREERREXERERER/

main(

{

struct time timereci;

struct time timerecZz;

time_diff time_elapsed;

int repts;

double naturallog = log(2);

double P = 0.9802581434;

double c =-1.6734053240;

double g,u,z;

long ¥seed;

seed = (long ¥) malloc(sizeof{lona));

clrscr(;

printf’lnput the value of seed == '}

scanf("d"” seed);

gettime(&timerecl);

for(repts = 1i; repts{=10000; repts++)

{

g
u

EEAN
Ty

if{u = 0.0n
£
u=Uu+ u
while(1 .0 = u}
£
u=u-+u
g = g + naturallog;
2
u --;
if (WP
Zz = approximate_cdf_inverse(u),;

Z = acceptance_rejection(seed);
Z=2Z + g
2

else
{
repts--;
count--;
2
N

gettime(&timerec?);

/¥ random variate gerneration ¥/
/¥ loop */

C;
linear_congruential _generatori(seed);

/% loop to find k¥1n(2) */

/% generate z using ¥/
/¥ uniform distribution #/

/% or acceptance rejection method ¥/
/¥ wfunct = z + k¥1n(@) ¥/

elapsed_time(&timerecli &timerec2,&time_elapsed),;
printf("\n\n elapsed time for %d trials.”.repts-1);
printf{\n hours minutes seconds hundredths’);

printf{"\n %3d *, time_elapsed.hours);

printf{"%7d ", time_elapsed.minutes);
printf{"417d ¥, time_elapsed.seconds);

54

printf{"%38d ”, time_elapsed. hundred);

3
FEEEEREEEEEEEREREEEEEE IR EEE R E R E R R R LR R R R R EERE X R XEERE/
g */
¥ Purpose of the function. */
g 3 */
/¥ approximate_cdf_inverse is a function that will approximate the */
/¥ inverse function of the desired cdf. */
/¥ */
/¥ Description of constants and variables. ¥/
/¥ ¥/
s 3 A A=a¥p constant used to determine the values of wiul) */
/¥ and wi{ul) */
/¥ B : B =Db¥p :constant used to determine the values of w(ul) ¥/
/% and (wWiul) */
g wfunct, : The value of the approximate inverse cdf function. */
/% : 74

double approximate_cdf_inverse(double u)
{
double A = 3.6005707370;
double B = 3.3468106481,;
double zfunct;
zfunct = A/(B — u);
return(zfunct);

-
s

/REEEREEEEEEREFXEREEERR XX RFERRERERREEREEXEKEERREXERREEREEXRRRRER/

¥ */
/¥ Purpose of the function. */
S¥ */
e accceptance_rejection is a function that will use the acceptance ¥/
¥ rejection method to determine whether a uniform deviate is */
7%k below the curve of a function. In this case the funotion is */
¥ defined to be: */
/% */
¥ olul) = flWwul)I¥w'(ul). */
/¥ */
g Description of constants and variables. */
/¥ */
/% done : loop control variable used to determine when */
/% (UZ¥H + PMb - ul)"2 (= expl-wlui). ¥/
/% ab,c : constants to determine the values of w(ul) */
/% and wiul). *x/
¥ P : P = p/(2%a) : upper bound of the [0.1)-uniform deviates */
’¥ divided by 2¥a to reduce computations. */
¥ H : H = h/(Z¥a) : height of the rectangle that the acceptance */
/¥ rejection method will ke performed in divided ¥/
g by Z¥a to reduce the number of computations. ¥/
/¥ uluZ “ [0,0)-uniform deviates. */
/¥ wfunct © value of the approximate inverse cdf. ¥/

/¥ wprimefunct : value of the derivative of the approximate %/

55

/¥ inversea cdf. ¥/
¥ ffunct : the pdf of the random variates that are */
/% generated. */
e 3 afunct . function that will adjusts the approximate */
* inverse cdf so it will give random variates */
¥ that have the dasired distribution. ¥/
/¥ */

/REEEEEEREEEXXREREREREXEEEETEREREERRREEEERXEXEEREEXERREXELXRRRRR/

double acceptance_rejection(long int ¥seed)

{

int done = 0;

double a = 5.7133631526454228;
double b = 3.41424135623730950;
double c =-1.6734053240284925;
double H = 0.0026106723602095;
double P = 0.0857864376295050;

double uluZ;
double wfunct,wprimefunct,ffunct,y;
while t{done)
{
ul = linear_congruential_generatori(seed);
uZ = linear_congaruential_generatoriseed);
wfunct = a/(b - ul);
wprimefunct = (b - ul)¥b - ul)
9 = (UZ¥H + PY¥wprimefunct;
ffunct = expl-wfunct + c));
if {4 (= ffunct)
done = i, /% random variate is below a(u) ¥/
3
returniwfunct);

-
4

FEREREEEREREEEEREEE XX EXREXEIRRERXERERERERELREXEXEIRREXXRERERREXRRR/

Pt 3 */
g 3 Purpose of function. */
e 3 */
/¥ linear_congruential_generator is a function that will generate */
e 3 a [0,D)-uniform deviate. *x/
g 3 */
/¥ Dascription of constants and variables. ¥/
g A : multiplier */
g C : increment */
g 3 ™ : modulus */
/¥ */

float linear_conaruential_generator(long int #seed)

r
LS

long int A = 254173,
long int C = 13849;
long int M = 65536;

¥ceed = (A¥(¥sead) + C) % M;
returni{float)¥seed/(float)M);

3

56

/EREREEXRELEEXEEEEREEREEXEEREREREXEREXRREREEEE R R XXX R XX XERRXER R/

¥
/¥
¥
/¥
e
/¥
/¥
/¥
e 3
e
¥
/¥
/%
/¥
/¥
¥
g 3
e 3

Purpose of function.

elapsed_time is a function that will determine the time it takas

for the proaram to generate a known number of random variables.

Description of constants and variables.

timereci : Record that contains the time when random variate
ganeration begin.
timerec? : Record that contains the time when random variate

generation ended.
time_elapsed : Record that contains the time taken to generate
the random variates.

fields of the records.

hour : Time in hours of random variate generation.
min : Time in minutes of random variate generation.
sec : Time in seconds of random variate generation.
hund : Tima in hundredths of a second of

random variate generation.

*/
*/
*/
: 74
*/
*/
*/
*/
*/
*/
x/
*/
¥/
*/
*/
¥/
*/
*/
*/
*/
*/
*/

IREEEEREEEREEEEXEREERERRRAXKXEERERREXEXEXEERR XX R X XXX XXEXEEXERXRRR/

void elapsed_time(struct time ¥timareci,struct time ¥timerecZtime_dif
*time_elapsed)

{

if timerecZ-yti_hund)= timereci-ti_rund)
time_elapsed-3hundred = timerecZ-)ti_hund - timereci-)ti_hund;

else
{

timereczZ-)ti_sec --;
time_elapsed-)hundred = 100 + timereczZ-)ti_hund - timereci-:ti_hundg;

3

if (timerec2-ti_sec = timerecil-ti_s=sec)
time_elapsed-)seconds = timerecZ-)ti_sec - timerecl-ti_sec;

else
{

timerecz-)ti_min --;
time_elapsed-yseconds = 50 + timerec2-sti_sec - timerecl-)ti_sec;

3

if timereczZ-yti_min)= timereci-ti_min)
time_gslapsed-)minutes = timerecZ-jti_min - timereci-;ti_min;

2lse
f

timerecZ-)ti_hour --;
time_elapsed-)minutes = 60 + timerecZ-)ti_min - timereci-yti_min;

3

if (timerecz-)ti_hour = timereci-:ti_hour)
time_elapsed-hours = timerecZ-)ti_hour - timereci-)ti_hour;

a2lse

time_elapsed-yhours = 24 + timerecZ-)ti_hour - timereci-)ti_hour;
3

APPEMNDIX B

Program listing of the exact approximation method for the exponential
distribution function usira cu + t:zu2 + .:;au3 as the approximation to the

inverse cdf.

39

/EREEREEEEEE XL AR EREREXEX R R XK R EEEE R R R LR R R R R ERERRRERRERRR/

/¥ ¥/
/¥ This is a program to test the speed of generation of random ¥/
Iz 3 variates. The pdf is exponential with lambda = 1. The exact */
% approximation method is being used with the approximate invarsa ¥/
/¥ cdf being cyu + cpu © + cguat */
/¥ ¥/

#include (stdio.h)
#include {math .h);
#include (dos hy;

#include (conio.hy;

typedef struct
r
unsigned char hours;
unsigned char minutes;
unsiagned char seconds;
unsigned char hundred;
} time_diff;

v0id gettimeistruct time ¥*¥timep):

wo1d elapsed_time(struct time ¥timereci,struct time ¥timerecZtime_diff
*time_elapsed);

double acceptance_rejection(lona ¥seed);

float linear_congruential_generatorilong #¥seed);

double approximate_cdf_inverse(double u);

e 3 Description of main function. ‘ */
i - The function main will control the number of random variates */
3 generated and determine whether the uniform deviate U is in the ¥/
g 3 region {0,p). If so, then accept the uniform deviate and use */
e 3 V/p to generate a random variate from the approximate inverse */
S¥ cdf wiw. If Up than the acceptance rejection method must be */
e 3 used to generate 3 random variate which will be exponentially */
/¥ distributed. : 74
3 */
e 3 Description of constants and variables. ¥/
¥ t 74
g 3 repts : the number of random variates to be generated. *x/
e 3 seed : the initial seed value used in the linear */
% conaruential generator. ¥4
F#¥ P © upper bound on the value of the uniform deviate. ¥/
2 u [0, 1) uniform deviate. */
¥ rd : random variate from a truncated exponential *x/
F¥ distribution. */
i 3 naturallog : the value of the natural log of 2. */
IR 3 timereci : the time when started to generate random variates. %/
r* timerec?2 : the time when finished aenerating random variates. #/
7¥ time_elapsed : the time used to generate the random variates. */

3]
[}

/¥ c : constant for the approximate inverse cdf. */
s 3 g g = k¥In(2) + © where k is the number of leading *x/
/% bit zeros of a {0, 1) uniform deviate. */
/% */
main0

{

struct time timereci;
struct time timerecg,;
time_diff time_elapsed;
int repts;
double naturallog = log(2),
double P = 0.9829974429,
double g,u,z;
long ¥seed;
seed = (long #¥) malloc(sizeof(lonay;
clrscrl);
printf("lnput the value of seed ==})
scanf{"d" ,seed);
gettime(&timereci);
forirepts = 1; repts(=10000; repts++:
(
g =00
u = linear_congruential_asneratori(seed),
iflu »= 0.0
{
Uus=u+ U
while1.0 = w
(
u
=
3
4 -
1f (WP
Z = approximate_cdf _inverseiu),;
2lse
z = acceptance_rejectioniseed),
Z2=Z + 9
3
alse
{
repts--;
count--;

Y
4

U+ u;
9 + naturallog;

Y
4

aettime(&timereczs),

/% random variate generation ¥/
/% loop */

/% loop to find k¥1n(2) ¥/

/% aenerate z using ¥/
/% uniform distribution */

/¥ or acceptance rejection method ¥/

/¥ mfunct = z + k¥In(2) ¥/

elapsed_time&timerecl,&timerec &tima_elapsed);
printf{'\n\n elapsed time for %d trials.” repts-1);
printf{’\n hours minutes seconds hundredths");

printf\n %3d ", time_elapsed hoursy,
printf"47d 7, time_elapsed. minutes);

orintf{"47d ¥, time_elapsed seconds);
printf{"%48d ¥, time_elapsed hundred);

2

e 3
/¥
/%
s 3
/¥
/¥
/%
/%
/¥
Ve
/¥

61

*/

Purpose of the function. */
¥/

approximate_cdf_inverse is a function that will approximate the ¥/
inverse function of the desired cdf. */
*/

Description of constants and variables. */
*/

Cl:Cil=ci/p constant used to determine the values of wul) ¥/
and w'ul) ¥/

C2 : C2 = c2/{p"2) :constant used to determine the values of wlul) */
and (Wwiul) */

C3 : C3 = c3/(p"3) constant used to determinet the values of wlul) ¥/
and (wiul) */

wfunct : The value of the approximate inverse cdf function. x/
*/

double approximate_cdf_inverseildouble)

{

double C1 = 05086483221,

double CZ = 00822134526,

double C3 = 0.1197084585;

double zfunct,;

zfunct = Ci¥u + CZ¥u¥u + CI¥uFuky;
returnizfunct);

-
4

JEREEEEEREERERRER R R EREE R X AR R R R R R R EX RN KRR R R ERRR RN/

¥ */
/¥ Purpose of the function. */
e 3 x/
/¥ accceptance_rejection is a function that will use the acceptance ¥/
/% rejection method to determine whether a uniform deviate is */
g below the curve of a function. In this case the function is */
¥ defined to be: */
/¥ */
Iz 3 alul) = flnul)IF¥wul). */
/¥ */
/¥ Description of constants and variables. */
/¥ */
/% done : loop control variable used to determine when */
/¥ U2¥H + P)Xb - ul)"Z (= exp(-wilul)). */
/¥ ci,c2,c3 : constants to determine the values of w(ui) x/
/% and w'ul). */
% P :P = p/AIlNZ) : upper bound of the [0,1)-uniform deviates *x/
g divided by Z#¥a to reduce computations. ¥/
/% H : H = h/(In(Z)» : height of the rectangle that the acceptance */
/¥ rejaection method will be performed in divided ¥/
/¥ bu Z¥a to reduce the number of computations. ¥/
/¥ ui,uz : [G,1)-uniform deviates. %/
/% wfunct 1 value of the approximate inverse cdf. ¥/

)
[AY]

* wprimefunct . value of the derivative of the approximate x/
i 3 inversa cdf. ¥/
F¥ Yy =uZ¥H + Pwalue used to test for acceptance reuection */
Iz 3 agenerated. */
/% gfunct : function that will adjusts the approximate */
e inverse cdf so it will give random variates %/
g 3 that have the desired distribution. */
/¥ */

IEREREXEREREEEXERRRIEXEEREEREREEREREXEEXEXREEXX AR XXX R XERXERKEERKRR/

double acceptance_rejectiornlong int ¥seed)

{

int done = 0,

double ci= 05;

double c2= 0.0794415416;

double c3 = 0.1137056389:

double H = 0.0167124520;

double P = 04914987215,

double uluZ;

double wfunctwprimefunct,ffunct.y;

while (Kdorma);
{
ui = linear_congruential_generatoriseed);
uZ = linear_congruential_generatoriseed)
wfunct = ci¥ul + cZ2¥ui¥ul + c3¥ul¥ulkui;
woprimefunct = cl 4 2¥cZ¥ul 4+ 3¥c3¥ul¥ui;
g = (UZ¥H + P);
gfunct = exp{-(wfunct N¥wprimefunct.:
if (g (= gfunct)

done = {; /¥ random variate iz below giu) ¥/

3

returninfunct);

-

* */
Iz 3 Purpose of function. X/
I 3 : 74
L 3 linear_congruential_generator is a function that will generate */
e 3 a [0, L-uniform deviate. */
IE 3 .*r/
F¥ Description of constants and varizables. */
e A © multiplier ¥/
¥ C :increment */
¥ M : modulus */
£ 3 ¥/

float linear_congruential_aeneratoriylong int ¥seed)
{

long int A = 25173,
long int T = 12849;
long int M = 65536;

¥seed = (A¥i¥seed) + O) % M;

returmni(float)¥seed/(floatiM);

3

r ! *
7%
g 3
/¥
e
/¥
’¥
/¥
;¥
/%
g
s -
g 3
3
e
/%
/¥
/¥

Purpose of function.

elapsed_time is a function that will determine the time it takes

for the program to generate a known number of random variables.

Description of constants and variables.

timereci : Record that contains the time when random variate
generation begin.
timerecz . Record that contains the time when random variate

generation anded.
time_elapsed : Record that contains thae time taken to generate
the random variates.

fields of the records.

hour : Time 1n hours of random variate generation.
min : Time in minutes of random variatz generation.
sec : Time in seconds of random variate ganeration.
hund : Time in hundredths of a second of

random variate generation.

*/
*/
*/
*/
*/
*/
*/
*/
¥/
*/
¥/
*/
¥/
*/
%/
*/
*/
*/
*/
*/
*/
*/

SEEREKEEEEEXEEK IR KRR EERRERERE R KEEEREREEREER KK EEXR XK KKK RRER/

void elapsed_time(struct time ¥timereclstruct time #¥timerecZzZtime_dif
#time_elapsed)

{

if {timerecZ-;ti_hwund }= timerecl-yti_Hund)
time_elapsed-ynundred = timereczZ-sti_hund - timereci-)ti_hund;

else

£

timerec2-ti_sec --;
time_elapsed-yhundred = 100 + timerecZ->ti_hund - timerecl-yti_hund;

3

if (timerecz-)ti_sec)= timereci-)ti_sec)
time_elapsed-)seconds = timereczZ-)ti_sec - timerecil-ti_sec;

elsa

r
L

timereczZ-yti_min --;
time_elapsed-yseconds = 60 + timerecZ-)ti_sec - timereci-iti_sec;

3

if (LimereczZ-)ti_min = timereci->ti_mim
time_elapsad-)minutes = timerecZ-»ti_min - timereci-)ti_min;

else

{

timereczZ-ti_hour --;
time_slapsed-minutes = 20 + timerecZ-Yti_min - timereci-ti_min;

3

if (timerecZ-yti_hour = timereci-yti_hour)
time_elapsed-hours = timerecZ-)ti_hour - timereci-yti_hour;

slse
time_eslapsed-yhours = 24 + timereczZ-)ti_hour - Limereci-jti_hour;
3

APPENDIX C

Program listing of a program that generates random wariates using the

inversion method. The function to invert is the exponential function.

66

I REEEREERREEEEEXREEREEREEREREEXEEEREEREXXXEERER XXX EXERERERREXRERR/

Vg 3 */
/¥ This is a program to test the speed of generation of random */
I 3 variates. The pdf is e*-y). This progaram uses inversion. */
g 3 */

SEREREREEEERERERREREREEERERE R AR EXRRXEXRXXEE XX RXREXE XX RXXERER/

#include (stdio hy;
#include (math.h),
#include (dos hy;

#include (conio.hy;

typedef struct
{
unsiagned char hours;
unsigned char minutes;
unsigned char seconds;
unsigned char hundred;
Y} time_diff;

woid aettime(struct time ¥timep);

void elapsed_time(struct time ¥timeraci,struct time #¥timerec2time_diff
*¥time_elapsed);

double acceptance_rejection(lona ¥seed);

float linear_congruential _generator(long ¥%seed);

double approximate_cdf_inverse{double u);

SREEEEREEEREREEERREERXEEEREEEEXEEREXAREXREEXRREXREXEXER X XXXRERER/

/¥ */
¥ Description of main function. */
/¥ */
/¥ The function main will control the number of random wvariates */
/¥ agenerated. It uses inversion to generate a random variate 2 */
/¥ from an exponential function. */
e 3 */
/¥ Description of constants and variables. */
/% */
Vg 3 repts : the numbar of random variates to be gaenerated. */
/% seed : the initial seed value used in the linear */
/¥ conaruential generator. */
g 3 u : [0, 1) uniform daviate. */
e z : random variate from an exponential distri- */
Vg bution. */
¥ timereci : the time when started to genarate random variates. %/
e timerec? : the time when finished generating random variates. #/
7% time_elapsed : the time used to generate the random variates. */
/¥ ¥/

SEREREERREEERXREEZEEEXRREEEEERRERERREEREXEEXKEX XXX XXX EREXRXRRR/

maint)
{
struct time timereci;
struct time timerecZ;
time_diff time_elapsed;

&7

int repts;

double u,z;

long ¥seed;

seed = (long ¥) malloc(sizeof{lona));

clrscr(;

printf"Input the value of seed ==} *);

scanf(’Y,d”,seed);

gettime(&timerecl);

forirepts = 1, repts(=10000; repts++) /% random variata generation ¥/
{ /% loop */
u = linear_congruential_generatoriseed);

2z = -loglu),
a

3

gettime(&timerec?);
elapsed_timel&timerecl.&timerecz &time_elapsed);
printf\n\n elapsed time for %d trials.”.repts-1);
printf¢™\n hours minutes seconds hundredths®);
printf\n %3d 7, Lime_elapsed hours);

printf"%7d ¥, time_elapsed.minutes);

printf(47d ¥, time_elapsed.saconds);

printf{"%8d *, time_elapsed.hundred);
3

FREEREEEFEREEXERI R IR RE R AR RE R R KK R R R EEERRRERLX KX/

Iz] */
/¥ Purpose of function. */
' 3 */
/% linear_congruential_generator is a function that will generate */
/¥ a [0,0)-uniform deviate. */
/¥ */
/% Description of constants and variables. X/
g 3 & © multiplier */
e C . increment */
Iz 3 M : modulus */
iz 3 */

float linear_congruential_agenerator{ong int ¥seed)

{

long int A = 23173;
long int C = 13849,
long int M = &3536;

¥seed = (A¥(¥seed) + O % M;
returni{float)¥seed/(float)H);

3

SERRRREREEEE R IR EEEEXF A IR R R IR E X E R A XX TR RF AR R R LR R R XX/

¥ */
/¥ Purpose of function. */
/% */
s 3 elapsed_time is a function that will determine the time it takes : 74
iz 3 for the proaram to generate a known number of random variables. ¥/

/% X/

_/'*
ES
%
/¥
/¥
/¥
e
e 3
/¥
/%
e
e 3
/¥
g 3
g 3
/%

Description of constants and variables.

timereci : Record that contains the time when random variate
generation beain.
timerec?2 : Record that contains the time when random variate

generation ended.
time_elapsed : Record that contains the time taken to generate
the random variates.

fields of the records.

hour : Time in hours of random variate generation.
min : Time in minutes of random variate generation.
sac : Time in seconds of random variate generation.
hund : Time in hundredths of a second of

random v:ariate generation.

68

*/
*/
*/
*/
X/
*/
*/
*/
*/
*/
¥/
*/
*/
x/
*/
*/

RERERREEEEXERXEREEEKEEEREEEERERERERREREERXEXREEEE R R ERKEXKXEERR R/

w0id elapsed_time(struct time #timerecistruct time ¥timereczZtime_dif
*time_elapsed)

¢

if {timerecZ-)ti_hund)= timereci-)ti_hund)
time_elapsed-)hundred = timerecZ-)ti_bhund - timereci-)ti_hungd,

alse
C

timerec2-ti_sec --;
time_elapsed-)hundred = 100 + timerecZ-)ti_hund - timereci-)ti_hund;

3

if (timereczZ-yti_sec Y= timereci-)ti_sec)
time_elapsed-)seconds = timerecZ-)ti_sec - timereci-)ti_sec;

alse
{

timerecZ-yti_min --;
time_elapsed-)seconds = &0 + timerecZ-iti_sec - timereci-iti_seac;

)

if (timerecZ-)ti_min = timereci-ti_min)
tima_elapsed-)minutes = timerecZ-)ti_min - timereci-)ti_min;

else
¢

timerecZ-)ti_hour --;
time_elapsed-yminutes = 60 + timerecZ-)ti_min - timereci-}ti_min;

3

if (timerecZ-ti_hour = timereci-ti_bhour)
time_elapsed-yhours = timerecZ-)ti_hour - timereci-)ti_hour;

alse

time_elapsed-shours = 24 + timerecZ-)ti_hour - timereci-yti_hour;

2

APPENDIX D

Program listing of a program that generates random variates from the

exponential distribution using the acceptance rejection methoed.

70

/REEEEEEEERREEREEXEEEEREXEXXRERXEXREXEREREXRERRREEREXEERNRRRRRR/

s 3
¥
/¥
/¥
/%

This is a program to test the speed of generation of random
variates. The pdf is exponential and the acceptance
rejection method is being used.

*/
*/
*/
*/
*/

SEREEEREEREREREAEREREEREERAXRERREEREEREEEEREEXERERERREERRERR RS/

#include (stdio.hy;
#include ¢(math.hy;
#include (dos .hy;

#include (conio .hy;

typedef struct

L

unsigned char hours;
unsigned char minutes;
unsigned char seconds;
unsigned char hundred,;
Y time_diff;

vold gettime(struct time ¥timep);
void elapsed_time(struct time ¥timereci,struct time ¥timereczZtime_diff
*¥time_elapsed);

double acceptance_rejection(long #¥seed),
float linear_congruential_generator(long ¥ssed);
double approximate_cdf_inverse(double u);

JREEEEEEEEEEREEEE XX R R R R XL EE R XXX AR REXER TR REREERRERER/

re 3
/¥
/%
g J
/¥
/%
/¥
/’l *
/%
/¥
/%
Iz
e
e
.’/ *
/"*
/¥
e
¥
/¥

Description of main function.

The function main will control the number of random variates
generated. It a will generate a {0, 500) uniform deviate u and use

and set z = g(uw. Main will also generate a [0. 1) uniform daviate
4 and use it to compare y (= z. If u (= z then accept it. Else
reject u.

Description of constants and variables.

repts : the number of random variatas to be generated.

sead : the initial seed value used in the linear
congruantial generator.

u . [0, 50004) uniform deviate.

z - (V)

9 : value between 0 and max alu).

timereci : the time when started to generate random variates.

timerec? : the time when finished generating random variates.

time_elapsed : the time used to generate the random variates.

*/
*/
¥/
¥/
*/
¥/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
%/
*/
¥/

/EEEREEEEEEEEEXE R XL EEXEREZFRRRFRERERERXRRERREERER XXX RREEXRR XX/

main(
{

struct time timereci;

struct time timerecZ;

time_diff time_elapsed.

int repts:

double u,y,z;

long ¥seed;

seed = (long #¥) malloc(sizeofilono);
clrscr;

printf("Input the value of seed == *);
scanf("%d"” seed)

gettime(&timereci);
forirepts = 1; repts(=410000; repts++) /¥ random variate geperation #/
{ /¥ loop */

int done = 0;
while(kKdone))

u = linear_congruential _aeneratori{seed):
u = ukd00;
g = linear_conaruential _ageneratoriseed):
Z = expl-ul
1f (g <= 2}

dore=1.
3

Y
4

aettimelitimerec?);
2lapsed_tima(&timerecl &timerecZ &time_elapsed);
printf¢\n\n elapsed time for %d trials.”.repts-1);
printf{"\n hours minutes seconds hundredths”);
printfU\n %3d ", time_elapsed.hours),

printf{"%47d ¥, time_elapsed minutes);

printf{"47d 7, time_elapsed seconds);

printf{"%2d ¥, time_elapsed hundred);

-
J

I 3 ¥/
s 3 Purpose of function. ¥/
i 3 */
/¥ linear_conaruential _generator i1s a function that will asnerate */
L 3 a [0,D-uniform deviate. ¥/
I 3 */
s 3 Description of constants and variables. */
¥ A : multiplier ¥/
¥k C : increment */
£¥ M : modulus */
/¥ */

float linear_congruential_generatori{long int #seed)
€
long int & = 25173;
long int C = 13849;
long int M = 83336;
¥seed = (A¥(¥sead) + O) Y M;

returniifloat)¥seed/(float)M);

-
4

72

SEEREEREREREEREEEREFETEEREER IR R R EE R R R R RE R ERE XX ERRERER/

7%
7%
g
e 3
e
/¥
/¥
/%
/¥
g
/¥
/¥
%
7%
e
g -
e 3
// *
.’*

Purpose of function.

elapsed_time is a function that will determine the time it takes

for the program to generate a known number of random variables.

Description of constants and variables.

timereci : Record that contains the time when random wvariate
generation beagin.

timerec? * Record that contains the time when random variate

aeneration ended.

time_elapsed : Record that contains the time taken to generate
the random variates.

fields of the records.

hour : Time in hours of random variate ganeration.

min - Time in minutes of random variate generation.

sec : Time in seconds of random variate generation.

hund : Time in hundredths of a second of

random variate generation.

SREEEEEREREEEEREEREREEXEEXRERER XXX XREXERERRE XTI RERXX KR ERERRERER/

void elapsed_time(struct time ¥timereci,struct time ¥timerecZtime_dif
*time_slapsed)

{

if (timerecZ-)ti_hund = timaeraci-)ti_hund)
time_elapsed-thundred = timerecZ-yti_hund - timereci-ti_hund;

else

£

timerecZ-)ti_sec --;
time_elapsed-hundred = 100 + timerecZ-)ti_hund - timereci-).i_hund;

3

if (timerecz-yti_sec = timereci-iti_sec)
time_elapsed-)seconds = timerecZ-)ti_sec - timeracil-)ti_sec;

alse

{

timerecZ-)ti_min --;
time_elapsed-)yseconds = 60 + timerecZ->ti_sec - timereci-jti_=sec;

3

if (timerecZ-)ti_min 3= timereci-)ti_min)
time_elapsed-)minutes = timerecZ-)ti_min - timereci-:ti_min;

else

£
[

timereczZ-)ti_hour --;
time_elapsed-yminutes = 60 + timerecZ-)ti_min - timerecl-jti_min;

3

if (timerecZ-)ti_hour = timereci-sti_hour)
time_slapsed-thours = timerecZ-yti_hour - timerecl-ti_hour;

*/
¥/
*/
x/
*/
x/
¥/
¥/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

else
time_elapsed-yhours
3

Z4 + timerecz-)2ti_hour - timereci-)ti_hour;

