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CHAPTER 1 

THE STATEMENT OF THE PROBLEM AND A BRIEF HISTORY 

The representation of an integer as a sum of kth 

power integers has fascinated several generations of 

mathematicians, and its generalizations and analogues 

occupy a central place in number theory today. 

In this study we confine ourselves to the problem 

of the representation of a positive integer as a sum of 

two squares,three squares and four squares. The main 

problems of the representation of an integer as a sum of 

squares can be formulated as follows: 

1) Given a positive integer k, what integers can be 

represented as a sum of k squares? 

2) If an integer is so representable, how many 

representations are there? 

The problems of representation of integers as a sum 

of kth powers can be stated more generally in terms of 

Quadratic Forms. 

Given a quadratic form 0 in k variables x1 , .. ,xk 

with integral coefficients. Let NO be the set of values 

of O. Then the two problems of representation can now be 

formulated as follows: 

1') Given a quadratic form 0, determine NQ• 

2') Given 0 and n€N O' determine the number of 

representation of n by 0, i.e determine the 



number of vectors (a1' •••. ak)€.Zk for which 

Q(a 1 , ••. ,ak) = n. 

Another equivalent formulation of these problems is 

as follows: 

1")	 Given a quadratic form Q in k variables and an 

integer n, determine whether the Dophantine 

equation Q(x1'" ,xk)= n has solution. 

2")	 Given Q and a representable integer n, find the 

number of solutions of the Diophantine equation, 

Q(x1'" ,xk) = n. 

In this study we confine ourselves to the cases where 

k = 2, 3 and 4. Both problems of representation, will be 

completely solved for k = 2 and 4 in chapters 2 and 3. For 

k =3,we will characterize the integers that can be 

represented as a sum of three squares, and we will only 

give formulas without proofs for the number of 

representations of an integer as a sum of three squares, 

since their proofs are beyond the scope of this thesis. 

Before going any further we need to make few remarks: 

1) In this study by the word "square" we mean the 

square of integers (positive, negative or zero). 

2)	 Two representations of an integer n are regarded 

as being not essentially distinct if they only 

differ trivally (i.e by the order of the summands, 

or by the sign of a term), otherwise they are said 
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to be essentially distinct. For example 5 = 22 + 12 

=(_2)2 + (_1)2 = (_2)2 + 12 

=22 +(_1)2 = 12 + 22 = (_1)2 + (_2)2 = 12 + (_2)2 

= (_1)2 + 22 has a total of 8 representations as a 

sum of two squares.However, any two of these 

representations differ only by the order of the 

summands, or by a sign of one of the terms, and 

therefore they are not essentially distinct. On the 

hand, 5 = 22 + 12 is the only essentially distinct 

representation of 5. 

3)	 If a number is representable by a sum of k squares 

then it is representable by a sum of m squares for 

any m >=x. 

We will show in chapter 3, the least value of k , for 

which all numbers are representable as a sum of k squares 

is k = 4,that is to say that any number is representable 

by a sum of four squares and that four is the least 

number of squares by which all numbers are representable. 

This is a special case of well known problem called 

Waring's problem, stated by Waring in 1770: 

Suppose r > 1 is an integer. Does there exist a 

positive integer k, such that every positive integer n is 

a sum of k rth powers of integers, i.e such that the 

rD' han lne equa t'lon n = x1 r + X2 r + .... + xk hlOp t' as a 

solution for all n > O? 

The problem of representing an integer as a sum of 
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kth power integers has a very lengthy history. In this 

brief historical introduction, we will give a very short 

sketch of the history of the representation of an integer 

as a sum of squares. For a more detail acount of the early 

history the reader may consult Dickson's treatise[3] and 

a more recent book by A.Weil[16]. 

The problem of representing an integer as sums of 

2, 3, and 4 squares goes back as far as Diophantus. 

Eventhough Diophantus (325 - 409 A.D) knew and made 

several statements related to the problem of sum of two 

squares, but Girard in 1625 and Fermat a few years later, 

were first to recognize the problem and stated the 

correct necessary and sufficient conditions on an integer 

n to be representable as a sum of two squares. Fermat 

also knew how to determine the number of ways in which a 

given number of the proper form is a sum of two squares. 

He stated that he could prove that every prime of the 

form 4n + 1 is a sum of two squares by the method of 

indefinite descent. Euler in 1749 was the first to succed 

in finding a complete proof after struggling with this 

problem for seven years. 

Diophantus stated that no number of the form 8m + 7 

is a sum of three squares, a fact easily verified by 

Descartes. It was Fermat who finally gave the complete 

proof and formulated the correct conditions that a number 

is a sum of three squares if and only if it is not of the 
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form 4n (8m + 7). Euler and Langrange tried for many years 

to prove this theorem but neither Euler nor Lagrange found 

a proof for all cases. In 1798 Legendre gave a 

complicated proof for this theorem. Finally in 1801, 

Gauss gave a complete proof which depended on more 

difficult results in his extensive theory of quadratic 

forms. He also obtained a formula for the number of 

primitive representation for an integer as a sum of three 

squares. Other proofs have since been given, but none of 

them can be described as both elementary and simple. 

Some historians believed that the fact that every 

natural number is representable as the sums of four 

squares was first known to Diophantus of Alexandria 

because he expressed 5, 13, and 30 as sum of four squares 

in two ways without mention of any conditions on a number 

in order to be a sum of four squares whereas he gave 

necessary conditions for representation as a sum of two 

and three squares. Hence Bachet and Fermat ascribed to 

Diophantus a knowledge of the beautiful theorem that 

every positive integer is a sum of four squares. Bachet 

verified this theorem for an integer up to 325. The 

theorem was stated to be true by Girard in 1625 and 

Fermat claimed that he possesed a proof by indefinite 

descent. Euler gave serious attention on this theorem for 

more than 40 years. Not until twenty years after he began 

the study of the theorem did he publish some important 

facts about it. The first proof published was by Lagrange 
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in 1772, who gave a lot of credits to EUler's paper. The 

following year Euler published a proof which is much 

simpler than Lagrange and which has not been improved 

upon to date. 
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CHAPTER 2
 

SUM OF TWO SQUARES
 

1.Representation Of Integers As Sum Of Two Squares. 

In	 this chapter we confine ourselves to the case k = 2, 

i.e the representation of a positive integer as a sum of 

two squares. In this case the two representation problems 

are: 

1)	 To find the necessary and sufficient conditions for 

an integer n to be representable as the sum of two 

squares. That is to say, we want to characterize the 

set of integers NQ ' for which the Diophantine 

2equation Q(x,y) = x + y2 = n has a solution. 

2) Let NQ = {n ~ Z x2 + y2 = n, has integral 

solution}. The problem is: for n ENQ, determine the 

2number r2(n) of solutions of x + y2 = n, where 

r2(n) is the total number of solutions that are not 

essentially distinct. 

The problem of determining which numbers are 

representable as the sum two square is a very old one. In 

the Arithmetic of Diophantus (325-409 A.D) there are 

several statements connected with this problem, but their 

precise meaning is not clear[3J. It was Girard (1595­

1632) who first stated the correct necessary and sufficient 

conditions on an integer n to be representable as 

a sum of two squares. But it seems that there is no 
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indication that Girard had a proof for his statement. The 

first proof we know of was published by Euler in 1749[3J. 

The Main theorem of this section is the follovling: 

Theorem 2. 1: 

A positive integer n is representable as the sum of 

two squares if and only if the factorization of n into 

prime factors does not contain any prime of the form 4k+3 

that has an odd exponent in the canonical form of n. That 

is an integer n =nPia~ is representable as the sum of two 

squares if and only if a i is not odd for every i for which 

Pi is of the form 4k+3. 

As an illustration of the theorem, we note that 3 has 

no representation as a sum of two squares. On the other 

hand 90 has, in fact 90 = 32 + 92 • Note that the prime 

factorization of go is 90 = 2.3 2 .5. 

Our objective in this section is the proof of Theorem 2.1. 

It is an easy matter to rule out certain numbers as 

incapable of being represented as the sum of two squares. 

Lemma 2.01: 

Any integer of the form ~n + 3 can not be represented 

as a sum of two squares. 

Proof: 

First note that if x is any even integer then 

x 2: 0(mod4) and for any odd integer y we have y2: 1(mod 4). 

Hence the sum of any two squares must be congruent either 
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to 0 + 0 or 0 + 1 or 1+1 (mod4) that is x2 + y2 =. 0,1, or 

2 (mod4). Thus any number of the form 4m + 3 can not be the 

sum of two squares. 

Lemma 2.02: 

If the prime factors of an integer n can be written as 

the sum of two squares, then n is the sum of two squares. 

Proof: 

This follow immediately from the identity applied 

several times if necessary to the prime factors of n. 

(x 2 + y2) (x1 2 + Y12) = X2 + y2, 

where X = xX1 + yY1 ' y = xY1 - yx 1 · 

Lemma 2.03: 

If P i. saprime 0 f the for m llk + 1, thenthere ex i s t s 

an integer z such that z2 + 1 =. 0 (modp). 

Proof: 

This is equivalent to proving that the congruence 

z2 + 1 =. 0 (modp) is solvable for any prime p of the form 

4k+1, which follows directly from EUler's Criterion for an 

integer to be quadratic residue (modp). 

Lemma 2.03 implies that if p is a prime of the form 4k + 1, 

there exists a positive integer m such that z2 + 1 = mp, 

O<m<p. Hence x2+y2= mp is solvable in integers x,y,and m. 

Our next objective is to show that a prime of the form 

4k + 1 is representable as a sum of two squares. But first 

we need a lemma. 
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Lemma 2.04: 

2If p is a prime of the form 4k + 1 and if x + y2 :: mp 

with 1<m<p, then there exist integers x1' Y1 and n such 

that x1 2 + Y1 2 :: np with 1 < n < m. 

Proof: 

There are two cases to consider according as m is 

even or odd. 

When m is even, then both x and yare even or both 

are odd, and we may write the equation of the hypothesis in 

the form 

((x+y)/2)2 + ((x_y)/2)2 :: (m/2)p 

Thus x1 :: (x+y)/2 , Y1 :: (x-y)/2 and n:: m/2 are integers 

satisfying the conclusions of the lemma. 

When	 m is odd, we use modified division algorithm for 

least	 absolute value remainder to write: 

x :: am + r1 and y :: bm + r2 

where Ir 11 < m/ 2 an d Ir 2/ < m/ 2 

If these expression are substituted in the given equation 

we find (rna + r 1)2 + (bm + r2)2 :: mp 

r1 2 + r 2
2+ 2m(ar1 + br2) +(a 2+b 2 )m 2 :: mp. 

2Hence r 1
2+ r22 :: m(p-2( ar 1+br 2) - (a + b 2 )m) 

That is there exists a nonnegative integer n such that 

r 2 + r 2 :: mn , and we may write1 2 

n + 2(ar1 + br2) + (a 2 + b 2 )m :: p. 

By multiplying both sides by n, we have 

n 2 + 2n(ar1 + br2) + (a 2 + b 2 ) mn :: np, 

this implies n 2+ 2n(ar1 + br2)+(a2+b2)(r12+r22) :: np. 
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This implies (n+(ar1+ br 2 ))2+ (ar2- br1)2= np. 

If n = 0 we would have r1 = r2 = 0, so that m2 would divide 

x2+y2 = mp and m would divide p. But since p is a prime and 

1<m<p, this is a contradiction. Hence we have 1 < n . But 

also we have nm = r1 2 + r2 2 < m2/2 < m2 . Hence n < m. 

Thus x1= n + ar1 + br2' y = ar2- br1 and n are integers 

satisfying the conclusion of the lemma. 

Lemma 2.05: 

Every prime of the form 4k + 1 can be represented as 

the sum of two squares. 

Proof: 

By lemma 2.03 we can find integers x,y such that
 

2
x + y2= mp, where 1~m<p. If m>1, we can apply Lemma 2.04
 

a finite number of times (say with m>n = n1 > n2> .. >nk=1)
 

to " descend" to the situation: xk 2 + Yk 2 = p.
 

As an illustration of Lemma 2.04 and Lemma 2.05 we give the
 

following examples.
 

Example 1: (m is even)
 

2Let p = 13. Consider the equation x + y2 = mp. 

p = 13 is of the form 4k + 1, therefore by lemma 2.03 

z2 + 1 = 0 (mod p) has solution which is z = 5 or z = 8. 

Let z = 5, then 52 + 12 = 2.13 .Then we apply lemma 2.04 

x 1 = (5+ 1) 1 2 = 3 

= (5-1)/2 = 2Y1 

n = m/2 = 212 = 1 

Hence we have x1 2 + Y1 2 = np = 32 + 22 = 1 . 13 • 
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Example 2: (m is odd) 

From example 1, another solution for z is z = 8. 

Therefore we have 82 + 12 = 5.13 

We apply lemma 2.04 , x = 8 = am + r1 = (1)5 + 3 

y = 1 = bm + r 2 = (0) 5 + 

n = p - 2(ar1 + br2) - (a 2 + b2 )m 

= 13 - 2 ( 1 .3 + o. 1) - (1 2 + 02 ) 5 

= 13 - 2.3 - 5 = 2. 

x1 = n + (a r 1 + br 2) = 4 + (1.3 + 0.1) = 2 + 3 = 5 • 

Y1 = (a r 2 - br 1) = (1. 1 - 0.3) = 1. 

2 2 52 12 2 1?Hence x1 + Y1 = + =. J.
 

From here we apply lemma 2.04 as shown in example 1.
 

Remarks: 

1) The method used in the proof of the theorem is 

sometimes called "proof by finite descent" or "Fermat's 

method of descent". This type of proof which also occurs at 

other places in number theory, is based on the 

well-ordering principle, which states that every nonempty 

set of positive integers contains a least element. 

2) We will see later that the representation of a 

prime p of the form 4k + 1 as the sum of two squares is 

unique, apart from the obvious possibility of interchanging 

x and y and changing their signs. 

In Lemma 2.01 we have shown that no prime of the form 4k +3 

is the sum of two squares. But since the product of two 

primes of the form 4k + 3 is of the form 4k + 1, further 

12
 



investigation is required to see if such products are 

representable as the sum of two squares. 

Defini tion 2. 1 : 

A representation of a positive integer n as the sum 

of two squares is called primitive( or proper) if and only 

if there exist relatively prime integers x and y such that 

2n = x + y2, otherwise it is called imprimitive 

representation. 

Lemma 2.06: 

If p = ~ + 3 is a prime number and pin, then n has 

no primitive representations. 

Proof: 

Assume that n has a primitive	 representation, then 

2there exist integers x,y such that x + y2 = n 

with (x,y) = 1. Now pin implies pIx and ply. 

p 1By Fermat's theorem, x - =1 (modp); 

p 1hence yx - = y (modp). 

Let h = yxP- 2 , then we have xh = y Cmodp) and so 

2x 2 (1+h 2 )= x + y2 =n = 0 (modp). 

But since p1x we obtain h 2 + 1 = 0 (modp) 

i.e h 2 = -1 (modp). Therefore	 -1 is a quadratic residue of 

p,which is a contradiction. 

(Recall :the number -1 is a quadratic residue of primes of 

the forms 4k + 1 and a quadratic non-residue of the primes 

of the forms 4k +3.) 
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Lemma 2.07: 

If p = ~ + 3, pcl n , pC+1in where c is odd, 

then n has no representation (primitive or imprimitive) as 

the sum of two squares. 

Proof: 

The proof is	 by contradiction. Suppose there is a 

2representation n = x + y2 with (x,y) = d. Set x = du and
 

y = dv. Then n= d 2 (u 2 + v 2 ) = d 2N and (u,v) = 1.
 

Let pk be the highest power of p such that pkl d .
 

Now pc In . This implies pc ld2N•
 

This implies pC-2k 1N and since c is odd, c-2k is positive.
 

2 2Hence we have N =u + v , where (u,v)=1 and piN which 

contradict Lemma 2.06. 

Let us restate the main theorem again: 

Theorem 2. 1: 

A positive integer n is representable as the sum of 

two squares if and only if the prime factors of the form 

4k + 3 in the cannonical factorization of n appears to an 

even power. 

Proof: 

For n = 1, we have 1 = 12 + 02 . For the only even 

prime 2, we have 2 = ,2 + 12 • For every prime of the form 

4k + 1 a representation as the sum of two squares exists by 

2rLemma 2.05. An even power p of a prime of the form 

p = 4k + 3 is a sum of two squares since p2r =~r)2 + 02 • 

By Lemma 2.02 , every composite number n in which prime 
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factors of the form 4k + 3 appears only to even powers is 

representable as a sum of two squares. On the other hand if 

one prime factor of the form p = 4k + 3 appears to an odd 

power, and not to a higher power as a factor of n, then n 

is not representable as a sum of two squares, for this is 

the content of Lemma 2.07. 

As the first example of theorem 2.1, 

consider n = 234 =2.32. 13 

2 = 12 + 12 

32 = 32 + 02 

13 = 32 + 22 . Then by lemma 2.02 n = 234 is also a sum of 

two squares where 234 = 152 + 32. 

90 = 2.3 2 .5 is also representable as a sum of two squares. 

90 = 92 + 32 • 

30 =	 2.3.5 is not representable as a sum of two squares 

since 3 has odd exponent and 3 is not representable as 

a sum of two squares. 

Proposition: 

If a positive integer n is not the sum of two 

square integers, then it is not the sum of two square of 

rational numbers either. 

Proof: 

If n is not the sum of two square integers, then by 

the previous theorem, there exist a prime p of the form 

4k + 3 that divides n to an odd power exactly. Now assume 
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that n = (s1/m1)2+(s2/m2)2, where m" m2 are positive 

integers and s1,s2 are integers. Then (m1m2)2n = (s1m2)2 + 

(s2m,)2. But p must appear with an odd exponent in the 

factorization of the left hand side of the equality, and by 

the previous theorem, this cannot be true regarding the 

right hand side of the equality, thus we have a 

contradiction and so the proposition is proved. 

2.The Total Number Of Representations As The Sum Of Two 

Squares 

In this section we are going to find in how many ways a 

positive integer n cnn be represented as the sum of two 

squares. First we will find the total number of not 

essentially distinct representations of n. Then in section 

4 we find what positive integers has exactly one 

essentially distinct representation as a sum of two 

squares. Recall that we consider two representations of n 

as being not essentially distinct if they differ only by 

the order of the summands, or by the sign of a term, 

otherwise we regard them being essentially distinct (or 

different). 

Before attacking this problem we are going to show 

that it is enough only to consider primitive (proper) 

representations. Let Q(x1,x2' •• ,x n ) be a quadratic form. 

Let RQ(n) be the number of primitive solutions of the 

Diophantine equation, Q(x1,x2".'xn ) = n, and let rQ(n) 

denote the total number of solutions (primitive and 
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imprimitive solutions). Then we have: 

Theorem 2.2: 

rQ(n) = 2L RQ (n/d 2 ) 
d In 

Proof: 

Let s = <s1,s2' ..• ,sk> be any imprimitive solution 

of Q(x1' .. 'x n ) = n. Set d =(s1,s2, •. ,sk) and write 

3i = dS'i,i=1,2, .• ,k, then (s1 ',s2',.·. ,sk')= 1. 

Then d2 n and hence n = d 2m for some integer m and 

Q(s1', •. ,sk)=m, that is S'= <s1', •• ,sk'> is a primitive 

solution of Q(x1' .. ,xk) = m. 

Thus all solutions of Q(x1' •. ,xk)= n can be obtained from 

primitive solutions of Q(x1 , ••• ,xk)= n/d 2 , when d ranges 

over all divisor of n such that d21 n. Hence we have, 

rQ(n) = L RQ(n/d 2 ).
2 nd '1 

Our next objective is to find the number of 

2primitive solutions of x + y2 = n, where n is any positive 

integer. First we need a Lemma. 

Lemma 2.08: 

Let n be any positive integer. The number of solutions 

2N(n) of the quadratic congruence x E-1(modn) is given by : 

o if 41n or if n has a prime factor of the form 4k+3. 

N(n) =)2s if 41n, and n has no prime factor of the 

form 4k + 3 and s is the number of distinct 

odd prime factors of n. 
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--Proof: 

For n = 1 , the statement is	 true (the number of 
a o a, a rsolutions is 1 ) • For n>1 let n = 2 P1 ..• P be ther 

canonical decomposition of n. Then the number of solutions 

2of x = -1(modn) equals the product of the number of 

solutions of the family of congruence equations: 

2 2 2x =_1(mod2 aO ), x = -1(mod P1
a '), ... ,x = -1(mod Prar). 

2Also we have x = -1 (modp) is solvable if and only if p=2 

or p is an odd prime of the form p = 4k +1. For the case 

p = 2 the equation x2 = -1 (mod 2) has one solution and 

hence the statement is true. For odd primes p of the form 

2p= 4k + 1 the equation x =-1(mod p) has two incongruent 

solutions. Thus the statement is true. 

Lemma 2.09: 

Let n > 1 be such that congruence q2 =-1 (mod n) has 

a solution. Then there exist unique positive integers x,y 

2with (x,y) = 1 and satisfying x + y2 = nand 

y = hx (mod n). 

To prove this Lemma we need to use the following theorem 

whose proof can be found in [8J. 

Theorem 2.3: 

Gi ven rea 1 numbers'TJ > 1 and t. then there exi s t a 

fraction alb such that (a,b) = 1, 0 < b ~'TJ and 

It. -(a Ib ) I< 11 (b 7] ). 
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Proof of Lemma 2.09: 

In theorem 2.3 Let 1J = ..r;; and ~ = (-q/n). 

Then there exist two integers a and b for which (a,b) =1, 

o <b < fn and l-q/n - a/bl < (1/b.[ii). 

Let us set qb + na = c then Icl= Iqb + nal< In and 

c = qb (modn). 

b 2 2 b 2Consider + c = + q2b 2 = (1 + q2)b 2 = ° (modn) 

Thus b2+ c 2 ~n , but since O<b ~Jn and lcl < In then 

b 2+ c 2 < n. Hence it follows that b2 + c 2 = n. 

Furthermore we have (b,c) =1. 

b 2 2 b 2Since n = + c = + (qb +na)2 

b 2 2= (1+q2) + 2 qnba +n 2a 

implies 1= «1+q2)/n)b 2 + 2qba + na 2 

= «1 + q2)/n)b 2 + qba + qba + na 2 

= ub + a(qb + na) 

= ub + ac where u = «1+q2)/n)b + qa 

hence (b,c) = 1. 

Now c+O, for otherwise we would have b 2 = n> 1 and 

(b,c) > 1 • 

In case c> 0 the choice x =b , Y = c will satisfy the 

conclusion of the theorem. 

In case c< ° the choice x = -c , y = b does it, since 

n =(_c)2 + b 2 , -c>O , b>O, 

( -c , b) = and b= _q2b = -qc(modn). 

To prove uniqueness , we assume there are two pairs of 

positive integers (x',y') and (x",y") that satisfying the 

given condition of the theorem. Then we have 
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n = (x,)2 +(y,)2 and n = (x")2 + (y")2 

n 2 =(x,2+ y,2)(X"2 + y"2) 

= (x'x" + y'y")2 + (x'y" _ y'x")2 

x'x" + y'y" ~ x'x" + qx' qx" ~ (1 + q2)x'x" = O(modn) 

But since x'x" + y'y" > 0 we have x'x" + y'y" = n 

and x'y" - y'x" = 0 

x'n = x'(x'x" + y'y") -y'(x'y" - y'x") = x"(x,2 +y,2) = x"n 

Hence x' = x" and y' = y" • 

Theorem 2.5: 

2The number of primitive solutionsof x + y2 = n, 

is R2 (n) = 4N(n), where N(n) is the number of solutions of 

the congruence equation z2 = -1 (modn). 

Proof: 

For n = 1 the statement is true, since the number of 

2primitive solution of x + y2 = 1 is 4 namely 

1 = (+1)2 + 0 2 and 1= 02 + (+ 1) 2. On the other hand 

N( 1) = 1 . Thu s R2 ( 1) = 4N ( 1) • 

For n>1, if x' and y' is a primitive solution of 

x2 + y2 = n, then we necessarily have x' f 0 and y' f 0 

since (x',y')=1. Therefore the total number of primitive 

2solutions of x + y2= n must be four times the number of
 

positive primitive solutions.
 

From Lemma 2.09 above for each q satisfying q2 = -1 (modn),
 

there exists unique x>O , y> 0 such that (x,y) = 1,
 

2x + y2 = nand y = qx(modn) . Conversely, every solution 

2of x + y2 = n for which x>O ,y> 0 and (x,y) = 1 yields 
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exactly one solution q (modn) satisfying q2 = -1 (modn) and 

for which y = qx(modn). 

To prove the converse is true, note that since (x,y) = 

we have (x,n) = 1. Hence the linear congruence 

y = qx (modn) has a unique solution for q, 

o =n =x2 + y2 = x2 + q2 x2 = (1+q2)x 2 (modn) 

o = 1 + q2 (modn) 

Corollary 2.6: 

2The total number of solutions of x + y2 = n is given 

by the formula r2(n) = 4 L N(n Id 2 ) 
d21n 

Corollary 2.7: 

Every prime of the form p = 4k + 1 can be written as 

a sum of two squares in eight ways. 

Proof: 

By Lemma (2.08), N(p) = 2 and since p is a prime all 

solutions of x2 + y2 = P are primitive. Thus r2(p) = 8. 

Corollary 2.7 implies any prime of the form p = 4k+ 1 can 

be written as sum of two squares in only one essentially 

distinct way, since the eight representations can all be 

obtained from anyone of them by changing the sign of x and 

y and by interchanging the order of the summands. Thus 

corollary 2.7 may be restated more precisely as: 

For any prime p of the form p = 4k + 1, the Diophantine 

2equation x + y2 = P has exactly one essentially distinct 

solution. 
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Our main aim in this section is to prove the following 

theorem: 

Theorem 2.8: 

Suppose	 that n > 1 has the factorization n = 2 
a 

n1n2' 
rwhere n1 =n p , n2 =n qS 

p= 4k+ 1 q= 4k+3 

Then r 2 (n) =	 o if any of the exponents s is odd 

4 T (n 1 ) if all s are evenI
where T	 (n 1) denotes the number of divisors of n1. 

We shall require some axuiliary Lemmas for the proof 

of this theorem. We first introduce the function, 

o if n =. O(mod2) 

X (n) = 1 if n :: 1(mod4)
 

-1 if n :: 3(mod4)
 

This function is called the nonprincipal character function 

modulo ~ . Clearly one can prove the following lemma: 

Lemma 2. 10: 

(1)	 X(n) =fO if 2\n
 

L(_1)(n-1)/2 if 2 ln
 

(2) If n1 ::	 n 2 (mod4) then X (n1) = X(n 2 ) 

( 3 ) X(n 1n 2 ) =X(n 1) X (n 2) for any posit i ve in t e ge r s 

n1' n2 , that is X is completely multiplicative. 

Proof: 

To prove (1) , clearly if 21n then n = O(mod2) and by 

definition X(n) = O. On the other hand if 2 fn then n is 
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odd. Hence n is either of the form 4k + 1 or the form 

lfk + 3. If n = 4k + 1, then (-1) (n-1)/2 = (-1) 4k/2 = 1­

And if n = 4k + 3 then (-1) (n-1)/2 = (-1) 4k+2/2 = -1. 

To	 prove (2), 

1)	 Assume n 1 E 0 (mod2) which implies n1 = 2k. 

n 1 =. n 2 (mo d II) imp 1 i es n 1 -n 2 = LJm. 

Therefore n2 = n 1 - LJrn = 2k LJm = 2(k -2m) 

which imply n 2 = O(mod2) • 

Hence X(n1) = X(n 2 ) = O. 

2) Assume n 1 E 1(mod4) which implies n2 = 1(mod4). 

This implies X (n 1 ) = X(n 2 ) = 1. 

3) Assume n1 =. 3(mod4) which implies n2 =. 3(mod4). 

This implies X (n 1 ) = X(n 2 ) = -1. 

To	 prove (3), we consider 3 cases. 

Case ~ 2 n1 and 2 n 2 

X(n 1n2) = 0 , X(n1) = 0 , X(n2) = o. 

Th e s e imp 1y X (n 1n 2) = X ( n 1 ) . X ( n 2 ) • 

Case2: 21n 1 and 21n2 

X(n 1n 2 ) = 0 , X(n1) = 0 , X(n2) = +1 

These imply X(n1n2) =X(n 1 )X(n 2 ). 

Case3: 2fn 1 and 21n 2 

Then n 1 , n 2 are odd and either of the form 4k + 1 or 

4k + 3. 

Assume n1 =. 1(mod4) and n:::> =. 1(mod4). 

Then n 1n2 = (L/k 1 + 1) (4lc 2 + 1) = LJm +1 =. 1(mod 4) 

Therefore X(n1n2) =X(n1)X(n2). 
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Assume n 1 =. 1(mod4) and n 2 =. 3(mod4).
 

Then n 1n 2 = (4k+1)(4k+3) = 4m + 3 ;. 3 (mod4).
 

There for e X ( n 1n 2) = X(n 1) X(n 2 ) •
 

Assume n1 .= 3(mod4) and n2 :: 3(mOd 4).
 

Then n 1n 2 = (4k 1+ 3) ( 4k 2 +3) = 4m + _ 1(mod4).
 

Therefore X(n1 n 2) = X(n1) X(n2)·
 

Now wede fin e b(n) = LX(d) , wher e the sum run s
din 

over all positive divisors d of n. b(n) is called the 

Mobius transform of X(n), so that it follows from general 

theorem that b(n) is also multiplicative. 

r 
Let n = n Pi ej be the prime factorization of n, then
 

i=1
 

O(n) = 2:X(d)
 
d n
 ,. 

= n ( X (1) + X ( Pi) + X(Pi 2) + ••• + X(Pie; ) 
i=1 

r X 2 . = n (1 + ( Pi) + X ( Pi) + ••• + X ( Pi e. ) 
i=1 

Using the function X(n) we can restate Lemma (2.08) as 

follows: 

Lemma 2. 11 : 

Let N(n) denote the number of solutions to the 

2congruence equation x =. -1 (modn) • Then 

o if 4in 
N(n) =1 n 

(1 +X(p)) if 4\n
pi n 

where the product runs through all the distinct prime 
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n. 

2. 12: 

r2(n) = 40(n) 

Proof: 

From	 corollary (2.6) and theorem (2.8) we have the 

2total number of solutions of x + y2 = n is 

r 2 (n) = 4 L N (n/d 2 ) 
d 2 1n 

where the sum runs over all di visors d of n such that d 2 I n 

Let A(d) = 1 or 0 according to whether d is a square or 

not .Then r 2 (n) = 4 L N(n/d) A(d) 
dIn 

Clearly A(n) is multiplicative and since N(n) is 

multiplicative it follows that r2(n)/4 is multiplicative. 

Since O(n) is also multiplicative, we need only to show 

that r 2 (pe) = 40(pe) for any prime p and any positive 

integer e. 

Now if 2!e, then 

r 2 (pe) = L N( pe / d) A(d ) 
II dlpe 

= N(pe) + N(pe-2)+ ..• +N(p2) + N(1) 

!

0 + 0 + •.. +0 +1 = 1 if P = 2
 

= 0+ 0 + ... +0 +1 = 1 if P ;: 3(mod4)
 

2+ 2 + •.. +2 +1 = e/2.2+1 = e+1 if p :: 1(mod4) 

and if d'e then r 2 ( pe) = N(pe) + N(pe-2)+ •.. +N(p2) + N(P) 
4 

=! 1 if P = 2 

o if P = 3(mod4) 

e+1 if p ;: 1 (mod 4) 
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On the other hand we have 

8 (pe ) 1 X(p) + ••• + X (pe)= + 

+ 0 + 0 + ••.• + 0 = 1 if P =2 

= I I - 1 + 1 - •••• + 1 = 1 if P .=. 3(mod4) ,21e 

1 + 1 - •••• - 1 = 0 if P .= 3 (mo d 4) ,21e 

+ 1 +	 1 + •••• + 1 = e + 1 if P .=. 1(mod 4) 

Hence	 r 2 (pe) = 4 C(pe). Hence we have r2(n)= 4O(n). 

Proof	 of Theorem 2.8: 

For n = 1 , the theorem is true. Now since r2(n) and 
4 

T(n 1 ) are multiplicative, we only need to prove the 

statement for n = pe where p is a prime and e>1. 

We have = T( 1) if p = 2 

r 
2 

(pe)	 = T(1) if P .=. 3(mod4), 21e 
4 :: 

o = 0 if P = 3(mod4) , 21e 

e+1 = T(pe) if p = 1(mod4) 

Thus [ 0 if p " 3 (mod ~ ) , 21 e 

r (pe) = "['"(pe) if p = 1 (mod4)
2 4 

1 if P = 2 or p .=. 3 (mod In, 21 e. 

And this complete the proof. 

Corollary 2.9: 

Let n = 2 a n1n2 ' where n1 and n2 are as in the theorem, 

then	 r2(n)= [4T(n 1 ) if n2 is a square 

o if n2 is not a square. 

The following are some examples to illustrate the above 

lemma. 
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:: 2.3.5	 ., r2(30) :: 0 since 3 is not a square. 

:: 2.3 2 .5 ; r 2 (90) ::4 T (n1) :: 4 T( 5) :: 4.2 :: 8. 

These representations are: 

go :: 32 + 92 :: (_3)2 + 92 :: 32 + (_9)2 :: (_3)2 + (_9)2 

:: 9 2 +	 3 2 :: 9 2 + (_3)2 :: (_9)2 + 3 2 :: (_9)2 + (_3)2 

Theorem 2.8 is sometimes stated in another form. 

First we define the following arithmetic functions. 

T1 (n) :: number of divisors of n which are of the form 4k+1. 

T (n) :: number of divisors of n which are of the form 4k+3.3

Theorem	 2.10: 

r 2 (n) :: 4( T 1(n) - T (n))3

The proof of this theorem requires some knowledge of the 

functions T1 and T 3 • Neither one of these function is 

multiplicative. For example T 1 (3) :: T 1(7)::1 but T 1 (21):: 2 

Also T (3):: T ( 7) :: 1 but T 3(21) :: 2.3	 3

On the other hand , these functions do have some
 

interesting properties.
 

Lemma 2. 13:
 

If (a,b) :: 1 then 

1) T 1(ab) :: T 1 (a) T 1(b) + T (a) T (b)
3 3 

2) T (ab) :: T 1 (a) T (b) + T 1 (b) T (a)
3 3 3 

Proof: 

1) Every divisor d of ab can be written uniquely as d :: AB 

where Ala and Bib.
 

d :: 1 (modln if and only if A =. B =. 1 (mod4)
 

or A ::	 B :: 3 (rnod4) 
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d =. 3 (mod4) if and only if A = 1(mod4), B =. 3 (mod4) 

or A.= 3(mod4), B = 1 (mod4) 

Now T 1(ab) = number of divisor d of ab where d = 1 (mod 4) 

T 1(a) = number of divisors A of a where A = Hmod 4) 

1"1 (b) = number of divisors B of b where B = Hmod 4) 

T 3( a) = number of divisors A of a where A = 3(mod4) 

T ?(b) = number of divisors B of b where B = 3 (mod 4) 
-) 

By the multiplication and addition principles of counting 

we have, 

T 1(ab) = 1"1(a) T 1(b) +1"3(a) T 3 (b). 

In similar manner we can prove ( 2) . 

Lemma 2.14: 

Let n = 2an1n2' where n1 contains only primes of the form 

p = 4k+1 and n2 contains only primes of the form q =4k+3 . 

Then, 1) T 1(n) = T 1(n1 n 2) 

2) 1":>(n) = 1;'3(n 1n 2 )
-J 

Proof: 

1) From the previous Lemma we have 

T 1 (n) = 1(2
a 

n 1n 2 ) 

a a = T 1(2 ) 1;'1(n 1n 2 ) +-';:3(2 ) T3(n1 n 2)
 

= 1. T 1(n1 n 2) + 0.T3 (n 1n2)
 

= T 1(n1 n2)·
 
a2) T 3 (n) = T3[(2 )n1 n 3 J 

a 
= T 1(2 a ) T3 (n 1n3) + T 1(n1 n 3) T 3( 2 )
 

= 1. T 3 (n1 n 3) + T 1(n1).0
 

= T 3 (n1 n 3)·
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Let F (n) = T 1( n) - T 3 ( n) ,then F i s mu 1tip1 i cat i ve • 

Proof: 

Let a , b be two positive integers such that (a,b) = 1, 

F(ab) = T 1 (ab) - T (ab)
3 

= [T (a) T (b) + T (a) T (b)]1 1 3 3

-[ T 1(a) T (b)+ T (b) T (a)]
3 1 3

= [ T1(a) T 1(b)- T 1(b) T (a)] /
3

+ ['[3(a) T (b)- T 1(a) T (b)]
3 3

= T 1(b)( T 1(a)- T 3(a)) + "1i3(bH T 1(a)- T 3(a)) 

= ( T (a) - T (a))-( T (b)- T (b))1 3 1 3

= F(a)F(b). 

Lemma 2. 16: 

Let n = 2 
a 

n1n2' and F(n)= T 1(n) - T 3 (n), 

then: 

1) F (2 a ) =
 

2) F(n1) = T (n 1)
 

3) F(n 2 )
 = f 1 if n 2 is a square 

o if n 2 is not a square 

Proof: 

a a 
1) F (2

a ) = T 1( 2 ) _T (2 )=1-0=1­3 

2) F(n1) = T 1(n1) _T (n1) =T(n1) - 0 = T(n1)'3 

3)When n 2 is a square, we let n2 = m2
2 where m2 = 4k + 3 

then n2 = 4m + 1. 

Therefore F(n2) = T 1(n 2 ) - T 3(n2) 

= 2 - 1 = 1, 
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the divisors of n2 of the form 4k + 1 are 1 and n 2 = 

m2 2 , hence T 1(n2) = 2. The divisor of n2 of the form 4k+ 3 

is m2' hence T 3 (n 2 ) = 1. 

When n2 is not a square, we let n2 = m2 where m2 = 4k +3. 

Therefore F(n 2 ) =T 1(n 2 ) - "t"3(n 2 ) 

= I - 1 = 0, 

since the divisor of n2 of the form 4k + is 1 , and the 

divisor of n 2 of the form 4k + 3 is m2. 

of the theorem 2.10: 

a
Let n = 2 n1n2
 

a a

F(n)	 = F(2 n1n2) = F(2 F(n1)F(n2)
 

= T(n1) F(n 2 )
 

=["'t (n 1) if n2 is square 

o if	 n 2 is not a square 

But r 2 (n) = f4T(n1) if n2 is a square 

10 if n2 is not a square 

Thus	 we have r2(n) = 4( T 1 (n) - T 3(n)) 

2As an example consider n = 90 = 2.3 .5 

T1(90) = 4 ,T3(90) = 2. 

r 2 (9 0 ) = 4( T1(90) - T 3(90)) 

= 4( 4 - 2) = 8. 

Next consider n = 18 = 2.3 2 

r 2 ( 18) = 4( T 1( 18) - T 3 ( 18)) = 4( 2- 1) = 4. 

18 = 32 + 32 = 32 + (_3)2 = (_3)2 + 32 = (_3)2 + (_3)2. 
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Now consider n = 30 = 2.3.5
 

r2(30) = 4( T 1(30) -T3(30» = 4(2-2) = 4.0 = O.
 

Clearly this theorem implies Theorem 2.1 ,
 

3.Representation Of Integers As Sum Of Two Nonvanishing
 

Squares: 

In this section we consider the problem of 

representing an integer as a sum of nonvanishing squares. 

Theorem 2.11: 

A positive integer n is the sum of the squares of two 

nonvanishing integers if and only if all prime factors of 

the form 4k + 3 of the number n has even exponents in the 

standard factorization of n and either the prime 2 has an 

odd exponent or n has at least one prime divisor of the 

form 4k + 1. 

Equivalently: A positive integer n is the sum of the 

squares of two nonvanishing integers if and only if 

n = 2an1n22 provided that n 1 f 1 or a is odd, 

where n 1 = n Pi 
a·

1 

Pi=.1\.mod4) 

n 2 
= n q. {3j 
qj=3~mod4) 

Proof: 

Suppose that there exist a positive integer which is 

the sum of the squares of two nonvanishing integers, and 

has the following properties: it does not have a prime 

factor of the form 4k + 1 (i.e n1= 1) and in its 
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.ctorization into primes 2 has an even exponent. Let h be 

_he least such positive integer with these properties. 

'ince it is the sum of the squares of two nonvanishing 

integers, by Theorem 2.1 all prime factors of h of the form 

4k + 3 have even exponents. Consequently h = 22km2 

where m is an odd integer and k ~ O. Thus we may write 

22km2= a 2 + b2 , where a,b are positive 

integers. If k> 0 , then the left hand side of the last 

equation is divisible by 4; consequently the numbers a, b 

are both even: let a = 2a1' b = 2b 1. 

Hence 22k-2m2 = a 1
2 + b 1

2 < h. Contrary to the choice of h. 

Hence k = 0 and so h = m2 = a 2 +b 2 > 1. The numbers a,b 

must be relatively prime because if (a,b) = d> we would 

have a = da2' b = db 2 where a2,b 2 are integers, whence 

2 2 2 2m = dm 1 and m1 = 82 + b2 < m = h also contrary to the 

choice of h. So (a,b) = 1. But since m is odd and greater 

than 1 (since m has no prime factors of the form 4k + 1), 

it has a prime factor of the form 4k + 3. Hence p Ia 2 + b2 

, or a 2 = _b 2 (modp). If we raise each side of the last 

congruence to the (2k+1)th power, then 

a 2(2k+1) = (_1)2k+1 b 2(2k+1) (mod p). 

But 2(2k+1) = p-1 hence a P- 1 ~(_1)2k+1bP-1(mod p), 

1by Fermat theorem we have a P- = 1 (mod p) and 

bP- 1= 1(mod p) , hence we have 1 = (_1)2k +1(modp) which 

is impossible. Thus we have proved that a positive integer 

that is the sum of the squares of two nonvanishing integers 

has the following properties; either in its factorization 
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prime factors the prime 2 has an odd exponent,or it 

factor of the form 4k + 1. Moreover by 

, it follows that all prime factors of the form 

+ 3 have even exponents. This shows that the conditions 

the theorem are necessary. 

Now suppose that a positive integer satisfies the 

conditions of the theorem. Thus we have either n = 2m 2 or 

n = 2 a m2h, where a = 0 or 1 and h is the product of prime 

factors of the form 4k + 1. 

If n = 2m 2 , then n = m2 + m2 , and so it is the sum of the 

squares of two nonvanishing integers.Suppose that n=2 m2h , 

where h is the product of prime factors of the form 4k+1. 

But each of the factors is the sum of two positive 

squares, and hence h is again the sum of two positive 

2 b 2 2squares. Recall if h 1 = a + , h 2 = c + d 2 where h 1 and 

h2 are odd, then one of the numbers a or b, say a must be 

odd, the other being even, the same is true for the numbers 

c and d; so let c be odd, d is even. 

Then h 1h 2 = (a 2 + b 2 ) . (c 2 + d 2 ) 

= (ad + bc)2 + (ac - bd)2 

where ac - bd is odd , and so ac -bd f O. Thus the number 

h 1h 2 is the sum of the squares of two nonvanishing 

integers. We conclude by induction that h is the sum of the 

squares of two nonvanishing integers, i.e h = a 2 + b2 , 

Where m2h =(ma)2 + (mb)2 and 2m 2h =(ma + mb)2 + (rna _ mb)2 

and rna - mb t 0 (because a must be different from b since 
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the number h = a 2 + b2 is odd) • 

see in any case the number n is the sum of the 

of two nonvanishing integers. Therefore the 

condition is sufficient and the proof is complete. 

Here we provide some examples to illustrate theorem 2.11 

10 = 2.5 = 12 + 32 is a sum of the squares of two 

nonvanishing integers since 10 has prime factor 

of the form 4k + 1 and 2 has odd exponent. 

72 = 23 .3 2	 = 62 + 62 is also a sum of the squares of two 

nonvanishing squares, note here 2 appears with 

an odd exponent. 

9 = 2°.3 2 = 32 + 02 is not a sum of the squares of two 

nonvanishing squares since 2 has even exponent and 9 

has no prime factor of the form 4k + 1. 

Corollary	 2.13: 

A square integer n 2 is the sum of the squares of two 

nonvanishing integers if and only if the number n has at 

least one prime factor of the form p = 4k + 1. 

This is equivalent to saying: 

A positive integer n is a hypotenuse of a pythagorean 

triangle if and only if n has at least one prime factor of 

the form p = 4k + 1. 

Another interesting problem is the following: 

When a positive integer n can be written as the sum of the 
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squares of two different nonvanishing integers? The anwser 

is given by the following theorem. 

Theorem 2.14: 

A positive integer n is the sum of the squares of two 

different nonvanishing integers if and only if the 

following conditions are satisfied: 

1) The prime factors of n of the form p = 4k + 3 

have even exponent. 

2) The number n has at least one prime factor of the 

form 4k + 1. 

Proof: 

Assume that n is the sum of the squares of two 

different nonvanishing integers. We need to show the two 

conditions of the theorem are satisfied. 

The necessity of the condition (1) follows from the 

previous theorem. 

Now suppose that a positive integer n does not 

satisfy condition(2), i.e n has no prime factor of the form 

4k + 1. Consequently, if n = a 2 + b2 , with a and b 

two different nonvanishing integers. Let (a,b) =d, then 

2(2 2 1a = a 1d , b = b 1d and hence n = d a 1 + b 1 ) and a 1 t b 1 ' 

(a1,b 1 ) = 1, a1 2 + b 1
2 has no prime factor of the form 

4k + 1. Now since (a1,b 1 ) = 1, then by using the same 

reasoning used in the proof of the previous theorem 

(necessary part), we conclude that 81 2 + b 1
2 has no prime 

2factors of the form 4k + 3 either. Therefore a1 2 + b 1 = 2k 
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k >1 , since a l' b1 are di fferent. Consequently 

+ b 1
2 ) • Hence the numbers a1 and b 1 are even, but 

!'this contradicts the fact that (a1,b 1 ) = 1. 

suppose that a positive integer n satisfies conditions 

and (2). Then by the previous theorem, we have 

n = a 2 + b 2 where a ,b are nonzero integers. If a = b , 

then n = 2a 2 , and since n satisfies condition (2) it has a 

prime factor of the form 4k + 1, thus a is the hypotenuse 

2 2of a pythagorean triangle. This means a = c + d 2 , where c 

and d are nonzero integers. Clearly c f d since if c = d , 

then a 2 = 2c 2 which implies a =~. But sincej2 is 

irrational ,this is impossible. 

Hence n = 2a 2= (c+d)2+(c_d)2, where c-d f 0 and c+d fC- d. 

Consequently n is the sum of the squares of two different 

nonzero integers. Thus the conditions (1) and (2) are 

sufficient. This complete the proof. 

To illustrate the theorem 2.14, we provide some examples 

below: 

10 = 2.5 = 12 + 32 is the sum of the squares of two 

different non vanishing integers since 10 has prime 

factor of the form 4k + 1 = 5. 

18 = 2.3
2 

-
_ 

32 + 32 is not the sum of the squares of two 

different nonvanishing squares because 18 does not 

satisfy condition ( 2) of the theorem. 

go = 2.3 2 .5 = 32 +9 2 , yes since it does satisfy both 
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conditions of the theorem. 

9 = 2°.3 2 = 32 + 02 is not since it does not satisfy 

condition (2) of the theorem. 

The next theorem gives under what conditions a positive 

integer can be written as the sum of the squares of two 

relatively prime integers. 

Theorem 2.15: 

A positive integer n is the sum of the squares of 

two relatively prime integers if and only if n is neither 

di vi sible by 4 nor by a number of the form 4k + 3. 

Proof: 

Suppose that a positive integer n is the sum of the 

squares of two relatively prime numbers say, n = a 2 + b 2 

\'fhere (a,b)= 1 .If 41n, then n = 4k , then 4k = a 2 + b2 , 

hence both a and b are even, contrary to (a,b) =1. If n 

has a divisor of the form 4k + 3, then as we know it has a 

prime divisors of this form, which as we have seen in the 

proof of Theorem 2.11 cannot divide the sum of the squares 

of two relatively primes numbers. Thus this proves that the 

condition of the theorem is necessary. 

Suppose that a positive integer n satisfies the 

condition. If n = 2 , then 2 = 12 + 12 , and so it is the 

sum of the square of two relatively prime numbers. If n>2, 

then the condition implies that n is the product of prime 

numbers of the form 4k + 1 or the product of number 2 and 
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of the form 4k + 1. In the first case n is odd and 

each of the prime factors of n is the sum of the squares of 
) 

two relatively	 primes numbers and by induction one can 

the sum of the squares of two relatively 

second case, i.e if n is the product of 2 and the 

primes of the form 4k + 1, we have n = 2(a 2 + b 2 ) , where a 

2 b 2and b are relatively prime. Since a + is odd, one of 

the numbers a and b is odd and the other is even. 

We have n =(a + b)2 + (a - b)2 , where a + b and a - bare 

odd. Morever, they are relatively prime because if dla+b 

and d)a-b then d!2a and d /2b since d is a divisor of an odd 

number a + b, is odd, we have dla and dlb, but since 

(a,b) = 1 , then d =1. Therefore (a+b, a-b) = 1. 

Thus the condition is sufficient and the proof is complete. 

Examples: 

10 = 2.5 is the sum of the squares of two relatively prime 

integers since 4 110 and c110 where c is of the form 

4k + 3. (i.e 10 = 12 + 3 2 , (1,3) = 1) 

18 = 2.3 2 = 32 + 32 , (3,3) = 1 since 3118 and 3 is of the 

form 4k+ 3. 

29 = 29 is the sum of the squares of two relatively prime 

integers since 4t29 and 29 has no prime factor of 

the form 4k+3. (i.e 29 = 22 + 52 , (2,5) = 1) 

2 32 92	 ,90 = 2.3 .5 = + (3,9) = 1 since 3 [90 and 3 is of 

the form 4k+ 3. 
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Uniqueness Of Essentially Distinct Representation 

In section (2) we found a formula for the total 

number of representations of a positive integer n as a sum 

of two squares that are not essentially distinct. In this 

section we are going to find what positive integers can be 

written exactly in one way as a sum of two squares apart 

from the order or the signs of the summands. 

Theorem 2.16: 

The only positive integers that can be represented as 

a sum of two squares in exactly one way are of the form : 

2ap 2 n = - n 2 where a~ 0, P is a prime of the form p = 4k+1 

eand n2 is an integer of the form n2 = n p
P= 4k+3 

Proof: 

aLet n be a positive integer , where n = 2 m1m2' where 

a > 0 where m1 = n Pi
a'

' , m2 = n q. f3j 
Pi ;1(mod4) qy;3(~Od4) 

In order that n is a sum of two squares all the j's must 

abe even. Thus we may write m2 = n2 2 and hence n = 2 rn1n2 2 

Let a = 2b + c where c = 0 if a is even or c = 1 if a is 

odd. Then n = 2crn1(2bn2)2 .Now if x 2 + y2 = 2c m1 has a 

2solution, say x = xo and y = Yo then x + yo2 = 2cm1 ando 
b 2 c b 2hence (2b n 2xO)2 + (2 n 2Y0 ) = 2 m1(2 n2 ) = n. 

2b 2b . 1 t' f 2 2Thus x1 = n 2xO' Y1 = n2Yo lS a so u lon 0 x + Y = n. 

Conversely if x = x1 and y = Y1 is a solution of x 2 + y2=n, then 

x = X 1!(2b n 2 ) and Yo= Y1!(2bn2) is a solution ofo
 
2 2 2c
 x +Y = m1. 
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is sufficient to consider only integer of the form 

a2cm, where c= a or c = , and m,= T1 p . 
p = 1(mod 4) 

Let M be the set of all such integers of the form 

n = 2cm, that can be written as a sum of two square in 

exactly one way. 

Recall that any prime P of the form p= 4k + , has exactly 

one representation as a sum of two squares. 

If m, has two distinct prime factors, P, and P2 of the 

form 4k+' , then the representation of p,= a 2 + b2 and 

2P2 = c + d2 are unique. 

Hence P'P2 has at least two distinct representations 

x, = ac + bd, y, = ad - bc 

x 2 = ac - bd, Y2 = ad + bc 

If these solutions are not distinct then neither we have
 

ac + bd = ac - bd and this would implies abcd = 0
 

nor ac + bd = ad + bc which is equivalent to say
 

(ac +bd) - (ad + bc) = 0 and this implies (a-b)(c-d) = o.
 

Both of these will lead to a contradiction.
 

For let us consider the two possibilities:
 

Case':
 

If abcd = 0, then at least one of these must be zero, 

say a = a , then P, = b2 , a contradiction. 

Case 2: 

If (a-b)(c-d) = a this would imply a-b = a or c-d = a . 

Let a-b = a then P, = 2a 2 also a contradiction. 

Hence m, cannot have more than one prime factor of the 
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orm 4k + 1. On the other hand 2 = 12 + 12 and if 

+ b2	 ,then 2P = (1 2 + 12 ) (a 2 + b 2 ) = (a + b)2 + (a_b)2 

only representation of 2P as a sum of two squares. 

set M consists of the integers of the form m =2 c p 

o or c= 1 and P is a prime of the form 4k + 1. 

set of positive integer that can be represented 

two square in exactly one way are of the form 

n = 2a pn?2,where a > O. 
L 

Co roll a r y 2. 17 : 

Any prime of the form p = 4k + 1 can be represented as a 

sum of two squares in exactly one way_ 

Examples: 

10 = 2.5 can be represented as a sum of two squares in 

exactly one way i.e 10 = 12 + 32 . 

25 =	 20 .5 2 can be represented as a sum of two squares in 

more than one way since the prime p = 4k + 1 = 5 is a 

square. 

25 = 02 + 52 = 32 + 42 • 

90 =	 2.3 2 .5 can be represented as a sum of two squares in 

exactly one way, 90 = 32 + 92 • 

100 = 22. 52 can represented as a sum of two squares in more 

than one way since p = 4k + 1 = 5 has even exponent. 

100 = 102 + 02 = 82 + 62 • 

41 



1: CHAPTER 3 

SUM OF FOUR SQUARES 

Representation Of Integers As Sum Of Four Squares. 

In this chapter we consider the representation of a 

integer as a sum of four squares. As in the 

chapter the two Representation problems are: 

1)	 What positive integers n can be represented as the 

sum of four square integers? That is to say for 

what positive integers n the Diophantine equation 

x2 + y2 + z2 + w2 = n has a solu t ion? 

2)	 To find a formula for r4(n), the number of 

representation of an integer n as a sum of four 

squares. 

We shall prove that every positive integer is the sum 

of four square integers. 

It was Girard and Fermat who stated that every natural 

number is representable as the sum of at most four 

squares of natural numbers. But some historians have 

argued that the fact was known already to Diophantus of 

Alexandria because he made no mention of any condition to 

be satisfied by a number for it to be representable as a 

sum of four squares, whereas he was aware that only 

certain kinds of numbers could be represented by two or 

three squares. The first proof we know of is that given 

by Langrange in 1770. 
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The solution of problem (1) can be broken up into 

several steps. First we need the following lemmas: 

3. 01 : 

If every prime is the sum of four squares then every 

composite integer is the sum of four squares. 

Proof: 

Using Euler's identity, we can prove this lemma. 

( X 2 + x 2 + x 2 + x 2)(y 2 +Y 2 + Y 2 + Y 2)
1 2 3 LI 1 2 3 4 

=(x1 Y1+ x2 Y2+x3Y3 +x4Y4)2+ (x1Y2-X2Y1+x3Y4-X4Y3)2 

2 )2+(x1Y3-x3Y1+x4Y2-x2Y4) + (x1Y4-x4Y1+x2Y3-x3Y2 

This identity can be verified by mUltiplying out both 

side. On the left, after multiplying out we have sixteen 

expressions of the form Xi 2y j 2 ( i = 1 •. 4, j= 1 .. 4). 

These also appear, among other terms, on the right, for 

within the four parentheses on the right, each xi is 

combined with each Yj with a coefficient of +1. 

The other twenty-four terms on the right , which are all 

of the form + 2XiXjYkYh' i<j, k <h cancel each other 

pairwise , for on the right the coefficient of 

2X1X2 is Y1Y2 - Y1Y2 - Y3Y4 + Y3 Y4 = 0 

2X1X3 is Y1 Y3 + Y2 Y3 - Y1 Y3 - Y2 Y4 = 0 

2X1X4 is Y1Y4 - Y2Y3 + Y2 Y3 Y 1Y 4 = 0 

2x2x3 is Y2Y3 - Y1Y4 + Y1 Y4 Y2Y3 = 0 

2x2x4 is Y2Y4 + Y1Y3 - Y2Y4 - Y1 Y3 = 0 

2x3x4 is Y3Y4 - Y3Y4 - Y1 Y2 + Y1 Y2 = 0 

This identity show that if X and Y can be expressed 
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four squares, then so can their product XY. 

identity and math induction, Lemma 3.01 is an 

immediate consequence , for every composite integer n is 

the product of primes. 

Let x = 7 = 2 2 + 12 + 12 + 12 

Let y = 10 = 12 + 12 + 22 + 2 2 

Then 70 = x.y = 7.10 

= (22+ 12+ 12+ 12 )( 12+ 12+ 22+2 2 ) 

2	 2=(2.1 + 1.1 + 1.2 + 1.2) + (2.1 -1.1 + 1.2 - 1.2) 

+ (2.2 - 1.1 + 1.1 - 1.2)2 + (2.2 - 1.1 + 1.2 - 1.1)2 

= 7 2 + 12 + 22 + 42 

= 49 + 1 + 4 + 16 = 70 . 

Therefore if x and y can be expressed as a sum of four 

squares , then so can their product xy. 

Lemma 3.02: 

For every p > 2 there exist an integer m for which 

21 < m < p and mp = x1 2 + x 2 + x3 2 + x42
 

is solvable.
 

Proof:
 

The (p+1)/2 numbers in the set A = {02, 1 2 , ..•• 

•. ,«P_1)/2)2} are incongruent to each other (modp) in 

pairs. 

Assume	 x / = x2 2 (modp) where 0 .s. x1 < x2 < (p-1)/2 

2 2This implies x 1 - x2 _ 0 (modp) 

Thus P \(x 1 - x2) (x 1 +x2) 
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prime, P\(x1 - x2) or pl(X 1 + x2) 

This implies x1 = x 2 (modp) or x1 =-x2 (modp), 

a contradiction, 

for x 1 +x2(modp) since {0,1,2, ... p-1} forms a complete 

residue systems modulo p, and x1 *- x2 (modp) because 

o ~ x1 + x2 ~ p-1, hence (x 1 + x2)l P .
 

Therefore x 1
2 f x2 2 (mod p) for all x1 2 ,x 2

2 t A.
 

The same is true for the (p+1)/2 numbers in the set
 

2 2 (2B ={-1-0 ,-1-1 , ...•.• ,-1- p-1)/2 }.
 

Now IAU BI = (p+1)/2 + (p+1)/2 = p+1
 

But there are exactly p incongruence classes mod p.
 

2Therefore there is some number x in A and some _1_y 2 in 

2B such that x = _1_ y 2 (modp) where I x I < p/2 , Iy I < p/2 

2This implies x + y2 + 1 =0 (mod p),
 

hence x 2 + y2 + 12 + 02 = mp for some integer m > 1.
 

mp= x 2 + y2 + 12 < p2/ 4 + p2/ 4 +
 

= p2/2 + 1< p2/2 + p2/2 = p2, 

this impli es m < p.
 

If we combine the two results , we have 1 < m < p.
 

Example: 

2Let p = 7. Consider the equation x1 2+ x 2 + x3 2+ x42 = mp. 

Let A = {02, 12 ,22, 32 } are incongruent to each other 

mod 7. 

2 2 2 2} .Let B = {-1-0 , -1-1 , -1-2 , -1-3 are Incongruent to 

each other mod 7. But 32 = _1_2 2 (mod7). 

This implies 32 + 22 + 1 = 0(mod7) 
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implies 32 + 22 + 12 + 02 = 2.7 .
 

that 1 < 2 < 7.
 

Lemma 3.03 

2 2If p is an odd prime and if x + y2 + z2 + w = mp 

1 < m < p then there exist integers x1'Y1,z1,w1 and M 

2 2 22·that x1 + Y1 + z1 + w1 = Mp wlth 1 < M <me 

Proof: 

The proof is divided into two cases according as m is even 

or odd. 

Case 1: m is even 

Claim: when m is even then x,y,z,w are all even; or all 

are odd; or two are even and two are odd. 

Proof of claim 

Consider the two cases: 

1) three of those integers say x,y,z are even and 

w is odd; 

2 2mp = x + y2 + z2 + w

(even)(odd) = (even)2+(even)2+(even)2+(odd)2 

even = odd 

This case cannot happen. 

2) three of those integer say x,y,z are all odd 

2 2and w is even. mp = x + y2 + z2 + w

(even)(odd) =(odd)2+(odd)2+(odd)2+(even)2 

even = odd 

This case cannot happen either. 

Now assume x and yare odd and z and ware even. 

46 



we have, 

«x+Y)/2)2 +«X_y)/2)2 + «z+w)/2)2 +«z-w)/2)2 = (m/2)p 

X1 = (x+y)/2, Y1 = (x-y)/2 

Z1 = (z+w)/2 and w1 = (z-w)/2 

and M = m/2 are integers satisfying Lemma 3.03. 

Case 2: m is odd 

When m is odd we use division algorithm for least 

absolute value remainder to write x = am + r1' y = bm + r 2 

z = cm + r 3 , w = dm + r4 

where Ir11 <m/2, Ir21< m/2, Ir~<m/2, /r J< m/2 

If these expressions are substituted in the given equation 

we find, 

(am + r1)2 + (bm + r 2 )2 + (cm + r3)2 + (dm + r4)2 = mp 

implies r1 2 + r2 2+ r3 2 + r42 + 2m(ar1 + br 2 + cr 3 + dr4) 

+ (a 2 +b 2 + c 2 + d 2 )m 2 = mp.
 

2 ~ 2 2 2 (
Hence r1 + J 2 +r3 + r4 = m p - 2(ar 1+ br~ + cr3 + dr }-J.) 

_ (a 2 + b 2 + c 2 + d 2 )m) 

Let M = (p- 2(ar 1 + br2 + cr3 + dr4) - (a 2 + b 2 + c 2+ d 2 )m, 

2 2 2 2then r1 + r2 + r3 + r4 = mM. Clearly M~O, 

2if M =0 this would implies r1 = r2 = r3 = r4 = 0 then m

2 2would divide x + y2 + z2 + w = mp and m would divide p. 

Since p is a prime and 1 < m < p , this is a contradiction. 

Hence 1 < M. 

2 2 2 2We also know that Mm = r1 + r2 + r3 + r42 < 4 (m 2 /4)= m 

Hence M <me 

Putting these results together we have 1 < M < m 
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we have
 

22/

r2 + r3 + r4- + 2m( ar 1 + br2 + cr3 + dr4) 

+ b 2 +c 2 + d 2 )m 2 = mp	 and r 1
2 + r2 2 + r3?' + r42 = Mm. 

Therefore	 Mm + 2m(ar, +br2 +cr3 + dr4) 

b 2 2+ (a 2 + + c + d 2 )m 2 = mp. 

Dividing	 by m , we have M + 2(ar1 + br 2 + cr3 + dr4) 

2 b 2 2+ ( a + + c + d 2 )m = p. 

Multiply	 both sides by M, we have 

2 b 2 2M + 2M(ar 1 + br2 + cr + dr4) +(a 2 + + c +d 2 )Mm = Mp.3 

This imply M2 + 2M(ar1 + br2 + cr3 + dr 4) 

b 2 2 2 2 2+ (a 2 + + c + d 2 )(r1 2 + r2 + r3 + r4 ) = Mp. 

Using Euler's identity 

(a 2 + b 2 + c 2 + d 2) (r 2 +r 2 + r 2 + r 2)
1 2 3 4 

2 2= (ar 1 + br 2 + cr3 + dr4) + (ar 2 - br1 + cr 4 -dr 3) 

+ ( ar 3 - br4 - cr 1 +	 dr 2 )2 + (arLI + br - cr 2 - dr 1 )23 

Let A = (ar 1 + br 2 + cr 3 + dr 4) 

B = (ar2 - br 1 + cr4 - dr3)
 

C = (ar3 - br4 - cr 1 + dr2)
 

D = (arJ~ + br3 - cr 2 - dr1)
 

Substitute these in the above equation, we have 

M2 + 2AM + A2 +B2 + C2 + D2 = Mp 

(M + A)2 +B2 +C 2 +D2 = Mp 

Thus x1 = M + A, Y1 = B, z1 = C and w, = D and Mare 

integers satisfying the conclusion of Lemma 3.03. 

Example 1: ( m is even) 

2 2Consider the equation	 x + y2 + z2 + w = mp where m = 4 
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7 

have 32 + 32 + 32 + 12 = 4.7
 

= (x+y)/2 = (3+3)/2 = 3
 

= (x-y)/2 = (3-3)/2 = 0
 

= (z+w)/2 = (3+1)/2 =
 

= (z-w)/2 = (3-1)/2 = 1 and M = m/2 = 4/2 = 2.
 

x1 2 + Y1 2 + z1 2 + w1 2 = 32 + 02 + 22 + 12 = 2.7 

apply the lemma again, we have 

x2 = (3+ 0) / 2 = 1.5 

Y2 = (3-0)/2 = 1.5 

z2 = (2+1)/2 = 1.5 

w2 = (2-1)/2 = 0.5 and M1 = 2/2 = 1 

2 2 2 2 2 222Hence x2 + Y2 + z2 + w2 = 1.5 + 1.5 + 1.5 +0.5 = 

1. 7. 

Example	 2: ( m is odd) 

2 2 2Consider the equation x + y + z2 + w = mp where p =7 and
 

m =3.
 

Then we have 32 + 22 + 22 + 22 = 3.7
 

x = 3 = am + r 1 = 1 .3 + 0
 

y = 2 = bm + r2 = 1.3 + (-1)
 

z = 2 = em + r 3 = 1.3 + (-1)
 

\v = 2 = dm + r 4 = 1.3 + (-1)
 

hence M = P -2(ar1 + br2 + cr 3 + dr4)
 

b 2 2- (a 2 + + c + d 2 )m 

= 7 - 2[1.0 + 1(-1) + 1(-1) + 1(-1)J 

_ [1 2 + 12 + 12 + 12 J3 

= 7 -2(-3) -12 = 1. 
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- -

= (a r 1 + b r 2 +c r 3 + d r 4) =( 1 . 0 + 1( -1) + 1( -1) + 1( -1 ) ) = 3 

= (ar2 - br1 + cr4 - dr3)=(1(-1) - 1.0 + 1(-1) -1(-1))=-1 

= (ar~ - br4 - cr1 + dr2)=(1(-1) - 1(-1) -1.0 + 1(-1))=-1 

= ( ar 4 + br3 - cr2 - dr1)=(1(-1) + 1(-1) -1(-1)- 1.0)= -1 

x1 = = 1 -3 = 2
 

= B = -1
Y1
 

Z1 = C = -1
 

w1 = D = -1. 

Therefore we have, 

X1 2 + Y1 2 + Z1 2 + w1
2 = 22 + (_1)2 + (_1)2 +(_1)2 = 1. 7. 

Lemma 3.04: 

Every prime can be represented as a sum of four square 

integers that is to say that for every prime p, 

2 2 22·P = x1 + x2 + x3 + x4 1S solvable. 

Proof: 

For p = 2 ,this is obvious since 2 =1 2 + 12 + 02 + 02 • 

Therefore let p > 2. Now we are going to apply Fermat's 

method of descent. 

By Lemma 3.02 we can find integers x,y,z,w such that 

2 2x + y2 + z2+ w = mp where 1 ~ m < p 

If m > 1, we can apply Lemma 3.03 a finite number of times 

(say p > m > M = M1 > M >•••• >Mk = 1)2 

to descent to the situation , 

2 2 2 2xk + Yk + zk + wk = P 

This shows that every odd prime may be represented as the 

sum of four squares. 
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Every positive integer n is the sum of four square 

By Lemma 3.04 , every prime can be represented as sum 

four squares, Lemma 3.01 guarantees that every composite 

may be represented as sum of four squares. For 1 we 

1 = 12 +0 2 + 02 + 02 . Thus we have proved the theorem. 

( 

Let n = 30 = 2.3.5 . By lemma 3.04, 2,3 ,5 are primes and 

can be presented as a sum of four squares. 

2 = 12 + 12 + 0 2 + 0 2 

3 = 12 + 12 + 12 + 0 2 

5 = 12 + 22 + 0 2 + 0 2 • 

Therefore by lemma 3.01, 30 is also a sum of four squares 

since 30 is a product of 2.3.5 , 30 = 12 + 22 + 32 + 42 . 

Theorem 3.2: 

Every positive rational number is the sum of the 

squares of four rational numbers. 

Proof: 

Let r be a positive rational number r =k/m where k 

and m are positive integers. By the previous theorem, it 

follows that every positive integer is the sum of the 

squres of four or fewer integers. 

If km = a 2 + b 2 + c 2 + d 2 where 3,b,c,d are integers then 
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r = kim	 = a 2 /m 2 + b 2 /m 2 +c 2 /m 2 + d 2 /m 2 

= (a/m)2 + (b/m)2 + (c/m)2 + (dlm)2 

of integers as sum of four nonvanishing 

In this section we consider the problem of representing 

an integer n as a sum of four nonvanishing squares. It is 

to consider the two cases according to 

whether n is even natural number or n is an odd natural 

number. 

Theorem	 3.3: 

An odd natural number n is the sum of the squares of 

four natural numbers if and only if it does not belong to 

the sequence of numbers 1, 3, 5, 9, 11, 17, 29, and 41. 

Proof:(By contradiction) 

Assume 29 is the sum of the squares of four natural 

numbers. Therefore 29 = a 2 + b 2 + c 2 + d 2 where all 

a,b, c, d ~1 and without loss of generality assume 

a > b > c > d . Hence a 2 < 29 < 4a 2 

which implies 3 ~ a < 5. 

b 2 2 d 2If a = 3 then 29 = 9 + + c + 

implies 20 = b 2 + c 2 + d2 

2 d 2If a = It then 13 = b 2 + c +
 

If a = 5 then 4 = b 2 + c 2 + d 2
 

By trial an error , all of the above are impossible. 

Therefore 29 is not the sum of the square of four natural 

numbers. We can also show none of the numbers 
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is the sum of four nonvanishing squares by 

sing the same method of proof. 

low suppose that an odd natural n satisfies the condition 

of the theorem. Therefore n + 1,3,5,9,11,17, 29, lJ1. 

is odd, it must be of the form 8k + 1, 8k +3, 

or 8k +7. 

= 8k + 1. 

Let k be of the form k= Itt, 4t + 1, I+t + 2, 4t + 3. 

If k = 4t we ha ve n = 8(4t ) + = 32t + 1. 

Since n ~ 1 then t > 1. Let t = x + 1 where x >0 

Therefore n = 32(x+1) + 1 = 4(8x + 6) + 9 

8x + 6 is the sum of three squares and also since 

8x + 6 = 2(4x + 3) cannot be the sum of two squares, 

this implies each of the integers a, b, c must be nonzero. 

Hence n = 4(8x + 6) + 9 

= 22 (8x + 6) + 9
 

22 (a 2 + b 2 + c 2 ) 32
 = + 

Therefore n = 8k + 1 is the sum of four nonvanishing 

squares if k is of the form k = 4t. 

If k = 4t + 1, then n= 8(4t + 1) + = 32t + 9 

Since n ~ 9 and n ~ 41 we have t > 2 

Let t = x + 2 where x > 0 

Hence n = 32(x+2) + 9 

= 2 2 (8x + 6) + 72
 

2 2 ) 72
= 22 a + b 2 + c + 

This implies n = 8k +1 is the sum of four nonvanishing 
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'quares if k is of the form 4t +1. 

+ 2, then n = 8(4t + 2) + 1 = 32t + 17 

17 then t >1. Let t = x +1 and x >0. 

= 32(x + 1) + 17 

= 22(8x+6) + 52 = 22(3 2 +b 2 +c 2 ) + 52 

implies	 n = 8k + 1 is the sum of four nonvanishing 

if k = 4t + 2. 

If	 k = 4t + 3 then n = 8(4t + 3) +1 = 32+ + 25 

= 22 (8t + 6) + 52 

This implies n = 8t + is the sum of four nonvanishing 

square if k = 4t +3. 

Thus we have proved that the theorem is sufficient provided 

n = 8k + 1. 

Now consider n = 8k + 3. 

Since n ~ 3 and n t 11, this implies k > 2 

Let k = x + 2 and x >0 

The n n = 8 ( x+2 ) + 3 = (8x+3) + 42 

(8x+3) is the sum of three squares and since (8x+3) is odd, 

the three integers must all be odd • For assume two of the 

integers are even and one is odd then 

8x +3 = (2a)2 + (2b)2 + (2c+1)2
 

= 4a 2 + lJb 2 + 4c 2 + 4c + 1
 

4( a 2 + b 2 + c 2 +c) + 1
 =
 
8x +2 = 4(a 2 + b2 + c 2 +C)
 

8x +2 = 4k where k = a 2 + b 2 + c 2 + c
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4k 

2k 

since 4x + 1 is odd and 2k is even. 

is the sum of the squares of three odd 

integers which is 8k+3 = (2a+1)2 + (2b+1)2 +(2c+1)2 where 

a,b,c are nonnegative integers. Consequently 8k + 3 is the 

sum of the square of three nonvanishing squares. 

Therefore n = 3 1
2 + b 1

2 + c1 2 + 42 which is the sum of four 

nonvanishing squares. 

Thus we have proved the condition of the theorem is 

sufficient for n = 8k +3. 

Consider n = 8k + 5. 

If k = 4t then n = 8( 4t) + 5 = 32t = 5 

Since n t 5 this implies t >3 1 . Let t = x + 1 

where x > O. 

Therefore n = 32(x+1) + 5 = 22(8x+3) + 52 

= 2 2 (a 2 +b 2 +c 2 ) +5 

This implies n = 8k + 5 is the sum of four nonvanishing 

squares if k = 4t. 

If k = 4t + 1 then n= 8(4t +1) +5 = 32t + 13. 

Since n * 13 implies t~1. Let t = x+1 and x>O. 

Therefore n = 32(x+1) + 13 = 22(8t+3) + 12 

This implies n is the sum of four nonv3nishing squares if 

k = 4t+ 1 . 

If k = 4t + 2 then n = B( 4t+2) + '5 = 2 2 ( 8t+3) +3 2 

This implies n = 8k + 5 is the sum of four non vanishing 
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= 4t + 2. 

+ 3, then n = 3C4t+3) +5 = 32t + 29 

29 implies t~1. Let t = x+1 where x>O. 

32Cx+1) + 29 = 22 C8x +3 ) + 72 which implies 

n = 8k+5 is the sum of four nonvanishing squares if 

k = 4t +3. 

Thus we have proved that the theorem is sufficient provided 

n = 8k+5. 

Finally consider n = 8k + 7. 

If k = 0 then n 7 = 22 + 12 + 12 + 12 

If k = 1 then n = 15 = 22 + 32 + 12 + 12 

If k = 2 then n = 23 = 32 + 32 + 22 + 12 

If k = 3 then n = 31 = 32 + 32 + 32 + 22 

If k = 4 then n = 39 = 12 + 22 + 32 + 52 

If k ~ 5, then n = 8k + 7 > 47. By Langrange's theorem, 

there exist integers a,b,c,d such that 

8k + 7 = a 2 + b 2 + c 2 + d2 • 

And we have proved that in order that an odd natural number 

be the sum of the squares of four nonvanishing integers it 

should not be any of the number 1,3,5,9,11,17,29 and 41. 

This implies that any odd natural number of the form 

n = 8k + 7 and > 41 is the sum of the square of four 

nonvanishing integers. 

Next we consider the second case where n is an even number. 
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3. 4: 

An even natural number n is the sum of the squares of 

natural numbers if and only if it is none of the 

h h hnumbers 4 .2, 4 .6, 4 .14 where h = 0,1,2 •••• 

Proof: (By contradiction) 

Let S4 be the set of all positive integers that can be 

written as the sum of the squares of four nonvanishing 

numbers. 

Assume 4h .me SJ.j where h ~ ° and mE {2,6,14}. 

Therefore m is of the form 4k + 2 = 2(2k +1) where k =0,1,3 

Let h' be the least of such integers. 

Since {2,6,1L1} 4S4 implies h' ~ 1 ­

Hence 4h .m = a 2 + b 2 +c 2 + d2 where all a,b,c,d >0 

4h .2(2k+1) = a 2 +b 2 + c 2 +d 2 

But 4h '.2(2k + 1) =. ° (mod8) because hI> 1. 

Therefor e a, b , c , dar e a 11 eve n i e a = 2a 1 ' b = 2b 1 ' 

c = 2c1 and d = 2d 1 where a1' b 1 ' c1 ,d 1 are nonvanishing 

2integers. Hence 4h '-1 m = 81 2 +b 1 + c1 2 +d/
 

4h ' -1 mE S l~
 

Contrary to the choice of hI.
 

Therefore 4hm 1S4 where m= 2,6,14.
 

Now let n be an even natural number different from 4h .2,
 

Lh h _ 
~ .6, 4 .14 Vlhere h- 0,1,2 •••
 

h"
Let 4 be the highest power of the number 4 which divides 

the number n . Then vIe ha ve n = 4h " m v>There m t D(mod 4) 

Therefore m = 4k + 1 , m = 4k+2 or m = llk + 3. 
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m = 4k + 1 and k is eve n i . e k = 2t then m = 8t + 1 E: S4 

proved previously. In addition if m {1,9,17,41} then 

4hmE. S4. 

But since n is even and m ~ 0 (mod4), then h" >0 

Clearly 4E:S 4 , 4.17 = 68 = 12 + 32 + 32 + 72 and 

4.41 =	164 = 12 + 12 +9 2 + 92 

Hence	 4h .1 = 4(2h - 1)2 

4h .9 = 4(2h - 1 .3)2 

4h .17 = 4.17(2h - 1)2 

Llh .41 = 4.41(2h - 1 )2 are all in S4. 

Thus if m = 4k + 1 and k is even then n = 4hm E S4.
 

Now if k = 2t + 1 which is odd then m = 8t + 5 as proved is
 

in S4 provided m ~ 5 Or m t 29.
 

Since n = 4hm is even and m is odd this implies h > o.
 

Hence 4.5 = 20 = 12 + 12 + 32 + 32
 

and 4.29 = 116 = 12 + 32 + 52 are both in S4. 

Thus m = 4k + 1 with k is odd is in S4' 

If m = 4k + 2 and k is even i.e k = 2t then m = 8t +2.
 

Since n * 4h .2 implies t>O. Let t = u + 1 where u > O.
 

Then we have m = 8(u + 1) + 2 = 8u + 6 + 22 .
 

Since 8u + 6 is the sum of three nonvanishing squares
 

implies m = 4k + 2 t S4.
 

If m = 4k + 2 and k is odd i.e k = 2t + 1 the we have
 

m = 8t +6.
 

Since n + 4h .6 and n t 4h .14 we must have t >2.
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+ 2 where u > O. 

= S(u+2) + 6 = 8u + 6 + L1 2 • Since (Su+6) is the 

sum of three nonvanishing squares, this implies m t S4' 

If m = 4k + 3 and k is even i.e k = 2t , we have
 

m = 8t + 3.
 

As proved previously m t S4 provided m f 3 or m f 11.
 

Since n is even and m is odd implies h > O. Therefore
 

4.3 = 12 = 12 + 12 + 12 +32 

4.11 = 44 = 12 + 32 + 32 + 52 are both in Sv. .. 

hThus if m = 4k + 3 then n = lj m E. S4' 

This complete the proof that an even natural number n is 

the sum of four nonvanishing squares if and only if it is 

none of the number 4h . 2, 4h 6 , 4h . 1 4 where 

h = 0,1,2, .••.. 

~ Representation Of Integers As The Sum Of The Squares Of 

Four Different Integers. 

In this section we will consider the problem of 

representing a positive integer n as the sum of the squares 

of four different integers. 

Theorem 3.5: 

The only integers n> ° not the sum of four different 

squares greater than or equal to 0 are 4h a, where 

h = 0,1,2 .•. and a = 1,3,5,7,9,11,13,15,17,19,23,25,27,31, 

33,37,43,47,55,67,73,97,103,2,6,10,18,22,34,58,82. 
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the theorem we need the following lemmas. 

3.04: 

An odd integer A is a sum of four unequal squares if 

only if 4A is a sum of four unequal odd squares. 

Proof: 

!'{ Let A denote a positive odd integer. The system of 

equations, 

x = x + Y + Z + W 

Y = x + y - z - w 

z = x - y + Z - W 

w = x - y - z + W , definesa (1,1) correspondence 

between the set of integers x,y,z,w satisfying 

2 2A = x + y2 + z2 + w

and the set of integers X ,Y ,Z , W satisfying 

4A = X2 + y2 + Z2 + W2 , X + Y +Z + W = O(mod4) and 

X , y ,Z ,\v are odd. 

Let U = { (x,y,z,w) Ix2 + Y2 + Z2 + W2 = A} 

V = { (X, Y, Z, \-1[) IX2 + y2 + Z2 + W2 = 4A 

X + Y + Z + W =4k; X ,y , Z , \'1 are odd} 

If we write the above system of equationsin a matrix form 

we have 

X 

y 

Z 

W 

=
 
-1 -1 

-1 -1 

-1 -1 

x 

y -1 -1 

z I wi th M= -1 -1 

H -1 -1 
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F : U----7V be defined by F(u) = Mu for u E. U . 

F : U ~ V define a 1-1 correspondence between U and V. 

prove the claim, we will show that 

If u' = (x',y', z', w') E. U then F(u) E V 

2) F is 1-1
 

3) If v' = (X', Y', Z', W') f V then F- 1(v' ) E U.
 

1) Let (x', y , , z ' , w') E.. U 

Now X2 + y2 + Z2 +W2 

= (x'+Y'+z'+w,)2 + (x'+Y'-z'_w,)2 + (x'_y'+z'_w,)2 

+ (x'-y'-z'+w,)2 

= (x,2 +y,2+ z,2 +w,2 +2x'y'+ 2x'z' +2x'w' +2y'z' 

+ 2y' w' +2z 'vI' ) 

+	 (x,2 + y,2 +z,2 + w,2 +2x'y' _ 2x'z' - 2x'w' -2y'z' 

- 2y'w' + 2z'w') 

+ (x,2 + y,2 + z,2 + w,2 -2x'y' _ 2x'z' - 2x'w' - 2y'z' 

+ 2y'w' - 2z'w') 

+ (x,2 + y,2 + z,2 + w,2 -2x'y' - 2x'z'+ 2x'w' + 2y'z' 

- 2y' ~v' - 2 z 'w ' ) 

4(x,2 + y,2 + z,2+ w,2) = 4A= 
X+Y+Z+W 

=(x'+Y'+z'+w')+(x'+Y'-z'-w')+(x'-y'+z'-w')+(x'-y'-z'+w') 

= 4x' .= 0 ( rno d 4) . 

Since A is odd we must have three of the integers say 

x',y',z' are odd and w' is even, or three of the integers 

say x', y', z'are even and w' is odd. For the case 
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y', z' are odd and w' is even we have, 

= x'+y'+Z'+H" =(2k+1)+(2h+1)+(2m+1)+(2n) 

= 2(k+h+m+n+1) +1 \'lhich is odd 

= x'+y'-z'-w' =(2k+1)+(2h+1)-(2m+1)-(2n) 

= 2(k+h-m-n) + 1 which is odd 

Z = x'-y'+z'-w' =(2k+1)-(2h+1)+(2m+1)-(2n) 

= 2( k-h+m-n) +1 which is odd 

W = x'-y'-z'+w' =(2k+1)-(2h+1)-(2m+1)+(2n) 

= 2(k-h-m+n-1) +1 \'lhich is odd 

Similarly for the case x',y',z' are even and w' is odd we 

will have X,Y,Z,W are all odd. 

Therefor e gi ve n u' = (x', y , Z ' , w') E u then F (u ) E V. 

2) Matrix M has an inverse because determinant M f o. This 

implies the mapping F :U~V is 1-1. 

3) Now we will show that if v'=(X',Y' ,Z' ,W') e V then 

F- 1 (v I) Eo U 

M- 1 = 1/ !J 

-1 -1 

-1 1-1 

-1 -1 

If we mUltiply M- 1 to the left of both side of the matrix , 

we have 

( 1/4) I x
\ 1 1 1 11 

-1 -1 =r~: ; 
-1 j lZ' 

I: -1 1 

-1 -1 1 \4 Ij L w 
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= (1/4)(X'+Y'+Z'+W') 

y = (1/4)(X'+Y'-Z'-W') 

z = (1/4)(X'-Y'+z'-W') 

w = (1/4)(X'-Y'-Z'+W') where all x,y,x,w are integers. 

Y'+	 Z'+ W' = 0 (mod4)
 

X'+Y'+Z'+W' = 4k for some k
 

= (1/4)(X'+Y'+Z'+W')
 

= (1/4)(4k) = k which is integer.
 

y	 = (1/4)(X'+Y'-Z'-W')
 

= (11 4) ( ( X' +Y') +( X' +Y' - 4k ) )
 

= (1/4)(2(2k 1+1) + 2(2k 2 +1) - 4k)
 

= (11 LJ) (4k 1 + Llk 2 - 4k + 4)
 

= k 1 + k 2 - k +1 which is integer.
 

Similarly it can be shown z and ware integers.
 

Therefore when we square each x,y,z,w we have
 

x2 + y2 +z2 + w2
 

= (LV 16) (X' 2 + Y' 2 + Z' 2 + W' 2) =( 11 4) ( 4A) = A.
 

Hence given v'=(X',Y',Z',W')E: V then F- 1 (v') E u.
 

Finally we need to show that if x2 ~ y2 t z2 t w2 then
 

X,2 f y,2 • Z,2 + W,2 and conversely.
 

2
First assume x f y2 t z2 f w2 •
 

By symmetry we need to consider only two cases.
 

Case 1 :
 

Assume X2 = y2 then X = Y or X = -Yo
 

For X = Y x + Y + Z + W = x + y - z - w
 

2z = -2w
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implies z = -w
 

implies z2 = V/2
 

Contradiction.
 

For X = -y , x + Y + Z + W = -x - y + Z + W
 

implies x = -y
 

implies x2 = y2
 

Contradiction. 

Assume y2 = Z2 then y = Z or Y = -Z 

For	 Y = Z , x + y - z - w = x - y + Z - W
 

implies 2y = 2z
 

implies Y = z implies y2 = z2
 

Contradiction.
 

For Y = -Z, x + y - z - w = -x + y - z + W
 

implies 2x = 2w
 

2 2
implies x = w implies x = w

Contradiction. 

We can show that the converse of this is also true by using 

similar method of proof. 

This complete the proof of Lemma 3.04. 

Lemma 3.05: 

An odd integer A is a sum of four positive squares if 

and only if 2A is a sum of four different squares. 

Proof: 

Let A denote a positive odd integer. The system of 

equations, s = x + Y , t = x - y, u = z + W , v = z - w 
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tdefine a (1,1) correspondence between the set of integers 

satisfying, 

2A = x + y2 + z2 

s, t, u, v satisfying 

22A = s2 + t + u 

Let R = {(x,y,z,w)lx 2 + y2 

S = {(s,t,u,v)!s2 + t 2 

If	 we write the system of 

have 

sl r1 1 a a 

t I = r 1 -1 a a 

:J l: 0 

0 

1 

1 

1 

-1 

2+ w and the set of integers 

2 2+	 v ,s = t f U :: v(mod2) 

2+	 z2 + w = A}
 

2 2
+ u +	 v = 2A; 

s .= t f U :: v(mod2)} 

equations in a matrix form we 

x 

y 

z 

w 

where B 

1 1 0 a 

1 -1 0 a 

0 a 

0 a -1 

Let F : R~S be defined by F(r) = Br for r e R.
 

Claim: R-+S define a 1-1 correspondence between Rand S.
 

To prove the claim, we will show that,
 

1) If u' = (x', y , , z ' , w' ) R then F (r ) S.
 

2)	 F is 1-1 

3)	 If S" = (s',t',u',v')fS then F- 1(S") C R. 

Let (x',y',z',w') E R 

2 2Now s2 + t 2 + u + v

= (x,+y,)2+ (x'_y,)2 +(z'+w,)2 +(z'_w,)2 

= x,2 + y,2 + 2x'y'+x,2 + y,2 _ 2x'y'+z,2 + W,2+2Z'W'+Z,2 

+w,2 - 2z'w' 

= 2(x,2 +y,2 +z,2 +w,2) = 2A 
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t ( x ' +y , ) -(x'-y') = 2y .=O(mod2) 

- v = ( z ' +w ' ) -(z'-w') = 2w .=O(mod2) 

= (x'+y') -(z'+w') t O(mod2) 

= 

given r'= (x',y',z',w') €: R then F(r') E. s. 

B	 has inverse because detB t o. This 

F	 : R~ Sis 1-1. 

3)	 Now we will show that if s" =(s',t',u',v') E. 

then F- 1 (sll)ER 

B- 1 =( 1/2) o o 

-1 o o 

o 0 

o o -1
 

If we multiply B- 1 to the left of both side of 

equation we have, 

( 1/2) 

o 

o 

-1 

o 

o 

o 

o 

o 

o 

-1 v ' 

s' 

t ' 

u ' 

then x ' 

y' 

z ' 

vi' 

= 

= 

= 

= 

( 1/2) 

( 1/2) 

( 1/2) 

( 1/2) 

(s'+t') 

(s'-t') 

(u'+v') 

(u'-v') 

Clearly x', y , , z ' and w' are integers. 
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=
 

implies the 

S 

the matrix 

x' 

y' 

z ' 

w' 



r s'= t'(mod2) implies s'-t' = 2k for some k 

(1/2)(s+t) = (1/2) (2k+t+t) =( 1/2)(2k+2t) = k +t 

integer. 

y' = (1/2)(s'-t') =(1/2)(2k) = k which is integer 

v'(mod2) implies u'-v' = 2k for some k 

z' = (1/2)(u'+v') = (1/2)(2k+v'+v') = k+v' which is 

w' = (1/2)(u'-v') = (1/2)(2k) = k \'1hich is integer 

when we square each x,Y'z'w' we have 

z,2 + w,2 

= (1/4)(s2	 + t 2 + 2st) +(1/4)(s2 + t 2 - 2st) 

+ (11 4) (u 2	 + v 2 + 2u v) + (u 2 + v 2 - 2v) 

=	 (21 4) ( s 2 + t 2 + u 2 + v 2) = (1/2) ( 2A) = A.
 

sit =(s',t',u',v') E. S then F- 1(slt) € R.
 

2 2	 2we need to show if x,Y,z,w > 0 then s2 l t ~ u f v

t 2 2 2conversely if s2 f t u + v then x,Y,z,w > O. 

to consider only four cases. 

Case 1: 

Assume x2 ,y2, z2 ,w 2 > O. But s2 = t 2 

This implies s = t or s = -to 

If s = t then x + y = x - y 

implies y = a ;Contradiction since y>O . 

If s = - t then x + y = Y - x 

implies x = 0; Contradiction since x>O. 

Case2: 

2 2 2Assume x	 ,y2 ,z2 ,w > a but s2 = u . 
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This implies s = u or s = -u
 

If s = u, then s - u = 0 impossible since s f u(mod2)
 

If s = - u, then s + u =0
 

implies (x + y) +(z + w) = 0 impossible since x,y,z,w >0
 

Assume x2 ,y2 ,z2,w2 >0 but t 2 = u 2
 

This implies t = u or t = -u
 

For t = u then t - u = 0 impossible since t *u(mod2)
 

Since t f u(mod2) implies t-u = 2k implies t-u = 2k + 1.
 

Then if t = -u then t + u = 0 

t - u = 2k + 1 which imply 2t = 2k+1 

which is impossible. 

Case 4: 

Assume x2 , y2 Z2 , w2 > 0 but t 2 = v2 • 

This implies t = v or t = -v. 

If t = v then t - v = 0 , impossible since t $ v (mod2). 

Since t *v(mod2) implies t - v = 2k implies t-v= 2k+1. 

Thus if t = -v then t + v = 0 and 

t - v = 2k + 1 which imply 2t =2k+1 

which is impossible. 

Lemma 3.06: 

If 2A possesses a representation 2A = s2 + t 2 + u 2 + v 2 

where s,t,u,v + 0 and s2 > (3A/2) then A is a sum of four 

unequal squares. 

Proof: 

Assume 2A = s2 + t 2 + u 2 + v2 , where s, t, u, v + 0 and 

s2 > (3A)/2. 
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Assume the contrary, that is assume A = x 2 + y2 + z2 + w2 

not a sum of four unequal squares. 

1 :
 

2
Assume x = y2 then x = y or x = -y
 

If x = y then t = 0 implies stuv = 0
 

If x = -y then s = 0 implies stuv =0
 

A contradiction.
 

Case 2:
 

2
Assume z2 = w , then z = w or z = -w ,
 

this implies stuv = 0, a contradiction.
 

Case £
 
2Assume x = z2, then x= z or x = -z 

If x = z then s = x+y , U = x + W, t = x-y , v = x-w 

s + t = 2x 

u + v = 2x 

Hence s + t - u- v = O. 

If x =-z then s = x+y, U = -x+w, t = x-y , v =-x-w 

Hence s + t + U + v = 0 

The rest of the cases will result in 

e1 s + e2 t + e3u + e4v = 0, where the ei = + 

Now if 2A = s2 + t 2 + u 2 + v2 nnd s,t,u,v f 0 then 

stuv + 0 which implies case 1 and case 2 do not occur. 

For case 3 , we consider 

(It I + lui + Ivl )2 

= t 2 + u 2 +v 2 + 2 It I u + 21 t I Iv I + 2 Iu \ Iv I 
2 2 2< t + u + v + (t 2 + u 2 )+ (t 2 + v 2 ) +(u 2 + v 2 ) 
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+ u 2 + v 2 ) 

3(2A - s2) 

c	 2(3A) - 3s 2 

2.2(3A/2) - 3s 2 

4s 2 -3s 2 = s2 

( It I + lu I + IvI)2 < s2. 

the square root of both sides, we have 

lu I + IvI - IsI < 0 which would imply case 3 does 

not occur since +t +u +v +s = O. 

. 222 2 ~Therefore If 2A = s + t + U + v ,s,t,u,v T 0, 

s2>(3A/2) then A is the sum of four unequal squares. 

This complete the proof for Lemma 3.06. 

4.The Total Number of Representations As The Sum of Four 

Squares. 

In this section we are going to find the total number 

of representations of a positive integer n as a sum of four 

squares. 

Throughout this section the symbols u" u2' u3,u4' 

h, m, a, a, b, (3, a" a" b" /6, will denote positive odd 

number s . 

Theorem 3:6: 

Let A(u) be number of positive solutions of 

4u = u,2 + u 22 + u 32 + u 42 . 

Then A(u)= ~(u) where ~(u) = L d, the sum of divisors of u.
diu 

Proof: 

We claim that all the solutions of the given equation 
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can be obtained when we decompose 4u into 2h + 2m in all 

posible ways and then solve u1 2 + u2 2 = 2h ; 

2 2
u3 + u 4 = 2m 

To verify the above claim,first note that since u1' u 2 

are odd	 He have u1 = 2k +1 , u 2 = 2m + 1. 

2 2Hence u 1 + u 2 

= (2k+ 1) 2 + (2m+ 1) 2 

2= 4( k 2 + k + m +m) + 2
 

= 2(2k 2 + 2k +2m 2 +2m +1) = 2h where h is odd.
 

Similarly, u 3
2 + u42 = 2m where m is odd.
 

Thus if U"1, u2 u 4 is a solution of
, u3 '
 
2 2 2 2 - ­

u +u +u +u 4u then U;, u2 and123 4 = u 3' u 4 

are solution for u 2 + u 2 2h and u 32 + u 42 2m1 2 = = 
respectively, where 2h + 2m = 4u. 

2 2On the other hand if h is an odd number and 2h = u 1 + u 2 

the numbers u 1 , u 2 are odd. 

For assume u1 ' u 2 are both even i.e u1 = 2v', u2 = 2v" 

then 2h = (2v,)2 + (2v")2 

= 4v' 2 + 4v II 2 

2h = 4(v,2 + v"2), 

a contradiction because 414(U' 2 + u"2) but 412h since h 

is odd. 

Also if we assume one of the numbers is even say u 1 = 2 v' 

and one	 is odd say u 2 = 2v" + then 

2h = 2(2v,2 + 2v"2 + 2v") + 1. 

This is	 a contradiction since 2h is even but 
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2(2v,2 +2v"2 +2v") +' is odd. 

Similarly if m is odd and 2m = u3 2 + u42 then u3 and u4 

are both odd. 

Thus we see that, in order to find all representation of 

the number 4u as the sum of four odd squares, it is 

sufficient to find all possible representation of 4u as a 

sum of the form 4u = 2h + 2m where hand m are both odd 

numbers, and then to find the number of representation of 

both numbers 2h,2m as the sum of two squares. 

2Now let U(n) = Number of solutions of n = x + y2. 

We know from the previous chapter, 

!li.nl = L X (d), 
it din 

U(2h) = L (a) for u,2 + u2 2 = 2h
 
4 al2h
 

U(2m) = L (b) for u 32 + U 42 = 2m
 
4 b 12m
 

Therefore	 , 

A(u) = L U(2h) U(2m)
 
2h+2m =4u 4 4
 

= I I X(a) L X(b)
 
h+m =2u a r 2h b 12m
 

= L L X(a) L X(b)
 
h+m =2u afh blm
 

= I	 ( I X(ab) )
h+m = 2u	 a Ih
 

blm
 

L X (ab)= 
a a +b =2u 
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the last equality hold because 

alh implies h = aa 

blm implies m = bp 

Thu s A(u) = 2: X ( a b ) 
a a +b{3=2u 

Now we divide the summands in the summation above into two 

cases the first consisting of the summands for a f band 

the second of those for which a = b. 

Case 1: a t b 

In this case, the equation 2(u/a) =a+phas (u/a) 

solutions (a = 1,3, ....• 2(u/a) -1) and the (3 determined 

therefrom) ; 

Since X (aa) =1, the contribution of each of the u/a 

solutions is 1. 

Thus the total contribution in this case is 

L u la =L d =O""(u ) 
a/u diu 

Case2 alb 

In this case we are going to show I X(ab) = 0 
a a +b,G=2u 

a >«)b 

By symmetry, it suffices to show L X(ab) = 0 
a a +b{J=2u 

a > b 

and for this it suffices to pair off the solutions of 

a a + bfJ = 2u , a>b one to one in such a way that for every 

quadruple a,b, a,/J , we assign a quadruple 81' b 1 ,' a 1 

such that X(ab) + X( a 1b 1) = 0 
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o achieve this goal, a rule is specified such that 

to every quadruple a, b, a,p of positive odd numbers, 

e assign quadruple a1' b 1 , a 1 , {J1 such that 

+ b 1131 = 2u , a 1 > b 1 ; 

And also for quadruples a1,b 1 , a l' fJ1 the rule 

assign the original quadruple a,b, a 'fJ. 

And the equation must satisfies the following, 

+ X(a1b1) = O. 

start with the first rule. 

(> 0) where [X]iS the greatest integer < x 
n i~J 

quadruples (*) be the following
 

a1 = (n+2)a + (n+1)/3
 

a1 = -na + (n+1)b
 

b 1 = (n + 1) a + n{3
 

{31 = (n+1)a - (n+2)b 

Claim 1 

Each of these numbers is odd 

a1 = (n+2)a + (n+1){3 

= n a + 2 a + n{J +P 
= n(2k+1) + 2(2k+1) + n(2m+1) +2m+1 

= 2kn + n + 4k+ 2 + 2mn + n + 2m + 

= 2kn + 4k + 2 + 2mn + 2n + 2m +1 

= 2(kn +2k + + mn + n +m) + 1 

= odd. 
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a 1 = -na + (n+1)b 

= -n(2k+1) + (n+1)(2m+1) 

= -2kn-n +2mn+2m+n+1 

= 2 (-kn +mn +m) + 1 

= odd 

b 1 = (n+1)a + n{3 

= (n + 1) ( 2k + 1) + n ( 2m + 1) 

= 2kn + 2k + n+ 1 +2mn +n 

= 2(kn+1+n+mn) + 1 

= odd 

{J1 = (n+1)a - (n+2)b 

= (n+1)(2k+1) - (n+2)(2k+1) 

= 2kn + 2k + n + 1 - 2kn -4k-n-2 

= 2(-k-1) + 1 

= odd. 

Claim 2: 

Each of these number is > 0 

81 = (n+2)Cl + (n+1)pand b 1 = (n+1)a + nfJ 

are obviously> O. 

a 1 = -na + (n+1)b 

Since n implies b > n=[8 ~ b] a:b­

b > (a -b) n 

b > an -bn 

-an + b + bn > 0 

a 1 = -a n + (n + 1) b > 0 

Buta1 being odd cannot be equal to zero. Consequently U 1>O. 
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fJ1 = (n+1)a - (n+2)b
 

=[---L1 implies n+1 >--!2..~ n
 
a-b] a-b
 

(n + 1 ) (a -b) > b
 

na + a -nb - b>b
 

(n+1)a - (n+2)b = /31 > 0
 

are going to show
 

a 1 a. 1 + b 1 fJ 1 = 2u.
 

+	 b 1 {31 

= -n(n+2)aU - n(n+1)a{3 + (n+1)(n+2)ba +(n+1)2bp 

+ (n+1)22aa + n(n+1)b{3 - (n+1)(n+2)ba - n(n+2)b{3 

= ((n+1)2 - n(n+2)) (aa + b(3) 

= a a + bfJ
 

= 2u.
 

also have a1 > b 1 • To see that we have,
 

(n+2)a + (n+1 y3 > (n+1)a + nf3
 

na +2 a + n f3 + f3 > n a + a + n p
 
a 1 > b 1 

Now we are going to showf b 1 ~=n. 

La 1- b ~ 

r b 1 J = (n+1)a + nG
 
lal- b 1j [ (n+2)a + Cti+1){J -Cn+1)a - np-J
 

= [ n a + a + nfJ 
n a + 2a + np + f.3 - n a - a - np ] 

= (~C:+ (J) + a. ] 
U+f3 

= 
[ n( ~ :g~---+--- a ~p ] 

since .-E:.- <= [	 n : ~ (JJ= n, U+f3 
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If we substitute the value of a1' 0. 1 ' bl' ~1 

in the quadruples (*) ,we should have a , b , a. , {3 • 

To see that we have 

(n+2) a 1 + (n+ 1 ){jl 

= (n+2)(-na +(n+1)b) + (n+l)«n+l)a - (n+2)b) 

= -na(n+2) + (n+2)(n+1)b + (n+1)2a - (n+1)(n+2)b 

= a(-n(n+2) + (n+1)2) 

= a. 

-n a 1 + (n + 1) b 1 

= -n «n+2)a + (n+l){J ) + (n + 1) ( (n + 1) a +n p ) 
= -n(n+2)a - n(n+1){3 + (n+1)2 a + (n+1)n{3 

= a ( -n (11 + 2) + (n + 1) 2) 

= a. 

(n+1) a 1 + n {Jl
 

=(n + 1) ( ( -n a) + (n + 1) b) + n ( (n + 1) a - (n + 2) b )
 

= -na (n+l) + (n+1) 2b + (n+1 )na = n (n+2)b
 

= b«n+l)2 - n(n+2))
 

= b. 

(n+1)al- (n+2)b 1 

= (n + 1) ( (n + 2) a + (n + 1) (3) - (n + 2) ( (n + 1) a + np ) 

= (n+1) (n+2) ex. +(n+1) 2f3 - (n+2) (n+1)a - (n+2)n{3 

= (3«n+1)2 - n(n+2))
 

= {3 •
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are going to show X(ab) + X(a 1b 1 ) = 0 

and w we have 

(Y-1 ) (w-1 ) i: 0 (mod4) 

'11 + 1 0 (mod lj)-
vw =: Y +w - 1Cmod4) 

Hence we ha ve , 

a a ; a + - 1Cmod4) 

b[3 = b + - 1 (mod4) 

(a + a - 1) + (b+{3-1) :. a a + b f3 (rnod4)
 

2u (mod4)
-
_ 2 (mod4)
 

(a + a -1) + (b +p-1) :: 2 (mod4)
 

a + b + a _ 0 (modLf)
+P 

ab + a1b1 :. (a + b -1) + ( 81 + b 1 -1) 

_ (a+b-1)+((n+2)a +(n+1){3 +(n+1)a +n{3 -1) 

a+b +n a +2a + n(J +{J+na + a + n f3 + 2-
:: a + b + (2n + 3) U + (2n+ 1) f3 + 2 

- ) a2n (U+{3 + +b+U+f.3+2 + 2 

(modLI)= 0-

This implies ab + a1b1 O(mod2) which-
implies X(ab) - X(a 1b 1 )= 

This complete the proof of the theorem that 

A (u) = a-(u). 

Corollary 3.7:
 

If u is a positive odd integer, then the number of
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all possible representation of 4u as a sum of four odd 

squares (positive or negative) is , 

v( 4u ) = 16 0- ( u ) 

Proof: 

In the proof of the theorem we have seen that the 

number of positive odd solutions of 

4u - u 2 + u 2 + u 2 + u 2 i s - 1 2 3 4
 

A(u) = L U( 2h) U( 2m) ,

-4­2h+2m = 4u 4 

where U(2h) and U(2m) is the number of positive solutions 

of u1 2 +u2 2 = 2h and u3 2 +u42 = 2m respectively. 

2Now if v = 2k+1 is odd, then in the	 equation 2v = x + y2, 

2x and y must be odd. For 2(2k+1) = x + y2, then both x and
 

yare odd.
 

For assume x andy are even where x = 2h and y = 2n,
 

then x 2 + y2 = 4(h 2 + n 2 )
 

But 4k+2 = lj(h 2+n 2 ) and 4f4k+2 but 414(h2+n2).
 

Contradiction. 

If we assume one of the integer is even, say x = 2s and one 

is odd say y 2b + 1 , then we have,=
 
x2 + y2 = 4s 2 + 4b 2 + 4b +
 

4(s2 + b 2 + b) +
= 
Bu t 4k + 2 = 4z + 1 where z = (s 2 +	 b 2 + b) 

Therefore both x and y must be odd. 

2Thus the number of solutions of equation 2v = x + y2 

equals four times the number of positive solutions in which 
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positive number. Hence the total number of 

odd solution	 of 

4u = u 12 + U 2 2 + U 32 + U 42 i s 

V( 4u) =	 L 4 (~( 2h)) 4 (U~2m)) 
2h+2m= 4u 

= 16 I U( 2h) U.il.m..2.
 
2h+2m = 4u 4 4
 

= 16a-(u) 

Theorem	 3.8: 

r 4( 2u) = 3r 4(u ) 

Proof: 

Consider the equation; 

1) 2u - x 2 + x 2 + x 2 + x 2 - 1 234 

Since 2u is even two of the xk must be even and two are 

odd. 

Assume all the xk are even. 

2u - 2k 2 + 2k 2 + 2k 2 + 2k 2 - 1 234
 

- 2(2k 2 + 2k 2 + 2k 2 + 2k 2 +2k 2)
- 1 2 3 4 4
 

2(k 2 + k 2 + k 2 + k 2)
u = 1 . 2 3 4
 

Contradiction since u is odd.
 

Assume Rll the xk are odd.
 

2u = (2k 1 + 1)2 + (2k 2+1)2 + (2k +1)2 + (2k 4+1)2
3 
222= 2(2k 1 + 2k 1+ 2k 2 + 2k 2 + 2k~ +2k? 

-' .) 

+	 2k 42 + 2k 4 + 2 )
 

2 2
u = 2(k 1
2 +	 k 1 + k 2 + k 2 + k 3 + k 3 + k 4

2 

+ k 4 + 1)
 

Contradiction since u is odd.
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three of the xk are even(or odd) and one 

odd(or even) , then we would have contradiction. 

Therefore the number of solution for the equation 

2u = x 1
2 + x 2

2 + X3 2 + x4 2 in which x1 and x2 are even 

x3 and x4 are odd is, 

_1_ r 4( 2u) = _1 r 4( 2u) 
2 I~	 6C 

Y1 = (x1 + x2)/2
 

Y2 = (x1 - x2 )/2
 

Y3 = (Xl~ + x4)/2
 

Y4 = (x3 - x4)/2
 

Now consider the equations, 

2) u _Y 2 + Y 2 + Y 2 + Y 2 - 1 2 3 4
 

Y2 + Y1 :: O(mod2)
 

Y3 + Y4 .=. O(mod2)
 

CIa im : 

a) Any solution of 2) is a solution of 1) 

b) Any solution of 1) is a solution of 2) 

a )	 Let y 1 ' Y4 be a solution of 2) andY2 ' Y3'
 

let x1 = Y1 + Y2'
 

x2 = Y1 - Y2'
 

x3 = Y3 + Y4'
 

x 4 = Y3 Y4'
 
2 2 2 2
then x +x + x3 + xl~1 2 

( - -) 2 --2 --2 --2 =	 Y1+Y2 + (Y1- Y2) + (Y3+ YI~) +(Y3-YI~)
 

- 2 - 2 -- -2 -2 - ­(=	 Y1 + Y2 + 3Y1Y2) +(Y1 + Y2 - 2Y1Y2) 
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(- 2 -2 - -) (- 2 - 2 - - )
+	 Y3 + Y4 +2y 3Y 4 + Y3 + Y Lt - 2y 3Y 4 

2 2 = 2 ( Y, 2 + Y2 + Y3 2 + Y4 ) 

= 2u. 

x, = Y, + Y2 =. O(mod2) implies x, is even. 

x2 = Y; - Y2 

= (2k-Y2) -Y2 since Y2 + Y2 = 21c for some k 

= 2(k -Y2) implies x2 is even. 

x3 = Y3 + Y4 = '(mod2) implies x3 is odd 

x 4 = Y3- Y 4 ,= (2k+' -Y 4) -Y4 since Y3 + Y4 - = 2k for some k 

= 2(k-y 4) + , implies x4 is odd. 

b) Let x" x2' x3' x4 be a solution of ,). And let 

Y, = (x, + x2)/2 

Y2 = (x, - x 2 )/2 

Y3 = (x3 + x4)/2 

Y4 = (x4 - x4)/2 

First note that all Y" Y2' Y3' Y4 are integers. 

Y, = (2k, + 2k 2 ) /2 = k, + k 2 is integer 

Y2 = (2(k,-k2 »/2 = k, - k 2 is integer. 

Y3 = [(2k, +1) +(2k2 +1)J/2 = 2(k,+k 2 +1) is integer 

Y4 = [(2k, + 1) - (2k 2+1)J/2 = [2 (k,-k 2 )J/2 is integer 

2 2 2
Now Y,2 + Y2 + Y3 + Y4

=[(x, +x2)/2J 2+[(x,-x2)/2J 2+ [(x3 + x4)/2J 2+[(x3-x 4)/2J 2 

=(,/4) (2x,2 + 2x22 + 2x32 + 2x42) 

-( '/2) ( x 2 + x 2 + x 2 + x 2)- . , 2 3 4
 

= ('/ 2 ) (2u) = u.
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X2)/2 + (x1 - x2)/2 = (2x 1)/2 = x1 

= 2k =. a (mod2) 

+ y 4 = (x 3 + x 4) 1 2 + (x 3 - x 4) 12 = (2x 3 ) 12 = x 3 

= 2k + 1 ;: 1(mod 2) 

Therefore ( 1/6) r 4(2u) is also the number of solution of 

the equation u _ y 2 + Y 2 + Y 2 + Y 2 - 1 234 

In the equation u _ y 2 + Y 2 + Y 2 + Y 2 - 1 234 

since u is odd , u :- 1 (mod 4) or 1.1 ;: 3 (mod 4) since all the 

integers can be written in the form of 4k , 4k+1, 4k+2, 4k+3. 

Case 1 :
 

If u = 1 (mod4) , one of Yk must be odd. And this can be
-
on 1Y Y3 0 r Y4 sin c e Y3 + Y4 ;: 1 (mod2) and 

Y1 + Y2 .= 0 (mod 2) • Therefore in this case we only have 

half of the number of possible solutions. 

Case2 : 

If u = 3(mod4), one of the Yk must be even and this too can 

be only Y3 or Y4 since Y3 + Y4 .= 1(mod2) and 

Y1 + Y2 = O(mod2).Hence in this case, we only have half of 

the number of possible solution. Thus the total number of 

solutions of the equation u = Y1 2 + Y2 2 + Y3 2 + Y42 with 

the restriction Y1 + Y2 ;: O(mod4) and Y3 + Y4 =. 1(mod2) is 

(1/2) r4(u) where r4(u) is the number of solution of the 

above equation without any restriction. 

Therefore we have, 

( 11 6) r 4( 2u) = (1 1 2) r 4(u )
 

implies r LI( 2u) = 3 r 4(u)
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Theorem 3.9: 

r 4(u) = 80-(u) 

r 4 ( 2hu) = 24 0- (u) for h > 0 

Remark. 

This determines r4(n) for n > 0, specially for odd n, 

r4(n) must be 8 times the sum of positive divisors of 

n,and for even n, 24 times the sum of the odd positive 

divisors of n. 

Proof: 

For n > 0, we have r4(2n) = r4(4n)
 

For consider the equation,
 

1) 4n = x 12 + x 2 2 + x 32 + x 42 the n e i the r a 11 the x k
 

are even or all the xk are odd.
 

Assume two of the xk are odd and two are even. 

4n	 = (2a+1)2 + (2b+1)2 + (2c)2 + (2d) 2
 

= 4a 2 + 4a + 4b 2 + L~b + 4c 2 + 4d 2 + 2
 

= 4(a 2 + a + b 2 + b + c 2 + 0 2 ) + 2
 

4n 4(a 2 + a + b 2 + b + c 2 + d 2 ) + 2 which is= 
impossible. 

Assume three of the xk are odd and one is even. 

4n = (2a+1)2 + (2b+1)2 + (2c+1)2 + (2d)2 

4(a 2 + a + b 2 + b + c 2 + c + d 2) 3=	 + 

4n 4(a 2 + a + b 2 + b + c 2 + c + d 2) + 3= 
which is impossible. 

For the case where three of the xk are even and one is odd, 
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result in 4n = 4(a 2 + b 2 + c 2 + d 2 + d) + 1 which is 

impossible. 

Consider the equation, 

2) 2n - y 2 + Y 2 + Y 2 + Y 2 -	 2 2 3 4 

where Y1 = (x 1 + x2)/2 , Y2 = (x1 - x 2 )/2 

Y3 = (x 3 + x4)/2 , Y4 = (x3 - x1.f)/2 

Claim:
 

a) Any solution of 2) is a solution of 1)
 

b) Any solution of 1) is a solution of 2)
 

a)	 Let Y1' Y4 be a solution of 2) andY2' Y3'
 

let x1 = Y1 + Y2 , x2 = Y1 - Y2
 

-
x3 = Y3 + Y4 ' x4 = Y3 - Y3 

Now x 2 + x 2 + x 2 + x 2123 4 

(- - ) 2 (- -) 2 - fi) 2 ( - - 2=	 Y1 + Y2 + Y1- Y2 - + (Y3 + 4 + Y3- Y4)
 

(- 2 -2
 = 2 Y1 + Y2 + Y3 2 + Y-42 ) 

= 2 (2n) = 4n. 

b)	 Let x1' x2' x3' x4 be a solution of 1) and 

let Y1 = (x1 + x2)/2 Y2 = (x1 x2)/2 

Y3	 = (x3 + x4)/2 Y4 = (x3 x3)/2 

2 2 2 2
Now Y1 + Y2 + Y3 + Y4

2	 2 2= [(x1 + x2)/2J +	 [(x1 - x2)/2J + [(x3 x4)/2J
 

2
+ [(x3 - x4)/2J
 

_( 4( 2 2 2 2
- 11) 2x 1 + 2x 2 + 2x 3 + 2x 4 )
 

( )( 2 2 2 2
= 1/2 x2 + x2 + x3 + x4 )
 

= (1/2) ( 4n) = 2n.
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r 4 ( 2n) = r 4 ( 4n ) • 

we h a ve r 4 ( 4u) = 16 CT (u) + r 4 (u )
 

in the equation,
 

2 222

4u =x 1 + x 2 + x 3 + x 4 ' 

if all the xk are even, the equation is then equivalent to 

2 2 2 2 u = z1 + z2 + z3 + z4 Zk = xk /2
 

the number of solutions is r4(u).
 

If the xk are all odd then the number of solutions is
 

16o-(u) by corollary (3.7).
 

So far we have	 r 4( 2u) = 3r 4 (u ) 

r 4( 2n) = r 4( 4n) and 

r 4 ( 4u) = 16 CT(U) + r4(u) 

It follows that	 3r 4(u) = r 4(2u) = r 4( 4u) = 16 CT ( u) + r LI (u ) 

3r 4 (u ) = 16 CT(U) + r4(u) 

2r 4(u) = 16 v (u ) 

r 4 (u) = 8cr(u). 

And from theorem (3.8) r4(2u) = 3rlj(u) and 

r4(u) = Sa-(u) 

It follows that 3rl~(u) = 3(8 CT (u)) = 2 LICT(u) 

r Lr ( 2u) = 2 4 CT (u )
r 

Finally for h>O, from r4(2n) = r4(4n) and 4(2u) =24 (u)
 

it folloHs that r11(2hu) = 4(2u) = 24CT(u).
 

Examples:
 

As an illustration of Theorem 3.9, consider u = 7.
 

Then CT(7) = 1 + 7 = 8, r4(7) = 8CT(7) = 8(8) = 64
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~ifferent representations of 7. 

+ 12 . The four summands have 4 distinct 

each nonvanishing integer has two choices 

(+1)2 and (+2)2 for a total 2 4 = 16 different 

of signs. Therefore the total number of 

representation of 7 is 4.16 = 64. 

consider n = 6 = 2h .u = 2 1 .3 . 

3,0'"(3) = 1 + 3 = 4. 

r4(2 1 .3) = 24 0'"( 3) = 24( 4) = 96.
 

6 = 12 + 12 + 22 + 02 .
 

The four summands have 12 distinct permutations and each
 

nonvanishing integer has two choices of signs, for a total
 

23 = 8. Hence the total representation of 6 is 12.8 = 96.
 

5.The Uniqueness of Essentially Distinct Representation 

In this section we are going to characterize the 

positive integers that can be written in exactly one way as 

a sum of four squares apart from order and sign of the 

summands. 

Let us denote Pk(n) the number of partitions of a positive 

integer n into k integral squares. The term partition 

implies that we do not consider distinct two decompositions 

of n into k squares in which the squares are merely 

permuted. Thus in this section we are concerned with the 

problem of finding all integers n such that P4 (n) = 1. 

One of the differences between the number of representation 

r4(n) and the number of partitions P4(n) is that when all 
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in a particular partition are different from each 

other and different from zero; to each such partition there
 

corresponds c4 = 4! 2 4 = 384 representations counted by
 

r4(n). Thus He have P4.c (r4(n))/384.
 

Theorem 4.22:
 

The only integers with a single partition into four 

squares are 1,3,5,7,11,15,23 and 4a r where a > a and r = 

2,6,14. 

Proof: 

_ 2 2 2First note that if n - x1 + x2 + x3 + x42 then 

4n = (2x 1) 2 + ( 2x 2 ) 2 + (2x3)2 + (2x4)2. Thus for every 

partition of n into four squares there corresponds a 

partition of ~n into four square, 1'1 en c e P4( 4n) .c P4(n ) . 

Recall that if n1 is an odd integer then, r4(n1) = 8 (T(n 1) 

and r4(2Kn1) = 24CT(n1) , k > 1 

and r4(2n) = r 4( 4n ) for any integer n. 

Novl P 4(n1 ~ (r4(n 1/384) = CT(n1)/48 

P4( 2n 1) ~ r 4 ( 2n 1)1384 = CT (n 1 )11 6 

P4( 4n 1) ~ r 4 ( 4n 1 )138 4 = 24 CT( n 1) = CT ( n 1) 116 

Thus if n f 0 (mod4), He have P4(n) ~CT(n)/48.c (n+1)I Lr8 

so that P4(n) > 1 if n > 48. 

If n = 4 (modS) , then 

P4( 4n 1) = P4( n) ~CT( n 1 4) 1 16 > « n1 4) + 1) 1 16 = (n + 4) 1 6 L! 

In this case P4(n) > 1 if n ~ 60. 

Thus it is sufficient to examine only the integers 

n + 0 (mod4) for n < 48, n: 4(mod8) for n < 60 and 

n = 0(mod8) . By doing so it turns out that none of the 
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- 4(mod8) leads to P 4(n) = 1. 

n.= O(mod4), Hith n < 48, we have P 4(n) =1 

1,2,3,5,6,7,11 ,14,15,and 23. 

If n 1 € {1,3,5,7,11,15}, we have 4n1 < 60 which implies 

hence P 4(4an 1 ) > 1 for a >1­

we have P4(4.23) = 3 > 1. 

> 1 for a > 1. 

For the integers n = 2,6,14 we have, 

P4 (2) = P4(6) = P4(1~) = 1­

Hence P 4(4a .2) = P 4(4a .6) = P 4(4a .14) = 1 for a > 1­

If n = 0 (modS), we write n = 4a .2m, where 2m is not a 

mu 1tip 1 e 0 f 8. P 4( n ) = P 4( 4a • 2m ) = P 4( 2m ) • 

Thus in order that P 4(n) = 1, we must have 2m = 2,6,14. 

Thus the proof is complete. 
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CHAPTER 4
 

SUM OF THREE SQUARES
 

1.Representation Of Integers As Sum Of Three Squares. 

In this chapter we consider the Representation of a 

positive integer as a sum of three squares. Unlike the 

problem of the Representation of an integer as a sum of 

two squares and four squares the representation of an 

integer as the sum of three squares is a much more 

difficult problem. 

The two representation problems are: 

1) What integers n can be represented as the sum of three 

squares? 

2) Find a formula for r3(n) , the number of representation 

of an integer n as a sum of three squares. 

In this chapter, we will only consider the first 

representation problem. For the second problem, due to some 

difficulties, we will be only able to give formulas for the 

number of representations of an integer as a sum of three 

squares. 

Diaphantus once stated that in order for the equation 

x1 2 + x2 2 + x3 2 = n to a have solution, n must not equal 

to (24k + 7). Later Bachet found that this condition was 

insufficient and added another condition. It was Fermat who 

finally succeded in formulating the correct condition for 

this problem. In 1636, Fermat stated that no integer of the 
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form 8k + 7 is the sum of three squares. 

The first attempt to prove that every integer which 

is not of the form 4h (8k+7) is representable as the sum of 

three squares was by Legendre in 1798. In 1801 , Gauss gave 

a complete proof and obtained a formula for the number of 

primitive representations for an integer as a sum of three 

squares. Gauss'proof depended on more difficult results in 

his extensive theory of quadratic forms. Other proofs have 

since been given, but none of them can be described as 

both elementary and simple. 

First we state the main result in this chapter; 

Main Theorem: 

A positive integer n is a sum of three squares if and only 

if n is not of the 4h (8k+7) where k, h are non-negative 

integers. 

First we are going to show that the condition is 

necessary, which we state in the next theorem: 

Theorem 4.1: 

2If n = x1 2 + x 2 + x3 2 , n > 0 then n is not of the 

form 4h (8k+7) where h,k > O. 

Proof: 

Suppose that there exist natural numbers of the form 

4h (8k+7) where h,k ~ 0 that are the sum of three square 

integers. 

Let n be the least of them. Then we have 

n = a 2 + b2 + c 2 where a,b,c are integers. 
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We will consider four cases. 

of the integers, say a is odd. Then we have,
 

a 2 + b 2 + c 2 = (2k 1 +1)2 +(2k 2 )2 + (2k )2

3

4k 2 + + 1 + 4k 2 + 4k 2= 4k 1 1 2 3 
2 2 k 3= 4( k 1 + k 1 + k 2 + 2 ) + 1
 

2 b 2 2
Hence a + + c is of the form 4t + 1 , and it is
 

different from n.
 

Case2:
 

Two of the integers say a,b are odd, then we have
 

2 b 2 2a + + c = (2k 1 + 1)2 + (2k 2 +1)2 + (2k 3 )2 

2= 4k 1
2 + 4k 1 1 + 4k 2 + 4k 2 + 1 + 4k 3

2 

222= 4(k 1 + k 1 + k 2 + k 2 + k 3 ) + 2 

2 + b 2 2Hence a + c is of the form 4t+2 and it is different
 

from n.
 

Case 3:
 

All of the integers are odd . Then we have a 2 + b 2 + c 2 is
 

of the form 4t + 3 and it is different from n.
 

Case 4:
 

All of the integers are even.
 

Let a = 2a', b= 2b', c= 2c' where a' b' c' are integers.
 

Hence 4h (8K+7) = h = (2a,)2 + (2b,)2 + (2c,)2
 

= 4(a,2 + b,2 + c,2) 

4h ( 8k + 7 ) = 4 (a ,2 + b' 2 + c' 2 )
 

4h - 1(Sk+7)= a,2 + b,2 + c,2
 

Contrary to the choice of n. 
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Thus we have proved that no natural number of the form 

4h (8k+7) where h,k ~ 0 can be the sum of three squares. 

On the other hand the proof that the condition is 

sufficient, i.e if n + 4h (SK+7), then n is the sum of 

three squares is difficult. This is due, to a large extent 

to the fact that in this case, we do not have identity 

analogous to Euler's identity which we have used in 

chapters 2 and 3 

In order to prove the condition is sufficient we 

need first to study some basic facts concerning quadratic 

forms. 

2. Quadratic Forms 

De fin i t i on ll. 1 : 

A homogeneous polynomial of degree 2 in n variables x1' 

x2,.·.,xn ' of the type Q(x1'.··'xn ) = .L. aijxixj
1,J=1 

with integer coefficients aij' is called an integral 

quadratic form in ~ variables ( or simply quaratic form). 

It is convinient to assume that aij = aji for all 

i,j =1 , ... ,n. Now if we take into account the symmetry of 

the coefficients, the quadratic forms look like this: 

Q(x1'··· ,x n ) 

= a1 1x 1
2 + 2812 x 1x2 + 2a13x1x3 + + 2a 1n x1xn 

2 2+ a22x 2 + 2a23x2x3 + ..... + 2a2nx2x3 + ... + ann xn 

From this it follows immediately that the quadratic form 

can be written in a matrix form: 

Q(x1' .... ,x n ) = XTAX , 
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where X = I x 1 

x2 

xn 

XT is the transpose of X and A = [aij] is the symmetric 

matrix of the coefficients of XiXj. It is called the 

coefficient matrix of Q(x1' .•. xn ). 

Definition 4.2: 

Let Q(x 1 , ..• ,x ) = XTAX be a quadratic form. Then 

rank of A is called the rank of quadratic form and the 

determinant of A is called the discriminant of Q in what 

follows it is denoted by l::::t. (Q) . 

Suppose now that Q = XTAX is a quadratic form. To simplify 

the quadratic form, we change the variables x1 , ... xn to 

new variables Y1' ... Yn to obtain another quadratic form 

Q1(Y1' •. ,Yn ) = y TA1Y with integral coefficient. First we 

assume that the old variables are related to the new 

variables by a linear transformation , 

" xi = .2. CijYj 
J=1 

where C = [cij] is a matrix with integral coefficient and 

det C = 1. In matrix notation this linear transformation 

can be written as X = CY. Since the det C = 1, the linear 

transformation is invertible and Y = BX , where B = [b ij ] 

is a matrix with the bij,s also integers. NOVI if we 

replace the xi's in the quadratic form 

Q(x1' .. x ) = XTAX by X = CY we obtain another quadraticn 
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form Q1(Y1' •• 'Yn) = (Cy)TA(CY) = yT(CTAC)Y • Quadratic 

forms that are related like Q and Q1 i.e that are 

transformed into each other by linear transformation X = 

CY, with C =[Ci~ is a matrix with integer coefficient and 

det C = 1, are said to be equivalent to each other, in 

symbols it is written Q '-"" Q1. 

The concept of equivalent forms is important enough to 

reformulate in the following definition: 

Defini tion 4.3: 

Let Q(x1' •• ,x ) = XTAX and Q1(Y1' •• ,Y ) = yTDYn n

be two quadratic forms, then we say that Q is equivalent to 

Q1 if there exist a matrix C = [cij] with integer 

coefficients and det C = 1 such that D = CTAC. 

Theorem 4.2: 

The relation of two quadratic forms being equivalent 

is an equivalence relation. 

Proof: 

1)Reflexive QV"Q 

Q(x1' ••• ,x n ) = XT./l.X V"'\ Q(x1' •. ,x n ) = XTAX 

Recall two quadratic forms Q = XTAX and Q'= yTDY are 

equivalent if D = CTAC for some m8trix C with det C =1. 

o 0 0 ..... 0Let C = I = 

o 

o 
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Th en A = CTACan dO"""" ° 
2) Symmetry : If Q V"'\ 0 1 then 01 '-"'" °
 
Since ° = XTAX"""" 01 = yTDY then D = CTAC where det C =1.
 

Now , A = (C- 1)TD(C- 1 ) and det C- 1 = (1/det C) 1­= 

Hen ce 01 = yTDY~O = XTAX. 

3)Transitivity: If 0""'01 and °1 "",", 02 then Q'-'" 02' 

°(x 1 ' ••• , x n) = XTAX '-"" °1 (y 1 ' ••• , y n) = YTDY 

where D = CTAC for some metrix C with det C =1. 

01(Y1""Yn) = yTDYV"'\02(Z1""Zn) = ZT BZ 

where B = pTDP for some metrix P with det P =1. 

Now 0(x 1 ' •• ,xn ) = XTAX'-'" 02(z1'" ,zn) = ZTBZ 

Since B = pTDP 

= pT(CTAC)P
 

= (pTCT)A(CP)
 

= (Cp)TA(Cp)
 

B = (Cp)TA(Cp) and det(CP) = (d.etC)(detP) = 1. 

Example: 

2 2
Let °(x 1 ' x 2) = x 1 + 2x 1x 2 + x 2 

tr [; ;] [:j
 
Let X t:1 ' [; ~J l:j, 
then x 1 = Y 1 ' x 2 = Y 1 + Y2 

2
Q1(Y1'Y2) = Y1 + 2(Y1 + Y2) + (Y1 + Y2)2 

2 2 
= Y1 + 2Y12 + 2Y1Y2 + Y1 2Y2 + 2Y1Y2
 

2 2
= lly 1 + 4y 1Y2 + Y2 . 
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If Q'-"'"'Q 1 then~(Q) =~(Q1) 

Proof: 

T TQ(x1""x n ) = X AX Q1(Y1"'Yn) = Y DY 

D = CTAC for some metric C with det C = 1 • 

.6(Q1) = det D = det(CTAC) 

= (detCT)(det A)(detC) 

= (det C)(detA)(detC) 

= 1(detA) 1 

=~(Q). 

Defini tion 4.4: 

A quadratic form Q(x1". ,xn ) is said to represent 

the number m if there exist integers x'1' •• ,x'n such that 

Q(x1 ', ••• ,x n ') = m. 

Theor ern 4. 4: 

If QV'" 01 then Q and Q1 represent the same numbers. 

Proof: 

Since Q = XTAX Q1 = yTDY then D = CTAC for some 

matrix C where det C =1. 

Assume m is representable by Q, then there exist integers 

x1', .•• ,x n ' such that Q(x1', ••• ,x n ') = X,T AX ' = m 

where X' =1 x1' 

x 2' 

xn ' 
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Let Y' = C- 1X' ,
 

then 0 1(Y , 1 ' •. , Yn ) = Y' TDy '
 

(C- 1X,)TD(C- 1X')=
 
= X,T(C- 1DC T)X'
 

= X,T(A)X'
 

= 0(x1',··,xn ') = m.
 

Exampl e : 

0(x1'x 2 ) = x 12 + 2x 1x 2 + x2 2 

lJ Y 20 1(Y1 'Y2) = 4y 12 
+ ,y 1Y2 + 2 

since D = CTAC and and det C =1.0V'"\°1 
c t :J 

m = 25 is representable by 0(x1,x2) since for x'1 = 2 , 

x'2 = 3 we have 0(2,3) = 22 + 2(2)(3) + 32 = 25. 

m = 25 is also representable by 01(Y1'Y2) , 

for Y'1 = 2, and Y'2 = 1 we have, 

4(2)2 + 4(2)(1) + 12 = 25. 

Remark: 

The converse of this theorem is not true, that is it 

is possible for an integer m to be represented by two 

inequivalent quadratic forms. 

Example: 

2 2Let 0(x1,x2) = x 1 + 161x 2 

Q1(Y1'Y2 = 9Y1 
2 

+ 2Y1Y2 + 18Y2
2 

m = 162 is represented by both Q and 0 1 since 0(1,1) = 162 

and 0 1(0,3) = 162. 

98
 



But Q and Q1 are not equivalent. Assume the contrary 

i.e Q~Q1 then Q = XTAX and Q1 = yTDY where D = CTAC for 

some matrix C with det C = 1. 

and det C = 
Let C = [: :J 
Now we have D = cTAC 

= [: 
y] T [1 0][: 1:J [: :J
w ° 161 

x2 + 161z 2 = 9 

xy + 161zw = 

y2 + 161w2 = 18 and also we have xw - yz = 

If we solve the above system of equations, the first 

equation requires z = 0, x = ~ 3, the second then yields 

1 2y = x- = ~1/3 and the third equation w = ~ 1/3. With an 

appropriate of sign, we find also xw - yz = 1 but y,w f Z. 

Therefore Q and Q1 are not equivalent. 

De fin i t ion 4. 5 : 

The Quadratic form Q(x1' .. 'xn ) is said to be positive 

definite if Q(x1' .. ,x n ) > ° for all integral n-tuples 

(x1' .. ,x n ) + (0,0, .. ,0). Q(x1' .. ,xn ) is said to be negative 

definite if Q(x1' .. ,xn ) < ° for all integral 

n-tuples (x1' .. ,xn ) t (0,0, .. ,0). 

Example: 

2Q(x,y) = x + y2 positive definite 
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Q(x,y) = _2x 2 - 2y2 negative definite 

2Q(x,y) = x _ y2 indefinite 

Theorem 4.5: 

If 0 V' 0 1 then 0 is positive (or negative) definite if 

and only if 0 1 is positive (or negative) definite. 

Proof: 

Since QV' Q1 implies Q1 and 0 represent the same 

number. Therefore it follows that if Q is positive definite 

then Q1 is also positive definite. 

Reduction of positive definite forms: 

We shall be concerned mainly with both binary 

quadratic forms (i.e forms in two variables) and ternary 

quadratic forms (i.e forms in three variables). 

Now we will restrict ourselves to the study of such forms. 

For convenience we shall write the binary quadratic form as 

2O(x,y) = ax + 2bxy + cy2. The discriminant of 0 is, 

?6 (Q) a= :I = ­ac b-

b 

Theorem 4.6: 

2A binary quadratic form O(x,y) = ax + 2bxy + cy2 is 

positive definite if and only if both a>O and 

6(0) = ac - b 2 >0. 

Proof: 

We consider all possible values of a and ~ (0). 

1) If a < 0 then Q( 1 ,0) = a < 0 
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Hence Q(x,y) is not positive definite. 

2) If a > 0 and ~ (Q) ~ a , then 

Q(-b,a)= ab 2_2b 2a + ca 2 

= _ab 2 +ca 2 = a(ac-b 2 ) = ah(Q) < O. 

Hence Q(x,y) is not positive definite. 

3) If a > 0 and l::i.( Q) > a then 

a.Q(x,y) = a(ax 2 + 2bxy + cy2) 

2 2= a x + 2bxy + acy2 

= (ax + by)2 + (ac_b 2 )y2 

= (ax + by)2 + 6,,(Q)y2 

But Q(x,y) < a only if (ax + by)2 + (Q)y2 < a for any 

x,y. Hence we must have, 

ax + by = a 

y = a 

Therefore x = y = 0 and Q(x,y) is positive definite. 

Theorem 4.7: 

In every class of a positive definite binary forms 

there is a form for which 2 Ibl~ a ~ c. Such a form is
 

called reduced.
 

Proof:
 

Let Q(x,y) = a o x 2 + 2b o xy + coy2 belong to a class of 

a positive definite form. Let n be the smallest positive 

number representable by this form ( and hence any form of 

the class). Then for some integer r,t we have 

n = aor 2 + 2b ort + cot 2 . 
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Claim: The g.c.d (r,t) = 1 

For if (r,t) = v > 1 then v 2 /n 

+Hence %2= ao(~)2 + 2bo(~)(~) CO(~~2 

But n 2/v 2 < n is representable by the form, which 

contradict that n is the smallest number representable by 

the form. Thus we must have g.c.d(r,t) = v =1. Now since 

(r,t) = 1, there exist integers s, u such that ru - st = 1. 

If u o ' So is any solution of ru st = 1, then the general 

solution is u = Uo + ht , s = So + hr where h is any 

integer. 

tJ , X' = det C = Now let X c = [: :] with[;J 
Consider the transformation X = CX', then by substituting
 

in the form Q(x,y) we have Q'(x',y') = X,T(CTAC)X' and
 

hence Q ~ Q', that is Q and Q' are in the same equivalent
 

class. Let Q'(x',y') = ax,2 + 2bx'y' + cy,2 .
 

By direct sUbstitution of CX' for X in O(x,y) we have,
 

a = nand b = s (a or + bot) + u (bor + cot),
 

b = so(aor + bot) + uo(bor + cot)
 

+ h(r(aor + bot) + t(bor + cot) 

Now since the coefficient of h is a r 2 + 2b rt + c t 2 = no o 0 

b takes on all values in a certain residue class mod n; 

hence h may be selected in such a way 21bl ~ albl~ a/2 

Since c can be represented by the form O'(x',y'), 

c = 0'(0,1), we have a < c. This complete the proof. 
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Proof: 

Since a < c then by multiplying by a > 0, we have 

2 b 2a < ac = +~(O) < (a 2 /4) + ~(O)
 

this implies (3/4)a 2 < l:i. (0), and a «21 13) ~(O).
 

Cor 0 11 a r y 4. 9 : 

Every positive definite binary form having discriminant 

is equivalent to the form x,2 + y,2 = O'(x',y') 

Proof: 

By the previous corollary , every such form is 

equivalent to a form for \'1hich a ~ 21bl < a < (2..("3) 

this implies a ~lbl~ (a/2) ~ (11 /3), 
and hence a = 1, b = 0, c = 1 . 

T11erefor eO' (x ' , y ') = x' 2 + y' 2 . 

Theorem 4. 10: 
:3 

A ternary quadratic form 0(x1,x2,x3)	 ~~aijxixj 
1/1- I 

is positive definite if and only if all the following hold: 

a 11 a 12 an 

d =.6(0) = la 12 a22 a23 1 > a 

an 823 a33 

a11 a 12 I
I 

b =l > 0, and a 11 > a
 
a21 822
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Moreover if Q(x 1 ,x 2 ,x 3 ) is positive definite, then we h3ve 

311 Q = (311 x 1 + a12x 2 + 313x 3)2 + K(x2,x3) where K(x2,x3) 

is the bin3ry positive definite form, 

K(x2,x3) = (311 3 22 - 312
2

)x2
2 

+ 2(311 8 23 - 3123 13)x2x 3 

+ (311 3 33 - 313
2

)x3
2 

Proof: 

By completing 311 Q(x1,x2,x3) to a squ3re we h3ve 

311 Q(x1,x2'x 3 )
 

2 2 2
 
= 311 x1 + 2311313x1x3 + 3 113 22x 2 

+	 23 113 23x 2x 3 + 3 113 33x 3 
2
 

2

= (311 x 1 + 312x 2 + 313x 3)2 + (311 3 22	 - 3 12 )x2 2 

+ 2(3 11 a 23 - 3123 13)x2x 3 + (a11 3 33 - a 13
2

)x3
2 

= (311 x 1 + 312x 2 + 313 x 3)2 + K(x 2 ,x3) 

L\.(K(X2'X3)) ~ 811 8 22 - 81/ 8 11 8 23 - 8128~31 

811 3 23 - 3123 13 311 3 33 - 313 

=(311 3 22 - 312
2

)(311 3 33 - 3 13
2

) - (311 3 23 - 3123 13
 

222
 
= 311(311 3 223 33 - 311 8 23 + 23 123 133 23 - 312 333 - 312 322)
 

= 311 (Q(x1 x 2x 3))
 

Thus Q(x 1,x 2 ,x3) is positive definite if 3nd only if
 

K(x2,x3) is positive definite and 311 > o.
 

Clearly if 311 ~ 0, then Q(1,0,0) = 311 < 0 and Q is not
 

positive definite.
 

Now if > 0 and K(x2'x?) is not positive definite, thena 11 J 

K(X2',x3') ~ 0 for some x2',x3' not both of which zero. 

Then also K(x 2",x3") ~ 0 with x2" = 311 x 2'3nd x3" = 311x3'. 

Let x 1" = -3 11 - 1 (3 12 x2" + 3 13x3" ) . 
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Clearly x," is an integer,also a"x," + a'2 x2" + a'3x3" = O. 

Thus for x " x " x " we have, , 2 ' 3 
2a" Q( x , " , x2" , x 3") = 0 + K(x 2" , x 3") < 0 

Hen ceQ (x, " , x2" , x 3") < 0 

On the other hand if K(x2,x3) is positive definite and 

a" > 0, but QCX-"x2,x3) ~ 0 for some X;,"X2,x3 not all of 

which zero then since a"Q(x"x2,x3) 

2 - - - ­= (a"x, + a'2 x2 + a'3 x 3) + K(x2,x3) ~ K(x2,x3)
 

We have K(x 2 ,x3) ~ a"Q(x"x2,x3) ~ 0
 

Hence x2 = x3 = 0 and a"x,2 ~ 0 which implies x, = O.
 

That contradict that not all x" x2 and x3 are zero.
 

Now K(x2,i3) is positive definite if and only if both
 

b = 8"a22 - a'2
2 > 0 and .6(K(x2,x3)) > 0
 

bu t .6 (K (x 2' x 3)) = a" .6 (Q( x, , x2' 3 ) ) ,
 

thus K(x 2 ,x3) is positive definite if and only if both
 

b = a"a22 - 3'22 > 0 and .6 (Q(x"x2,x3)) = d > O. 

Lemma 4.0': 

Let C = [aij] be a matrix with integer coefficients. 

If g.c.d(c",c2') = " then the six remaining numbers Cij 

can be chosen in such a way that det C = ,. 

Proof: 

Let us set g.c.d(c",c2') = g. 

Since g.c.d (c",c2') = g we can choose integers c'2 and 

c22 in such a way that c"c22 - c'2c2' = g 

Also since g.c.d(g,c3') = , we can choose integer u and v 

such that gu - c3'v = ,. 
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Now let C = Ic 11 c12 (c11 /g )v 

c21 c22 (c 21 /g)v 

c 31 o u 

det C = (c 12c 2 1 - c11 c 22) v + (c11 c 22 - c12c21)uc 31 

= -c 3 1v + gu =1 • 

Example: 

Let c 11 = 2, c 21 =4 , c 31 =5 

Hence we have g.c.d(c11 ,c21) = (2,4) = g = 2 and 

g.c.d(g,c31)= (2,5) = 1. 

We can choose integer c12 and c 22 such that 

c11 c 22 - c12c 21 = g 

implies 2c 22 - c12.4 = 2 

implies c 22 = 3, c12 = 

We can also choose integer u and v such that 

gu c 31v = implies 2u = 5v = and hence u = 3, v = 1. 

Then C 
= [2 1 11' 

432
 

503
 

Theorem 4. 11 : 

Every class of positive definite ternary quadratic 

forms Q(x1,x2,x3) contains at least one reduced form with 

o < a 11 ~ (4/3)3$ , 2 la121~ a11' 21a131~ a11 

where d =~(Q) the discriminant of Q. 

Proof: 
3 

Let Q(x1,x2,x3) =. ~ aijX'iX'j be a fixed ternary form 
1,J=1 

belonging to the class • Let a be the smallest positive 

106
 



integer that can be represented by Q and consequently by 

any form belonging to the class. Then for suitable integers
 

c11' c 2 1' c 3 1 we have a = Q(c11,c21' c31).
 

Claim: g.c.d(c 11,c 2 1,c31) = 1.
 

If g.c.d (c11 ,c21 ,c31) = v > 1 then
 

C = (a/v 2 ) < a would be representable by Q(x1,x 2 ,x3) , a
 

contradiction.
 
J 

Next we are going to find a form Q1 =.L .aijxixj such that 
1,J=1 

Q1V'\Q and a 11 = a. 

Let Q1 be the form into which Q is carried by the 

transformation C = [ckl J of determinant 1, constructed in 

accordance with the previous Lemma 4.01, then we have 

a11 = Q1(1,0,0) = Q(c11,c21,c31) = a 

Next we construct a matrix 

1 r s]
N 

= [ : B 
with r,s integers to be selected later and B a 2 x 2 

matrix with det B = 1. Clearly det N = 1, thus if we set 

NY= 
x = N [::]or::] 

....J ....J 

then Q1(X) = Q1(NY) = Q2(Y) and we have Q~Q1--- Q2 are in 

the same class. 
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J 
Let 02(Y1'Y2'Y3) ~ 4 bijYiYj where b 11 = a11· 

1 , J =1 

From the previous theorem we have: 

a11 Q1(X) = (a11 x 1 + a12 x2 + a13 x 3) 
2 + k 1 (x2,x3) 

a11 02(Y) = (b 11 Y1 + b 12Y2 + b n Y3) 
2 

+ k 2 (Y2'Y3) 

where k 1 (x2,x3) and k 2 (x2,x3) are positive definite. 

Now since N carries the form 01(x1,x2,x3)into Q2(Y1'Y2'Y3)' 

it follows that k 1 (x1,x2)' is taken into k 2 (Y2'Y3) by B. 

By the previous theorem k 2 (x2'Y3) has discriminant 

=~(k2(Y2'Y3) = a11 d = , vvhereb 11 d 

d = 6. (02(Y1 'Y2'Y3) and the coefficient of Y2 2 is equal to 

- = b. As we have seen in the case of reducedb 11 b 22 b 12
2 

binary forms, B may be selected so that b ~ (21 J3)~ . 
Also and are linear forms in a11 with coefficient rb 12 b 13 

and s, respectively. Hence these may be selected so that 

Ib i j I~ (1 1 2 ) a 11 = (1 1 2 ) b 11 for j = 2, 3 • 

Finally since b22 = 02(0,1,0) is representable, hence 

~ a11' we obtain the sequence of inequalitiesb 22 
2 2 ) 2~ = - +b 11 b 11 b 22 (b 11 b 22 b 12 b 12 

< 21 13 ~ + ( 1/4) b 11 2 

b 11 2 ~ (21 [3) ~ + (1/4) b 11 2 

(3IL~) 2 ~ (21J3) ~db 11
 

(3 [3) 1 8 (b 1 1( 31 2)) < Jd
 
3
(27/6 LDb 11 ~ d
 

~ (4/3)3jd.
b 11 

Corollary 4.12: 

Every positive definite ternary quadratic form 
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Q(X1'X2'X2) of discriminant d 3 = 1 is equivalent to the 

form, Q1(Y1'Y2'Y3) = Y1 2 + Y2 2 + Y3 2 (i.e equivalent to a
 

sum of three square).
 

Proof:
 

By Theorem 4.11, the given quadratic form Q(x 1,x 2 ,x3) 

is equivalent to a form in which ° ~ a11 ~ (4/3 ), 

21a121~ a11' 2ra13l~ a11 • 

From this it follows that = 1, a12 = 0, a13 = 0.a 11 

The class therefore contains a form, 

222Q(x1,x2,x3) = x1 + a22 x 2 + 2a23x2x3 + a33 x 3 
2= x 1 + K(x2' x3) 

where k(x2,x3) = a22 x22 + 2a23x2x3 + 833x3 is positive 

definite and has discriminant 1. 

Hence k(x2,x3) goes into a form K'(Y2'Y3) = Y2 2 + Y3 2 

vii th det B = 1.by suitable transformation B =[: ~] 

Thus the transformation [1 ° 0] 

° t u 

° v VI 

takes Q(x1,x2,x3) into Q1(Y1'Y2'Y3) = Y1 2 + Y2 2 + Y3 2 

Theorem 4. 13: 

If n > 0 is not of the form 4a (8b+7) , a ~ 0, b > ° 
then n can be written as a sum of three squares. 

In order to prove this theorem, we need Dirichlet's 

Theorem stated below. We are not going to prove Dirichlet's 

109
 



Theorem here because its proof is very involved and beyond 

our objectives. A proof can be found in [12]. 

Dirichlet's Theorem: 

If (k,m) = 1 then the arithmetic progression 

kr + m (r = 0,1, ... ) contains infinitely many primes. 

Proof	 of Theorem: 

If n = 4
a

n 1 ' 4jn 1 and n1 is a sum of three squares, 
3 3 

say n1 = L Xi2, then n = L(2axi)2 is also a sum of three 
i=1 i=1 

squares. Hence it is sufficient to consider only the case 

n ~ ° (mod4). This is equivalent to consider only the case 

n f 0,4 (mod8) 

n=:O (mod4) implies n = 4k = 
-+ 8 ... }{°, ~ 4,
 

n =: ° (mod 8) implies n = Sk = {°, ~ 8,~16, ... }
 

n =: 4 (modS) implies n = 8k + 4 = {~4,~2, •..••. }
 

If n E 7(modS) then n cannot be written as the sum of three 

squares as we proved in the theorem(4.1) at the beginning 

of this chapter. Therefore it is sufficient to consider the 

cases n =1,2,3,5,6(mod8). 

The idea of the proof is, first to show that n can be 

represented by a positive definite ternary quadratic form 
3 

Q =. ~ aijxixj of discriminant 1. 
1,J=1 

Then we use corollory (4.12) (Every positive definite 

ternary quadratic form of discriminant d 3 = 1 is equivalent 

to sum of three squares) to complete the proof. 
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We will specify nine numbers a11,a12,a13,a22,a23' 

833' x1,x2' x3 which satisfy the four conditions below: 

2 21) n = 811 x 1 + 2812x1x2 + 2a13x1x3 + a22x2 
/ 

+ 2a23x2x3 + a33 x3-' 

Let a13 = 1, a23 = 0, a33 = n. 

Then Q can be written in the form, 

222
Q = a11 x 1 + 2a12x1x2 + 2x 1x 3 + a22x 2 + nX3 .
 

Then if we let x1 = x2 = 0, and x3 = 1, we have Q(0,0,1)=n.
 

This will satisfy the first condition.
 

The three remaining unknown which are 811,812,a22 have to 

satisfy the remaining three conditions: 

1) a 11 > 0 

22) b =la11 a 211 = 811a22 - a12 > 0 

a21 a22 

3) Ia 11 812 

0a21 a22
 

0 n
 

2
 = (a11 8 22 - a 12 )n - 822
 

= bn - a22
 

= 1, this imply bn - 1 = 822.
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Claim: 

Condition (1) 811 > 0 is a sequence of the two conditions 

(2) and (3).
 

Let n > 2 ( for n = 1, 1 = 12 + 02 + 02 ).
 

It follows that 8 22 = nb ­ > 2b - 1 > 0 since b is a
 

positive integer.
 

a11a22 = a12 2 + b ~ b > o. Implies a11 > o.
 

Now we need to choose a value of b so that 

a11 = (812 2 + b) la22 is an integer. 

This implies a22 (a12 2 + b) 

which implies a12 2 = -b (moda22) 

hence a12 2 = -b(mod bn -1) where a12 is an arbitrary 

integer. Therefore we need to find (-b) as a quadratic 

residue moda22. The easiest way to accomplish this , is to 

choose b so that 

nb -1 = p where p is a prime and (-~) = 1. 

We will consider the cases according to n is an even
 

integer or odd integer.
 

Case 1 :
 

n is even , then n = 2 or 6 (modS) 

Claim: (4n,n-1) = 

Proof of claim: 

We will ShOH that (4,n-1) =1 and (n ,n-1) = 1, that is 

to show there exist integers x,y such th8t 

x(4) + y(n-1) = 1 and x(n) + y(n-1) = 1. 

For n = 2(modS) we have n = 8k+2. 
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Therefore x(4) + y«81<+2)-1) = 1, 

this implies x(4) + y(Sk+1) = 

hence we can take	 y = 1 and x = (-2k). 

For n = 6(modS) we	 have n = 8k+6. 

Therefore x(4) + y«Sk+6)-1)=1 

imply x ( 4) + Y ( ( 8k+ 5) = 1 

hence we can take	 y = and x = -(2k+1). 

And for x(n) + y(n-1) = 1, we have x	 = 1 and y = -1 

Thu s (4n, n - 1) = 1 

By Dirichlet's theorem, there exist integer m such that 

4nm + (n-1)= p , where p is a prime. 

We select b = ~ + 1 which implis b = 1(mod4) 

Now we ha ve p = 4nm + n - 1 = (~+ 1)n - 1 = bn - 1. 

p =. 1 (mod4) since for n =. 2(mod8), p	 = (~ + 1)(Sk+2) - 1 

= 32mk +8m +Sk +2 -1 

= 4t + 

where t = Smle + 2m + 2k This implies p =. 1(mod4). 

And for n .= 6(modS) , p = (~+1) (8k+6) -1 

= 32mk +2~ + Sk + 6-1 

= 4r + 1 where r = 8mk +6m + 2k. 

This implies p = 1(mod4) 

Thus b = P.= 1(mod4). 

Also (-~) =(-1~b)	 = (-~) (~) 

= (_1)(P-1)/2 (~) 
= (~) 

(b, p) = 1 for xp + yb = 
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implies x(bn-1) + yb = 1 ,implies x = -1 , Y = n. 

((p-1 )/2) ((b-1 )/2)
Hence(~) =( b) (-1) 

=(~) . 1
 

=(b~ -1,)
 
=(-~)since bn -1 = -Hmodb)
 

= (-1) (b-1)/2 = 1. 

Therefore a22 = bn - 1 = p > a 

a 12 2 = -b(modp) has solution, yielding a12 

and a11 = (b + 8 122 )}a22 is an integer. 

Case 2: n is odd. 

Then n = 1,3,5 (mod8) 

We set c = 1 if n = 3(mod8) and c = 3 if n = 1,5(modS). 

Then we have (cn-1)/2 is odd in both cases. 

Claim: 

(4n, (cn-1)/2) = 

Proof of claim: 

For n = 3(modS) we have n = 8k+3.
 

We will show that (n,(cn-1)/2) = 1.
 

Consider x( 4) + y( (8k+3-1) )/2 =
 

this implies x(4) + y(4k+1) = 1,
 

hence x = -k , Y = 1, and x(n) + y((cn-1)/2) =
 

implies x(8k+3) + y(4k+1) = 1
 

implies x = 1, Y = -2.
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For n :: 1(modS) we have n = Sk+1 and c = 3
 

x(4) + y((3(8k+1)-1)/2) = 1
 

implies x( 4) + y( (24k-2 /2) = 1
 

x( 4) + y( 12k-1) = 1
 

implies x = 3k , Y = -1 and x(n) + y((3n-1)/2) =
 

implies x = 3, y = -2.
 

implies x(8k+1) + y((24k+2)/2) = 1
 

implies x(8k+1) + y(12k+1) = 1
 

For n = 5(mod8) we have n = 8k+5 and c = 3. 

XCI+) + y(((8k+5)3-1)/2) = 1
 

implies x = (3k+2) and y = -1 and x(n) + y((cn-1)/2) =
 

implies x = 3, y = -2
 

imp 1 i e s x ( 4) + Y ( ( 2 Llk + 14) /2) = 1
 

implies x( 4) + y( 12k + 7) = 1
 

implies x(Sk+5) + y(12k+7) = 1
 

Thus (4n, (cn-1 )/2) = 1 for all cases. 

By Dirichlet's Theorem, it follows that there is a prime 

p = 4n v + (cn - 1 ) / 2 , 

hence 2p = (8v+c)n - 1. 

If we set b = Bv + c then we have b > 0, 2p = bn -1. 

For n :: 1(modS), b:: 3(mod8), p =. 1 (mod 4) 

For n =. 3(mod8), b :: 1(modS), p = 1Cmod4) 

For n :: 5(mod8), b .= 3(modS), p :: 3(mod 4) 

For n :: 1 ,5(modS), (-~) = (-~)(~) 
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2 
= (1)(_1)«8v+3) -1)/8 =(1)(1)=1­

For n .= 3(modS), (-~) = (-~)(~) 
2 

= (1)(_1)«8v+1)-1)/8) =(1)(1) =1. 

It follows that, for any n = 1 ,3 ,5(modS) 

(-~)= (-~)(-~) 
= (_1)(-b-1)/2(P-1)/2(~) (_~) 

=(-2~) 

=(1-~n) 

since 1 -bn _ 1(modb).=(~) = 1 

Hence -b is a quadratic residue mod p, 

this implies -b = u 2 (modp) also we have -b = 12 (mod2). 

Therefore -b is 8 quadratic residue (mod 2p), 

hence -b =u 2 (mod2p) has a solution. If we take one of the 

2 2solutions u = 8 12 then a11 = (8122 + b)/822 is an
 

integer. Therefore the proof is complete.
 

As an illustration of the previous theorem, we give two
 

completely worked-out examples, in which we follow step by
 

step the proof just given.
 

Example 1:
 

Let n = 18, then n = 18.= 2(modS).
 

1;~e choose m such that 4.18(m) + (18-1) = p.
 

Let m = 0, then p = 17 = a22
 

b = (P+ 1 ) In = (1 7+1 ) I 18 = 1.
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For a12	 we choose the smallest solution of 

2-1 = u (mod17) , i.e u = 4 = 812
 

( 2
Then a11 = b + a12 )/822 = 17/17 = 1­

The quadratic form is now look like this, 

o = x1 2	 + 8x1X2 + 2x1x3 + 17x 22 + 18x 32 

and 0(0,0,1) = 18. Note that 

a 11 = -I > ° 
b = /1 4 1 4
 

4 17
 

= 1 > ° and 

4 17 ° I = 

° 18 

By completing the square we obtain 

2o = (x 1	 + 4x 2 + x 3 ) 2 + x 22 - 8x 2x 3 + 17x 
3 

2 = (x 1 + 4x 2 + x 3) + 01
 

2 2
where 01 = x2 - 8x 2x 3 + 17 x 3 and L = x 1 + l-lx 2 + x 3 

811 = 1 = 0(1,0,0). Therefore we do not need preliminary 

transformation to make 811 = a. 01( 1,0) is the smallest 

integer representable by Q,. Hence we form B = [6 ~J 

such thatlSI = 1 and this requires u = 1 and sf Z is 

arbitrary. 

Let r::r defined such that:] = [: :J [::] 
Substitute in °1(x2,x3) 

= (Y2 + sY3)2 - 8(Y2 + sY3)Y3 + 17Y32 

2 2 2 2= Y2 + 2Y2Y3s + s Y3 - 8Y2Y3 - 8sY3 + 17Y3 

= Y2 2 + (2s-8)Y2 + (s2 - 8s +17)Y3 
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Set the coefficient Y2Y3 = 0. This will requires s = 4, 

and B =[1 41 

° 1. 

No\'1 1 et 
1 v W]
 

N = a 1 4
 
[
 
001
 

Set x = Ny. We obtain 

x1 = Y1 + vY2 + wY3 

x2 = Y2 + 4Y3 

x? 
-) 

= Y3 

We substitute in Q(x) and obtain 

L = (Y1 + vY2 + wY3 + L!(Y2 + 4Y3) + Y3 

= Y1 + (4+v)Y2 + (w+17)Y3 

We choose v = -4, and w = -17 then L = Y1 and hence 

Q(x1 ,x2'X3) V'"' Ql (x1 ,x2,x3) = Y/ + Y2 2 + Y3 2 

Since Q(0,0,1) = 18 set x1 = ° = Y1 + vY2 + wY3 

= Y1- 4Y2 - 17Y3 

x2 = ° = Y2 + 4Y3 

-Ix 3 = = Y3 

Therefore Y2 = -4Y3 = -4(1) = _l~ 

Y1 = 4Y2 + 17Y3 = 4(-4) + 17 = 1. 

Thus we have 12 + (_4)2 + 12 = 18. 

Example 2:
 

Let n = 11 .= 3(modS). With c = 1, (cn-1)/2 = 5
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We choose m so that 4( 11)m + (cn-1)/2 = p , a prime. 

Therefore we let m = ° , p = 5 and 2p = 10 = a2 2 • 

2p = 10 = bn -1 

implies bn = 11 implies b = 1. 

For a12 ' we choose the smallest positive solution of the 

2congruence -1 ~ u (mod 10). Thus a12 = 3.
 

a1 1 = (1+3 2 )/a 22 = (1+9)/10 = 1.
 

Then our quadratic form will be,
 

2 6 2 2 °(x 1 ' x2 ' x 3) = x 1 + x 1x2 + 2x 1x 3 + 1Ox 2 + 11 x 3 . 

We verify that all required conditions hold: 

0(0,0,1) = 11 = n. 

a 11 = 1 > ° 
b = 1 > ° and 

3 3 

3 10 o = 1.
 

° 11
 

We have ° = (x1 + 3x2 + x 3 )2 + 01(x1,x3) where 

01 = x2 2 - 6x2x3 + 10x3 2 and L = x1 + 3x 2 + x3 

01(1,0) = 1 is the smallest integer representable by 01. 

we B = 1 requires u = 1 and sE.. ZHence form B =[: :Jand 

Define [::1 by [::J t :] [::J 
implies x2 = Y2 + sy~ 

J 

x3 = Y3 
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Substitute the above values in 0 1 , 

01(x2,x3) = y22 + 2Y2Y3(S-3) + Y3 2 (s2 -6s +10) 

Set the coefficient Y2Y3 = O. This requires s = 3 . 

Now	 and Q(x) = L + Y2 + Y3 

B t	 :J 222 

1 v W] 
Let N = 0 1 3 

[ 
o 0 1 

and	 set x = Ny , then 

X1] [ 1 v WJ [ Y1 ] =	 0 1 3 Y2 
[ 

x2
 

x3 0 0 1 Y3
 

and	 we have 

x 1 = Y1 + vY2 + wY3 

x 2 = Y2 + 3Y3 

x 3 = Y3 

We substitute the above values in L we have 

L = (Y1 + vY2 + wY3 ) + 3(Y2 + 3Y3) + Y3 

= Y1 (v+3)Y2 + (w+10)Y3 

For v = -3 and w = -10 then L = Y1 , 
2 2 2Q(x) = O(Ny) = Y1 + Y2 + Y3
 

In order to obtain O(x) = 11, we need x1=x2 =0 and x3= 1.
 

Under x = Ny, x3 = Y3 = 1.
 

x 2 = Y2 + 3Y3 = 0 implies Y2 = - 3Y 3 = (-3)(1) = -3
 

and	 x1 = 0 = Y2 + vY2 + wY3
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= Y1 + (-3)Y2 - 10y'":l
-"'j 

= Y1 -3(-3) -10(1) 

= Y1 - 1, 

this implies = 1.Y1 

Hence 12 + (_3)2 + 12 = 11. 

Coroll 8r y 4. 1 1-1:
 

Every non-negative integer is representable as a sum of
 

four squares.
 

Proof:
 

From theorem (4.13) we have any positive integer n, 

where n = 1 or 2 (mod4) can be written as a sum of three 

squares, and hence it can be written as a sum of four 

squares. 

Consequently any positive n = 3(mod4) can be written 

as a sum of four squares since n = (n-1) + 12 and 

n -1 2(mod4). 

If n = O(mod4),then it can be written in the form 

n = Lla(Llb + r),r = 1,2,3. For if n=.O (mod4) then 

n = 4k , k > 1, hence n = 4a (4b+r), r =1,2,3 

Since 43 = 282 and (4b+r) = 1,2 or 3 (mod 4), 

therefore n = 4a ( Lrb+r) can be written as a sum of four 

squares. 

Corollary 4.15: 

A natural number n is the sum of the squares of 

three rational numbers if and only if it is the sum of the 

squares of three integers. 
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Proof: 

Let n be a rational number and n is the sum of 

three rational numbers. Then n =(~)F +(~~ +(~~ 

By finding the common denominator of the three 

2rational numbers above, we have n = x + y2 + z2 

w2 
where x,y,z are integers. 

2 2This implies w n = x + y2 + z2.
 

If n = 4h (8k+7) where k,h are integers ~ 0,
 

let w = 2r (2m+1), where r,m ~ 0 then
 

w2n	 = (2r (2m+1»2 4h (8k+7) 

= 4r (2m+1)2 4h (8k+7) 

= 4r .4h (2m+1)2(8k+7) 

Note that 2m+1 is odd. Therefore it is of the form (8s+1),
 

(8s+3), (8s+5) or (8s+7).
 

If (2m+1) is of the form (8s+1) then
 

w2n = 4r .4h (8s+1)2(8k+7)
 

= 4r . 4h (8k+7)(64s 2 + 16s +1)
 

= 4r .4h (8t+7) ""here r + h, t >0
 

= 4r +h (8t+7)
 

By using the same method above , we can verify that the 

other three forms (i.e (8s+3),(8s+5),(8s+7» will also give 

us w2n = 4r +h (8v+7) for some v > o. 
2But from Theorem (4.1), this is impossible because w n is 

the sum of three squares. Hence n cannot be of the form 

4h (8k+7) where k,h are integers, and by theorem (4.13) n is 
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the sum of three squares integers. 

Conversely, if n is the sum of the squares of three 

integers, it is also the sum of tthe squares of three 

2rational numbers for n	 = x + y2 + z2 

= (x/1)2 + (y/1)2 + (z/1)2. 

Corollary 1+.16: 

If P = 1(mod4) and P is a prime then P is the sum of 

two squares. 

Proof: 

P = 1(mod4). This implies b 2 = -1(modP) has a solution 

since -1 = (_1)((4k+1)-1))/2 
P 

= (-1) 2k = 1. 

Therefore there exist integers b, c such that 

b 2 = -1 + cpo 

Now we consider the q~adratic form 

Q(x,y) = Px 2 + 2bxy + cy2. If we let x = 1 and y = 0 

then Q(1,0) = P > a and the discriminant of Q is 

6(Q(x,y)) = IP b 

b c 

= Pc b 2 = 1 since b 2 = -1 + cP. 

This implies Q(x,y)~Q'(x',y') = x,2 + y,2 which implies P 

is a sum of two squares. 

This corollary together with Lemma 2.02 and Lemma 2.07 of 

chapter 2 gives us a complete solution of the two squares 

problem. 
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Definition 4.6: 

n is a triangular number if n = a(a+1) where a ~ Z 
2 

Corollary 4. 17: 

Every integer is the sum of three triangular 

numbers. 

Proof: 

By theorem (4.13) , any integer of the form 8k+3 is 

the sum of the squares of three integers, 

2ie 8k+3 = x + y2 + z2.
 

Since (8k+3) is odd, this implies x,y,z are all odd.
 

For assume two of the integers say x, yare even and one is
 

odd say z then,
 

(8k+3) = (2x,)2 + (2y,)2 +(2z'+1)2 

= 4x,2 + 4y,2 + 4z,2 + 4z + 

4(x,2 + y,2 + z,2 + z')= + 

implies 8k+2 4(x,2 + y,2 + z,2 + z')= 

implies 2(4k+1)= 4m Irlhere m = (x,2 + y,2 + z,2 + z')
 

implies 4k+1 = 2m. Contradiction since 4k+1 is odd and 2m
 

is even.
 

Similarly , if two of the integers are odd and one is even
 

or all the integers are even , we would have a
 

contradiction. Hence (8k+3) is the sum of the squares of
 

three odd integers say
 

(8k+3) = (2x'+1)2 + (2y' +1)2 + (2z'+1)2 

( 8k+ 3) = 4x' 2 + 4x' + 4y' 2 + 4y' + 4z' 2 + 4z' + 3 

81< = 4x ,2 + 4x' + 4y' 2 + L~y' + 4z' 2 + 4z' 
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2k = x,2 + x' + y,2 + y' + z,2 + z' 

k = x'(x'+1) + y'(~) + z'(z'+1) 
~ 2 2 

Therefore any integer is the sum of three squares 

triangular numbers. 

3.The Number Of Representations Of An Integer As A Sum Of 

Three Squares. 

In this section we are concerned with problem of 

determining the number of representations of an integer as 

a sum of three squares. In chapters 2 and 3 we were able 

to solve the corresponding problems for Two-square and 

Four-square completely by using elementary methods. On the 

other hand the known formulae that give the number of 

representations of an integer as a sum of three squares 

are difficult to prove. This perhaps, not too surprising 

if we consider the fact that even the statements depend on 

the rather deep and difficult concepts of class number, the 

genus of a quadratic form, etc. 

In this section we will restrict ourselves to only 

the statement of some theorems concerning that problem. The 

reader can find their proofs in [5],[12] and [8]. We 

will also give as an application some examples. 

Recall R3 (n) is the number of primitive solutions of 

x 2 + x 2 + x 2 = nand r3(n) is the total number of all123 

solutions. 
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Theorem 4.18: 

If n is the sum of three squares, then 

r3(n) = r3(4kn) for any non-negative integer k. 

Proof: 

2 2 2Assume n = x1 + x2 + x3 

then 4kn = (2kx1)2 +(2kx2)2 + (2kx3)2. 

. k 2 2 2Conversely lf 4 n=Y1 + Y2 + Y3 ,then all the Yi's are even. 

Let Yi = 2xi ,then Llkn = (2x1)2 + (2x2)2 + ( 2x 3)2 

so that 4k - 1n = x1 2 + x2 2 + x3
2 . If k - 1 f 0 then all the 

k-2 2 2 2xi's are even, say xi = 2z i , then 4 n = z1 + z2 + z3 • 

We continue this process ( a finite number of times) and we 

2 2 2have n = x1 + x2 + x3 .
 

Thus we have shown there is a 1-1 corresponding between
 

the solutions of the two equations,
 

2X1 2 + x 2 + x3 2 = n 

x 12 + x 22 + x 32 = 4k n 

Hen c e r 3 (n) = r 3( 4kn ) . 

Before we go any further we shall find it more convenient 

to use Gauss's notation concerning the "discriminant" of 

the quadratic form. In all of our previous discussion we 

have defined the discriminant of a quadratic form to be 

the determinant of the matrix of the coefficients of the 

form. This is well defined entity for forms in any number of 

variables. However in the particular case of binary forms 

the traditional meaning of the discriminat is little 
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different. In this section we will define the discriminate 

2 2of the quadratic form Q(x,Y) = ax + 2bxy + cy

by D = -4d 2 where d 2 =J~ ~I = ac - b 2 , is the 

determinant. 

Definition 4.7: 

2A quadratic form Q(x,y) = ax + 2bxy + cy2 is said 

to be primitive if g.c.d(a,b,c) = 1 and imprimitive 

otherwise. 

Theorem 4.19: 

Let h(D) be the number of classes of primitive 

binary quadratic forms corresponding to the discriminant 

D = - 1 i f n = 3(mod S) , D = - 4n i f n :: 1, 2 , 5 ,or 6 (mod S) 

then the number of primitive solutions R3(n) is given by 

12 h(D) if n = 1,2,5,or 6(modS) and n t1 
R3 (n) =	 24h(D) if n= 3(modB) and nf 3
 

6h(D) if n =1
 

8h (D) if n = 3
 

Few remarks concerning the number of classes of primitive 

binary quadratic forms h(D) are in order: 

1) h(D) = gk where g = 2t - 1 is the number of genera, t is 

the number of distinct prime factors of D, and k is the 

number of classes in each genus. 

2) If D = -4n and n =1, 2, 5 or 6(mod8) and if n contains t 

odd prime factors, then D contains t + 1 primes, and hence 
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g = 2(t+1)-1 = 2 t . If D = -n and n = 3 (mod8) and if n 

contains t primes(all odd), then g = 2 t - 1 . For n = 1,3, 

h	 = 1. 

As a consequence of these remarks we can restate the
 

previous theorem as follows:
 

Theorem 4.20:
 

The number of primitive representation of n as a sum 

of three squares is: 
r 

3.2t +2k if n = 1,2,3,5,or 6(mod8),n f 1 or 3 

R3 (n) = 6 if n =1 

8 if n =3 

For n = 1, we have = +1 2 + 02 + 0 2 

For n = 3, He have 3 = (+1)2 + (+1)2 + (+1)2 

Examples: 

1)	 Let n = 18 :: 2(modS) 

h = 2, g = 2, k = 1(see Rose) 

R3(18) = 12(2) = 24 (by first theorem) 

R3( 18) = 3(2 1+2. 1 ) = 2 1-1 (by second theorem) 

2) Let n = 11 = 3(mod8) 

h = 1 , g = 1, k = 1 (see Rose) 

R (11) = 24 (by first theorem)
3 

R3 (11) = 3.2 3 = 24 (by second theorem) 

For square free positive integers Eisenstein proved by 

using Dirichlet's class number formulae the following: 
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Theorem 4.21: (Eisenstein) 

For square free fositive integer n,
.!lJ+ .

R3(n) = 24 L (..!:.) If n :: 1Cmod4)
 
r =1 n
 
r~ ]

S f if n .:. 3(modS) 
r=1 (~ ) 

where [xJ is the greatest integer less than or equal to x 

and(~)is the Jacobi symbol. 

Example: 

n = 11 = 3(modS) 

R3( 11) = 8 
[~ 
l: 

] (r)
r=1 11 

= 8[(~ 1) + C~) + C+) +C {) +C+) ] 
= 8[1 + 0 + 1 + 1 + OJ
 

= 24.
 

So far, we have considered only the primitive 

representations R3(n). The total number of representations 

of n as a sum of three squares is given by 

r3 = I R3 (~ 2)d21 n 

For example if n = 1S, 

r 3( 18) = 2l:, R3 (Ui2)
d 18 d 

= R3(18) + R3(2) 

=2 1/+12 =36. 

r3(11) = 2 L R3 (U\= R3 (11) = 24.
 
d 111 d?J
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Final remarks concerning the representation of an integer 

as a sums of three squares. 

1) In chapters 2 and 3, we characterized the positive 

integers that can be represented as a sum of two and four 

nonvanishing squares.The complete anwser of characterizing 

which positive integers are sum of three nonvanishing 

squares is still not known and depend on the difficult, and 

still unsolved, problem of the determination of all 

discriminants of binary, positive definite quadratic forms 

with exactly one class in each genus. Some partial results 

and conjectures concerning this problem can be found in 

[5J and [11J. 

2) The problem concerning the uniqueness of essentially 

distinct representation as a sum of three squares and also 

the problem of determining all integers which are not sum 

of three unequal squares are not completely solved. Some 

partial results and conjectures are given in [5J. 
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Summary and Conclusion 

In this study, we characterized the integers that can 

be represented as a sum of two, three and four squares. 

In chapter 1, we stated thr problem and give a 

historical introduction of the problem of representation of 

integers n as a sum of kth. power integers. In chapter 2, 

we studied the necessary and sufficient conditions for an 

integer n to be representable as the sum of two squares. 

Then we determined the total number of not essentially 

distinct representation of integer n. Also in this chapter 

we considered the problem of representing an integer n as a 

sum of two nonvanishing squares, the sum of two relatively 

prime squares, and we discussed the uniqueness of 

essentially distinct representation. 

In chapter 3, we proved that every positive integer n 

is the sum of four squares integers. The representation of 

an integer n as a sum of four nonvanishing squares and four 

unequal squares have also been discussed. We also 

determined the total number of representation of an integer 

n as a sum of four squares, this followed by the study of 

the uniqueness of essentially distinct representations. 

In chapter 4, we began with the proof of the main 

result of representation of integer n as a sum of three 

squares. Then we studied some properties of integral 

Quadratic forms. We concluded this chapter by only stating 
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some important theorems and results concerning the problem 

of representation of an integer n as a sum of three squares. 
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