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CHAPTER 1

THE STATEMENT OF THE PROBLEM AND A BRIEF HISTORY

The representation of an integer as a sum of kth
power integers has fascinated several generations of
mathematicians, and its generalizations and analogues

occupy a central place in number theory today.

In this study we confine ourselves to the problem
of the representation of a positive integer as a sum of
two squares,three squares and four squares. The main
problems of the representation of an integer as a sum of
squares can be formulated as follows:

1) Given a positive integer k, what integers can be

represented as a sum of k squares?.

2) If an integer is so representable, how many

representations are there?.

The probhlems of representation of integers as a sum
of kth powers can be stated more generally in terms of
Quadratic Forms.

Given a quadratic form Q in k variables Xqgee Xy
with integral coefficients. Let NQ be the set of values
of Q. Then the two problems of representation can now be
formulated as follows:

1') Given a quadratic form Q, determine NQ.

2') Given Q and néNg, determine the number of

representation of n by Q, i.e determine the



number of vectors (a1,....ak)€-2k for which

Q(a1,..-,ak) = n.

Another equivalent formulation of these problems is
as follows:

1") Given a quadratic form Q in k variables and an
integer n, determine whether the Dophantine
equation Q(x1,..,xk)= n has solution.

2") Given Q and a representable integer n, find the
number of solutions of the Diophantine equation,

Q(X‘]"°’Xk) - N.

In this study we confine ourselves to the cases where
k = 2, 3 and 4. Both problems of representation , will be
completely solved for k = 2 and 4 in chapters 2 and 3. For
k =3,we will characterize the integers that can be
represented as a sum of three squares, and we will only
give formulas without proofs for the number of

representations of an integer as a sum of three squares,

since their proofs are beyond the scope of this thesis.

Before going any further we need to make few remarks:
1) In this study by the word '"square" we mean the
square of integers (positive, negative or zero).
2) Two representations of an integer n are regarded

as being not essentially distinct if they only

differ trivally (i.e by the order of the summands,

or by the sign of a term), otherwise they are said



to be essentially distinct. For example 5 = 22 & 12
=(=2)2 + (=12 = (=2)2 + 1°
=22 +(=12 = 12 4+ 22 = (=12 4 (=2)2 = 12 4 (-2)?
= (=12 + 22 has a total of 8 representations as a
sum of two squares.However, any two of these
representations differ only by the order of the
summands, or by a sign of one of the terms, and
therefore they are not essentially distinct. On the
hand, 5 = 22 + 12 is the only essentially distinect
representation of 5.

3) If a number is representable by a sum of k squares
then it is representable by a sum of m squares for

any m >=k.,

We will show in chapter 3, the least value of k , for
which all numbers are representable as a sum of k squares
is k = Y4,that is to say that any number is representable
by a sum of four squares and that four is the least
number of squares by which all numbers are representable.
This is a special case of well known problem called
Waring's problem, stated by Waring in 1770:

Suppose r > 1 is an integer. Does there exist a
positive integer k, such that every positive integer n is
a sum of k rth powers of integers, i.e such that the
Diophantine equation n = x;7 + x," + ....+ x,' has a

solution for all n > 07

The problem of representing an integer as a sum of

W



kth power integers has a very lengthy history. In this
brief historical introduction, we will give a very short
sketch of the history of the representation of an integer
as a sum of squares. For a more detail acount of the early
history the reader may consult Dickson's treatise[3] and

a more recent book by A.Weill16].

The problem of representing an integer as sums of
2, 3, and Y4 squares goes back as far as Diophantus,
Eventhough Diophantus (325 -~ 409 A.D) knew and made
several statements related to the problem of sum of two
squares, but Girard in 1625 and Fermat a few years later,
were first to recognize the problem and stated the
correct necessary and sufficient conditions on an integer
n to be representable as a sum of two squares. Fermat
also knew how to determine the number of ways in which a
given number of the proper form is a sum of two squares.
He stated that he could prove that every prime of the
form Un + 1 is a sum of two squares by the method of
indefinite descent. Euler in 1749 was the first to succed
in finding a complete proof after struggling with this
problem for seven years.

Diophantus stated that no number of the form 8m + 7
is a sum of three squares, a fact easily verified by
Descartes. It was Fermat who finally gave the complete
proof and formulated the correct conditions that a number

is a sum of three squares if and only if it is not of the

4



form 4%(8m + 7). Euler and Langrange tried for many years
to prove this theorem but neither Euler nor Lagrange found
a proof for all cases. In 1798 Legendre gave a

complicated proof for this theorem. Finally in 1801,

Gauss gave a complete proof which depended on more
difficult results in his extensive theory of quadratic
forms. He also obtained a formula for the number of
primitive representation for an integer as a sum of three
squares. Other proofs have since been given, but none of
them can be described as both elementary and simple.

Some historians believed that the fact that every
natural number is representable as the sums of four
squares was first known to Diophantus of Alexandria
because he expressed 5, 13, and 30 as sum of four squares
in two ways without mention of any conditions on a number

in order to be a sum of four squares whereas he gave
necessary conditions for representation as a sum of two
and three squares. Hence Bachet and Fermat ascribed to
Diophantus a knowledge of the beautiful theorem that
every positive integer is a sum of four squares. Bachet
verified this theorem for an integer up to 325. The
theorem was stated to be true by Girard in 1625 and
Fermat claimed that he possesed a proof by indefinite
descent. Euler gave serious attention on this theorem for
more than 40 years. Not until twenty years after he began
the study of the theorem did he publish some important

facts about it. The first proof published was by Lagrange



in 1772, who gave a lot of credits to Euler's paper. The
following year Euler published a proof which is much

simpler than Lagrange and which has not been improved

upon to date.



CHAPTER 2

SUM OF TWO SQUARES

1.Representation Of Integers As Sum Of Two Squares.

In this chapter we confine ourselves to the case k = 2,

i.e the representation of a positive integer as a sum of

two squares. In this case the two representation problems

are:

1)

2)

To find the necessary and sufficient conditions for
an integer n to be representable as the sum of two
squares. That is to say, we want to characterize the
set of integers NQ , for which the Diophantine

equation Q(x,y) = x2 & y2 = n has a solution,.

Let NQ = {n € Z x2 4 y2 = n, has integral
solution}. The problem is: for n GNQ, determine the
number r2(n) of solutions of x2 + y2 = n, where
r,(n) is the total number of solutions that are not

essentially distinct.

The problem of determining which numbers are

representable as the sum two square is a very old one. In

the Arithmetic of Diophantus (325-409 A.D) there are

several statements connected with this problem, but their

precise meaning is not clear[3]. It was Girard (1595-

1632) who first stated the correct necessary and sufficient

conditions on an integer n to be representable as

a sum of two squares. But it seems that there is no



indication that Girard had a proof for his statement. The

first proof we know of was published by Euler in 1749[3].

The Main theorem of this section is the following:

Theorem 2.1:

A positive integer n is representable as the sum of
two squares if and only if the factorization of n into
prime factors does not contain any prime of the form Ui4k+3
that has an odd exponent in the canonical form of n. That
is an integer n =TIP;1Lis representable as the sum of two
squares 1if and only if @; is not odd for every i for which
p; is of the form 4k+3.

As an illustration of the theorem, we note that 3 has
no representation as a sum of two squares. On the other
hand 90 has, in fact 90 = 32 + 92. Note that the prime

factorization of 90 is 90 = 2.3°.5.

OQur objective in this section is the proof of Theorem 2.1.
It is an easy matter to rule out certain numbers as

incapable of being represented as the sum of two squares.

Lemma 2.01:

Any integer of the form 4m + 3 can not be represented
as a sum of two squares.
Proof:

First note that if x is any even integer then
ng O(mod4) and for any odd integer y we have yzg 1(mod 4).

Hence the sum of any two squares must be congruent either



to 0+ 0 or 0+ 1 or 1+1 (mod4) that is x2 + y© z 0, 1, or
2 (mod4). Thus any number of the form Um + 3 can not be the

sum of two squares.

Lemma 2.02:

If the prime factors of an integer n can be written as
the sum of two squares, then n is the sum of two squares.
Proof:

This follow immediately from the identity applied
several times if necessary to the prime factors of n.
x2 + y2) (42 + y42) = X2 « Y2,

where X = XXq + YY1 » Y = Xyq - ¥YXq.

Lemma 2.03:

If p is a prime of the form 4k + 1, then there exists
an integer z such that 2 + 1 = 0 (modp).
Proof:

This is equivalent to proving that the congruence
= 0 (modp) is solvable for any prime p of the form
Uk+1, which follows directly from Euler's Criterion for an

integer to be quadratic residue (modp).

Lemma 2.03 implies that if p is a prime of the form 4k + 1,
there exists a positive integer m such that 2 + 1 = mp,

0<m<p. Hence x2+y2= mp is solvable in integers x,y,and m.

Our next objective is to show that a prime of the form
Uk + 1 is representable as a sum of two squares. But first

we need a lemma.



Lemma 2.04:

If p is a prime of the form 4k + 1 and if x° + y2 = mp

with 1<m<p, then there exist integers X715 ¥ and n such
that x12 + y12 = np with 1 { n < m.
Proof':

There are two cases to consider according as m is
even or odd.

When m is even, then both x and y are even or both
are odd, and we may write the equation of the hypothesis in
the form

((x+y)/2)? + ((x=y)/2)° = (m/2)p
Thus xq = (x+y)/2 , y4 = (x-y)/2 and n= m/2 are integers
satisfying the conclusions of the lemma.

When m is odd, we use modified division algorithm for
least absolute value remainder to write:

X = am + ry and y = bm + rs

where |rq| < m/2 and]|r,|< m/2
If these expression are substituted in the given equation

)2

we find (ma + r + (bm + r2)2 = mp

r12 + r22+ 2m(arq + br,) +(a2+b2)m2: mp.

Hence r12+ r22 = m(p-2(ar {+br,) - (a2 + b%)m)

That is there exists a nonnegative integer n such that

r12 + r22 = mnh , and we may write

n + 2(ar1 + br2) + (32 + b2)m = D.

By multiplying both sides by n, we have

n2 2n(ar1 + br2) + (32 + b2) mn = np,

this implies n2+ 2n(arq + br2)+(a2+b2)(r12+r22) = np.

10



This implies (n+(arq+ br2))2+ (ar5- br1)2= np.

If n = 0 we would have rqy = r, = 0, so that m° would divide
x2+y2 = mp and m would divide p. But since p is a prime and
1<m<p, this is a contradiction. Hence we have 1 < n . But

also we have nm = r12 + r22 < m2/2 < m? . Hence n < m.
Thus X912 N + ary + brz, y = ar,- br1 and n are integers

satisfying the conclusion of the lemma.

Lemma 2.05:

Every prime of the form 4k + 1 can be represented as
the sum of two squares.
Proof:

By lemma 2.03 we can find integers x,y such that
X2 + y2= mp, where 1<m<p. If m>1, we can apply Lemma 2.04
a finite number of times (say with m>n = nqg > n2>..>nk=1)
to " descend" to the situation : xkz + ykz = p.
As an illustration of Lemma 2.04 and Lemma 2.05 we give the

following examples.

Example 1: (m is even)
2 2

Let p = 13. Consider the equation x° + y< = mp.
p = 13 is of the form 4k + 1, therefore by lemma 2.03
z2 + 1 = 0 (mod p) has solution which is z = 5 or z = §.

Let z = 5, then 52 + 12 2.13 .Then we apply lemma 2.04

(5+1)/2

X1 3

yp = (6=1)/2 2
n =m/2 = 2/2 = 1

Hence we have x12 + y12 = np = 32 + 22 - 1.13.

11



Example 2: (m is odd)
From example 1, another solution for z is z = 8.

Therefore we have 82 + 12 = 5.13 .

We apply lemma 2.04 , x = 8 = am + rq = (1)5 + 3

y=1=bm+r2 (0)5 + 1

p - 2(arqy + bry) - (a2 + b%)m

=
1]

13 = 2(1.3 + 0.1) = (12 + 02)5

13 - 2.3 = 5 = 2,

it
Ui
.

Xq = n + (ar1 + brz) = 4 4+ (1.3 + 0.1) =2 + 3

(ar2 - br1) = (1.1 - 0.3) = 1.

Yq
Hence x12 + y12 = 52 + 12 = 2.13.

From here we apply lemma 2.04 as shown in example 1.

Remarks:

1) The method used in the proof of the theorem is
sometimes called "proof by finite descent" or "Fermat's
method of descent". This type of proof which also occurs at
other places in number theory, is based on the
well-ordering principle, which states that every nonempty
set of positive integers contains a least element.

2) We will see later that the representation of a
prime p of the form 4k + 1 as the sum of two squares 1is
unique, apart from the obvious possibility of interchanging

Xx and y and changing their signs.

In Lemma 2.01 we have shown that no prime of the form 4k +3
is the sum of two squares. But since the product of two

primes of the form 4k + 3 is of the form 4k + 1, further

12



investigation is required to see if such products are

representable as the sum of two squares.

Definition 2.1:

A representation of a positive integer n as the sum
of two squares is called primitive( or proper) if and only
if there exist relatively prime integers x and y such that

2

) . A . ..
n = x° + y~, otherwise it 1is called imprimitive

representation.

Lemma 2.06:

If p = 4m + 3 is a prime number and p|n, then n has
no primitive representations.
Proof:

Assume that n has a primitive representation, then
there exist integers x,y such that x° y2 = n
with (x,y) = 1. Now p|n implies p({x and p|y.

By Fermat's theorem, xP~! =1 (modp);

hence yxp'1 = y (modp).

n

Let h = yxP~¢, then we have xh = y (modp) and so

x2(1+h2)5 x° + y2 =n = 0 (modp).
But since p{x we obtain hZ 4+ 1 = o (modp)
i.e h? = -1 (modp). Therefore -1 is a quadratic residue of
p,which is a contradiction.
(Recall :the number -1 is a quadratic residue of primes of
the forms 4k + 1 and a quadratic non-residue of the primes

of the forms U4k +3.)

13



Lemma 2.07:

If p = Um + 3, pC‘n, pc+11; where ¢ is odd,

then n has no representation (primitive or imprimitive) as

the sum of two squares.

Proof:

The proof is by contradiction. Suppose there is a
representation n = %2 y2 with (x,y) = d. Set x = du and
y = dv. Then n= d2(u? + v2) = d°N and (u,v) = 1.

Let pk be the highest power of p such that pkld.
Now p€[n . This implies p°|d2N.
This implies pc'ak’N and since ¢ is odd, e¢-2k is positive.

2 2

Hence we have N =u“ + v< , where (u,v)=1 and pIN which

contradiet Lemma 2.06.

Let us restate the main theorem again:

Theorem 2.1:

A positive integer n is representable as the sum of
two squares if and only if the prime factors of the form
bk + 3 in the cannonical factorization of n appears to an
even power,

Proof:

For n = 1, we have 1 = 12 + 02. For the only even
prime 2, we have 2 = 12 + 12, For every prime of the form
4k + 1 a representation as the sum of two squares exists by
Lemma 2.05. An even power P2T of a prime of the form

p = Uk + 3 is a sum of two squares since p°r' =(pr)2 + 02.

By Lemma 2.02 , every composite number n in which prime

14



factors of the form 4k + 3 appears only to even powers is
representable as a sum of two squares. On the other hand if
one prime factor of the form p = Uk + 3 appears to an odd
power, and not to a higher power as a factor of n, then n
is not representable as a sum of two squares, for this is

the content of Lemma 2.07.

As the first example of theorem 2.1,
consider n = 234 =2.32.13
2:12+12

32 - 32 + 02

13 = 32 + 22 . Then by lemma 2.02 n 234 is also a sum of

two squares where 234 = 152 + 32.

90 2.32.5 is also representable as a sum of two squares.

90 = 92 + 32,

30 = 2.3.5 is not representable as a sum of two squares
since 2 has odd exponent and 3 is not representable as
a sum of two squares.

Proposition:

If a positive integer n is not the sum of two
square integers, then it is not the sum of two square of
rational numbers either.

Proof:

If n is not the sum of two square integers, then by

the previous theorem, there exist a prime p of the form

4y + 3 that divides n to an odd power exactly. Now assume

p—
Ul



that n = (s1/m1)2+(32/m2)2, where m,, m, are positive
integers and sq,s, are integers. Then (m1m2)2n = (s1m2)2 +
(82m1)2. But p must appear with an odd exponent in the
factorization of the left hand side of the equality, and by

the previous theorem, this cannot be true regarding the

- right hand side of the equality, thus we have a

contradiction and so the proposition is proved.

2.The Total Number Of Representations As The Sum Of Two

Squares

In this section we are going to find in how many ways a
positive integer n can be represented as the sum of two
squares., First we will find the total number of not
essentially distinct representations of n. Then in section
4 we find what positive integers has exactly one
essentially distinct representation as a sum of two
squares. Recall that we consider two representations of n
as being not essentially distinct if they differ only by
the order of the summands, or by the sign of a term,
otherwise we regard them being essentially distinct (or
different).

Before attacking this problem we are going to show
that it is enough only to consider primitive (proper)
representations. Let Q(x1,x2,..,xn) be a quadratic form.
Let RQ(n) be the number of primitive solutions of the
Diophantine equation, Q(x4,X5,..,%,) = n, and let rQ(n)

denote the total number of solutions (primitive and

16



imprimitive solutions). Then we have:

Theorem 2.2:

_ 2
rQ(n) = dZE;RQ(n/d )

Proof:

Let s = <84,85,...,5,> be any imprimitive solution
of Q(xq,..,%x,) = n. Set d =(s4,85,..,8,) and write
s; = ds';,i=1,2,..,k, then (sq',85",...,5,")= 1.
Then d°2 n and hence n = d°m for some integer m and
Q(sq"y..ysy)=m, that is s'= <sq',..,5,'> 1s a primitive
solution of Q(x1,..,xk) = m.
Thus all solutions of Q(xq,..,X,)= n can be obtained from

primitive solutions of Q(x1,...,xk)= n/d2 , When d ranges

over all divisor of n such that d2 [ n. Hence we have,

Our next objective is to find the number of
primitive solutions of x2 y2 = n, where n is any positive

integer. First we need a Lemma.

Lemma 2.08:

Let n be any positive integer. The number of solutions

N(n) of the quadratic congruence x2 =-1(modn) is given by

0 if Mln or if n has a prime factor of the form u4k+3,
N(n) =)2% if 4ln, and n has no prime factor of the
form 4k + 3 and s is the number of distinct

odd prime factors of n.

17



Proof:

For n = 1, the statement is true (the number of

a a

a
solutions is 1). For n>1 let n = 2 °P1 ’...Pr r be the

canonical decomposition of n. Then the number of solutions

of x2

-1(modn) equals the product of the number of
solutions of the family of congruence equations:

x2 5-1(mod2a°), x 2 = -1(mod P1a'),...,x2 = -1(mod Pra').

Also we have x° =z -1 (modp) is solvable if and only if p=2

or p is an odd prime of the form p = 4k +1. For the case

p = 2 the equation x2 = -1 (mod 2) has one solution and

hence the statement is true. For odd primes p of the form

p= 4k + 1 the equation x° =-1(mod p) has two incongruent

solutions. Thus the statement is true.

Lemma 2.09:

Let n > 1 be such that congruence q° =-=1 (mod n) nas

a solution. Then there exist unique positive integers x,y
with (x,y) = 1 and satisfying x° y2 = n and

y = hx (mod n).

To prove this Lemma we need to use the following theorem

whose proof can be found in [8].

Theorem 2.3:

Given real numbers7) > 1 and E then there exist a
fraction a/b such that (a,b) = 1, 0 < b 7] and

€ -carorl< 1700m).

18



Proof of Lemma 2.09:

In theorem 2.3 Let 7] = J; and 5 = (-q/n).
Then there exist two integers a and b for which (a,b) =1,
0<b < Jn and |-a/n - asb| < (1/bn).
Let us set qb + na = c then |cl=|gb + na|< Jn and
¢ = gb (modn).
2 b2 + q2b2

Consider b2 + ¢ (1 + q2)b2 = 0 (modn)

Thus b2+ c2 >n , but since 0<b <Jn and [el< yn then

b2+ ¢2 < n. Hence it follows that b2 + ¢ = n.

Furthermore we have (b,c) =1.

Since n

b2 + c2 = b2 + (gb +na)2

b2 (1+q2) + 2 gnba +na®

implies 1= ((1+q2)/n)b2 + 2gba + na?

(1 + qz)/n)b2 + gba + gba + na?

ub + a(gb + na)
= ub + ac , where u = ((1+q2)/n)b + Qa
hence (b,c) = 1.
Now c40, for otherwise we would have b2 = n> 1 and
(b,ec) > 1.
In case ¢> 0 the choice x =b , ¥y = ¢ will satisfy the

conclusion of the theoremn.

In case ¢< 0 the choice x = -¢c , ¥ = b does it, since
n =(-c)® + b2 , -e>0 , b>0,

(-c,b) = 1 and b= ~q2b = =qc (modn).

To prove uniqueness , we assume there are two pairs of

positive integers (x',y') and (x",y") that satisfying the

given condition of the theorem. Then we have

19



n = (x')2 +(y')2 and n = (x")2 + (y")2
n2 =(xv2+ sz)(xnz + Y"2)
)2

(x'x" + y'ym2 4+ (x'y" - yrx"
X'X" + y'y" = x'x" + gx' gx" = (1 + g2)x'x" = O(modn)

But since x'x" + y'y" > 0 we have x'x" + y'y" = n

and x'y" - y'x" = 0

X' o= x'(X'X" + y'y") —yrt(x'y" - y'x") = x"(x'2 +y'2) = x"n

Hence x' = x" and y' = y" .

Theorem 2.5:

2

The number of primitive solutionsof x< + y2 = n,

is Rz(n) = 4N(n), where N(n) is the number of solutions of

the congruence equation z° = -1 (modn).

Proof:

For n = 1 the statement is true, since the number of

2

primitive solution of x= + y2 = 1 is 4 namely

1= (+1)2 + 02 and 1= 02 + (+1)2. On the other hand
N(1) = 1 . Thus R5(1) = 4N(1).

For n>1, if x' and y' is a primitive solution of
x2 + y2 = n, then we necessarily have x' # 0 and y' # 0
since (x',y')=1. Therefore the total number of primitive

2 4 y2= n must be four times the number of

solutions of x
positive primitive solutions .

From Lemma 2.09 above for each q satisfying q2 -1 (modn),

there exists unique x>0 , y> 0 such that (x,y) = 1,
X + y° = n and y = gx(modn) . Conversely, every solution

X + y© = n for which x>0 ,y> 0 and (x,y) = 1 yields
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2 2 1

exactly one solution q (modn) satisfying q© = (modn) and

for which y = gx(modn).

To prove the converse is true, note that since (x,y) = 1

we have (x,n) = 1. Hence the linear congruence

y gx (modn) has a unique solution for gq,

0 2 2 _ 42 242

n = x° +y = X + q = (1+92)x2 (modn)

0=z 1+ q° (modn)

Corollary 2.6:

2 2

The total number of solutions of x“ + y©= = n is given
by the formula r,(n) = 4 2 N(nldz)
d2|n
Corollary 2.7:
Every prime of the form p = 4 + 1 can be written as

a sum of two squares in eight ways.
Proof:
By Lemma (2.08), N(p) = 2 and since p is a prime all

solutions of x2 «+ y2 = p are primitive. Thus r2(p) = 8.

Corollary 2.7 implies any prime of the form p = 4k+ 1 can
be written as sum of two squares in only one essentially
distinct way, since the eight representations can all be
obtained from any one of them by changing the sign of x and
y and by interchanging the order of the summands. Thus
corollary 2.7 may be restated more precisely as:

For any prime p of the form p = 4k + 1, the Diophantine

2

equation x< + y2 = p has exactly one essentially distinct

solution.
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OQur main aim in this section is to prove the following

theorem:

Theorem 2.8:

Suppose that n > 1 has the factorization n = 2‘1n1n2,

where nj =J[ ", n, = JT 48
p=Uk+1 q=4k+3
Then r,(n) = 0 if any of the exponents s is odd
2

llT(n1) if all s are even

where 'f(n1) denotes the number of divisors of ng.

We shall require some axuiliary Lemmas for the proof

of this theorem. We first introduce the function,

0 if n z 0(mod2)
X(n) = 1 if n = 1(modl)
-1 if n =z 3(modd)

This function is called the nonprincipal character function

modulo ﬂ . Clearly one can prove the following lemma:

Lemma 2.10:

(1) X(n)

0 if 2 | n
{ (-1)(=1/2 3¢ 5 {n
(2) If ny = n, (mod4) then X (ny) = X(n,)
(3) .X(n1n2) =Xxn1)-X(n2) for any positive integers
ny, n,, that is X is completely multiplicative.
Proof:
To prove (1) , clearly if 2|n then n =z 0(mod2) and by

definition X(n) = 0. On the other hand if 2)fn then n 1is
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; odd. Hence n is either of the form 4k + 1 or the form
W+ 3. Ifn = Uk« 1, then (-1)(n=10/2 _ (_)8k/2 _ q,
And if n = U4k + 3 then (-1)(n=T1/2 . (_qy8k+2/2 o 4
To prove (2),
1) Assume nq = 0 (mod2) which implies n, = 2k.

ny = n, (mod#) implies n; -n, = H4m.

Therefore n, = ny = U4m = 2k - i4m = 2(k -2m)

which imply n, =z 0(mod2) .

Hence X (n;) = X(n,) = 0.

2) Assume ny = 1(mod4) which implies n, = 1(modd).
This implies X (n4) = X(n,y) = 1.

3) Assume n; =z 3(mod4) which implies n, = 3(modd).
This implies X(n;) = X(n,) = -1.

To prove (3), we consider 3 cases.

Case 1: 2 nq and 2 n,

X(nyny) =0, X(ng) =0, X(n,) = 0.
These imply X(n4n,) = X(nq). X(n5).
Case?2: 2|n1 and 2|n2
X(nqn,) =0, Xy =0, X(ny) = +1
These imply X(n;n5) = X(n;) X(n,).
Case3: 2Tn1 and ZTn2
Then n;, n, are odd and either of the form k + 1 or
4k + 3.
Assume ny = 1(mod4) and n, = 1(mod¥).
Then nqny, = (dk; + (%, + 1) = 4m +1 = 1(mod4)

Therefore X (nqn,) =X(n1)X(n2).
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} Assume n, 1(mod4) and n, = 3(modd).

Then nqn,

(Uk+1)(4k+3) = 4m + 3 = 3 (modd).

Therefore X(n1n2) =X(n1)X(n2).

Assume N, 3(mod4) and n, 3(m0d 4).

-

Im + 1 = 1(mod4).

Then n1n2 (4k1+3)()4k2+3)

Therefore X(nqn,) = X(n4) X(ny).
Now we define &(n) = ZX(d) , Where the sum runs
d|n

over all positive divisors d of n. d(n) is called the

Mobius transform of X (n), so that it follows from general

i
i
:
:
3

theorem that S(n) is also multiplicative.

r -
Let n =J[ P;® be the prime factorization of n, then
i=1
S(n) = ZX(d)

d n
TECXD «X(P) + X(Py2+...+ X (P
1

i

(1 + X(Py) + X(P;%) + ..o+ X(Py®)
1

1

i b

Using the function X(n) we can restate Lemma (2.08) as
follows:

Lemma 2.11:

Let N(n) denote the number of solutions to the
congruence equation x° = -1 (modn) . Then
N(n) = 0 if ufn

M 1+ X(p)) if u\n
p[n

where the product runs through all the distinct prime
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!
4

f divisors of n.

;fLemma 2.12:

ro(n) = 4 d(n)
Proof:
From corollary (2.6) and theorem (2.8) we have the
2 2

total number of solutions of x“ + y© = n is

ro(n) = 4 2 N (n/d?)
2 d2|n

where the sum runs over all divisors d of n such that d2 n
Let A(d) = 1 or 0 according to whether d is a square or

not .Then r,(n) = 4 %ﬁ N(n/d) A(d)
d|n

Clearly A(n) is multiplicative and since N(n) is
multiplicative it follows that r,(n)/%4 is multiplicative.
Since S(n) is also multiplicative, we need only to show
that r,(P®) = 4 &(PE) for any prime p and any positive
integer e.

Now if 2|e, then

r,(P€) Y N(P€/d) A(d)
I d|p®

N(P®) + N(P®=2)4...+N(P2) + N(1)

0+ 0 +...40 +1 = 1 if p = 2

O+ 0 +...+0 +1 = 1 if p = 3(modl)
24 2 +...42 +1 = /2.2+1 = e+1 if p = 1(modd)

and if 2{e then ro(P®) = N(P®) + N(P®™2)4...+N(P%) + N(P)

1if p = 2
= 0 if p = 3(mod¥)

e+1 if p = 1 (modi)
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%On the other hand we have

d(P®) = 1 + X(p) + ...+ X(P®)

1]
—_
[us}
y
e
1l
\]

1+ 0+ 0 +....+4 0

=] 1T =1+ 1 =cae + 1 =11if p 3(mod4) ,2|e

1 - 1 + 1 — e e e = 1 = O ifp

3(mod 4) ,ZTe

14+ 14+ 1 4.4 1 =e + 1 1if p = 1(mod¥)

Hence r2(Pe) - 4 O(P®). Hence we have ro(n)= 4d(n).

Proof of Theorem 2.8:

For n = 1, the theorem is true . Now since rz(n) and

T(n1) are multiplicative , we only need to prove the
statement for n = P® where p is a prime and e>1.

We have 1 2

T(1) if p

ro(P®) 1= T(1) if p = 3(mod®), 2|e
0

0 if p =z 3(modd) , Zfe

e+1 = T(P®) if p = 1(modd)

Thus 0 if p = 3 (mody4) , 2|e

ro(pP®) = T(P®) if p = 1 (mod4)
I}

1 if p = 2 or p 3 (mod#), 2]e.

And this complete the proof.

Corollary 2.9:

Let n = 2an1n2 , Where n4 and n, are as in the theorem,
then r2(n): 4 T(n1) if n, is a square
{ 0 if n, is not a square.
The following are some examples to illustrate the above

lemma.
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o
n

2.3.5 3 r5(30) = 0 since 3 is not a square.

o
1]
]
1]

4 T(5) = 4,2 = 8.

2.32.5 3 r-(90) 4 T(ny)
Q}These representations are:

(-3)2 + 92 = 32 4+ (=9)2 = (=3)2 4+ (-9)°

90 = 32 4+ 92

92 + 32 = 92 4 (=3)2 = (=9)2 4+ 32 = (-9)% & (-3)2

n
n
n
n

Theorem 2.8 is sometimes stated in another form.
First we define the following arithmetiec functions.
T1(n) = number of divisors of n which are of the form idk+1.

T3(n) number of divisors of n which are of the form 4k+3.

Theorem 2.10:

r‘z(n) = U T1(n) - T3(n))
The proof of this theorem requires some knowledge of the
functions T4 and T3. Neither one of these function is
- multiplicative. For example T,(3) = T,(7)=1 but T,(21)= 2
Also T3(3): T3(7) = 1 but T3(21) = 2.
On the other hand , these functions do have some
interesting properties.

Lemma 2.13:

If (a,b) = 1 then

1) T,(ab) = Ty(a) T4(b) + T3(a) T3(b)
Proof:
1) Every divisor d of ab can be written uniquely as d = AB

where A|a and B|b.
d = 1 (mod¥4) if and only if A = B = 1 (modd)

or A = B = 3 (modl)
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d = 3 (mod4) if and only if A 1(modd), B 3 (mod4)

or A

3(mod4), B = 1 (mod4)

Now T1(ab) = number of divisor d of ab where d = 1 (modl)

T1(a) = number of divisors A of a where A = 1(mod4d)
T1(b) = number of divisors B of b where B = 1(modd)
T3(a) = number of divisors A of a where A = 3(modl)
T3(b) = number of divisors B of b where B = 3 (modd)

By the multiplication and addition principles of counting
we have,
T1(ab)= Tﬁa) Tﬁb) +T3(a)T3(b%

In similar manner we can prove (2).

Lemma 2.14:

Let n = 2an1n2, where nj contains only primes of the form
p = 4k+1 and n, contains only primes of the form q =4k+3 .

Then, 1) T-I(Tl) = T1(n1n2)

Proof:

1) From the previous Lemma we have

T1(n) = 1(2an1n2)
= T12%) Tnny) +T52%) To(ngny)
= 1.Ty(nyny) + 0.T3(nyny)
= T1(nqny).
2) T3m) = T50(2%nqng]

a T a

1. T3(n1n3) + T1(n1).0

T3(l’l1n3).
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f;Lemma 2.15:

Let F(n)
é Proof:
Let a , b

F(ab)

i

Lemma 2.16:

4
4
1

= T1(n) - Tg(n) ,then F is multiplicative.

be two positive integers such that (a,b) = 1,
T, (ab) - T3(ab)
[ T1(a) Ti(b) + T3(a) T3(b)]
-[ Tq(a) T3(b)+ T,4(b) T3(a)]
[ T4(a) Tq(b)- T4(b) T3(8)]
+ [ T3(a) T3(b)— T1(a) T3(b)]
T1(b)( Tq(a)- T3(a)) + 13(b)( T,(a)- T3(a))
( T1(a) - T3(a))—( T1(b)- T3(b))
F(a)F(b).

Let n = 2%nyn,, and F(n)= T (n) - T5(n),

then:
a
1)y F(2 ) =1
2) F(n1) = ‘f(n1)
3) F(ny) = { 1 if n, is a square
0 if no is not a square
Proof:
a a a
1) F(Z):T1(2 )-—T3(2 )y =1 -0 = 1.
2) F(nq) = Tq(nqy) = T3(ny) =T (nqy) - 0 =T(ny)
3)When n, is a square, we let n, = m22 where my = 4k + 3

then n, =

bm + 1.

Therefore F(n,) = T ,(n,) -‘f3(n2)

= 2 - 1 = 1’
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fsince the divisors of n, of the form 4k + 1 are 1 and n,

itmzz, hence T1(n2) = 2. The divisor of n, of the form X4k+

? is my, hence T3(ny) = 1.
. When n, is not a square, we let n, = m, where m, = 4k +3.
 Therefore F(ny) =T4(ny) - 73(n2)
= 1-1=0,
since the divisor of n, of the form 4k + 1 is 1 , and the

divisor of n, of the form 4k + 3 1is ms.

?oof of the theorem 2.10:
4 a
Let n = 2 nqn,

F(n) = F(2%nny) = F(2P F(n)F(ny)

T(ny) Flny)

§ ~{'F(n1) if n, is square

0 if n, is not a square

But r,(n) = {M'T(n1) if n, is a square

0 if n, is not a square
Thus we have ro(n) = 4 Ti(n) - T3(n))

As an example consider n = 090 = 2.32.5
T1(90) = 4, T5(90) = 2.
r,(90) = 4C T,(90) - T3(90))
= 4 4 -2) = 8.
Next consider n = 18 = 2.3°
ro(18) = 4C T4(18) - T3(18)) = 4C 2- 1) = 4.
18 = 32 + 3% = 32 4+ (=302 = (-2 + 32 = (-3)2 + (-3)2.
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i Now consider n = 30 = 2.3.5
E r,(30) = H( T;(30) - T3(30)) = 4(2-2) = 4.0 = 0.

Clearly this theorem implies Theorem 2.1 ,

3.Representation Of Integers As Sum Of Two Nonvanishing

Squares:
In this section we consider the problem of

representing an integer as a sum of nonvanishing squares.

Theorem 2.11:

A positive integer n is the sum of the squares of two
nonvanishing integers if and only if all prime factors of
the form 4k + 3 of the number n has even exponents in the
standard factorization of n and either the prime 2 has an
odd exponent or n has at least one prime divisor of the
form 4k + 1.

Equivalently: A positive integer n is the sum of the
squares of two nonvanishing integers if and only if

2 provided that n; % 1 or a is odd,

a

n = Zan1n2

where n, = [ P% 1
piz1(mod4)

B;

q .
qj53€mod4)

=
"

Proof:

Suppose that there exist a positive integer which is
the sum of the squares of two nonvanishing integers, and
has the following properties: it does not have a prime

factor of the form b4k + 1 (i.e nq= 1) and in its
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ctorization into primes 2 has an even exponent. Let h be
ithe least such positive integer with these properties.
iﬁince it is the sum of the squares of two nonvanishing
 integers, by Theorem 2.1 all prime factors of h of the form
= 22kp2

"4k + 3 have even exponents. Consequently h ,

:?where m is an odd integer and k > 0. Thus we may write
;‘22km2= a® & b2, where a,b are positive

2:integers. If k> 0 , then the left hand side of the last
equation is divisible by 4; consequently the numbers a, b
are both even ; let a = 2a,, b = 2b1.

Hence 22k'2m2 = a12 + b12 < h., Contrary to the choice of h.
Hence k = 0 and so h = m2 = a° 4b? > 1. The numbers a,b
must be relatively prime because if (a,b) = d> 1 we would
have a = da,, b = db2 where a2,b2 are integers , whence

22 a22 + b22 <m? =z h also contrary to the

m = dm, and m,
choice of h. So (a,b) = 1. But since m is odd and greater
than 1 (since m has no prime factors of the form 4k + 1),
it has a prime factor of the form 4k + 3. Hence p ac + b
, Or al = ~b? (modp). If we raise each side of the last
congruence to the (2k+1)th power, then

22(2k+1) = (_1)2k+1b2(2k+1) (mod p).

But 2(2k+1) = p-1 hence aP~1 =(-1)2%*1P-T(mog p),

by Fermat theorem we have aP-1 = 1 (mod p) and

bP=1z 1(mod p) , hence we have 1 = (-1)2K *1(modp) which

is impossible. Thus we have proved that a positive integer
that is the sum of the squares of two nonvanishing integers

has the following properties; either in its factorization
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nto prime factors the prime 2 has an odd exponent,or it

1as a prime factor of the form 4k + 1. Moreover by

heorem 2.1 , it follows that all prime factors of the form
K + 3 have even exponents. This shows that the conditions

of the theorem are necessary.

égNow suppose that a positive integer satisfies the
5 conditions of the theorem. Thus we have either n = 2m? or

n =2 m2h, where @ =z 0 or 1 and h is the product of prime
factors of the form 4k + 1.

If n = 2m2, then n = m2 + m° , and so it is the sum of the
squares of two nonvanishing integers.Suppose that n=2 mZh s
where h 1is the product of prime factors of the form 4k+1.
But each of the factors is the sum of two positive
squares, and hence h is again the sum of two positive
squares. Recall if hy = al 4 b2, hy, = c? + d2 where h4 and
h, are odd, then one of the numbers a or b, say a must be
odd, the other being even, the same is true for the numbers
¢ and d; so let ¢ be odd, d is even.

Then hqih, = (a2 + b2) . (e? + d2)

= (ad + be)? + (ac - bd)?

where ac - bd is odd , and so ac -bd } 0. Thus the number
h1h2 is the sum of the squares of two nonvanishing
integers. We conclude by induction that h is the sum of the
squares of two nonvanishing integers, i.e h = 2% & b2,

Where m2h =(ma)2 + (mb)2 and 2m°h =(ma + mb)2 + (ma - mb)2

and ma - mb % 0 (because a must be different from b since
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F the number h = a2 + b2 is odd) .
YEThus Wwe see in any case the number n is the sum of the
Eésquares of two nonvanishing integers. Therefore the

b condition is sufficient and the proof is complete.

4 Here we provide some examples to illustrate theorem 2.11
10 = 2.5 = 12 + 32 is a sum of the squares of two
nonvanishing integers since 10 has prime factor

of the form 4k + 1 and 2 has odd exponent.

72 23.32 = 62 + 6° is also a sum of the squares of two

It

nonvanishing squares, note here 2 appears with

an odd exponent.

9 = 20.32 = 32 + 0% is not a sum of the squares of two
nonvanishing squares since 2 has even exponent and

has no prime factor of the form 4k + 1.

Corollary 2.13:

A square integer n? is the sum of the squares of two
nonvanishing integers if and only if the number n has at
least one prime factor of the form p = 4k + 1.

This is equivalent to saying:
A positive integer n is a hypotenuse of a pythagorean
triangle if and only if n has at least one prime factor of

the form p = 4k + 1.

Another interesting problem is the following:

When a positive integer n can be written as the sum of the

34
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‘fsquares of two different nonvanishing integers? The anwser

[ 1s given by the following theorem.

gvTheorem 2.14:

A positive integer n is the sum of the squares of two
different nonvanishing integers if and only if the
following conditions are satisfied:

1) The prime factors of n of the form p = 4k + 3

have even exponent.

2) The number n has at least one prime factor of the

form 4k + 1.
Proof:

Assume that n is the sum of the squares of two
different nonvanishing integers. We need to show the two
conditions of the theorem are satisfied.

The necessity of the condition (1) follows from the
previous theorem.

Now suppose that a positive integer n does not
satisfy condition(2), i.e n has no prime factor of the form
Yk + 1. Consequently , if n = a2 + b2 , with a and b
two different nonvanishing integers. Let (a,b) =d, then
a = aqd ,b = byd and hence n = d2(a12 + b12) and a; % by,
(aq,bq) =1, a12 + b12 has no prime factor of the form
4k + 1. Now since (aq,bq) = 1, then by using the same
reasoning used in the proof of the previous theorem

2 + b12 has no prime

(necessary part), we conclude that aj

factors of the form 4k + 3 either. Therefore aq
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iwhere k >1 , since a,, by are different. Consequently
}ﬂ(a12 + b12) . Hence the numbers a; and b, are even, but

his contradicts the fact that (aq,bq) = 1.

- Now suppose that a positive integer n satisfies conditions
(1) and (2). Then by the previous theorem, we have

' n = a° + b2 where a ,b are nonzero integers. If a = b ,

¥ then n = 2a2 , and since n satisfies condition (2) it has a
prime factor of the form 4k + 1, thus a is the hypotenuse
of a pythagorean triangle. This means a = c? &+ d2, where c¢
and d are nonzero integers. Clearly c % d since if ¢ = d ,

then 32

= 2¢2 which implies a =J2c. But sinceJE is
irrational ,this is impossible.

Hence n = 2a= (c+d)2+(c-d)?, where c=d § O and c+d c- d.
Consequently n is the sum of the squares of two different
nonzero integers. Thus the conditions (1) and (2) are
sufficient . This complete the proof.

To illustrate the theorem 2.14, we provide some examples
below:

10 2.5 = 12 + 32 is the sum of the squares of two

different nonvanishing integers since 10 has prime

factor of the form 4k + 1 = 5.

18 = 2.32 = 32 + 32 is not the sum of the squares of two
different nonvanishing squares because 18 does not

satisfy condition (2) of the theorem.

90 2.32.5 = 32 +92, yes since it does satisfy both



conditions of the theorem.

i 9 = 20,32 = 32 4 02 is not since it does not satisfy

condition (2) of the theoremn.

The next theorem gives under what conditions a positive
integer can be written as the sum of the squares of two

relatively prime integers.

Theorem 2.15:

A positive integer n is the sum of the squares of
two relatively prime integers if and only if n is neither
divisible by 4 nor by a number of the form ik + 3.

Proof:

Suppose that a positive integer n is the sum of the
squares of two relatively prime numbers say, n = a< + b2
where (a,b)= 1 .If 4|n, then n = U4k , then Uk = a2 4+ b2 ,
hence both a and b are even , contrary to (a,b) =1. If n
has a divisor of the form 4k + 3, then as we know it has a
prime divisors of this form, which as we have seen in the
proof of Theorem 2.11 cannot divide the sum of the squares
of two relatively primes numbers. Thus this proves that the

condition of the theorem is necessary.

Suppose that a positive integer n satisfies the
condition. If n = 2 , then 2 = 12 + 12 , and so it is the
sum of the square of two relatively prime numbers. If n>2,
then the condition implies that n is the product of prime

numbers of the form 4k + 1 or the product of number 2 and
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rimes of the form 4k + 1. In the first case n is odd and
ach of the prime factors of n is the sum of the squares of
wo relatively primes numbers and by induction one can

how that n is the sum of the squares of two relatively

| prime numbers.

;,In the second case , i.e if n is the product of 2 and the

. primes of the form 4k + 1, we have n = 2(a2 + b2) , where a
and b are relatively prime. Since a2 + b2 is odd , one of
the numbers a and b is odd and the other is even.

We have n =(a + b)2 + (a - b)2 , Where a + b and a - b are
odd. Morever, they are relatively prime because if dla+b
and dfa-b then d]2a and d,2b since d is a divisor of an odd
number a + b, is odd, we have dla and d,b, but since

(a,b) = 1, then d =1. Therefore (a+b, a-b) = 1.

Thus the condition is sufficient and the proof is complete.

Examples:
10 = 2.5 is the sum of the squares of two relatively prime
integers since 4 T1O and cTHO where ¢ is of the form

Bk + 3. (i.e 10 = 12 4 32, (1,3) = 1)

18 = 2.32 = 32 + 32 , (3,3) = 1 since 3|18 and 3 is of the
form U4k+3.

29 = 29 is the sum of the squares of two relatively prime
integers since MTé9 and 29 has no prime factor of
the form Uk+3. (i.e 29 = 22 + 52 , (2,5) = 1)

90 = 2-32.5 = 32 + 92 , (3,9) = 1 since 3(90 and 3 is of

the form 4k+3.
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;h.The Uniqueness Of Essentially Distinct Representation

In section (2) we found a formula for the total

§ number of representations of a positive integer n as a sum
zfof two squares that are not essentially distinct. In this
4 section we are going to find what positive integers can be
§ written exactly in one way as a sum of two squares apart

from the order or the signs of the summands.

Theorem 2.16:

The only positive integers that can be represented as

a sum of two squares in exactly one way are of the form

n = ZaPn22 , Where a> 0, P is a prime of the form p = 4k+1
and n, is an integer of the form n, = T pe .
P=4k+3

Proof:

Let n be a positive integer , where n = 2%m;m,, where
a>o where my = J[ Piai , Mo = N q.ﬁ%

Py=1(fiod 4) qj53<%odu>

In order that n is a sum of two squares all the jtrs must
be even. Thus we may write m, = n22 and hence n = Zam1n22.
Let a = 2b + ¢ where ¢ = 0 if a is even or ¢ = 1 if a 1is

odd. Then n = 2Cm1(2bn2)2 .Now if x2 + y?@ = 2cm1 has a

solution, say x = x, and y = y, then xo2 + yo2 = 2°m4 and

hence (2bn2xo)2 + (2bn2yo)2 = 2Cm1(2bn2)2 = n.

Thus x, = 2Pn,x = 2bn is a solution of x2 + y2 = n
1= 2Xor Y9 7 2Y0 y- = n.

Conversely if x = X1 and y = y, is a solution of x2 + y2=n,

X = x1/(2bn2) and y = y1/(2bn2) is a solution of

x2+y2= 2Cm1.
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i n - 2°m, where c¢= 0 or ¢ = 1 and my

;
z~
g,

fHence it is sufficient to consider only integer of the form

T p%.

5 = 1(mod¥)

% Let M be the set of all such integers of the form

i n = 2°m1 that can be written as a sum of two square in

exactly one way.
Recall that any prime P of the form p= 4% + 1 has exactly
one representation as a sum of two squares.

If m, has two distinct prime factors, P1 and P, of the

2 . p2

form 4k+1, then the representation of Py= a and

P2 = c? & d2 are unique.
Hence P1P2 has at least two distinct representations
Xq = ac + bd, Yq = ad - be
X, = ac - bd, y, = ad + be
If these solutions are not distinct then neither we have
ac + bd = ac - bd and this would implies abed = o
nor ac + bd = ad + bec which is equivalent to say
(ac +bd) - (ad + be) = 0 and this implies (a-b)(c-d) = 0.

Both of these will lead to a contradiction.

For let us consider the two possibilities:

Casel:

If abed = 0, then at least one of these must be zero,
say a = 0 , then P1 = b2 , a contradiction.
Case 2:

If (a-b)(c~d) = 0 this would imply a-b = 0 or c-d = O

2

Let a=-b = 0 then P1 = 2a“ also a contradiction.

Hence my cannot have more than one prime factor of the
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form 4 + 1. On the other hand 2 = 12 + 12 and if

= a% + b2 ,then 2P = (12 4+ 12)(a® + b2) = (a + b)2 + (a-b)?
tis the only representation of 2P as a sum of two squares.

hus the set M consists of the integers of the form m =2°¢P
here c¢c= 0 or ¢= 1 and P is a prime of the form 4k + 1.
éfinally the set of positive integer that can be represented

f as a sum of two square in exactly one way are of the form

gfn = ZaPn22,where a > 0.

f Corollary 2.17:

Any prime of the form p = 4k + 1 can be represented as a

sum of two squares in exactly one way.

Examples:

10 = 2.5 can be represented as a sum of two squares in
exactly one way i.e 10 = 12 + 32.

25 = 20.52 can be represented as a sum of two squares in
more than one way since the prime p = 4%k + 1 = 5 is a
square.,

90 = 2.32.5 can be represented as a sum of two squares in
exactly one way, 90 = 32 + 92.
100 = 22.52 can represented as a sum of two squares in more

than one way since p = 4k + 1 = 5 has even exponent.

100 = 102 + 02 = 82 4+ 62 -
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CHAPTER 3

SUM OF FOUR SQUARES

;14 Representation Of Integers As Sum Of Four Squares.

4 In this chapter we consider the representation of a
é?positive integer as a sum of four squares. As in the
iéprevious chapter the two Representation problems are:
1) What positive integers n can be represented as the
sum of four square integers? That is to say for
what positive integers n the Diophantine equation
X2 & y2 + 22 + w? = n has a solution?
2) To find a formula for ryu(n), the number of

representation of an integer n as a sum of four

squares.

We shall prove that every positive integer is the sum

of four square integers.

5
E

It was Girard and Fermat who stated that every natural
number is representable as the sum of at most four
squares of natural numbers. But some historians have
argued that the fact was known already to Diophantus of
Alexandria because he made no mention of any condition to
be satisfied by a number for it to be representable as a
sum of four squares, wWhereas he was aware that only
certain kinds of numbers could be represented by two or
three squares. The first proof we know of is that given

by Langrange in 1770.
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The solution of problem (1) can be broken up into

§3evera1 steps. First we need the following lemmas:

gLemma 3.01:

If every prime is the sum of four squares then every
i‘composite integer is the sum of four squares.

E Proof:

Using Euler's identity, we can prove this lemma.
(x12 + x22 + x32 + xuz)(y12 +y22 + y32 + yuz)
S(X9Y 1+ X¥p¥X3¥g +XY )% (Xq¥omXo¥ 1+X3Yy-Xyy3) 7
+(x1y3-x3y1+x4y2-x2y4)2 + (x1y4—x4y1+x2y3-x3y2)2

This identity can be verified by multiplying out both
side. On the left, after multiplying out we have sixteen

expressions of the form xizyj2 (i=1..4, j=1..4).

These also appear , among other terms, on the right, for
within the four parentheses on the right, each x; is
combined with each Yj with a coefficient of +1.

The other twenty-four terms on the right , which are all
of the form + inxjykyh’ i<j , k <h cancel each other
pairwise , for on the right the coefficient of

2X1X5 18 y4¥5 = V¥ - y3¥y + ¥3¥y = 0

+

2xqxy is yqyy - Yo¥3 Ypo¥3 = ¥1¥y = 0
2x2x3 is Yo¥3 = Yq¥y + Yq¥Vy - ¥p¥3 = 0
2Xo Xy 18 yoyy + Yq¥3 = ¥Yo¥y - ¥Yq¥3 = 0

2X3Xy 18 y3¥y = Y3¥y = ¥q¥p + ¥q¥p = O

This identity show that if X and Y can be expressed
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8 sum of four squares, then so can their product XY.
From this identity and math induction, Lemma 3.01 is an
immediate consequence , for every composite integer n is

the product of primes.

ngxample:
}Letx=7=22+12+12+12
Let y = 10 = 12 4 12 4 22 , 22

Then 70 = x.y

7.10

(2%+ 12+ 12+ 12) (124 124+ 22422)

(2.1 + 1.1 4 1.2 + 1.2)2 4 (2.1 =1.1 4+ 1.2 = 1.2)2

F (2.2 = 1.1 + 1.1 = 1.2)2 4+ (2.2 = 1.1 + 1.2 = 1.1)°

4o + 1 + 4 + 16 = 70

Therefore if x and y can be expressed as a sum of four

squares , then so can their product xy.

Lemma 3.02:

For every p > 2 there exist an integer m for which
1 <{m < p and mp = x12 + x22 + x32 + x42
is solvable.
Proof:

The (p+1)/2 numbers in the set A& = {02, 12,....
..,((p—1)/2)2} are incongruent to each other (modp) in
pairs.

Assume x12 = x22 (modp) where 0 < xq < x5 < (p=1)/2

This implies x12 - x22 = 0 (modp)

Thus p (x1 - x2)(x1 +X5)
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§Sin0e p is a prime, p (x1 - x2) or p (x1 + x2)
This implies x; z x, (modp) or x4 z-x, (modp),
a contradiction,
3 for X4 # x2(modp) since {0,1,2,...p=-1} forms a complete
residue systems modulo p, and X q * - X5 (modp) because
0 < xq1 + xy, < p-1, hence (x4 + xz)fp .
Therefore x .2 x52 (mod p) for all x 2 y X 2 € A,
1 2 1 2
The same is true for the (p+1)/2 numbers in the set
B ={=1-02 ,=1-12,......,=1=(p=1)/2%}.
Now | AUB| = (p+1)/2 + (p+1)/2 = p+1

But there are exactly p incongruence classes mod p.

2 2

Therefore there is some number x© in A and some -1-y© in

B such that x2 = —1—y2 (modp) where Ix[ < p/2 , Iy' < p/2

2 4 y2 + 1 =0 (mod p),

This implies X
hence x2 + y2 + 12 + O2 = mp for some integer m > 1.
mp= x2 + y2 + 12 < p2/U + p2/U + 1

- p2/2 + 1< p2/2 + p2/2 = p2,
this implies m < p.

If we combine the two results , we have 1 < m < p.

Example:

Let p = 7. Consider the equation x12+ x22+ x32+ x42 = mp.
Let A = {02, 12 ,22, 32 } are incongruent to each other
mod 7.

Let B = {—1—02, —1-12, —1-22, -1—32} are incongruent to

each other mod 7. But 32 = —1=2% (mod7).

2

This implies 3% + 22 + 1 = 0(mod7)



implies 3% + 22 + 12 + 02 = 2.7
gNote that 1 < 2 < 7.
If p is an odd prime and if x2 + y2 + 22 + we = mp

éwith 1 <m < p then there exist integers X11Y1+2q,%Wq and M
;fsuch that x12 + y;° + z4° + w2 = Mp with 1 < M <m.

; Proof:

The proof is divided into two cases according as m is even
or odd.

Case 1: m is even

Claim: when m is even then x,y,z,w are all even; or all
are odd; or two are even and two are odd.
Proof of claim
Consider the two cases:
1} three of those integers say x,y,z are even and
w is odd;

mp:x2+y2+22+w2

(even) (odd) (even)2+(even)2+(even)2+(odd)2

even odd

This case cannot happen.
2) three of those integer say x,y,zZ are all odd
and w is even. mp = x° + y2 + 22 + Wl

(even) (odd)

(odd)2+(odd)2+(odd)2+(even)2
even = odd
This case cannot happen either.

Now assume x and y are odd and z and w are even.
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=

| absolute value remainder to write x = am + rq, y

'hen we have,

((x+y)/2)2 +((x=y)/2)2 + ((z+w)/2)2 +((z-w)/2)2 = (m/2)p

Ed
—_
1]

(x+y)/2, vy = (x=y)/2,
zq = (z+w)/2 and wq = (z-w)/2
and M = m/2 are integers satisfying Lemma 3.03.

Case 2: m is odd

When m is odd we use division algorithm for least

bm + ro

z

em + ra, W= dm + ry

where |rq|<m/2, [r5]|< m/2, ,rﬂ<m/2,,ruk m/2

If these expressions are substituted in the given equation

we find,

(am + r1)2 + (bm + r2)2 + (em + r3)2 + (dm + r'u)2 = mp

implies r12 + r22+ r32 + ruz + 2m(ar1 + br, + cra + dru)
+ (a2 +2 + c? + d2)m2 = mp.

2 + r22 +r?2 + ruz = m(p - 2(ar1+ br2 + cr3 + dru)

Hence r
- (a® + b2 + c? & dm)

Let M = (p- 2(arqy + br, + crg + dry) - (a2 + b? + c24 d2)m,

then r12 + r22 + r32 + rqz = mM, Clearly M >0,

if M =0 this would implies rq = r, = ry = ry = 0 then m?

would divide x2 + y2 + z° + wl = mp and m would divide p.

Since p is a prime and 1 < m < p , this is a contradiction.

Hence 1 < M.

We also know that Mm = r12

+ r22 + r32 + rqz <4 (m2/4)= m?
Hence M <m.

Putting these results together we have 1 < M <m
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.80 far we have

4 r12 + r22 + r.° + ruz + 2m(ar1 + bry + cra + dru)

+ d2)m® = mp and r12 + r22 + r32 v ry

N W

+(a® + b2 4o

Therefore Mm + 2m(ar, +br, +era + dry)
+ (a2 + b + c° + d2)m2 = mp.

;}Dividing by m , we have M + 2(ary + br, + crg + dry)
+ ( a + b2 + c? &+ d2)m = p.
% Multiply both sides by M, we have
ME & 2M(ary + br, + erg + dry) +(a2 + b2 + ¢2 +d2)Mm
This imply M2 4 2M(ar, + br, + erg + dr y)
2 4 b2 2 2 2 2)

+ (a + Cc° + d2)(r'12 + T +r3° +ry

Using Euler's identity
(a2 + b2 + o2 & d2)(r'12 +r22 + r32 + ruz)
= (arq + br, + cra + dr4)2 + (ar, - brq + cry -dr3)2
+ (ar3 - bry - crq + dr2)2 + (ary + br3 - cr, = dry
Let A = (ary + bry + erg + dr y)
B = (ar, -brq + cry - dr3)

C

(arg = bry - crq + dry)
D = (ary + bry - cr, - dry)
Substitute these in the above equation, we have
M2 4+ 2AM + A2 4B 4+ C2 4+ D2 = Mp
(M + 8)2 +B2 +C2 +D2 = Mp
Thus Xq = M+ A, yi = B, zqy = Cand wy = D and M are

integers satisfying the conclusion of Lemma 3.03.

Examplel: ( m is even)

2 2 2

Consider the equation x< + y2 + Z° + WS = mp Where m
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:l’ldp=7

have 32 + 32 + 32 + 12 = 4.7

= (x+y)/2 = (3+3)/2 = 3
= (x=y)/2 = (3-3)/2 = 0
= (z+W)/2 = (3+1)/2 = 1
= (z-w)/2 = (3-1)/2 =1 and M =m/2 = U§/2 = 2

g Therefore x12 + y12 + 212 + w12 = 32 + 0% + 22 4+ 12 = 2.7

apply the lemma again, we have

= (340)/2 = 1.5
= (3-0)/2 = 1.5
= (2+1)/2 = 1.5
= (2-1)/2 = 0.5 and My = 2/2 = 1

Hence x22 + y22 + 222 + w22 = 1.52 + 1.52 + 1.52 +O.52 =
1.7.

Example 2: ( m is odd)

§ Consider the equation x2 + y2 + 22 + w2 = mp where p =7 and
m =3.
Then we have 32 + 22 + 22 + 22 = 3.7

x:?:am+r‘1 1.3 + 0

y =2 =bm+r, 1.3 + (=1)

Z = 2 = cm + ra 1.2 + (=1)

W=2z=dm+ry = 1.3+ (-1)

hence M = p -2(ary + br, + era + dr y)
- (a2 + b2 + 2 4+ d%)m

7 = 2[1.0 + 1(=1) + 1(=1) + 1(=-1)]

- [12 + 12 &+ 12 4+ 1213

7 -2(-3) =12 = 1.
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= (ar1 + brs, +Crg + dry) =(1.0 +1(=1) + 1(-1) + 1(-1))= 3

1]
~
jhi}
=3

N

!

brq + ery - dr3)=(1(-1) - 1.0 + 1(-1) -1(-1))=-1

]
~~
o) ]
-3
W
|

bry - ecrqy + dro)=(1(=-1) - 1(-1) =1.0 + 1(=-1))=-1

= (aru + br3 - cr, - dr1)=(1(—1) + 1(=1) =1(=1)= 1.0)= =1

f Hence, x; = =1 -3=2
yq = B = -1
zqg = C = =1
wqy = D= -1

2yl ez e w? 222 4 (=12 + (=12 (-2 = 1.7

Lemma 3.04:

Every prime can be represented as a sum of four square

integers that is to say that for every prime p,

p = x12 + x22 + x32 + xuz is solvable.

Proof:

2 02

For p = 2 ,this is obvious since 2 =12 + 1° + 02

+ .
Therefore let p > 2. Now we are going to apply Fermat's
method of descent.

By Lemma 3.02 we can find integers x,y,z,wWw such that

X2 + y2 + 224 Wl = mp where 1 < m < p

Ifm > 1, we can apply Lemma 2.03 a finite number of times
(say p >m > M =M, > M5 >o.0>M = 1)

to descent to the situation ,

sz + ykz + Zkz + \sz = p
This shows that every odd prime may be represented as the

sum of four squares.
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eorem 3.1:

Every positive integer n is the sum of four square

By Lemma 3.04 , every prime can be represented as sum
of four squares, Lemma 3.01 guarantees that every composite
j number may be represented as sum of four squares. For 1 we
%fhave,

51 = 12 +O2 + O2 + 02. Thus we have proved the theoremn.

% Example:

{ Let n = 30 = 2.3.5 . By lemma 3.04, 2,3 ,5 are primes and
can be presented as a sum of four squares.

2= 12 4+ 12 + 02 4+ 0°

5 = 12 + 22 + O2 + 02.
Therefore by lemma 3.01, 30 is also a sum of four sqQuares

since 30 is a product of 2.3.5 , 30 = 12 + 22 4 32 4 12 |

Theorem 3.2:

Every positive rational number is the sum of the
squares of four rational numbers.
Proof:

Let r be a positive rational number r =k/m where k
and m are positive integers. By the previous theorem, it
follows that every positive integer is the sum of the
squres of four or fewer integers,

If km = a2 + b2 + ¢© + d° where a,b,c,d are integers then

51



r = k/m a2/m2 + b2/m2 +02/m2 + d2/m2

(a/m)° + (b/m)° + (c/m)2 + (d/m)?

' 2. Representation of integers as sum of four nonvanishing

:squares

In this section we consider the problem of representing
ﬁan integer n as a sum of four nonvanishing squares. It is
E‘more convenient to consider the two cases according to

] whether n is even natural number or n is an odd natural

number.

Theorem 3.3:

An odd natural number n is the sum of the squares of
four natural numbers if and only if it does not belong to
the sequence of numbers 1, 3, 5, 9, 11, 17, 29, and 41.
Proof : (By contradiction)

Assume 29 is the sum of the squares of four natural
numbers. Therefore 29 = 32 + b2 + 02 + d2 where all
a,b, ¢, d >1 and without loss of generality assume
a>b>c >d . Hence a2 < 29 < 4a®
which implies 3 < a < 5.

If a = 3 then 29 = 9 + b2 + c2 4+ 42
implies 20 = b + c? 4+ d2

If a = 4 then 13 = b2 + ¢2 + d°

If a = 5 then 4 = b® + ¢2 4+ d°

By trial an error , all of the above are impossible.
Therefore 29 is not the sum of the square of four natural

numbers. We can also show none of the numbers
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93,5,9,17,41, is the sum of four nonvanishing squares by
sing the same method of proof.

oWw suppose that an odd natural n satisfies the condition
f the theorem. Therefore n # 1,3,5,9,11,17, 29, 41,

ince n is odd , it must be of the form 8k + 1, 8k +3,
38k + 5, or 8k +T7.

g‘Consider n = 8k + 1.

; Let k be of the form k= U4t, 4t + 1, 4t + 2, 4t + 3.

’ If k = 4t we have n = 8(4t ) + 1 = 32t + 1.

Since n ¢ 1 then t > 1. Let t = x + 1 where x >0
Therefore n = 32(x+1) + 1 = U(8x + 6) + 9

8x + 6 is the sum of three squares and also since

8x + 6 = 2(Ux + 3) cannot be the sum of two squares,

this implies each of the integers a, b, ¢ must be nonzero.

Hence n 4(8x + 6) + 9

22 (8x + 6) + 9

22 (a2 + b2 + c?) + 3°
Therefore n = 8k + 1 is the sum of four nonvanishing

squares 1if k is of the form k = U4t.

If k = 4 + 1, then n= 8(4t + 1) + 1 = 32t + 9

Since n $# 9 and n $ 41 we have t > 2

Let t = x + 2 where x > 0
Hence n = 32(x+2) + 9
= 22 (8x + 6) + T°
=22 ( a® + b2 + c2) + 72
This implies n = 8k +1 is the sum of four nonvanishing
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quares if k is of the form 4t +1.

If k = 4t + 2, then n = 8(U4t + 2) + 1 = 32t + 17

Since n # 17 then t >1. Let t = x +1 and x >0.

éTherefore n 32(x + 1) + 17

22(8x+6) + 52 = 22(a® +b2 +c2 ) + 5°

fThis implies n = 8k + 1 is the sum of four nonvanishing

isquares if k 4y 4+ 2,

If ¥ = 4t + 3 then n (Ut + 3) +1 = 32+ + 25

= 22(8t + 6) + 52
This implies n = 8 + 1 is the sum of four nonvanishing
square if k = U4t +3,.

Thus we have proved that the theorem is sufficient provided

n = 8 + 1.

Now consider n = 8k + 3.
Since n 4 3 and n # 11, this implies k > 2

Let ¥k = x + 2 and x 20

h
:
.

Then n = 8(x+2) + 3 = (8x+3) + y2
(8x+3) is the sum of three squares and since (8x+3) is odd,
the three integers must all be odd . For assume two of the

integers are even and one is odd then

Bx +3 = (2a)2 + (2b)2 + (2c+1)2
= 4a2 &+ W2 4 U 4+ do + 1
= M(a2 + b2 + c° +C )+ 1
8x +2 = 4(a® + b2 + c? 4c)
8x +2 = Uk where k = a2 + b? + c2 + ¢
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ontradiction since U4x + 1 is odd and 2k is even.

ence (8x + 3) is the sum of the squares of three odd
integers which is 8k+3 = (2a+1)2 + (2b+1)2 +(2c+1)% where
- a,b,c are nonnegative integers. Consequently 8k + 3 is the
%sum of the square of three nonvanishing squares.
;Therefore n = 312 + b12 + 012 + 42 which is the sum of four
§fnonvanishing squares.

; Thus we have proved the condition of the theorem is
sufficient for n = 8k +3.

Consider n = 8k + 5.

If k = 4t then n = 8(Ut) + 5 = 32t = §

Since n # 5 this implies t >3 1 . Let t = x + 1

where x > 0.

Therefore n = 32(x+1) + 5 22(8x+3) + 52

22 (a2 4+b2 +c?) 45
This implies n = 8k + 5 is the sum of four nonvanishing

squares if k = 4t,

If k = 4t + 1 then n= 8(4t +1) +5 = 32t + 13.

Since n # 13 implies t>1. Let t = x+1 and x>0.

Therefore n = 32(x+1) + 13 = 22(8t+3) + 1°

This implies n is the sum of four nonvanishing squares if

k = 4t+1.

If k = 4t + 2 then n = 8(Ut+2) + 5 = 22(8t+3) +3°

This implies n = 8k + 5 is the sum of four non vanishing
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| squares if k = Ut + 2.

b If k = 4t + 3, then n = 8(U4t+3) +5 = 32t + 29
%Since n £ 29 implies t>1. Let t = x+1 where x>0.
gThen n = 32(x+1) + 29 = 22(8x+3) + 72 which implies

i'n 8k+5 1s the sum of four nonvanishing squares if

f k bt +3.

Thus we have proved that the theorem is sufficient provided

n = 8k+5.

Finally consider n = 8k + 7.

Ifk = 0thenn 7 =224+ 12 + 12 4 12
If k = 1 then n = 15 = 22 4+ 32 4 12 4 12
Ifk = 2 thenn = 23 = 32 + 32 &+ 22 4+ 12
If k = 3 then n = 31 = 32 4+ 32 4 32 4 22

If k = 4 then n

39 = 12 + 22 4+ 32 4+ 52

If k > 5, then n = 8 + 7 > 47. By Langrange's theorem,
there exist integers a,b,c,d such that

8k + 7 = a2 + b2 + c2 4+ d2.

And we have proved that in order that an odd natural number
be the sum of the squares of four nonvanishing integers it
should not be any of the number 1,3,5,9,11,17,29 and U41.
This implies that any odd natural number of the form

n = 8k + 7 and > 41 is the sum of the square of four

nonvanishing integers.

Next we consider the second case where n is an even number.
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E Theorem 3. 4:
An even natural number n is the sum of the squares of
;four natural numbers if and only if it is none of the

b numbers P2, uM.6, 4N.14 where h = 0,1,2.... .

ijroof:(By contradiction)

Let S, be the set of all positive integers that can be
written as the sum of the squares of four nonvanishing
numbers.

Assume Mh.mézsq where h > 0 and me€ {2,6,14}.

Therefore m is of the form 4k + 2 = 2(2k +1) where k =0,1,3
Let h' be the least of such integers.

Since {2,6,14} 4 S, implies h' > 1.

Hence U.m = a2 + b2 +¢2 + d2 where all a,b,c,d >0

W 2(2k+1) = a® +b2 4+ c2 4d°

But 41" .2(2Kk + 1)

0 (mod8) because h'> 1.

Therefore a,b,c,d are all even ie a = 2aq , b = 2b1,

¢ = 2¢q and d = 2d; where aqy, b1 , ¢cq ,dq are nonvanishing
integers. Hence yh' =1 o a12 +b12 + 012 +d 4
h'-Tne Sy

Contrary to the choice of h!'.

Therefore 4'm 4 Sy where m= 2,6,14.

Now let n be an even natural number different from Mh.2,
Mh.6, 4. 14 where h= 0,1,2...

Let 41" be the highest power of the number 4 which divides
the number n. Then we have n = M"m where m # 0(mod 4)

Therefore m = Uk + 1, m = 4k+2 or m = Uk + 2.
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iIf m = 4k + 1 and k is even 1i.e k = 2t thenm = 8 + 1€53,
Eas proved previously. In addition ifm {1,9,17,41} then
é‘@mesu.

i But since n is even and m % 0 (mod4), then h" >0 .

| Clearly 4€5S,, 4.17 = 68 = 12 + 32 4+ 32 4+ 72 and

4,01 = 164 = 12 + 12 492 4 g2

Hence 40,1 = M(Zh'1)2

W9 = y(2ah=1.3)2
W17 = po7Rh-T)e
Wy = 441(2"1)2 are all in sy
Thus if m = 4 + 1 and k is even then n = 4'm € Sy.

Now if k¥ = 2t + 1 which is odd then m = 8 + 5 as proved is
in Sy provided m # 5 Or m $ 29.

Since n = 4m is even and m is odd this implies h > 0.
Hence 4.5 = 20 = 12 + 12 + 32 + 32

and 4.29 = 116 = 12 + 3% + 52 are both in S,.

Thus m = 4k + 1 with k is odd is in SM'

If m = 4k + 2 and k is even i.,e k = 2t then m = 8t +2.
Since n 4 4.2 implies t>0. Let t = u + 1 where u > 0.
Then we have m = 8(u + 1) + 2 = 8u + 6 + 22,

Since 8u + 6 is the sum of three nonvanishing squares

implies m = 4k + 2 & Sy-

Ifm = 4% + 2 and kK is odd i.e k = 2t + 1 the we have
m = 8t +6.

Since n # W6 and n % 14 we must have t >2.
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gLet t = u + 2 where u > 0.
%’Therefore m = 8(u+2) + 6 = 8u + 6 + 42, Since (8u+6) is the

? sum of three nonvanishing squares, this implies m € SM‘

CIfm o= Mk o+ 3 and k is even i.e k = 2t , we have
m= 8 + 3.
As proved previously m €& Sy provided m # 3 orm # 1.

Since n is even and m is odd implies h > 0. Therefore

5.3 = 12 = 12 4 12 4 12 432

4,11 = 44 = 12 4 32 4 32 4 52 are both in S.

Thus if m = 4 + 3 then n = th € 54'

This complete the proof that an even natural number n is
the sum of four nonvanishing squares if and only if it is
none of the number Mh.2, yhe , 514 where

h oz 0,1,2,000ne .

3. Representation Of Integers As The Sum Of The Squares Of

Four Different Integers.

In this section we will consider the problem of
representing a positive integer n as the sum of the squares

of four different integers.

Theorem 3.5:

The only integers n> 0 not the sum of four different
squares greater than or equal to 0 are Mha, where
h =20,1,2... and a = 1,3,5,7,9,11,13,15,17,19,23,25,27,31,

33,37, 43, 47,55,67,73,97,103,2,6,10,18,22,34,58, 82,
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;Before we prove the theorem we need the following lemmas.

[ Lemma 3.04:

An odd integer A is a sum of four unequal squares if

| Proof:

;ﬁand only if 4A is a sum of four unequal odd squares.

Let A denote a positive odd integer. The system of

equations

between
A
and the

4a

Let U

<3
H

-

=X -y +2Z =W
=X -y ~2 +w , definesa (1,1) correspondence

the set of integers x,y,z,w satisfying

= x° 4+ y2 + 22 + we

set of integers X ,Y ,Z , W satisfying

= X2 + Y2 4+ 72 4 W? , X+ Y +Z + W = O(modY) and

X ,Y ,Z ,W are odd.

{ (x,y,z,w),x2 + y2 + 22 + wl = A}

{(X,Y,2,0]x% + Y2 + 22 + w2 = ma

X+ Y+ Z + W=Uk; X,Y, Z, Ware odd}

If we write the above system of equationsin a matrix form

we have

X

Y

i |

1T -1 1 -1 z | with M= |1 -1 1T -1
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F : U-—V be defined by F(u) = Mu for ueu .

F : U—V define a 1-1 correspondence between U and V.

prove the claim, we will show that
1) If u' = (x',y', z', w') € U then F(u) €V
| 2) F is 1-1

{ 3) If v' o= (X',Y', Z', W') €V then F-(vr) e U.

1) Let (x',y',z',Ww') €U
Now X2 + Y2 + 22 +W2

12 4 (x'4y'=z'=w)Z 4 (X'-y'ez'ow?)®

(X'+y'"+z2'+w!
+ (x'—y'-z'+w')2

(x'2 +y'2+ 212 4w'? +2X'Y '+ 2X'Z' +2X'Ww' +2y'z!

+ 2y'w'+2z'w!')

+ (x'2 + y'2 +z12 4 wr? +2X'y' - 2x'z' - 2x'wW' -2y'z'
- 2y'W' + 2Z'wW')

+ (x'° & y'2 +2'% & W@ =2x'y' - 2x'z' - 2x'w' - 2y'z!
+ 2y'w' - 2z'w!')

w12 512

+ ( + 12 4 + w? =2x'y' - 2x'z'+ 2x'w' + 2y'z!
- 2y'w' - 2z'w')

H(X'2 + y'2 + 24 W'2) = 4A

X+ Y+ Z + W
(X T4y HZ W) H (X Ay =2 W) (X T =Y 42 =W ) (X =y T =2 W)
= Ux' = 0 (mod¥).
Since A is odd we must have three of the integers say
x',y',z'" are odd and w' is even , or three of the integers

say x', y', z'are even and w' is odd. For the case
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x', y', z' are odd and w' is even we have,
= X'"+y'+Z'+w' =(2k+1)+(2h+1)+(2m+1)+(2n)

2(k+h+m+n+1) +1 which is odd

= X'"+y'-2'-W' =(2k+1)+(2h+1)=-(2m+1)=(2n)

2(k+h-m-n) + 1 which is odd

= X'-y'+Z2'=w' =(2K+1)=-(2h+1)+(2m+1)-(2n)

2(k-h+m-n) +1 which is odd

= X'=y'=z'+w' =(2k+1)~(2h+1)=(2m+1)+(2n)

2(k-h-m+n-=1)+1 which is odd

Similarly for the case x',y',z' are even and w' 1s odd we
will have X,Y,Z,W are all odd.

Therefore given u'= (x',y'z',w') € U then F(u)€e V.

2) Matrix M has an inverse because determinant M { 0. This

implies the mapping F :U—V is 1-1.

3) Now we will show that if v'=(X',Y',Z',W') € V then
F-l(v') €U

M=l = a1 1 1 17

L1 -1 -1 14

If we multiply M- to the left of both side of the matrix ,

we have
(/7w 11 1 11 X (%)
11 =1 -1 Y'| = y
1 -1 1 -1 Z z
L1 21 =1 1 Lwd [




(1/7H(X"+Y"+Z2'4W")

s
n

(/W (X"+Y'-Z"=W")

<
1

(1/78)(X'=Y"4z'=W")

N
1l

=
"

'+ Y'+ Z'+ W' = 0 (modd)
mplies X'"+Y'+Z'+W' = Uk for some k
(Now x = (1/W(X"+Y"+Z"+W")

(1/4)(l4k) = k which is integer.

(/) (X'+Y'-Z'-W")

=
o]
£
<

1}

(/7)) (X' +Y") +(X'"+Y'-4k))

(178 202k 4+1) + 2(2k, +1) - 4k)

(1/74) (4k1 + Hko -4k +14)

k1 + ks = k +1 which is integer.

Similarly it can be shown z and w are integers.

Therefore when we square each x,y,z,Ww Wwe have

x° + y2 +z2 4+ w@

= (4/16) (X'2 + Y'2 4 272 & W'2) =(1/4)(LA) = A,

Hence given v'=(X',Y',Z',W')E V then F~1 (v') € U.

Finally we need to show that if x° £ y2 $ z? $ w® then
X12 $ Y12 4 712 $ W'2 and conversely.

First assume x° $ y2 } z2 ¥ wl.

By symmetry we need to consider only two cases.

Case:
Assume X2 = Y2 then X = Y or X = -Y.
For X =Y , X + Y + Z +W=X+Y -2 =W

2Z = =2W

B3
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implies Z = =W
implies zZ% = W

Contradiction.

For X = =Y , X + Y+ Z + W= =X =Yy + 2Z + W
implies X = -y
implies x° = y2

Contradiction.

Case?2:

Assume Y2 = 22 then Y = Z or Y = -Z

For Y=7 , X + Yy -2 W =X =Y + Z - W
implies 2y = 2z
. . _ . . 2 _ .2
implies y = z implies y© = z

Contradiction.

For Y = -Z, x + ¥y = 2 = W= =X +Y - Z + W
implies 2X = 2w
. . _ . : 2 _ 2
implies X = W implies x© = w

Contradiction.
We can show that the converse of this is also true by using
Similar method of proof.

This complete the proof of Lemma 3.04.

Lemma 3.05:

An odd integer A is a sum of four positive squares if
and only if 28 is a sum of four different squares.
Proof:

Let A denote a positive odd integer. The system of

equations, s = x +Yy , t = x -y, U=2 +W, V =2Z-WwW,
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efine a (1,1) correspondence between the set of integers
yY,2Z,W satisfying,
A= x° 4 y2 + z2 + we and the set of integers

s, t, u, v satisfying

28 = 52 + t2 4+ u? & v2 ,S = t * u = v(mod2)

§«Let R = {(x,y,z,w)lx2 + y2 + 22 + Wl A}
S = {(s,t,u,v)|s2 + t2 + u + v@ = 245

S

t # u =z v(mod2)}

If we write the system of equations in a matrix form we

have
[s] [1 1 0o o] [x] (11 0
t|{={1 =1 0 0 y where B 1 -1 0
u o 0 1 1 z 0o 0 1
Lv- o o 1 -1 Lwd Lo 0 1

Let F : R—3 be defined by F(r) = Br for r &R.

Claim: R—S define a 1-1 correspondence between R and S.
To prove the claim, we will show that,

1) If u' = (x',y',z',Ww') R then F(r) S.

2) F is 1-1

3) If s" = (s',t',ut,v')€ 3 then F-1(s") € R.

Let (x',y',z',Ww') € R
Now s2 + t2 + u2 + v2

(x'+y')2+ (x'-—y')2 +(z'+w')2 +(z'-w')2
'2 '2 X'2

= X + Y + 2x'y'+ + y'2 - 2x'y'+z'2 + W'le2z w4z 2

W'l - 2z

2(x'2 +y'2 +212 +w'2) = 24
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-t = (x"+y'") -(x'-y') = 2y =0(mod2)
- v = (z"+W') =(2'-w') = 2w =0(mod2)
-u = (x'+y'") =(z'+w") # 0(mod?2)

ZTherefore given r'= (x',y',2',Ww') € R then F(r') € S.

?2) Matrix B has inverse because detB } 0. This implies the

; mapping F : RS is 1-1.

1 3) Now we will show that if s" =(s',t',u',v') € S

then F'1 (s") €R

B=1  =(1/2) 1 1 0 07
1 =1 0 0

0 0 1 1

L0 0 1T =14

4
]

If we multiply B-1 to the left of both side of the matrix

equation we have,

(172) [1 10 01 [s'] [ x 1]
1 -1 0 0 L = y!
0 0 1 1 u' z!
o 0o 1 -1d Lyl o]
then x' = (1/2) (s'+t"')
y' = (1/2) (s'=t")
z' = (1/2) (u'+v')

W' (172) (u'-v?')

Clearly x', y'y, z' and w' are integers.
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for s'=z t'(mod2) implies s'-t' = 2k for some k

w x' = (1/2)(s+t) = (1/2) (2k+t+t) =(1/2)(2k+2t) = k +t
ieh is integer.

y' = (1/2)(s'=t') =(1/2)(2k) = k which is integer

= v'(mod2) implies u'-v' = 2k for some Kk

z' = (1/2)(u'+v!')

(1/2)(2k+v'+v!') = k+v' which is
fﬁnteger.

w' = (1/2)(ut=-v?") (1/2)(2k) = k which is integer

t Therefore when we square each x,y'z'w' we have

.x'2 + y'2 + Z'2 + w'2

(1/1)(s2 + £2 + 2st) +(1/W (s + t2 - 2st)
+ (1/'4)(112 + v2 + 2uv) +(u2 + v2 - 2v)

(2/8)(s2 + £2 + u2 + v2) = (1/2)(2A) = A.

| Hence given s" =(s',t',u',v') € S then F~1(s") € R.

' Now we need to show if x,y,z,w > O then s2 3 £2 4 u? 3 v2
- and conversely if s $ t2 ¥ u? $ v2 then X,¥,2Z,Ww > 0.
- We need to consider only four cases.

Case 1:

Assume x2 ,y2, 72 ,w2 > 0. But s = t2

This implies s = t or s = -t.
If s = ¢t then x +y = x - ¥

implies y = 0 ;Contradiction since y>0 .
If s = -t then x + ¥y = y - X

implies x = 0; Contradiction since x>0.

Case?’2:

Assume x° ,y2 ,22 ,w2 > 0 but s2 = u@.
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This implies 8 = u or s = =u

If s = u, then s - u = 0 impossible since s * u(mod2)

If s = = u, then s +u =0

implies (x + y) +(z + w) = 0 1impossible since x,y,z,w >0
éCase3:

Assume x° ,y2 ,22,w2 >0 but t2 = u?

This implies t = u or t = -u

For £t = u thent - u = 0 impossible since t * u(mod?2)
Since t * u(mod2) implies t-u = 2k implies t-u = 2k + 1,
Then if ¢t = -u then t + u = 0

£t - u

2k + 1 which imply 2t = 2k+1
which is impossible.

Case 4:

Assume x° , y2 , 72 , we > 0 but £t2 = v°.

This implies t v or t = =v.
If t = v thent - v = 0, impossible since t # v (mod2).
Since t * v(mod2) implies t - v = 2k implies t-v= 2k+1.

Thus if ¢t = =v then t + v o and

t - v

2k + 1 which imply 2t =2k+1
which is impossible.

Lemma 3.06:

If 2A possesses a representation 24 = s +t2 4 u2 4+ v°
where s,t,u,v # 0 and s > (3A/2) then A is a sum of four
unequal squares.

Proof:
Assume 2A = s2 + t2 4 u® 4 ve , Where s, t, u, v + 0 and

s > (3h)/2.
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Assume the contrary, that is assume A X + ¥y° + 25 + W

8 not a sum of four unequal squares.

ase 1:
Assume x° = y2 then x =y or x = -y
If x =y then t = 0 implies stuv = 0
If x = -y then s = 0 implies stuv =0
A contradiction.
Assume z% = w? , then z = wor z = -w ,
this implies stuv = 0, a contradiction.
Assume x2 = 22, then x= z or x = -z
If x =z then s = x+y , U = X + W, £t = X=y , Vv = X=W
s +t = 2x
u + v = 2X
Hence s + t - u- v = 0.
If x =-z then 8 = X+y, U = =x+w, t = X=-y , Vv ==X-W
Hence s + £t +u + v = 0
The rest of the cases will result in
€48 + e2t + €3U + eyv = 0, where the e; =+ 1

Now if 24 = s2 + t° + u? + v2 and s,t,u,v $# 0 then

stuv # 0 which implies case 1 and case 2 do not occur.

For case 3 , we consider

(e + Jul + [v] )2

t2 + u® +ve + 2)t] u 4 2|tl|v| + 2 Jul vl

£2 + u® + v° + (t2 + u2)+ (t2 + V2) +(U2 + v2)
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= 3(t2 + Ul + v2)

3(24 - s2)

"

= 2(30) - 352

2.2(34/2) - 3s°

E( 4s? -3s2 =z 2
%Thus Cle]+ lul + [v))2 < s2.

. Take the square root of both sides, we have

;fhl + Jul + Ivl - |s] < 0 which would imply case 3 does
; not occur since +t +u +v +s = 0.

f Therefore if 2A = s2 + t2 + u + v2 , s,t,u,v % 0,
32>(3A/2) then A is the sum of four unequal squares.

This complete the proof for Lemma 3.06.

Squares.

In this section we are going to find the total number
of representations of a positive integer n as a sum of four
squares.

Throughout this section the symbols Uqy Up, Ug,Uy,

h, m, a, a, b,B, aq, @q, by, [31 will denote positive odd

numbers.

Theorem 3:6:

Let A(u) be number of positive solutions of
Llu ZU12 +UZ2+U32 +U42-

Then A(u)= o(u) where O(u) = % d, the sum of divisors of u.
dfu

Proof:

We claim that all the solutions of the given equation
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fican be obtained when we decompose 4u into 2h + 2m in all

i posible ways and then solve u12 + u?2 = 2h ;

i u32 +uy’ = 2m

To verify the above claim,first note that since Uq, Up

are odd we have ug = 2k +1 , u, = 2m + 1.

Hence u12 + uf)2

o~

(2x+1)2 + (2m+1)2

BW(KS 4+ kK + m® +m) + 2

= 2(2k? + 2k +2m2 +2m +1) = 2h where h is odd.
Similarly, u32 + u42 = 2m where m is odd.

Thus if uy, u, , ﬁg, uy is a solution of

2

uqc o+ u22 + u32 + uuz = 4u then U4, u, and ug,uy
are solution for u12 + u22 = 2h and u32 + u42 = 2m
respectively, where 2h + 2m = Uu.
On the other hand if h is an odd number and 2h = u12 + u22
the numbers uq, u, are odd.
For assume ujq , u, are both even i.e uq = 2v', u, = 2v"
then 2h = (2v')2 + (2v")2
= Uyr2 4 ayn?
2h = U(v'2 4+ y"2),

a contradiction because 4 Ll(u'2 + u"2) but MTéh since h

is odd.
Also 1if we assume one of the numbers is even say ugp = 2 v!
and one is odd say u, = 2v" + 1 then

oh = 2(2v'2 + 2v"2 4 2ym") 4+ 1.

This is a contradietion since 2h is even but
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2(2v'2 +2v"2 42y") +1 is odd.

Similarly if m is odd and 2m = u32

+ u42 then us and uy
are both odd.

Thus we see that, in order to find all representation of
the number 4u as the sum of four odd squares, it is
sufficient to find all possible representation of 4u as a
sum of the form 4u = 2h + 2m where h and m are both odd

numbers, and then to find the number of representation of

both numbers 2h,2m as the sum of two squares.

Now let U(n) = Number of solutions of n = x° + y2.

We know from the previous chapter,

Un) = 2  X(d),
Yy d/n

U(2h) = 2: (a) for u12 + u22 = 2h
4 a|2h

u(2m) = Z (b) for u32 + u42 = 2m

4 b | 2m

Therefore ,

A(u) = 2 U(2h) U(2m)
2h+2m =4u 4 4
-3 Y Xa)y 2 X(b)
h+m =2u a[2h b|2m
3 > X(a) 2 X(v)
h+m =2u a[h bl m
= z z X(ab)
h+4m = 2u| alh
b |m
- 2 X (ap)
ad +b =2u
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the last equality hold because

alh implies h = aQ
bim implies m = bﬁ
Thus A(u) = 2 X (ab)

aa +bB=2u
Now we divide the summands in the summation above into two
cases the first consisting of the summands for a # b and

the second of those for which a = b.

Casel: a + b

In this case, the equation 2(u/a) =a+ﬁhas (ur/a)

solutions (@ = 1,3, .....2(u/a) =1) and the/3 determined
therefrom);

Since;X(aa)=1, the contribution of each of the u/a
solutions is 1.

Thus the total contribution in this case 1is

2 u/a =2 d =0(u)

a’/u d/u
Case2 a b
In this case we are going to show S: .X(ab) =0
aa+bfl=2u
a >(<)b
By symmetry , it suffices to show 2 X(ab) = 0
ada +b)8=2u
a >'b

and for this it suffices to pair off the solutions of
ad + QB = 2u , a>b one to one in such a way that for every
quadruple a,b, a,[; , we assign a quadruple aq, by , Qq ,

,81 such that X(ab) + X(a1b1) =0
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%o achieve this goal, a rule is specified such that
to every quadruple a, b, a,/} of positive odd numbers ,
assign quadruple a4, by, Q,, ﬁ1 such that

1a1 + b-lﬁ»] = 2u ’ 81 > b1;

éZ) And also for quadruples aq,by, @y, B1 the rule
assign the original quadruple a,b, Q@ ,B.
53) And the equation must satisfies the following,

E X(ab) + ,X(a1b1) = 0.

| Let us start with the first rule.

321) Let n 1'b.] (>0) ; where [x]is the greatest integer < x
1 a-b

TTLet quadruples (¥) be the following
aq = (n+2)a + (n+1)B

-na + (n+1)b

(=]
n

o
1]

(n+1)a + nB

(n+1)a - (n+2)b

i
1]

Claim 1

Each of these numbers is odd

aq = (n+2)a + (n+1)ﬁ

na + 2a +nB +B

= n(2k+1) + 2(2k+1) + n(2m+1) +2m+1

= 2kn +n + 4k+ 2 + 2mn + n + 2m + 1
= 2kn + 4k + 2 + 2mn + 2n + 2m +1
= 2(kn +2k + 1 + mn + n +m) + 1

= odd.
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a1 = -na + (n+1)b

-n(2k+1) + (n+1)(2m+1)

-2kn-n +2mn+2m+n+1

2(=kn +mn +m) + 1
= odd

b1 = (n+1)A + nB

(n+1)(2k+1) + n(2m+1)

2kn + 2k + n+ 1 +2mn +n

2(kn+1+n+mn) + 1

= odd
B, = (n+h)a - (n+2)b

(n+1)(2k+1) = (n+2)(2k+1)

2kn + 2k + n + 1 - 2kn -4k-n-=2

2(=k-1) + 1

= odd.

Claim Ei

Each of these number is > 0
a; = (n+2)a + (n+1)Band by = (n+1A + ng

are obviously > 0.

a, = -na + (n+1)b
Since n :[__2__] implies_b > n
a - b a-b
b > (a-b)n
b > an -bn

-an + b + bn 2> 0
a, = -an + (n+1)b >0

ButCl.1 being odd cannot be equal to zero.Consequently d,>0.
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B1 = (n+1)a - (n+2)b

Since n =[__t.>__} implies n+1 >_b > n
a=b a-b

(n+1)(a-b) > b
na + a -nb = b>b
(n+1)a - (n+2)b = B1 > 0
fNow we are going to show

a; aq + b1B1 = 2u.
gay + by B

-n{n+2)aa - n(n+1)aB + (n+1)(n+2)ba +(n+1)2bp

+ (n+1)22aa + n(n+1)bB - (n+1)(n+2)ba - n(n+2)bB

((r1+1)2 - n(n+2)) (aa + bB)

aa + bp
= Zu.
We also have a; > by. To see that we have,
(n+2)a + (n+1)/3 > (n+aA + nB
na +2a+ n/3 +B > na +a+nB

a > b1

Now we are going to show[ b j:n.
A4 -
_J‘"b—1

b = [ (n+1)a + nQ3
aq- 51_] (n+2)a + (ﬂ+ﬂB -(n+1)a - np
[ na + @+ nf3 ]

na+2a+n[3 +B-na-a'nB
[n(g_:ﬂ) + Q@ J

n(Q + g_)m___*_ a
[ ]

—a+g a3
= n +a J= n, since _d < 1
[ a + ] a+B
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If we substitute the value of ajy, @4, by, [21
in the quadruples (*) , we should have a , b , Q@ , B .
To see that we have

(n+2) @y + (n+1)f34

= (n+2)(-na +(n+1)b) + (n+1)((n+1)a - (n+2)b)

= -na(n+2) + (n+2)(n+1)b + (n+1)2a - (n+1)(n+2)b
= a(-n(n+2) + (n+1)2)

= a.

-naq + (n+1)b1

-n{(n+2)a + (n+1)p ) + (n+D)((n+1HQa +n'B)

-n(n+2)a - n(n+1)ﬁ + (n+1)2(1 + (n+1)np

a(-n(n+2) + (n+1)2)

= a.

(n+1) @, +n [31
=(n+1)((=na) + (n+1)b) + n{((n+1)a-(n+2)}b)

-na(n+1) + (n+1)2b + (n+1)na = n(n+2)b

b((n+1)2 - n(n+2))

= b.

(n+1)a1— (n+2)b1

(n+1) ((n+2)a + (n+1)ﬁ;) - (n+2)((n+N)A  + WB )

(n+1) (n+2) A +(n+1)%@ - (n+2)(n+1)Q - (n+2)n£;

3 ((n+1)2 = n(n+2))

B .
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f3) Now we are going to show X (ab) + X(a1b1) = 0
[ For odd v and w we have

0 (modd)

t

?(v-1) (w=1)

fivw -V - W +1 0 (modd)

VW v +W - 1(modd)

thi

Hence we have ,

a@ za + - 1(modl)
bB = b + - 1(modd)
(a +a - 1) +(b+B-1) = adQ +bB (mod Y)

2u (modd)

N

: = 2 (mod#)

2 (mody)

(a+a -1) + (b +ﬂ—1)

a+b + A +B 0 (modl)

(a+b-1D)+((n+2) a +(n+1)ﬂ +(n+1)a +nB -1)

a+b +na +2Q +n/3 +B+na+a+np + 2

a +b + (2n + 3)a + (2n+1)B + 2

tn

2n(a+B)+a+b+a+/3+2 + 2

= 0 (modH)
This implies ab + aqby; = 0(mod2) which
implies  X(ad) = - X(a;by)

This complete the proof of the theorem that

A(u) = o (u).

Corollary 3.7:

If u is a positive odd integer, then the number of
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fall possible representation of 4u as a sum of four odd
. squares (positive or negative) is ,
V(4u) = 16 o(u)
; Proof:

In the proof of the theorem we have seen that the
number of positive odd solutions of

Ly = u12 + u22 + u32 + u42 is

Alu) = 2 U(2h) u(em),
2h+2m = 4u ~ O m

where U(2h) and U(2m) is the number of positive solutions

2 2 2 2

of u " +ust o= 2h and uz® +uy” = 2m respectively.

Now if v = 2k+1 is odd, then in the equation 2v = x2 + y2,
x and y must be odd. For 2(2k+1) = x2 4+ y2, then both x and
y are odd.

For assume x and.y are even where x = 2h and y = 2n,

then x2 + y2 = 4(h% + n9)
But 4k+2 = 4(h“+n2) and u1hk+2 but 4 |4(h2+n?).

Contradiction.

If we assume one of the integer is even, say x 25 and one
is odd say y = 2b + 1, then we have,
x2 + y2 = 4s? & 42 & Wb 4+ 1
= 4(s2 + b2 + b) + 1
But 4% + 2 = 4z + 1 where z = (s2 + b2 + b)
Therefore both x and y must be odd.
2 2

Thus the number of solutions of equation 2v = x©= + y

equals four times the number of positive solutions in which
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}x and y are odd positive number. Hence the total number of

E 0dd solution of

u = u12 + u22 + u3' uuz is
V(b4u) = ( ) 4 (U(2m))
2h+2m Ly L
= 16 2 U(2h) Uu(2m)
2h+2m=4u 4 4
= 16 o(u)

Theorem 3.8:

r4(2u) = 3r4(u)

Proof:

Consider the equation;

1)y 2u = x12 + x22 + x32 + xuz

Since 2u is even two of the Xy, must be even and two are

odd.

Assume all the X, are even.

2u = 2k % + 2k,7 + 2Kk3° + 2k)°
= 2(2k4° + 2ky2 4 k22 + 2ky° +2ky°)
u o= 2(kq2 + k2 4 k32 4 kD)

Contradiction since u is odd.

Assume all the X} are odd.

2u = (2kq + D2 + (2kprD? + (k5 +12 + (2kyeN)?

2(2k42 + 2kq+ 2k,7 + 2ky + 2k3° +2kg
v 2ky% + 2ky + 2)

o
n

+k4+1)

Contradiction since u is odd.
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fﬁimilarly if three of the x, are even(or odd) and one
%odd(or even) , then we would have contradiction.
%Therefore the number of solution for the equation
2u = x12 + x22 + x32 + xuz in which X4 and X, are even
Eand x3 and x, are odd is,

1 ry(2u) = 1 ry(2u)
20k 4 6 4
5 Let y; = (Xq + X)/2

Yo = (X1 - XZ)/2

+

}'3 = (xu Xu)/2

ya (XE - Xu)/Z

Now consider the equations,

2) u =y12 + y22 + y32 + yuz
Yo + ¥q = 0(mod2)
Y3 + ¥y = 0(mod2)

Claim:
a) Any solution of 2) is a solution of 1)

b) Any solution of 1) is a solution of 2)

a) Let ?}, Yoo _5, 4 be a solution of 2) and

let Xq =

<

1+ Yo
Xp = ¥1 = Vo

T3+ Yy

s s
= w
1] 1]

Vi - i
then x12 + x22 + x32 + xue

(F1+72)° + (Tq= 7202+ (T3 §P°  +(73-7°

(F12 + ¥5° + 37472) +(¥12 + §,° = 2§475)
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+(F52 + FU° 2Ty + (T3° + Ty° - 2757y

= 2(.}’—12 + }722 + }7‘32 + '}Tuz)

= 2u.

] X4 ='V1 + yé

O(mod2) implies xq is even.

Xy =¥ - ¥

(2k-§5) -?é since ¥, + ?E = 2k for some Kk

2(k -¥5) implies x, is even.

x3:y—3+§’—4

1(mod2) implies X3 is odd
X)_l:}-’—?)— }T.u
= (2k+1 -yy,) -¥y since ?} + ¥y - 1 = 2k for some k

= 2(k-ii) + 1 implies x, is odd.

b) Let X1y Xp, X3y Xy be a solution of 1). And let
Y‘] = (X1 + X2)/2

(X1 - X2)/2

<
[AV]
"

y3 = (x3 + Xy)/2
Yy = (xy = xp)/2

First note that all Y1s» Ypos Y35 Yy 2re integers.

v = (2kq + 2k5)/2 = kq + k, 1s integer

Yo = (2(k1-k2))/2 = kq - k, is integer.

y3 = [(2k1 +1) +(2k2 +1)1/2 = 2(kq+k, +1) is integer

yy = [(2kqy + 1) = (2k,+1)1/2 = [2 (kq~-k5)]1/2 is integer

NOW y12 + y22 + }’32 + yuZ

=[ (x4 +x2)/2]2+[(x1-x2)/2]2+ [(x3 + xu)/2]2+[(x3—xu)/2]2
=(1/4) (2x12 + 2x22 + 2x32 + 2xu2)

=(1/72) ( x12 + x22 + x32 + xu2)

= (1/2) (2u) = u.
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4

LY + Vo =(xq + x5)/2 + (xq = x5)/2 = (2xq)/2 = x4

= 2k 0 (mod2)

[ ys + ¥y = (X5 + X072 + (X3 - x)/2 = (2x5)/2 = x4
= 2k + 1 = 1(mod2)
%Therefore (1/6) ry(2u) is also the number of solution of

;the equation u = y12 + y22 + y32 + yuz

b In the equation u = y12 + y22 + Y32 + Yq2 ’
g since u is odd , u = 1(mod4) or u = 3(mod4) since all the

integers can be written in the form of 4k , Uk+1, Uk+2, ULk+3.

Case:

If u = 1 (mod#) , one of y, must be odd. And this can be

only Y3 or yy since Y3 + ¥y 1 (mod2) and
Y1 + V> =0 (mod2). Therefore in this case we only have

half of the number of possible solutions.

Case2:

If u = 3(mod4), one of the Yy must be even and this too can
be only Y3 or vy since Y3 + Yy = 1(mod2) and

Y1 + Vo = O(mod2).Hence in this case , we only have half of
the number of possible solution. Thus the total number of

solutions of the equation u = y12 + y22 + y32 + yuz with

the restriction Y1 + Yo 0(mod &4) and Y3 + Yy 1(mod2) is
(1/2) ry(u) where ry (u) is the number of solution of the
above equation without any restriction.
Therefore we have,

(1/76) ry(2u) = (1/2) rylu)

implies ry(2u) = 3 ry(u)
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;Theorem 3.9:

ru(u) = 8o (u)
ru(Zhu) = 2400 (u) for h > 0

| Remark.

This determines ru(n) for n > 0, specially for odd n,
ru(n) must be 8 times the sum of positive divisors of
n,and for even n, 24 times the sum of the odd positive
divisors of n.

Proof:

For n > 0, we have ry(2n) = r (in)

For consider the equation,

1) i4n = x12 + x22 + x32 + xuz then either all the x)

are even or all the X, are odd.

Assume two of the X) are odd and two are even.

bn o= (2a+1)2 + (2b+1)2 + (2¢)2 + (2d)%
= 4a2 4+ Ua + W2 4 U + U2 + AP 4+ 2
= 4(2% +a + b2 + b +c2 4+ d2) + 2
in = Ll(a2 +a +b% +b +c° + d2) + 2 which is

impossible.

Assume three of the x;, are odd and one is even.

Un = (2a+1)2 + (2b+1)2 + (2c+1)2 + (2d)°
= Ll(a2 +a +b2 +b +c?4c o+ d2) + 3
in = Ll(a2 +a+b2+b +c s+ d2) + 3

which is impossible.

For the case where three of the X are even and one is odd,
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Ewill result in 4n =
ialso impossible.

%Consider the equation,
: 2 2

L 2) 2n = y5° + yo© 4 y32 + yuz

(a2 + b + c2 + d2+ d) + 1 which is

where y. = (x1 + X5)/2 4, ¥yo = (X1 = X5)/2 ,
vy = (x3 + Xy)/2 4, yy = (x3 - xy)/2
¥ Claim:
a) Any solution of 2) is a solution of 1)
b) Any solution of 1) is a solution of 2)

a) Let ¥y, ¥5, ?}, ?] be a solution of 2) and
let X1 =V7 + ¥5 » Xp =¥y - ¥5
X3 =¥z + ¥y Xy =3 -3
Now x12 + x22 + x32 + xuz
= (F7 + T2)% + (7= §2)° + (73 + T2 + (3= v °
= 2(?}2 + i}z + _32 + _hz)
= 2 (2(1) = in.
b) Let X1y Xp, X3y Xy be a solution of 1) and
let y‘] = (X‘l + XZ)/2 9 y2 = (X-l - X2)/2
y3 = (x3 + xy)/2 , Yy = (x3 - x3)/2
Now y12 + y22 + y32 + y42
= [(xq + x0721% 4 [(xq - x5)/21% + [(x3 x,)/212

+ [(x3 - xu)/2]2

(175 (2x42 + 2x,2 + 2x52 + 2x° )
2)

(1/2)(X22 + X22 + X32 + X)_l

(1/2)(U4n) = 2n.
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jTherefore r4(2n) = ru(un).

| Furthermore we have ru(uu) = 16 0(u) + ry(u)

iFor in the equation,
Ly =x12 + x22 + x32 + x42 ,

if all the x, are even, the equation is then equivalent to
u = Z12+222+232+242 s Zk=Xk/2

i Therefore the number of solutions is ru(u).

If the X, are all odd then the number of solutions is

16 o0(u) by corollary (3.7).

So far we have ry(2u) = 3ry(u) ,
ru(Zn) = r4(4n) and
ry(ldu) = 16 o(u) + ry(u)

It follows that 3r4(u)

ry(2u) = ry(hu) = 160 (u) + ryu)

3r4(u) = 160(u) + ru(u)
2r4(u) = 16 g (u)
rytu) = 8o(u).

And from theorem (3.8) r4(2u) = 3ru(u) and

ruun = 80 (u)

It follows that 3r,(u) 3(80(u)) = 24 0(u)

ry(2u) 24 o (u)

Finally for h>0, from ry(2n) = ry(4n) and ,(2u) =24 (u)

it follows that r4(2hu) = y(2u) = 240 (u).

Examples:

As an illustration of Theorem 3.9, consider u

it il
o
= .

Then 0(7) = 1 + 7 =8, ry(7) = 80(7) = 8(8)
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fﬁifferent representations of 7.

' =22 + 12 + 12 4+ 12, The four summands have 4 distinct
ermutations and each nonvanishing integer has two choices
 of sign (+1)2 and (+2)2 for a total 2% = 16 different
échoices of signs. Therefore the total number of
?representation of 7 is 4.16 = 64.

éNow consider n = 6 = 2P.u = 21.3 .

;u = 3,0(3) = 1 + 3 = 4.

 ry(21.3) = 280(3) = 2u(H) = 96.

L 6= 12 + 12 + 22 4+ 0°,

. The four summands have 12 distinct permutations and each

nonvanishing integer has two choices of signs, for a total

23 = 8. Hence the total representation of 6 is 12.8 = 96.

5.The Uniqueness of Essentially Distinct Representation

In this section we are going to characterize the
positive integers that can be written in exactly one way as
a sum of four squares apart from order and sign of the
; summands.

Let us denote P (n) the number of partitions of a positive
integer n into k integral squares. The term partition
implies that we do not consider distinct two decompositions
of n into k squares in which the squares are merely
permuted. Thus in this section we are concerned with the
problem of finding all integers n such that Py (n) = 1.

One of the differences between the number of representation

rq(n) and the number of partitions Pu(n) is that when all
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isquares in a particular partition are different from each
E:other and different from zero; to each such partition there
é corresponds ¢y = 1 2Ll = 384 representations counted by

b ry(n). Thus we have Py > (ry(n))/384.

' Theorem 4.22:

The only integers with a single partition into four
squares are 1,3,5,7,11,15,23 and 4%r where a > O and r =
2,6,14,

Proof:

First note that if n = x12 + x22 + x32 + x42 then

In = (2x1)2 + (2x2)2 + (2x3)2 + (2x4)2. Thus for every

partition of n into four squares there corresponds a
? partition of &n into four square, hence Pu(un) > Pu(n).
Recall that if n, is an odd integer then, ru(n1) = 8 UKn1)
and r4(2kn1) = 24 0(ny) , k > 1
and ry(2n) = ry(4n) for any integer n.
Now Py(ny > (ry(n,/384) = 0(nq)/48

Py(2nq4) > ry(2nqy)/384 = o (nq)/16

PyCin,) > ry(4n,)/384 = 24 g(n,) = O(ny)/16

Thus if n $ O (mod4), we have Py(n) > o (n)/48 > (n+1)/48
so that Py(n) > 1 if n > 48.

If n = 4 (mod8) , then

Py(lng) = Py(n) >0(n/4)/16 > ((n/W+1)/16 = (n+4)/64

In this case Py(n) > 1 if n > 60.
Thus it is sufficient to examine only the integers
n * 0 (mod#4) for n < 48, n=z U4(mod8) for n < 60 and

n = 0(mod8) . By doing so it turns out that none of the
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%ntegers n = 4(mod8) leads to Pyu(n) = 1.

gFor the case n =z O(modd4), with n < 43, we have Py(n) =1
;only for n = 1,2,3,5,6,7,11,14,15,and 23.

flf n,€{1,3,5,7,11,15}, we have Un, < 60 which implies
gPu(4n1) > 1; hence Py(4¥n,) > 1 for a >1.
%For n, = 23, we have Pu(4.23) = 3> 1.

%Hence P,(43.23) > 1 for a > 1.

?For the integers n = 2,6,14 we have,

L Py (2) = Py(6) = Py(14) = 1.

1]
H

 Hence P,(42.2) = P,(4%.6) = P,(42.14) = 1 for a > 1.

If n = 0 (mod8), we write n = 42.2m, where 2m is not a
| nultiple of 8. Py(n) = Py(42.2m) = Py(2m).
 Thus in order that Py(n) = 1, we must have 2m = 2,6,14.

Thus the proof is complete.
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CHAPTER 4

SUM OF THREE SQUARES

I 1.Representation Of Integers As Sum Of Three Squares.

In this chapter we consider the Representation of a
positive integer as a sum of three squares. Unlike the
problem of the Representation of an integer as a sum of
two squares and four squares the representation of an
integer as the sum of three squares is a much more

difficult problem.

The two representation problems are:
1) What integers n can be represented as the sum of three
squares?
2) Find a formula for r3(n) , the number of representation

of an integer n as a sum of three squares.

In this chapter, we will only consider the first
representation problem. For the second problem, due to some
difficulties, we will be only able to give formulas for the
number of representations of an integer as a sum of three
squares.

Diaphantus once stated that in order for the equation
x12 + x22 + x32 = n to a have solution, n must not equal
to (24k + 7). Later Bachet found that this condition was
insufficient and added another condition. It was Fermat who

finally succeded in formulating the correct condition for

this problem. In 1636, Fermat stated that no integer of the
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i:form 8k + 7 is the sum of three squares.

The first attempt to prove that every integer which

] is not of the form Hh(8k+7) is representable as the sum of
three squares was by Legendre in 1798. In 1801 , Gauss gave
a complete proof and obtained a formula for the number of
primitive representations for an integer as a sum of three
squares. Gauss'proof depended on more difficult results in
his extensive theory of quadratic forms. Other proofs have
since been given , but none of them can be described as

both elementary and simple.

First we state the main result in this chapter;

Main Theorem:

A positive integer n is a sum of three squares if and only
if n is not of the 4P (8k+7) where k, h are non-negative
integers.

First we are going fo show that the condition is

necessary, which we state in the next theorem:

Theorem 4.1:

If n = x12 + x22 + x32 y, N > 0 then n is not of the
form 4 (8k+7) where h,k > 0.
Proof:
Suppose that there exist natural numbers of the form
Mh(8k+7) where h,k > 0 that are the sum of three square
integers.
Let n be the least of them. Then we have

2 2

n = a° + b2 + c? where a,b,c are integers.
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t We will consider four cases.

£Case 1:

g?One of the integers, say a is odd. Then we have,

a? + b2 + ¢ = (2kq +12 +(2k;)2 + (2k3)2

Bky2 + Ky o+ ko2 + K32) 4 1
Hence a2 + b2 + c2 is of the form Y4t +1, and it is
different from n.

Case2:

Two of the integers say a,b are odd, then we have

a2 + b + c2 = (2kq + 12 + (2k, +1)2 & (2k3)2

2 2 2

u(k12 # o+ ko2 + Ky + k32) + 2

Hence az+ b2 + 02 is of the form U4t+2 and it is different

from n.

A1l of the integers are odd . Then we have a + b2 4+ c2 is
of the form 4t + 3 and it 1is different from n.

Case 4:

All of the integers are even.

Let a = 2a', b= 2b', ¢c= 2¢c' where a' b' c¢' are integers.

Hence Hh(8K+7) h = (Za')2 + (2b')2 + (2c')2
= 4(8'2 + b'2 + 0'2)

Hh(8k+7) M(a'2 + b2 4 0'2)

Uh_1(8k+7): a'? + b'2 4 ¢t

Contrary to the choice of n.
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%Thus we have proved that no natural number of the form
H'Mh(8k+7) where h,k > 0 can be the sum of three squares.
; On the other hand the proof that the condition is
g}sufficient , i.e if n # Mh(8K+7), then n is the sum of
three squares is difficult. This is due, to a large extent
to the fact that in this case, we do not have identity
analogous to Euler's identity which we have used in
chapters 2 and 3

In order to prove the condition is sufficient we
need first to study some basic facts concerning quadratic

forms.

2. Quadratic Forms

Definition 4.1:

A homogeneous polynomial of degree 2 in n variables X1
Xoyeee9Xy 5 Of the type Q(xq,...,x,) = 155_?ijxixj
y j=

with integer coefficients a is called an integral

i3

quadratic form in n variables ( or simply quaratic form).

It is convinient to assume that a; for all

ij 7 2ji

i,j =1,...,n. Now if we take into account the symmetry of

the coefficients, the quadratic forms look like this:

Q(x1,...,xn)

= a11x12 + 2345X1X5 + 2a13x1x3 Fooeceoe + 2a1,XqX
+ 822X22 + 2323x2x3 R 232nx2x3 +eee + 24X

From this it follows immediately that the quadratic form

can be written in a matrix form:

Q(Xqyeeeerxy ) = XTAX

93



where X = x1w
X2
L%y, -
XT is the transpose of X and A = [aij] is the symmetric

matrix of the coefficients of x:x:. It is called the

177
coefficient matrix of Q(x1,...xn).
Definition 4,2:
Let Q(x1,...,xn) = XTAX be a quadratic form . The

rank of A is called the rank of quadratic form and the

determinant of A is called the discriminant of Q in what

follows it is denoted by A (Q).

Suppose now that Q = XTAX is a quadratic form. To simplify
the quadratic form, we change the variables Xq9eeeXp to
new variables y4,...y, to obtain another quadratic form
Q1(¥q1s++,¥y) = YTALY with integral coefficient. First we

assume that the old variables are related to the new

variables by a linear transformation ,

where C = [cij] is a matrix with integral coefficient and
det €C = 1. In matrix notation this linear transformation

can be written as X = CY. Since the det C = 1, the linear
transformation is invertible and Y = BX , where B = [bij]

is a matrix with the b also integers. Now if we

J's

replace the x in the quadratic form

it's

Q(x1,..xn) = xTax by X = CY we obtain another quadratic



%form Q1 (¥qy.-yyy) = (cOTaccY) = YT(cTac)Y . quadratic
:}forms that are related like Q and Qq i.e that are
;transformed into each other by linear transformation X =
?Cy, with C =[éiﬂ is a matrix with integer coefficient and

- det C = 1, are said to be equivalent to each other , in

symbols it is written Q~¢~Q1.
The concept of equivalent forms is important enough to
reformulate in the following definition:

Definition 4.3:

Let Q(Xq,..,%,) = XTAX and Qq(yq,..,y,) = YIDY

be two quadratic forms, then we say that Q is equivalent to

Q4 if there exist a matrix C = [cij] with integer

¢
:
x

coefficients and det C = 1 such that D = CTAC.

Theorem 4.2:

The relation of two quadratic forms being equivalent
is an equivalence relation.
Proof:
1)Reflexive : Qv Q
QUXqyeeerXy) = XTAX A Q(xq,..,x,) = XTAX
Recall two quadratic forms Q = XTAX and Q'= YTDY are
equivalent if D = CTAC for some matrix C with det C =1.

Let C =TI =10 0 0.....0
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E Then A = CTAC and Q v~ Q

2) Symmetry : If Q “~Qq then Qv Q

Since Q

xTaAXx v~ Q; = YIDY then D = cTAC where det € =1.

Now , A = (¢c=1)Tp(c=') and det c=1 = (1/det C) = 1.

Hence Q; = YIDY“~Q = XTAX.
3)Transitivity: If QvQ4 and Qqv~ Q, then Qv Q5.
QXqyenesXpy) = XTAX N Qq(¥yq,.neyypy) = YIDY

where D = CLAC for some metrix C with det C =1.

Q1(¥qse-1¥y) = YIDY “Qy(zq,..,2,) = Z'BZ
where B = PIDP for some metrix P with det P =1.

Now Q(Xq,..,%,) = XTAX™™Qy(zq,..,2,) = Z'BZ

Since B = PIDP

pT¢cTac)p

(pTcTyaccp)

(cPyTa(cp)

B = (CP)TA(CP) and det(CP) = (detC)(detP) = 1.
Example:

Let Q(X1,X2) X12 + 2X1X2 + X22

111
—
S >
L_'_l

3
—
—_— —
— —_—
| I 1
| ]
> b3
N =

Q1(¥12¥2) = ¥1° + 2(yq + ¥2) + (yq + y5)°

y12 + 242 + 2yq¥o + ¥49vo% + 2yqys

Uy12 + Uy vy, + yga

96



iTheorem 4,3:
If Qv Qq then A =4A(Qy)
f Proof:
Qx x.) = XTAX  Qq( ) = YIDY
(RRREES T 18Yqee9¥n’ =
D = CTAC for some metric C with det C = 1.
A(Qy) = det D = det(cTac)

(detCT)(det A)(detC)

(det C)(detA)(detC)

1(deth) 1
=A Q).

Definition 4. 4:

A quadratic form Q(x1,..,xn) is said to represent

the number m if there exist integers X'1yeesX! such that

n

Q(X-]',...,Xn') = .

Theorem 4. U:

If Qv Qq then Q and Q4 represent the same numbers.
Proof:

Since Q = xTax Qq = YIDY then D = CTAC for some
matrix C where det C =1.
Assume m is representable by Q, then there exist integers
X{'yeees X! Such that Q(xq',...,x,") = X'TAX' = m
where X' =_x1'w

1

Xo

_xn'J
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Let Y' = c~1xt

then Qq(¥'q,..,¥p) y' Tpyr

= (¢~ Tx)yTpce=-Txny
- x'Tee-TpcTyxr

= X' Tea)xe

= Q(X1',..,Xn') = m.

Example:
Qlxq,x%5) = x12 + 2X X5 + x22

QT(Y1,Yz) = 4}’12 + '—!y1y2 + y22

Qv Qq since D = cTac  and C =[1 oJ and det C =1.

1T 1

m = 25 1s representable by Q(x1,X2) since for Xx'1 =22,
x'5> = 3 we have Q(2,3) = 2% + 2(2)(3) + 3% = 25,

m = 25 is also representable by Qq(yq,¥5) ,

for y'1 = 2, and y's = 1 we have,

B2)2 + W2)(1) + 12 = 25.

Remark:

The converse of this theorem is not true, that is it
is possible for an integer m to be represented by two
inequivalent quadratic forms.

Example:

Let Q(xq,x5) = x12 + 161x22

Q1(¥1,¥o = 9Y1% + 2yq¥, + 18y5°
m = 162 is represented by both Q and Qq since Q(1,1) = 162

and Q1(O,3) = 162.
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But Q and Q1 are not equivalent. Assume the contrary

i.e Qu1Q; then Q = XTAX and Q = Y'DY where D = CTAC for

some matrix C with det C = 1.
. Let C = [x y] and det C = 1
Z W

Now we have D = CTAC

T o A I

x2 + 16122 = 9
Xy + 161zw = 1
y2 + 161w2 = 18 and also we have xw - yz = 1

If we solve the above system of equations, the first
equation requires z = 0, x = + 3, the second then yields
y = x=1 = +1/3 and the third equation wl = + 1/3. With an

appropriate of sign, we find also xw - yz = 1 but y,w 4 Z.

Therefore Q and Q1 are not equivalent.

Definition 4.5:

The Quadratic form Q(x1,..,xn) is said to be positive
definite if Q(x1,..,xn) > 0 for all integral n-tuples
(Xq9e09Xp) $ (0,0,..,0). Q(xq,..5%x,) is said to be negative
definite if Q(x1,..,xn) < 0 for all integral
n-tuples (Xq,..,%,) $ (0,0,..,0).

Example:

Q(x,y) = x° + y2 positive definite
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-2x2 - 2y2 negative definite

Q(x,y) = x2 - y2 indefinite

i Q(x,y)

Theorem 4.5:

If Qv~Qq then Q is positive (or negative) definite if
and only if Q4 is positive (or negative) definite.
Proof':

Since Qv Q,y implies Q1 and Q represent the same
number. Therefore it follows that if Q is positive definite

then Qq is also positive definite.

Reduction of positive definite forms:

We shall be concerned mainly with both binary
quadratic forms (i.e forms in two variables) and ternary
quadratic forms (i.e forms in three variables).

Now we will restrict ourselves to the study of such forms.

For convenience we shall write the binary quadratic form as

Q(x,y) = ax? + 2bxy + cy2. The discriminant of Q is,
A = a b| = ac - b~
b c

Theorem 4.6:

A binary quadratic form Q(x,y) = ax? + 2bxy + cy2 is

positive definite if and only 1if both a>0 and
A(Q) = ac - b2 >o0.
Proof:
We consider all possible values of a and Z&(Q).

1) If a < o then Q(1,0) = a <0
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Hence Q(x,y) is not positive definite.
If a > 0and A(Q) < 0, then

ab2-2b2a + ca2

Q(_b,a)
= -abZ+ca = a(ac-b2) = a.A(Q) < 0.
Hence Q(x,y) is not positive definite.

If a > 0 and A(Q) > 0 then

2

a.Q(x,y) = a(ax® + 2bxy + cy2)

= a2x2 + 2bxy + acy2

(ax + by)2 + (ac-—bz)y2

(ax + by)2 + A(Q)y?

But Q(x,y) < 0 only if (ax + by)Z + (Q)y2 < 0 for any
X,¥Y. Hence we must have,
ax + by = 0
y = 0

Therefore x = 0 and Q(x,y) is positive definite.

1)
<

Theorem 4.7:

In every class of a positive definite binary forms
there is a form for which 2 |b|i a < c¢. Such a form is
called reduced.

Proof:

Let Q(x,y) = aox2 + 2bgyxy + coy2 belong to a class of
a positive definite form. Let n be the smallest positive
number representable by this form ( and hence any form of

the class). Then for some integer r,t we have

n = aor2 + 2bort + cot2
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b Claim: The g.c.d (r,t) = 1

For if (r,t) = v > 1 then v2|n .
Hence n = ao(r_)z + 2bo(_r;) (_t_) + co(_t__)2
v v v/ \v v

But n 2/v2 < n is representable by the form, which
contradict that n is the smallest number representable by
the form. Thus we must have g.c.d(r,t) = v =1. Now since
(r,t) = 1, there exist integers s, u such that ru - st = 1.

is any solution of ru - st = 1, then the general

If Uy Sq

solution is u = u, + ht , s = s + hr where h is any

integer.

Now let X =[XJ , X' = [xj C=|r s} with det C = 1
y y! t u

Consider the transformation X = CX', then by substituting
in the form Q(x,y) we have Q'(x',y') = X'T(CTAC)X' and
hence Q Y™ Q', that is Q and Q' are in the same equivalent
class. Let Q'(x',y') = ax'? + 2bx'y' + cy'2

By direct substitution of CX' for X in Q(x,y) we have,

a = nand b = s(agr + byt) + u(b,r + c t),
b = sy(agr + byt) + u (byr + e t)
+ h(r(agr + byt) + t(byr + cgt)
Now since the coefficient of h is a,r? + 2b,rt + ¢ t2 = n

b takes on all values in a certain residue class mod n;
hence h may be selected in such a way 2|b| < a|b|i a’/2
Since ¢ can be represented by the form Q'(x',y'),

¢ = Q'(0,1), we have a < ¢c. This complete the proof.
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Proof:

Since a < ¢ then by multiplying by a > 0, we have

b2 +ACQ) < (a%/8) + A(Q

a® < ac

this implies (3/®a® < A(Q, and a <2/ J3) A(Q.

Corollary 4.9:

Every positive definite binary form having discriminant

1 is equivalent to the form x'° 4+ y'2 = Q' (x',y")

Proof:
By the previous corollary , every such form is
equivalent to a form for which 0 < 2]b| <a < (23
this implies 0 <|b|< (ar2) < (1/ /3,
and hence a = 1, b = 0, ¢ = 1

Therefore Q'(x',y') = X' 4 Y'2

Theorem 4.10:

3
A ternary quadratic form Q(x1,x2,x3) ;E:aijxixj
.

l/
is positive definite if and only if all the %ollowing hold:

an 812 213

d :A(Q) = 812 822 823 > 0 ’
a13 823 333
a a
1 2
b = ! ! > 0, and aqq >0
421 2o
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Moreover if Q(x1,x2,x3) is positive definite , then we have
a11Q = (aq1Xq + aqoXo + a13x3)2 + K(xz,x3) where K(x2,x3)
is the binary positive definite form,
K(x2,x3) = (aqqaso - a122)x22 + 2(a11a23 - a12a13)x2x3
+ (a11a33 - 3132)x32
Proof:
By completing a11Q(x1,x2,x3) to a square we have

a11Q(xq,%x5,%3)

2 2
= aq1° X% + 2a11a13x1x3 + aq1qa50%X>

2
+ 2811823)(2)(3 + 811333)(3

> 2\, 2
(aq9xq + aqpXp + aq3x3)° + (aqqap, - a1%)x)

+ 2(811323 - 312a13)XZX3 + (011333 - 3132))(32

(811)(1 + 312)(2 + 313)(3)2 + K(XZ,X3)
2
A(R(xp,x3)) Jaqqamp - agz aq1q3p3 - 212213
2
#11823 = 212213 211233 ~ 213

2 >
(agqapp -~ agp7)(aqqazg - a137) = (aqqap3 - aqpaqg

> > >
aqq(aqqagpagy - aqqap3” + 2a1p393253 - aqp7agz - aqp%ay))

aqq (Qlxqxpx3))

Thus Q(x1,x2,x3) is positive definite if and only if
K(x2,x3) is positive definite and a;q > 0.

Clearly if aqq < 0, then Q(1,0,0) = 2494 < 0 and Q is not

positive definite.

Now if a4, > 0 and K(xz,x%) is not positive definite, then
K(xz',x3') < 0 for some x2',x3' not both of which zero.
Then also K(xp",x3") < 0 with x," = aqqxp'and x3" = aqqx3’'.

Let x1" = —a11’1(a12x2" + a13x3").
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Clearly X" is an integer,also aqqxq" + aoxo" + a13x3" = 0.
Thus for x1",x2",x3" Wwe have

a11Q(x1",x2",x3“) - 02 + K(x2“,x3") <0

Hence Q(x1",x2",x3") <0

On the other hand if K(x,,x3) is positive definite and

aqgq > 0, but Q(Y},Y},f&) < 0 for some i],ié,i} not all of

which zero then since a11Q(x1,x2,x3)

We have K(ié,ig) < a11Q(x1,x2,x3) <0

< 0 which implies i] = 0.

Hence %, = ié = 0 and a11i]2
That contradict that not all i}, X, and ié are zero.
Now K(Y},i}) is positive definite if and only if both
b = ajqas, - 3122 > 0 and [&(K(xz,xg)) >0

but A(K(x,5,x3)) = 217 AQxq,%5,3)),

thus K(xz,x3) is positive definite if and only if both

b = 811822 - 8122 > 0 and A(Q(X1,X2,X3)) =d > 0.

Lemma 4.01:

Let C = [aij] be a matrix with integer coefficients.
If g.c.d(eqqy¢cpq) = 1, then the six remaining numbers Ci 3
can be chosen in such a way that det C = 1.
Proof:

Let us set g.c.d(ecqq,c59) = g.

Since g.c.d (c11,c21) = g we can choose integers cy, and
Coo in such a way that C11Con = CqoCnq1 = 8

Also since g.c.d(g,c31) = 1 we can choose integer u and v

such that gu - CqqV = 1.
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Now let C = |cqy4 Cqo (eq14/8)v

co1  Cop  (epq/g)v

B 0 u
det C = e3q (Cqpe5q = Cqq9C2p) v + (€905, ~ €4pCpq)U
= =C3qV + gu =1.
Example:

Let 011 = 2, 021 =4 ’ 031 :5
Hence we have g.c.d(cqq,c5¢) = (2,4) =g = 2 and
g'c’d(g’c31)= (2’5) = 1-

We can choose integer ¢4, and ¢, such that

C11C22 = ©12¢21 = 8
implies 2¢c,55 - 012.4 = 2

We can also choose integer u and v such that

gU - C3qV = 1 implies 2u = 5v = 1 and hence u = 2, v = 1.
Then C =[2 1 1]

4 3 2

5 0 3

Theorem 4.11:

Every class of positive definite ternary quadratic
forms Q(x1,x2,x3) contains at least one reduced form with
0 Caqq < (W3IJa , 2 Jagyl<agy, 2laqgsl < aqy

where d :Z&(Q) the discriminant of Q.

Proof: .
3
Let Q(x1,x2,x3) = 2 aijx'ix'j be a fixed ternary form
i,3=1

belonging to the class . Let a be the smallest positive
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integer that can be represented by Q and consequently by

any form belonging to the class. Then for suitable integers

C11s Cpqs C3q We have a = Q(ecqq,¢51, 031).

Claim: g.c.d(cqq,859,C3q) = 1.

- If g.c.d (011,021,031) = v > 1 then
C = (a/v2) < a would be representable by Q(x1,x2,x3) , a
contradiction.

3
Next we are going to find a form Qq = 2 a such that

: X2 X
i
iyj:ﬁJ J

Qv Q and aqq = a.
Let Qq be the form into which Q is carried by the
transformation C = [Ckl] of determinant 1, constructed in

accordance with the previous Lemma 4.01, then we have

a‘]‘] = Q1(1y0,0) = Q(C11,021,031) = a

Next we construct a matrix

1 r s

with r,s integers to be selected later and B a 2 x 2

matrix with det B

1. Clearly det N = 1, thus if we set

X4 ¥y
X = X2 = N y2 = NY
X3 Y3

then Q1(X) = Q1(NY) = Q2(Y) and we have Q+~ Qg+~ Q, are in

the same class.
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3
Let Q2(y1,y2,y3) =2 ?ijyiyj where byq = aqq.
i,]=

From the previous theorem we have:

a11Q1(X) (aq1xq + aqo%y + a13x3)2 + k1(x2,x3)

811Q2(Y)

2
where k1(x2,x3) and k2(x2,x3) are positive definite.
Now since N carries the form Q1(x1,x2,x3)into Q2(y1,y2,y3),
it follows that k1(x1,x2), is taken into k2(y2,y3) by B.
By the previous theorem k2(x2,y?) has discriminant
:Z&(kz(yz,y3) = aqqd = bqyqd , where
d = ﬁs(Q2(y1,y2,y3) and the coefficient of y22 is equal to
b11b22 - b122 = b. As we have seen in the case of reduced
binary forms, B may be selected so that b < (2/ JE) bqqd .
Also b12 and b13 are linear forms in aqq with coefficient r
and s, respectively. Hence these may be selected so that
Ibij|g (1/2)aqq = (1/2)bqq for j = 2,3.
Finally since by, = Q2(0,1,O) is representable , hence
bos > aqqy We obtain the sequence of inequalities
2 - 2 2
D117 S bqbop = (byqbop = D4p%) + byp
(3/4) by12 < (2733 Jbqqa
(33178 (b1,$372)) ¢ Jd

(27/6W)b, {3 < d
by < (4/3)3[a.

Corollary U4.12:

Every positive definite ternary quadratic form
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Q(x1,x2,x2) of discriminant d3 = 1 is equivalent to the
form, Q1(y1,y2,y3) = y12 + y22 + y32 (i.e equivalent to a
sum of three square).

Proof:

By Theorem 4.11, the given quadratic form Q(xq,x5,x3)

is equivalent to a form in which 0 ( aqq < (W3 ),
2laqpl< agy, 2faqsf < aqq -
From this it follows that aqjq = 1, aqp = 0, aq3 = 0.
The class therefore contains a form,
Q(x1,x2,x3) = x12 + a22x22 + 2a23x2x3 + a33x32

= x12 + K(xo, X3)
where k(x2,x3) = a22x22 + 2a23x2x3 + A33X3 is positive
definite and has discriminant 1.
Hence k(x2,x3) goes into a form K'(y2,y3) = y22 + y32
by suitable transformation B =t wu with det B = 1.

N

Thus the transformation {1 O O

0 ¢ u

0 v w
takes Q(xX4,X5,%X2) into Q4 ( ) = 2 2 2
11Xp49X3 18Y15¥29¥3) = ¥ + VYo~ + V37>

Theorem 4.13:

If n > 0 is not of the form 49(8b+7) , a > 0, b > 0

then n can be written as a sum of three squares.

In order to prove this theorem, we need Dirichlet's

Theorem stated below. We are not going to prove Dirichlet's
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Theorem here because its proof is very involved and beyond

our objectives. A proof can be found in [12].

Dirichlet's Theorem:

If (k,m) = 1 then the arithmetic progression

kr + m (r = 0,1,...) contains infinitely many primes.

Proof of Theorem:

If n = ¥n, , 4Tn1 and nq is a sum of three squares,
3
say nq = E:xi% then n = jZ(Zaxi)Z is also a sum of three
i=1 i=1

squares. Hence it is sufficient to consider only the case
n * 0 (mod4). This is equivalent to consider only the case

n # 0,4 (modB)

n = 0 (mod4) implies n = U4k = {0, +4, + 8...}

n = 0 (mod8) implies n = 8k = {0, + 8,+16, ...}

n = 4 (mod8) implies n = 8k + 4 = {+4,+2,......}

If n = 7(mod8) then n cannot be written as the sum of three

squares as we proved in the theorem(4.1) at the beginning
of this chapter. Therefore it is sufficient to consider the
cases n =1,2,3,5,6(mod8).

The idea of the proof is, first to show that n can be

represented by a positive definite ternary quadratic form
3

Q= X

i,j=1

aijxixj of discriminant 1.

Then Wwe use corollory (4,12) (Every positive definite
ternary quadratic form of discriminant d3 = 1 is equivalent

to sum of three squares) to complete the proof.
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We will specify nine numbers 411,81253139822,823,
a33, Xq13Xpy X3 which satisfy the four conditions below:
1) n = a11x12 + 23495XqXp + 2a43X X3 + a22x22

+ 2323)(2)(3 + 833)(32,

2) aqq > 0
3) b o=lagq  agp| =aqqagy - agp° > 0
A21 422
Blaqr a2 agg
aqo arss CPE = 1

Let a|3 = 1, asy = 0, azz = n.

Then Q can be written in the form,

Q = a11x12 + 2a95XqXp + 2XqX3 + a22x22 + nx32.

Then if we let x4 = x, = 0, and X3 = 1, we have Q(0,0,1)=n.
This will satisfy the first condition.

The three remaining unknown which are aqq,a45,a,, have to

satisfy the remaining three conditions:

1) aqq >0
2) b =jagy Ay = ajqagy - app” >0
a1 @
3) laq;g ago 1
o1 322 0
1 o] n

2
(aq92pp = 2457 = ap,

bn - 322

1, this imply bn - 1 = as5,.
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Claim:
Condition (1) aqq > 0 is a sequence of the two conditions
(2) and (3).

Let n > 2 ( forn =1, 1 = 12 + 02 + 0°).

It follows that a5 = nb - 1 > 2b - 1 > 0 since b is a
positive integer.

311355 = @15° + b > b > 0. Implies a;q > O.

Now we need to choose a value of b so that

aqq = (a122 + b) /as> 1is an integer.

This implies a,, (a122 + b)

which implies a122 = -b (modas,,)

hence 3122 = -b(mod bn -1) where aq, is an arbitrary
integer. Therefore we need to find (-b) as a quadratic
residue modas,. The easiest way to accomplish this , is to

choose b so that

nb -1 = p where p is a prime and (-b) = 1.
&

We will consider the cases according to n is an even
integer or odd integer.
Casel:

n is even , then n 2 or 6 (mod8)

Claim: (Y4n,n-1) = 1

Proof of claim:

We will show that (4,n-1) =1 and (n,n-1) = 1, that is
to show there exist integers x,y such that
x(4) + y(n=1) = 1 and x(n) + y(n-1) = 1.

For n = 2(mod8) we have n = 8k+2.
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Therefore x(4) + y((8k+2)-1)

1,

this implies x(4) + y(8k+1) = 1
hence we can take y = 1 and x = (-2k).
For n = 6(mod8) we have n = 8k+6.
Therefore x(4) + y((8k+6)-1)=1

imply x(4) + y((8k+5) = 1

hence we can take y = 1 and x = =(2k+1).

And for x(n) + y(n-1) = 1, we have x = 1 and y = =1

Thus (in, n-1) = 1

By Dirichlet's theorem, there exist integer m such that

bnm + (n-1)=z p , where p is a prime.

We select b = U4m + 1 which implis b

Now we have p = 4nm + n - 1 = (im+1)n 1

p = 1 (modd) since for n = 2(mod8), p

where t = 8mk + 2m + 2k . This implies p

And for n = 6(mod8) , p (Um+1) (8k+6) =1

r + 1 where r

This implies p = 1(modd)

(b,p) = 1 for xp + yb = 1
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= bn - 1.

(U4m + 1)(8k+2) -

4t + 1

1(mod ).

32mk +24m + 8k + 6-1

8mk +6m + 2k.

1

32mk +8m +8k +2 -1



implies x(bn-1) + yb = 1 ,implies x = =1 , ¥ = n.

Hence(b) =(p)(_1) ((p=1)/2)((b=1)/2)
p b

p) .1
b

{
=(b€ -1)

QJ)since bn =1 -1(modb)

b
(=1) (b=1)/2 _ 4.

Therefore ass = bn - 1 =p > 0
a;,° =z -b(modp) has solution, yielding aq,

and aqq = (b + a122) as, 1is an integer.

Case 2: n is odd.

Then n = 1,3,5 (mod8)

We set ¢ = 1 if n = 3(mod8) and ¢ = 3 if n = 1,5(mod8).
Then we have (cn-1)/2 is odd in both cases.

Claim:

(Un, (en=1)/2) =1

Proof of claim:

For n = 3(mod8) we have n = 8k+3.

We will show that (n,(en=1)/2) = 1.

Consider x(4) + y((8k+3~1))/2 = 1

this implies x(4) + y(4k+1) = 1,

hence x = -k , ¥y = 1, and x(n) + y((en=1)/2) = 1
implies x(8k+3) + y(4k+1) = 1

implies x = 1, y = =2.
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For n = 1(mod8) we have n = 8k+1 and ¢ = 3
x(W) + y((3(8k+1)=1)/2) = 1
implies x(4) + y((24k-2 /2) =1
x(1) + y(12k-1) = 1
implies x = 3k , ¥y = =1 and x(n) + y((3n=-1)/2) = 1
implies x(8k+1) + y((24k+2)/2) = 1
implies x(8k+1) + y(12k+1) = 1

implies x = 3, v = -2,

For n = 5(mod8) we have n = 8k+5 and ¢ = 3.
x(4) + y(((8k+5)3-1)/2) = 1
implies x(4) + y((24k + 14)/2) = 1
implies x(4) + y(12k + 7) = 1
implies x = (2k+2) andy = -1 and x(n) + y((en-=1)/2) = 1
implies x(8k+5) + y(12k+7) = 1

implies x = 3, v = =2

Thus (4n, (en-=1)/2) = 1 for all cases.

By Dirichlet's Theorem, it follows that there is a prime
p = Unv + (cn=1)/2,

hence 2p = (8v+c)n 1.

If we set b = 8 + ¢ then we have b > 0, 2p = bn -1.

For n = 1(mod8), b = 3(mod8), p = 1(modi)
For n = 3(mod8), b = 1(mod8), p = 1(mod¥)
For n = 5(mod8), b = 3(mod8), p = 3(modi)
For n =

1,5(mod8), (—5) = (‘Q)(g)
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r
(1)(-1)((8v+3) =1)/8 _(q1y(1)=1.

(-0)(2)

2
(1)(_1)((8V+1)—1)/8) =(1)(1) =1.

For n = 3(mod8), (—2)
b

It follows that , for any n = 1 ,3 ,5(mod8)

5 G
(_1)(—b-1)/2(p—1)/2(g) (_5)

1]
1
n
olo
e

:(1): 1 since 1 -bn = 1(modb).

Hence ~b is a quadratic residue mod p,

this implies -b = u? (modp) also we have -b 12 (mod2).

Therefore -b is a quadratic residue (mod 2p),
hence -b = u? (mod2p) has a solution. If we take one of the
solutions u? = a122 then a4 = (a122 + b)/322 is an

integer. Therefore the proof is complete.

As an illustration of the previous theorem, vwe give two
completely worked-out examples, in which we follow step by

step the proof just given.

Example 1:

Let n = 18, then n = 18

2(mod8).
We choose m such that 4.18(m) + (18-1) = p.
Let m = 0, then p = 17 = a5,

b = (p+1)/n = (17+1)/18 = 1.
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For aj, we choose the smallest solution of

-1 u? (mod17) , i.eu = 4 = aq,

17/17 = 1.

Then aqq = (b + 8122)/822
The quadratic form is now look like this,
Q = x12 + 8x 4%y + 2x1x3 + 17x22 + 18x32
and Q(0,0,1) = 18. Note that

811=1>O,

b =l1 y = 1> 0 and 1 y 1
4y 17 N 17 0 = 1
1 0 18

By completing the square we obtain
Q = (xq + Ux, + x3)2 + x22 - 8x2x3 + 17x32
= (x1 + 4x2 + x3)2 + Qq

where Qq = x22 - 8x2x3 + 17 x32 and L = xq + x5 + X3

aqq = 1= Q(1,0,0). Therefore we do not need preliminary

transformation to make a;; = a. Q1(1,O) is the smallest

integer representable by Q1. Hence we form B = [1 SJ
0 u

such that|B| = 1 and this requires u = 1 and s€Z 1is

arbitrary.

Let {yZJbe defined such that[x2]

Y3

n
—
O —_
—_ [¢]
—
< o«
w AV]
—_—

X3
Substitute in Q1(x2,x3)

(y2 + sy3)2 - 8(y2 + sy3)y3 + 17y32

vyl + 2y,¥35 + s%y3 = BYpy3 - 8sy3® + 17y3°

o2 + (25-8)y, + (s% - 85 +17)y3
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Set the coefficient Yov3 = 0. This will requires s = 4,

and 1 4
B =
o 1.

Now let 1 v w
N = 0 1 4
0o 0 1

Set x = Ny. We obtain

Xq = ¥q + VY¥p + Wyg3
XZ =y2+ 4}’3
X3 = V3

We substitute in Q(x) and obtain

L= (yq + vyy + wys + 4y, + Hy3) + yg3
=y + (H+v)ys + (w+17)y3
We choose v = ~4, and w = -17 then L = A and hence

2

Q(x1’x2’x3)“/‘Q'(X17X2yx3) yqi© + y22 + y32

Since Q(0,0,1) = 18 set xq = 0 = yq + vy, + Wys3
= ¥q- by, - 17y5
X5 = 0 = Yo + Uy3
X3 = 1 = Y3
Therefore y, = —4y3 = =4(1) = -4

Thus we have 1° + (-4)2 + 12 = 18.

Example 2:

Let n = 11 = 3(mod8). With ¢ 1, (en=1)/2 = 5
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We choose m so that 4(11)m + (en=1)/2

P , a prime.
Therefore we let m = 0 , p = 5 and 2p = 10 = aso.
2p = 10 = bn =1
implies bn = 11 implies b = 1.
For a,, , Wwe choose the smallest positive solution of the
congruence -1 = u? (mod 10). Thus a1, = 3.
ajq = (143%)/a5, = (149)/10 = 1.
Then our quadratic form will be,
Q(x1,x2,x3) = x12 + bx x5 + 2x1x3 + 1Ox22 + 11x32.
We verify that all required conditions hold:

Q(0,0,1) = 11 = n.

We have Q = (x1 + 3X5 + x3)2 + Q1(x1,x3) where

Qq = x22 - 6x2x3 + 1Ox32 and L = Xq + 3x2 + X3

Qq(1,0) = 1 is the smallest integer representable by Q.
Hence we form B =[1 s}and B = 1 requires u = 1 and s€ Z

0 u

Define [YZ] by [x5 :[1 s] [yz}
Y3 X3/ L0 11 Lys

implies Xp = ¥p + SV¥3

X3 = ¥3
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Substitute the above values in Q1,

Set the coefficient Yo¥3 = 0. This requires s = 3 .

Let

Now

X3

B =
0 1
1 v
N=|0 1
0 O

X2 = O
X q 0
have

= Y1 + Vy2 + Wy3

=¥o + 3Y3

[1 3} and Q(x) = L2 + ¥Yo© + Yo

2 2

J

We substitute the above values in L we have

L

For

Q(x)

(y1 + VYp + WY3 ) o+

¥ (V+3)Y2 +

\'

-3 and w

3(Y2 + 3Y3) + Y3

(W+10)Y3

= =10 then L = Y1
2

2 + y22 + y3L

In order to obtain Q(x)

11, we need x4=x, =0 and X3= 1.

Under x = Ny, X3 = y3 = 1.

X2 = Y2 + 3y3 =0 implies y2 = —3y3 = (-3)(1) = —3

and xq = 0 = yo + VY, + WYy
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yq + (_3)y2 - 1OY3

yq -3(=3) =10(1)
= Y1 - 1’

this implies yqe = 1.

+
—
V]
n
—
—

Hence 12 + (-3)2

Corollary 4.14:

Every non-negative integer is representable as a sum of
four squares.
Proof:

From theorem (4.13) we have any positive integer n,
where n = 1 or 2 (mod#4) can be written as a sum of three

squares, and hence 1t can be written as a sum of four

squares.
Consequently any positive n = 3(modi4) can be written
as a sum of four squares since n = (n-1) + 12 and
n -1 = 2(modd).
If n = O(modY),then it can be written in the form

n =¥ +r),r = 1,2,3. For if n = 0 (mod4) then
n =4 , k> 1, hence n = ¥¥(lb+r), r =1,2,3

Since 48 = 28 2 and (4b+r) = 1,2 or 3 (mod ),
therefore n = 43(lUb+r) can be written as a sum of four

squares.

Corollary 4.15:

A natural number n is the sum of the squares of
three rational numbers if and only if it is the sum of the

squares of three integers.
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Proof:

Let n be a rational number and n is the sum of

three rational numbers. Then n =<§gf +<§gf +(;§f

By finding the common denominator of the three

rational numbers above, we have n = x2 + y2 + 2

2

w
where x,y,Z are integers.

This implies wen = x° + y2 + 22,
If n = Mh(8k+7) where k,h are integers > 0,
let w = 2¥(2m+1), where r,m > 0 then

wln = (2F(2m+1))% 47(8k+7)

W (2m+1)° 4 (8k+7)

ar ot (ome1) 2( 8k+T7)

Note that 2m+1 is odd. Therefore it is of the form (8s+1),
(85+3),(8s+5) or (8s+7).

If (2m+1) is of the form (8s+1) then

won = 45, (854+1)2(8k+T)

4, 0 (8k+7)(6Us? + 165 +1)

Mr.uh(8t+7) where r + h, t >0

4R (gta7)

By using the same method above , we can verify that the
other three forms (i.e (8s+3),(8s+5),(8s+7)) will also give
us wen = 4*H(8v4+7) for some v > 0.

But from Theorem (4.1), this is impossible because wen is

the sum of three squares. Hence n cannot be of the form

Mh(8k+7) where k,h are integers, and by theorem (4.13) n is
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the sum of three squares integers.
Conversely, if n is the sum of the squares of three
integers, it is also the sum of tthe squares of three

x2+y2+22

rational numbers for n

(x/ 1% + (y/1)2 + (z/1)2.

Corollary 4.16:

If p 1(mod4) and P is a prime then P is the sum of

two squares.

Proof:
P = 1(mod4). This implies b2 = -1(modP) has a solution
since -1 = (-1)((Hk+1)-1))/2
P
= (-1)%K = 1,

Therefore there exist integers b, ¢ such that

b = -1 + Ccp.

Now we consider the quadratic form

Q(x,y) = Px° + 2bxy + cy2. If we let x = 1 and y =0

then Q(1,0) = P > 0 and the discriminant of Q is

Ax,y)) = |P b
b ¢
= Pc - b2 = 1 since b2 = =1 + cP.

This implies Q(x,y)vQ'(x',y') = x'2 4 y'2 which implies P

is a sum of two squares.

This corollary together with Lemma 2.02 and Lemma 2.07 of
chapter 2 gives us a complete solution of the two squares

problem.
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Definition 4.6:

n is a triangular number if n = a(a+1) where a € Z
2

Corollary 4.17:

Every integer is the sum of three triangular
numbers.
Proof':

By theorem (4.13) , any integer of the form 8k+3 is
the sum of the squares of three integers,
ie 8k+3 = X2 + y2 + 22.
Since (8k+3) is odd, this implies x,y,z are all odd.
For assume two of the integers say x, y are even and one is
odd say z then,

(8k+3) = (2x")? + (2y')2 +(2z'+1)7

= hx'? 4 4y'2 + Uz'2 4 hz 4 1
= 4(x'2 + y'2 +z'2 4 z') + 1

implies  8k+2 BW(x12 4 yr2 4 212 4 oz

2+z')

implies 2(4k+1)= U4m where m = (x'2 + y'2 + z!
implies 4k+1 = 2m. Contradiction since U4k+1 is odd and 2m
is even.

Similarly , if two of the integers are odd and one is even
or all the integers are even , we vould have a

contradiction. Hence (8k+3) is the sum of the squares of

three odd integers say

(8k+3) = (2x'+1)2 + (2y' +1)2 4+ (2z'+1)%
(8k+3) = Ux'2 & Ux' 4+ U4y'2 4 hy' 4 Uz'2 4 hz' 4 3
8k = Mx'2 4+ hx' 4 Lly'z + Uyt + uz12 4 uzt
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2k 2 4 x4 y'2 + y' + zt2 4zt

XI

~
"

x'(x'+1) + y'(y'+1) + z'(z'+1)
2 2 2

Therefore any integer is the sum of three squares

triangular numbers.

Three Squares.

In this section we are concerned with problem of
determining the number of representations of an integer as
a sum of three squares. In chapters 2 and 3 we were able
to solve the corresponding problems for Two-square and
Four-square completely by using elementary methods. On the
other hand the known formulae that give the number of
representations of an integer as a sum of three squares
are difficult to prove. This perhaps, not too surprising
if we consider the fact that even the statements depend on
the rather deep and difficult concepts of c¢lass number, the
genus of a quadratic form, etc.

In this section we will restrict ourselves to only
the statement of some theorems concerning that problem. The
reader can find their proofs in [5],[12] and [&]. We
will also give as an application some examples.

Recall R3(n) is the number of primitive solutions of
x12 + x22 + x32 = n and r3(n) is the total number of all

solutions.
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Theorem 4.18:

If n is the sum of three squares, then

r.{(n) = r3(ukn) for any non-negative integer k.
Proof:

Assume n = x12 + x22 + x32,

then ¥n = (2Kx )2 +(2Kx,)2 + (2Kxy)2.

Conversely if Mkn=y12+ y22+ y32,then all the y;,4 are even.

Let y; = 2x; ,then WKn = (2x1)2 + (2x2)2 + (2x3)2

i
so that #=Tn = x72 + %52 + x3%. If k - 1 } 0 then all the

are even , say X; = 2z;, then yK=2n - 212 + 222 + 232.

Xy i i

i's
We continue this process ( a finite number of times) and we
have n = x12 + x22 + x32.

Thus we have shown there is a 1-1 corresponding between
the solutions of the two equations,

x12 + x22 + x32 = n

x12 + X22 + x32 = 4kn

Hence r3(n) = r3(ukn).

Before we go any further we shall find it more convenient
to use Gauss's notation concerning the "discriminant" of
the quadratic form. In all of our previous discussion we
have defined the discriminant of 2 quadratic form to be

the determinant of the matrix of the coefficients of the
form.This is well defined entity for forms in any number of
variables. However in the particular case of binary forms

the traditional meaning of the discriminat is little



different. In this section we will define the discriminate

of the quadratic form Q(x,y) = ax2 + 2bxy + cy2

by D = -4d, where dj =[a  b| = ac - b®, is the
b e
determinant.
Definition 4.7:
A quadratic form Q(x,y) = ax? + 2bxy + cy2 is said
to be primitive if g.c.d(a,b,c) = 1 and imprimitive

otherwise.

Theorem 4.19:

Let h(D) be the number of classes of primitive
binary quadratic forms corresponding to the discriminant
D= -1if n =z 3(mod8) , D = =4n if n = 1,2,5,0or 6(mod8)

then the number of primitive solutions R3(n) is given by

12 h(D) if n =z 1,2,5,0r 6(mod8) and n #1
Rs(n) = 24h(D) if n=z 3(mod8) and n* 3
6h(D) if n =1

gh(D) if n = 3

Few remarks concerning the number of classes of primitive
binary quadratic forms h(D) are in order:

1) h(D) = gk where g = 2'=1 is the number of genera, t is
the number of distinct prime factors of D, and k is the
number of classes in each genus.

2) If D = -4n and n =1, 2, 5 or 6(mod8) and if n contains t

odd prime factors, then D contains t + 1 primes, and hence
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g = 2(t+1)—1 = 2

contains t primes(all odd), then g

h = 1.

As a consequence
previous theorem

Theorem 4.20:

The number

of three squares

t.

of

as

of

If D = -n and n 3 (mod8) and if n

2t—1

. For n = 1,3,

these remarks we can restate the
follows:
primitive representation of n as a sum

is:

3.2%*%¢ if n = 1,2,3,5,0r 6(mod8),n $ 1 or 3

R3(n) = 6 if n =1
8 if n =3
For n = 1, we have 1 = 112 + O2 + O2
For n = 3, we have 3 = (i1)2 + (_+_1)2 + (11)2

Examples:

1) Let n = 18

h =2, g =2,

Ro(18) = 12(2

2(mod8)

k

) =

= 1(see Rose)

24 (by first theorem)

R3(18) = 3(21+2.1) = 24 (by second theorem)

2) Let n = 11

h=1’g=17
R3(11) = 24

- 3
R3(11) = 3.2

3(mod8)

k

(by

= 1 (see Rose)
first theorem)

24 (by second theorem)

For square free positive integers Eisenstein proved by

using Dirichlet's class number formulae the following:
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Theorem 4.21: (Eisenstein)

For square free gsitive integer n,

Ry(n) = 24 ﬁ QE) if n = 1(mod4)
r=1 n
3] ,
8 f (1) if n z 3(mod8)
r=1 n

where [x] is the greatest integer less than or equal to x

and(g)is the Jacobi symbol.
n

Example:

=)
w
~
-
-
~
t
] w

1
co
— 1
i.l—_.\
—
M
+
—_
_nl[\_)
~—
+
—
—
b
+
-
—
_1l_:
~—
+
— N
—
=%
S
| I

81 + 0+ 1 + 1 + 0]

24,

So far , we have considered only the primitive
representations R3(n). The total number of representations

of n as a sum of three squares is given by

r = Z R n
3 742 3(32)

[ n
For example if n = 18,
r;(18) = 2 R3(1_§_)
d2|18 d

24 + 12 = 36,

> R (1_12)= R, (11) = 24,
a2f11 3 3

r-o(11)
3 d
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Final remarks concerning the representation of an integer
as a sums of three squares.

1) In chapters 2 and 3, we characterized the positive
integers that can be represented as a sum of two and four
nonvanishing squares.The complete anwser of characterizing
which positive integers are sum of three nonvanishing
squares is still not known and depend on the difficult, and
still unsolved, problem of the determination of all
discriminants of binary , positive definite quadratic forms
with exactly one class in each genus. Some partial results
and conjectures concerning this problem can be found in

[5] and [11].

2) The problem concerning the uniqueness of essentially
distinct representation as a sum of three squares and also
the problem of determining all integers which are not sum
of three unequal squares are not completely solved. Some

partial results and conjectures are given in [5].
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Summary and Conclusion

In this study, we characterized the integers that can
be represented as a sum of two, three and four squares.

In chapter 1, we stated thr problem and give a
historical introduction of the problem of representation of
integers n as a sum of kth. power integers. In chapter 2,
we studied the necessary and sufficient conditions for an
integer n to be representable as the sum of two squares.
Then we determined the total number of not essentially
distinct representation of integer n. Also in this chapter
we counsidered the problem of representing an integer n as a
sum of two nonvanishing squares, the sum of two relatively
prime squares, and wWe discussed the uniqueness of

essentially distinct representation.

In chapter 3, we proved that every positive integer n
is the sum of four squares integers. The representation of
an integer n as a sum of four nonvanishing squares and four
unequal squares have also been discussed. We also
determined the total number of representation of an integer
n as a sum of four squares, this followed by the study of

the uniqueness of essentially distinct representations.

In chapter 4, we began with the proof of the main
result of representation of integer n as a sum of three
squares. Then we studied some properties of integral

Quadratic forms. We concluded this chapter by only stating
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some important theorems and results concerning the problem

of representation of an integer n as a sum of three squares.
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