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Measure Theory in the Rationals presents a simplified look at the theory's development. 

The idea, just like measure theory in the reals, is to develop complex measurement ideas 

using familiar, simple objects. These objects include rational numbers and lengths of 

intervals of rational numbers, We start with an agreement that we will work only with 

rational numbers as if irrationals do not exist From here we seek a function that matches 

any set of rationals, not just intervals, to a unique number that describes the set's "size". 

This "size" is called the set's quasi-measure. This sought-after function should have 

special properties and we set out to find a function which best obtains the ideal properties 

we have in mind. It's all a matter of give and take as the most ideal properties prove to be 

impossible to attain at once. What is achieved is summarized and then compared to its 

parallel in the real numbers. Not only does the reader see similarities in measure theory's 

development between the rationals and the reals, but sees the contrast between the rationals 

and reals themselves. 
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§1 Introduction 

For the Pythagorean school in the sixth century B.C., the idea of number in arithmetic was 

limited to integers and rationals. Algebraically, they were aware that there is no rational 

number x which solves the simple equation x2 =2. Geometrically, due to the Pythagorean 

theorem applied to the diagonals of a unit square, they had to acknowledge a length x 

whose square is two. But logically, the existence of such "unutterable" numbers, as the 

irrationals were called, caused so much anguish that members were sworn to secrecy, 

forbidden to mention them to outsiders of the school ([Wi], pg. 7). Considering then that 

they had no real number to measure a very real length, it may be said that the fIrst crisis in 

mathematics arose from a measurement problem.. As pointed out in the article, "How 

Good is Lebesgue Measure?" by Krysztof Ciesielski, "the problem of determining the 

distance between two points, the area of a region, and the volume of a solid are some of the 

oldest and most important problems in mathematics" ([Ci] , pg. 54). It is the basis of what 

we call measure theory. 

The idea is simple. Given a subset of RO (where R, as usual, stands for the set of real 

numbers) we want to assign some number that is the length (for n = 1), the area 

(for n =2), the volume (for n =3) or, more generally, the n-dimensional measure of that 

subset. The assigned number must describe the size of the set, and this function that 

associates with subsets of RO their measure must have some "good" properties of measure 

theory (described later). It is from the construction of this function that the technical 

definition comes. "Mathematical measure theory," states mathematician Joseph Kupla. "is 

a branch of modem mathematics which deals with systematic techniques for measuring 

complicated or irregular objects when the measurements of simple objects are known" 

([Ku], pg.47). 

Though the idea is simple, like all mathematical branches, complicated studies arise. This 

paper, however, is aimed at the graduate student who is familiar with real analysis and is 

founded in basic set theory, though has little or no background in measure theory. We will 

be working strictly in the fIrst dimension though much of what we fInd generalizes in 

higher dimensions. 

We are going to begin our view of measurement with the same oath of secrecy as the 

Pythagorean school and deal exclusively in the rationals. We'll argue as the devil's 

advocate and say that since we can fInd rational numbers arbitrarily close to any given real 
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number, we can dispense with the nonrationals and continue our study of measure. This 

study in the rationals achieves several things: one, it parallels yet simplifies H. L. 

Royden's development of the concept of measure theory in the reals (found in his book, 

Real Analysis); two, it offers evidence of the vast difference between the rationals and the 

reals; and three, it suggests a pattern for future study. 

We shall make use of the geometric representation of the rational numbers as points on a 

line. Just as with the reals, let Ixl =x if x ~ O. Ixl =-x if x < 0 and call Ix - yl the distance 

between points x and y. Again as usual, an origin is marked on the line to represent the 

number zero and a second distinct point is marked to represent the number one. Given 

these two markings, the representation is unique. In discussion of such a line it is natural 

to draw it across the page with the point one on the right of the origin. 

-----111-----1-----­
o 1 

We refer to this line as the rational line and denote it by Q, the same symbol used to denote 

the set of all rationals. Results aren't actually based on this representation since one can 

always speak in terms of the set Q and its elements x, but there are advantages to having 

both languages. The pictorial rational line is helpful for the intuition such as in arguments 

involving the ordering of the rationals and also suggests the following terms in a vivid 

way. Let a and b be rational numbers such that a::;; b. The points satisfying a::;; x::;; b 

form the closed interval [a,b], the points x satisfying a < x < b form the open interval 

(a,b), and the points x satisfying a::;; x < b, a < x ::;; b form the half-intervals [a,b), (a,b], 

respectively. These are bounded intervals on Q of length b - a. We need to augment the 

rational line with two 'points' at infinity, 00 and -00. It is convenient to write [a, 00), 

(a, 00), (- oo,a], (- oo,a) for sets defined for x ~ a, x > a, x::;; a, x < a, respectively, and 

(- 00,00) for the whole rational line Q; these are unbounded intervals. It is now possible to 

define the extended rationals as the set of all rationals along with ±oo, denoted by Q*. 

Similarly, the extended reals are denoted by R*. 
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§2 Measure Theory in the Rationals 

The tenn measure most likely brings to mind the idea of length. In tenns of Q, the length 

of an interval is simply the difference of the endpoints. Thus, given the domain of the set 

of intervals, I, on Q, a function which assigns to each interval its length is well defined and 

is an example of a set function: a function that assigns to each set in the domain an 

extended real number. We want to extend this notion of length and the set function 

[to:I~ R * beyond the domain of intervals and look instead for a set function I1lq that assigns 

to a set S of rational numbers a nonnegative extended real number called the quasi-measure 

of S. In the sense of Kupla's description of measure theory given previously, intervals are 

for us the simple objects whose measurements are known in advance used to measure more 

complicated sets. Thus a quasi-measure is defined as follows: 

Definition 2.1: A quasi-measure of Q is a function 1l1q: S ~ R *, where S ~ lP(Q), the 

set of all subsets of Q. 

Ideally we would like to see Il1q satisfy the following properties: 

i. I1lqS is defined for any set S of rational numbers. [ S = lP(Q)] 

ii.	 I1lqI =[t,(I) for any interval I. 

iii.	 I1lq is countably additive. That is, if {So} is a sequence of disjoint sets, 

then, 

~~ Sn) = ~ ~(Sn) 
iv.	 Il1q is translation invariant. That is, if S is a set for which I1lq is defined 

and S+y = {x + YI XES} is the set obtained by replacing each x of S 

by x + y, then Il1q(S+y) = Il1qS. 

In addition to these ideal properties, under our oath we would like to say that Q* is the 

range of I1lq, but R* covers all and is in fact necessary for us given our definition of a 

particular quasi-measure as we will see later. It will then be worth pointing out a certain 

generalization of this quasi-measure: the quasi-measure of any interval (a,b) as defined on 

R intersected with the rationals will be b - a whether a and b are rationals or not. For 
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now, unless specified otherwise, we will only consider inteIVals on Q where all have 

rational endpoints. 

Again, these are ideal properties; maybe they are reachable, maybe not. But before going 

on, it might be helpful to look at a concrete example of a quasi-measure. Call it the 

counting quasi-measure nq. 

Definition 2.2: The counting quasi-measure nq is the function nq: lP(Q)~ R* defined by 

if S is infinite. S _ too 
Ilq - the number of elements in S otherwise. 

Clearly, nq is defined on all sets. Also, for a sequence {So} of disjoint sets, 

Ilq(uSn) = 1: nq(SJ therefore n is countably additive. Furthermore, given any set S, the set 

S+y, as defined in property (iv) of our ideals, has the same number of elements; thus, nq is 

translation invariant. However, OqI * It(I) for every inteIVal I. For example, nq(O,I) = 00 

while !t(O,1) = 1. Thus, nq is a quasi-measure satisfying all but the property on inteIVal 

length. The search for one satisfying all 4 properties continues. 
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§3 Outer Quasi-measure 

Let's continue this search by creating a second quasi-measure, then checking its 

characteristics. For each set S on Q consider the finite collections {In} of open intelValS 

which cover S. The set S is then said to be contained in uln, denoted by S e uln. For 

each such collection consider the sum of the lengths of the intelVals. Define ~ of S to be 

the greatest lower bound (inf for infinum) of all such sums. That is, 

n 

~S = inf { I. ~(li) / S e	 U Id
 
i=l
 

Call ~ the outer quasi-measure. By definition, we see several properties of~, one of 

which the next proposition shows. 

Proposition 3.1: For sets A and B such that AeB, ~A ~ ~B. (This property is 

called monotonicity.) 

Proof: Let {1m } be a fmite cover for B. Since AeB, then {1m } is also a finite cover for A. 

Therefore, 

{ Urn} / Be U 1m } e { {I~}/ A e U I~ } and 

inf {I. !t{I~} / A e U I~ } ~ inf {I. !tUm} / Be U 1m }. 

Hence, ~A ~ IJ\iB follows. • 
For another property, notice that the outer quasi-measure of the empty set is zero, as is the 

outer quasi-measure of any set containing just one element (such a set is called a singleton). 

In fact, as the next proposition shows this property generalizes to any finite set. 

Proposition 3.2: If S is finite, IJ\iS = O. 

, E E
Proof: For E > 0 and S = {SI, S2, ... Sn} let In =(Si - il,Si + il), i = 1,2,... ,n. Clearly 

U {I~} is one particular cover of S. Thus, 
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~S ~ 1: [t(I~) =~~] =E 

Since E is arbitrary, ~S =O. • 
Let's continue to look at the properties of ~. For a moment let's return to the reals in this 

next proposition and generalize the idea of intervals containing only rational numbers. Let 

a and b be arbitrary real numbers with a ~ b and define the interval (a,b) to be the set of 

all rational numbers between a and b (similarly, for [a,b) and (a,b]). Even with this more 

general definition of interval, which allows for irrational endpoints, we have the following: 

Proposition 3.3: The ~-measureof an interval is its length. 

Proof: Case 1. Show ~[a,b] =b - a. 

Given E > 0, let a I be a rational number such that a - ~ < a I < a and b l a rational such 

that b < bl < b + ~. This is possible based on a corollary from the Axiom of Archimedes: 

between any two reals is a rational. Because the single interval (aI,bl) provides a covering 

for [a,b], then ~[a,b] ~ [to (aI, bl) ~ [to (a -~, b+~) =b - a + E for [a,b]. This is true 

for all E, so ~[a,b] ~ b - a. 

Let {Il,12, In} be a finite cover of [a,b]. Since a is in this cover, one of the Ii'S for 

i E (1,2, n) must contain a; call it (al,bl)' Ifbl < b then, since bl E (al,bl), there 

must be a second Ii, (az,b~, such that bl is an element and az ~ bl' This argument 

continues until ending with be (an,bn). We have then 

n n
L 1t(IJ =L It(ai,bi) =(bn-an)+(bn-l-an-d~· ·+(bl-al) 
i=l i=l 

=bn - (an-bn-l) - (an-l-bn-2) - ... - (a2-bl) - al 

> bn - al since an ~ bn-l 

> b - a since bn > b and a1 < a. 
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It follows that since I. [t,(ln) > b - a for any cover, 

~[a,b] =inf I. [t,(ln) ~ b - a 
[a,ble vI" 

and this finishes case 1. 

Case 2. Show ~I = [t,(I) for any bounded interval. 

In this case, I is of the fonn (a,b), [a,b), (a,b], or [a,b]. Whichever the fonn, given E > 0, 

there is a closed interval J with rational endpoints such that J c I and 1t(J) > [t,(1) - E. This 

again is based on the corollary from the Axiom of Archimedes. Thus, refer to a and b as 

the respective left and right hand endpoints of interval I. Let the left endpoint of J be 

between a and a + ~ likewise, let the right endpoint of J be between b and b - ~. 

Hence J c I and [t(J) > 1t(1) - E. With this, 

[t(I) - E < [t(J) =~J by case 1 and ~J ~ ~I ~ ~[a,b] =b - a =[t(1) 

by the monotonicity of ~. Then [t,(I) - E ~ ~I ~ [t,(I) for every E > 0 and case 2 is done. 

Case 3: Show ~I =1t(I) for any unbounded interval. 

Given any rational number /1, there is a closed interval J c I such that [t(J) =/1. Then 

~I ~ ~J =[t,(J) =/1, and this holds for every /1; thus, ~I =00 =[t(I). • 

Indeed our quasi-measure has property (ii) of our idealproperties. Even though the 

endpoints of an interval as defined in the general way are not strictly rationals, we still have 

that ~I =[t,(I) We will now return to intervals as defined before on Q with rational 

endpoints, but notice that this fmding shows that our definition of a quasi-measure Il1q: 

S ~R* rather than Il1q: S~Q* was not only convenient but necessary for~. As a 

consequence, we verify that the infmum function of ~ is, as nonnal, defmed over the 

reals. There are more properties to check. 

Proposition 3.4: The ~-measure is translation invariant. 
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Proof: Let {In} be any finite cover of a set S. For each n consider the translated interval 

In+y on Q. We have that (t,(In) =(t,(ln+Y) and if s E In then s + YE In+y. Thus the set 

n 

S+Y ={x + Y I XES} C U (In+Y). Then, 
i=1 

rr\iS = inf 1: (t,(ln) = inf 1: (t.(In+y) =inf 1: (t,(ln+Y) ~ inf 1: [t(I~) =rr\i(S+y) 
S c uln S c uln S+y c U(In+Y) S+y c U(In+Y) 

where {I~ }represents a finite cover of S+y. So we have 

rr\iS ~ rr\i(S+y) 

and by making the substitution T =S+Y, 

rr\i(S+y) =rr\i(T) ~ rr\iCT+[-y]) =rr\i(S). 

Therefore rr\i(S+y) =rr\iS . • 

So far we have constructed a quasi-measure which is defined for all sets of rationals, is 

translation invariant and has the property that the quasi-measure of an interval is the length 

of the interval. If rr\i is countably additive, our quasi-measure satisfies the four desired 

ideals. 

Consider the interval (0,1) on Q. Recall that countable sets, like the rationals, are those 

sets which can be put into one-to-one correspondence with the positive integers. 

Therefore, we can conveniently use {riL:t to enumerate those rationals in (0,1). If we 

assume countable additivity, we have 

~(0,1) =~[~ {Til] =~{rd + ~{r2} + ... =0 (*) 
1=1 



It must be that this quasi-measure, although possessing 3 of the 4 ideal properties, is not 

countably additive. In fact, the generality of the (*) line argument suggests that any quasi­

measure which satisfies (i), (ii), and (iv) must fail to be countably additive. 

Indeed this is the case. There are three possibilities for the quasi-measure of singletons 

As in ~ , one possibility is the value of zero; perhaps a different quasi-measure gives 

singletons a value of E > 0; possibly another quasi-measure assigns an infmite value to each 

singleton. In any case, translation invariance forces the quasi-measure to assign the same 

particular value to all singletons. That is, under translation invariance, 

Illq{xd =Illq[{Xd+(X2-XI)] =Illq{X2} for Xl, x2 E Q. 

Furthermore, a quasi-measure defined for all sets of rationals [property (i)] is certainly 

defined on (0,1), which may be enumerated as {riL:!. Thus, following the same argument 

of (*), the quasi-measure of (0,1) is either zero or infinite if countable additivity is 

assumed. 

0 if Il1q{rl} = O. 
Il1q(0,1) + Il1q[u {rd] =Il1q{rd + Il1q{rz} + ... = if Il1q{rd > O.00{ 

Any quasi-measure that satisfies (i) and (iv) must fail at either (ii) or (iii). 

The above comments can be generalized to any countably infmite set, so we have the 

following theorem: 

Theorem 3.5: If S ~ R and if m: lP(S)~R* is countably additive and translation 

invariant, and if T ~ S is countably infinite then mT =0 or mT =00. 

Thus, if we retain countable additivity on a translation invariant quasi-measure defined on 

all subsets of Q we must give up the property that the measure of an interval is its length. 

We may now say that it is impossible to obtain a quasi-measure which satisfies all four of 

our ideals at once. Even stronger, we won't fmd an Illq which satisfies the first three ideals 

at one time. 

Proposition 3.6: If Illq: lP(Q)~R* has the property that for any interval I, IllqI =~I), 

then Il1q is not countably additive. 
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Proof: We'll prove it by contradiction. Assume I11q satisfies the hypothesis and is 

countablyadditive. Since I11q(a,b) = lllq[a,b) = b - a, it must be that I11q{a} = O. Or, in 

general, I11q{x} =0 for all x E Q. Let {riL:1 enumerate [a,b]. Then, if we assume 

countable additivity, I11q[a,b] = I11q{rl} + I11q{r2} + ... = O. Hence I11q[a,b] ~ [t[a,b]. 

Therefore I11q is not countably additive. 

In conclusion, properties (ii) and (iii) are incompatible for any quasi-measure defined on 

lP(Q). 

An alternative approach is to weaken one of the ideal properties and examine which of the 

others are maintained or possibly regained. Our initial approach will be to weaken property 

(iii) of countable additivity to fmite additivity. 

Definition 3.7: A quasi-measure I11q is finitely additive if, given a finite sequence 

{S ..S2, ... ,SN} of disjoint sets then, 

~~ s.)=~ ~(Sn) 

Again the interval (0,1) on Q provides a counterexample for m;. Let S1 be the set of all 

rationals in (0,1) with even denominators and S2 the set with odd denominators (where all 

fractions are reduced). Together Sl and S2 comprise (0,1) and since, they are disjoint, 

fmite additivity would require that 

rn;;:(S 1 U S2) = rn;;:S 1 + m;S2' 

But every open interval in (0,1) contains an element of S.. as is with S2 [Sl and S2 are 

then said to be dense in (0,1)]. Thus, every finite cover of Sl is without gaps in (0,1). In 

other words, rn;;:SI = 1. Similarly, rn;;:S2 =1. The conclusion is 

rn;;:(0,1) = rn;;:(SI U S2) ~ m;SI + m;S2 =2. 
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Another approach is to weaken property (iii) to countable subadditivity. This property says 

that, given any sequence of sets {Sn}' then 

I11q(uSn) S 1: IllqSn 

Given the defmition of~, the quasi-measure of the set of integers, Z, must be infinite 

since at least one open interval in any fmite cover of Z must be unbounded. On the other 

hand, the infinite sum of the quasi-measure of singletons on Z is zero since each one is 

zero. With {Xi} i:\ =Z, we see that ~ is not countably subadditive because 

~[U {xill =~Z = while ~{xil= O.00 

Still another approach is to weaken property (iii) to finite subadditivity. 

Proposition 3.8: Given sets Sh ... , SN, then ~(.~ Sn) S f ~(Sn) 
n=1 n=1 

Proof: If~Sn = 00 for some n = 1,2, ... N it follows immediately. Suppose ~Sn < 00 

for each n and let £n > O. For each set Sn there is a finite collection of open intervals 

{In,i li such that 

Sn C U (In) and 1: !t(ln,i) < ~Sn + £n . 

Now the collection {In i}n i is also finite, being the union of a finite collection, and it, , 

covers uSn' Thus, by the definition of~, 

~(uSn) S L L !t(ln,J S L (~Sn + En) =L ~Sn + L En· 
n inn n 

Since £n is arbitrary for each n, we have 

~(U Sn) S L ~Sn. • 
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We thus have a fInitely subadditive, translation invariant quasi-measure defined on all sets 

that has the property that the measure of any intelVal is the intelVal's length. The 

compromises made on ideal property (iii) allowed the other 3 ideals to stand. As we will 

see next, however, these compromises on (iii) are not the only approach. 
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§4 Quasi-measurable Sets 

The elimination of sets like SI and S2 defined earlier could gain back some of what was 

compromised. Our second approach, will be to weaken the fIrst ideal (i), that the quasi­

measure be defined for all sets, and again check for different additivities. Note that S2 can 

also be defined as the set of all rationals in (0,1) that aren't in S 1; S2 is then called the 

complement of SI [in (0,1)], denoted by~. A good way, though not exactly intuitive, to 

eliminate the SI/S2 situation is to use an idea of Caratheodory's which guarantees that the 

sum of the parts is equal to the whole. We can reduce the family of sets for which ~ is 

defined to those sets meeting the following definition: 

Definition 4.1: The set S is said to be quasi-measurable if, given any set A, 

~A =~(A n S) + n\i(A n S). 

Since S2 =Sl n (0,1) we see that n\i(0,1) ~ n\i[(0,1) n SI)] + ~[(0,1) n Sd. Thus, 

SI is an example of a nonquasi-measurable set. Let's now re-examine n\i in view of a 

domain restricted to quasi-measurable sets on Q. 

There are several facts to notice given this definition. First, to prove a set S quasi­

measurable, it is sufficient to show that for any set A, n\iA ~ n\i(A n S) + n\i(A n S) 
since the opposite inequality is true by the finite subadditivity of ~. Second, the definition 

is symmetric; if S is quasi-measurable, S is too. Third, both Q and 0, the empty set, are 

quasi-measurable. Fourth, all sets of quasi-measure °are quasi-measurable, as we see 

from the following: 

Lemma 4.2: If ~S = 0, then S is quasi-measurable. 

Proof:	 Since (A n S) c S, then by proposition 1, ~(A n S) ~ ~S = 0. 

So ~ (A n S) = O. 

Also A::J An S, thus ~A ~ ~(A n S). 
Therefore n\iA ~ n\i(A n S) + n\i(A n S). • 

Furthermore, the union of two quasi-measurable sets is also quasi-measurable. 
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Lemma 4.3: If 8. and 82 are quasi-measurable, so is 8. U 82' 

Proof: Let A be any set. The quasi-measurability of 82 implies that 

~~n~=~~n~n~+~~n~n~
 

Also, since A n (8. u 8i) = (A n 8.) u (A n 82 n ~), we have 

~[A n (8. u 82)] S ~(A n 8.) + ~(A n 82 n 81)' 

Thus, 

~[A n (8. u 82)]+ ~(A n 81 n 82) 

S mq(A n 8.) + ~(A n 82 n 81)+ ~(A n 81 n 82) 

= ~(An 8.)+ ~(A n 81) = ~A 

since 8. is quasi-measurable. Because -(8. u 82) = 81 n 82' 8. u 82 is proven quasi-

measurable. .. 

As stated earlier we have that Sis in our domain whenever 8 is (closure under 

complements). By lemma 13, we have that A u B is in our domain whenever A and B 

are (closure under unions). A collection of subsets possessing these two properties is call 

an algebra of sets. Note that closure under both complements and unions implies closure 

under intersection since A n B = -(A u B). Consequently we have the following 

corollary: 

Corollary 4.4: The family Mq of quasi-measurable sets is an algebra of sets. 

It's encouraging that our compromise of the fIrst ideal led to an algebra; we at least have 

fInite unions, intersections and complements to work with. What's more is the gain made 

in additivity. 
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Lemma 4.5: Let A be any set and SI, S2, ... SN a finite sequence of disjoint quasi­

measurable sets. Then 

~(A " [~ S.) = ~ ~(A" Si) 

Proof: It's definitely true for N =1. Assume it's true for N - 1 of the Si sets. Since the 

sets are disjoint, 

An[~ Si]n SN=An SN and 
1=1 

An[~ Si]n SN=An[~ Si] 
1=1 1=1 

thus, by the quasi-measurability of SN, 

~(A " [~ S} = ~(A " SN) + ~(A " [~ S}
 

N-1
 

= ~(An SN)+ L ~(An SN) 
i=l 

N 

= L ~(An Si). • 
i=l 

Now, letting A in the above lemma be Q, we have:
 

Corollary 4.6: If {S 1, S2, ... SN} is a finite sequence of disjoint quasi-measurable sets,
 

J~ Si] =i ~Si'
~i=l 1=1 
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And indeed, a gain from finite subadditivity to ftnite additivity is made in the domain 

restriction of Mq. 

It is possible to compromise the ftrst ideal in a different way and retain completely the last 

three ideals. However, the domain of such a quasi-measure is not optimal in that it is not 

defined on singletons. For example, let Oi for i =1,2,3,... denote disjoint unions of 

intervals. Then the set function It applied to this domain of disjoint unions of intervals, 

achieves the following: 

ii. It<l!) =1t{Q) for any interval 0 

iii. J.~ Oi) =i It(Oi) 
'i=1 1=1 

iv. It(O+Y) =It{Q). 

But, if It({r}) is defined for every r E ~ then, letting {ri};; enumerate 0, It(O) =It(u{ri}) =a 
or 00 by Theorem 2.5. The contradiction of condition (li) shows that we can not extend It 
to be deftned on singletons if (li), (iii), and (iv) are to be satisfted. And in general we have: 

Proposition 4.7 A translation invariant, countably additive quasi-measure with the 

property that the quasi-measure of an interval is its length is not defmed on singletons. 

Put simply, a quasi-measure satisfying the last two of our ideal properties is not deftned on 

intervals and singletons simultaneously. The restricted domain ofMq for ~ is preferred. 

This restricted domain needs a closer examination. We've seen that it includes the empty 

set, singletons, and other sets of quasi-measure zero. The rationals, Q, are included and 

the next lemma helps show that the integers, Z, are quasi-measurable. 

Lemma 4.8: For some set A, if ~A < 00, there exists two integers M1 and M2 such that 

M 1 < x < M2 'V x E A.(That is, A c [MhM2]') 

Proof: Assume for every integer M1, there is an x E A such that x < M1. Then any cover 

of A must extend to -00, and since we are considering ftnite covers, at least one of the open 
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intelVals is unbounded. That means ~A =00, a contradiction. Then there is an M1 such 

that x ~ M1 'V x EA. Similarly, there is an M2 with x ~ M2 'V xEA.. 

This sets up our next proposition.
 

Proposition 4.9: The integers are quasi-measurable.
 

Proof: For some set A consider the statement
 

~A~~(A(1Z) +~(A(1 Z) (1) 

If ~A = 00, then (1) is definitely true. 

If~A < 00, let Ml and M2 be as in Lemma 18, then 

A (1 Z l:: {x I Ml ~ X ~ M2, x E Z} 

so ~(A (1 Z) ~ ~{xl M1 ~ x ~ M2; x E Z} =0 (2) 

and ~A ~ ~(A (1 Z) since A:::> (A (1 Z). 

thus again (1) is true. Hence the integers are quasi-measurable. • 
The intersection of the integers with any [mite intelVal on Q is a finite set and, therefore, of 

quasi-measure zero. This idea, the basis of Proposition 4.9 is generalized a bit more in 

Proposition 3.9. 

Proposition 4.10: If S is a set such that ~{[-M,M](1 S} =0 'V M, then S is quasi­

measurable. 

Proof: Again we are to verify line (1) of the proof of Proposition 4.9. If~(A) = 00, then 

we're done. Otherwise A C [-Ml,Ml] for some integer Ml and ~([-Ml,Ml] (1 S) = O. 

Then ~(A (1 S) =0 by monotonicity. For the same reason ~A ~ ~(A (1 S). Thus, 

line (1) is valid and S is quasi-measurable. • 
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So far we have found quasi-measurable sets whose quasi-measure is either zero or infinity. 

The quasi-measurability of intervals, if proven, would offer sets of any rational quasi­

measure. 

Proposition 4.11: The interval (a,oo) is quasi-measurable. 

Proof: Let A be any set. We need to show 

~A ~ ~{A (1 (a,oo)} + ~{A (1 (-oo,a]). 

For convenience let A I = A (1 (a,oo) and A2 = A (1 (-oo,a]. 

If~A =00 then we're done. Suppose ~A < 00 and E >O. There exists a finite collection 

of open intervals {In} such that 

n n

AcU Ii and L [t(li) ~ ~A +E 
i=li=l 

Let 1~=ln(1 (a,oo) and 1~=ln(1 (-oo,a]. 

These are intervals (or empty), not necessarily open, and 

[t(ln) =[t(l~) + [t(l~) =~ (I~) + ~ (I:) . 

Since Al c U I~, then ~AI ~ ~(UI~) ~ L~(I~). 

Likewise A2 cUI:, then ~A2 ~ ~(U I~) ~ L~(I:). 

• • ~. ' • "~rr •Thus, I11qAI + I11qA2 ~ ~(l1lqln + I11ql n) =,uJO(ln) < I11qA + E. 

Since E is arbitrary, ~AI + ~A2 ~ ~A, and the interval (a,oo) is shown quasi-

measurable. • 
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Because Mq is an algebra of sets, the quasi-measurability of (a,oo) implies that its 

complement, (-oo,a], is also quasi-measurable. Hence the finite union (-00, a] u (a,oo) = 
(-00,00) is as well. Since singletons are quasi-measurable, we have that {a} u (a,oo) = 

[a,oo) is quasi-measurable as is its complement, (-oo,a). Thus, for c < a, we see the quasi­

measurability of (c,oo) (') (-oo,a) =[c,a). For a < b, (a,oo) (') (-oo,b] =(a,b] and [{a} u 

(a,oo)] (') (-oo,b] = [a,b] and (a,oo) (') (-oo,b) =(a,b) are all quasi-measurable. Every 

interval is quasi-measurable. 

Let's examine the third property, translation invariance. By Proposition 3.4, it was shown 

that n\i(S+y) = n\iS for any set S. The next proposition assures us that S in Mq implies 

S+Y is also an element of Mq. First, let's establish a helpful lemma. 

Lemma 4.12: Given sets A and Band y e Q, 

1. (A (') B) + Y= (A+y) (') (B+y) 

2. A+y =A+y 

Proof: 1. Let x e (A+y) (') (B+y). Then x e A+y and x e (B+y). So x = x' + y for 

some x' e A and x =x" + y for some x" e B. It must be that x' =x", so x' e A (') B 

and x = x' + y e (A (') B)+y. 

Let x e (A (') B) + y, then x =x' + y where x' e A (') B. So x' e A and x' e B, then 

x' + yeA + y and x' + y e B+y. Hence, x =x' + y e (A+y) (') (B+y). 

2. Let x e A+y, then x = x' + y for some x' e A. SO, x' e A then x = x' + y e A+y. 

Hence x e A+y. 

Let x e A+y, then x e A+y and so there does not exist an x'e A such that x = x' + y. 

Hence x - yeA. In other words, x - yeA. Thus x =(x - y) + Y e A+y. • 

Now the proposition follows: 

Proposition 4.13: If S is a quasi-measurable set, then each translate S+Y of S is also 

quasi-measurable. 

Proof: By the quasi-measurability of S we know, given any set A, 
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~A=~(An S) + ~(An s) (3) 

Since ~ is translation invariant, we know 

~A=~(A+y), 

~(A n S) = ~[(A n S)+y] 

and ~(A n S) = ~[(A n S)+y]. 

Thus, applying this along with Lemma 3.11 to line (3), we have 

~(A+y) = ~[(A n S)+y] + ~[(A n S)+y]
 

=~[(A+y)n(S+y)] + ~[(A+y)n(S+y)]
 

= ~[(A+y)n(S+y)] + ~[(A+y)n(S+Y)].
 

Then by making the substitution A = A-y, where A is any set, we have 

~A = ~[A n (S+y)] + ~[A n (S+Y)] 

Hence S+y is another quasi-measurable set. • 
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§5 Summary on ~ 

Let's gather what we have seen so far in the rationals. We began with a search to find a 

quasi-measure Illq satisfying four most desirable properties: 

i. IllqS is defmed for all sets S 

ii. IllqI =[t(I) for any interval I 

iii. Illq is countably additive 

iv. Illq is translation invariant 

The search for one possessing all four ideals proved futile, as did the chance of finding one 

satisfying the first three. While it is possible to construct a quasi-measure with properties 

(ii) - (iv), for example length restricted to the domain of disjoint unions of intervals 

(denoted by n), the domain is less than desirable. We've seen that the counting measure nq 

(Definition 2) possesses (i), (iii) and (iv) but lacks (ii). That, for us, is too much to lose. 

Recall from the beginning of section 1 that we are trying to generalize from the idea of 

length of an interval. So naturally, we want the quasi-measure of an interval to be the 

length of the interval, even if this demands compromises on other properties. The quasi­

measure ~ satisfies (ii) as well as (i) and (iv) but is limited to [mite subadditivity. 

However, a restriction in property (i) to the algebra of quasi-measurable sets Mq advances 

[mite subadditivity to finite additivity. These finding are summarized in the following table 

where T indicates that the quasi-measure has that particular property. 

IMPOSSffiLE COUNTING MEASURE DEFINED ON AN INTERVAL 

LT LT LT i. not on singletons 

iL T iL T iL ii. T 

iii. T iii. T iii. T iii. T 

iv. T IV. iv. T iv. T 

~ ~~ 
i.T i. an algebra 

ii. T ii. T 

iii. finite subadd. iii. finite add. 

iv. T iv. T 
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It seems that ~ most favorably reaches toward our original ideals. As we have seen, all 

finite sets are of ~-measure zero. The ~-measure of the two infinite sets, Z and Q are 

both infmite. And since ~(I) =It<.n for any interval I, we have quasi-measurable sets of 

every quasi-measure between 0 and 00. Furthennore, there exist infinite sets of quasi­

measure zero 

Example: The rr\i-measure of the infinite sequence {k} n:l is zero. 

Proof: Let e > O. Choose N such that ~ < e. 

~[{M n:J =rr\i([{~ L:J u [{M nZ~+lD 

~ rr\i[{k} n:l] + ~[{k} n.~+J by fmite subadditivity 

=0 + ~[{k} n.~+J since {k} n:l is finite and 

< e since {k} n.~+l C(O~) and ~(O,~) =~< e. 

With e arbitrary, this means that ~[{M n:l] =O. • 
Thus, ~ offers a complete range of quasi-measure. Not only does~, which is defined 

on all sets, offer a complete range of quasi-measure, but the quasi-measurable sets offer a 

complete range. Perhaps we were lucky with our construction, perhaps selective. Let's re­

examine~. 

Recall the defmition of ~, the infinum of sums of interval lengths taken over all fmite 

covers. Since this definition came without introduction or explanation, there may be 

questions over its development rather than that of another defined function. One question 

may concern the use of open interval covers. Their use in the definition of a quasi-measure 

is a logical extension of the set function, length, whose domain is the set of all intervals. 

This, of course, was our initial intention -- to extend the notion of length on intervals to a 

set function defined on a more complicated domain. Another question may be over the use 

.i 
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of finite covers rather than infinite. That is, we could have used the following definition of 

a quasi-measure: 
n 

m;s = inf {1: ~(li) / s ~ U Id 
i=l (3) 

where we allow the cover to be a countably infinite collection of intervals. This however 

would be a rather dull choice considering all sets would be of quasi-measure zero. 

Lemma 5.1: If S is countable then m;S = O. 

Proof: Let S be a countable set, (Sit:'t an enumeration of its elements, and £ > O. Define a 

sequence of intervals as such: 

11 =(sl -f2, sl + f2) ;1t«1) =f 
12 = (~ - L s2 + £...) . 1t<I~ = £... 

23 23 ' 22 

I. - (s' --L s· + --L) . rr'I.) - ..E..
J - J- . l' J . 1 ' I.'\J - .'2J+ 2J+ 2J 

Now S c UIj and m;(Ulj) ~ ~ [t(Ij) = ~ = £ 

Since £ is arbitrary, ~(UIj) =O. And it follows that m;S ~ ~(UIj) =0, 

thus m~S =O. • 
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Since we are working in the rationals, all subsets are countable and thus for every set we 

have a quasi-measure of zero for~. This is a vast difference: the range of ~ is 0 to 00 

on countable sets while the range of m; is 0 on countable sets. It is a difference we will 

examine more closely in the reals. While in the rationals we have played a game of give 

and take of ideals. When all of what we wanted was impossible we made compromises, as 

little as possible to hold as much as possible. We discovered some impossibilities, some 

limitations, some favorable properties, and perhaps further study on a different quasi­

measure would bring improvements over what we have we found in~. This is basically 

what measure theory is. A look at Royden's game of give and take in the reals will shed 

more light on the heart of measure theory. 

eli 
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§6 Measure Theory In the Reals 

Royden's introduction of measure theory in Real Analysis parallels what we have done in 

the rationals. He states that the idea is to construct a set function like length but which goes 

beyond the domain of just intervals on R, and instead, "assigns to each set E in some 
collection M of sets of real numbers a nonnegative extended real number mE called the 

"measure of E" ([Ro], pg. 52]. Ideally m would have the following properties: 

i. M =lP(R) 

ii. mI = [t(I), for any interval I 

iii. m is countably additive 

iv. m is translation invariant. 

Let's follow Royden's game of give and take. First, we may note that the counting 

measure nq defined on Q continues to have properties (i), (iii), and (iv) when redefined on 

R. Call it n. Thus n is an example of a measure holding 3 of the 4 ideal properties. 

However, we wish (ii) to hold. Next consider for each set E of real numbers the countable 

collections {In} of open intervals which cover E [E c u In]' For each such collection 

consider the sum of the lengths of the intervals in the collection. We defme the outer 

measure m*E of E to be the following: 

m*E =inf L [to (In)
 
Eeu Ia
 

That is, the outer measure is the infinum of all considered sums. 

Now if we would pursue this definition like that of our outer quasi-measure, as Royden 

shows, we would fmd (1) m* is defmed on all sets, (2) the m* of an interval is the length 

of the interval, (3) m* is countably subadditive, and (4) m* is translation invariant. It's 

interesting to compare the differences between the proofs of outer quasi-measure properties 

in Q and those proofs of outer measure properties in R. Of course, this is a reflection of 

the difference between Q and R. Lemma 6 points out such a difference. It follows from 

this lemma that m*E = 0 whenever E is countable. Then m*Q = O. That means the entire 

number system of the Pythagorean school has a measure of zero. Now to them that would 

have been unutterable: with all rationals removed from the real number line, the line would 

remain unchanged from the point view of measure theory. That's quite a demonstration of 

the difference between the reals and the rationals. At any rate, m* again has 3 of the 4 ideal 

properties; it lacks countable additivity. 
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If our domain is of sets which satisfy the same definition of quasi-measurability given for 

the rationals (Def. 4), then m* becomes countably additive. In R we say that such sets are 

measurable. The family of measurable sets, besides bringing countable additivity to m*, is 

a a-algebra. That is, the family is closed under countable unions (verses finite unions for 

an algebra) and under complementation. Hence, the domain is favorable and properties 

(ii)-(iv) hold for m*. It nearly meets the original ideals. If all sets were measurable 
[if M =lP(R)] , then m* would meet them. The construction of m* is credited to Henri 

Lebesgue. In general, the construction of functions which reach toward the 4 ideals, as 

Ciesielski states in his article, has been in question since the beginning of the nineteenth 

century ([Ci], pg. 54). It was examined by several well known mathematicians, but 

Lebesgue's solution is now considered to be the best answer, though the question is not 

completely solved even today. 

As mentioned above, ifM =lP(R) then the search for our ideal function is complete. 

Unfortunately, this is not the case. In 1905, Giuseppe Vitali constructed a subset of R that 
is not in M. This proof of an existing nonmeasurable set, shown by Royden, is fairly easy 

to follow and from it, it implies that no measure can simultaneously satisfies all 4 ideals. 

Vitali's proof, we may note, is dependent on the Axiom of Chioice, which Royden states 

as follows: 

Axiom of Choice (AC): Let C be any collection of nonempty sets. Then there is a 

function F defined in C which assigns to each set A E C an element F(A) in A. 

Early in the twentieth century AC was not commonly accepted. Hence Lebesgue 

questioned Vitali's construction. Today AC is generally accepted; Vitali's proof stands 
finn. But even more, Robert Solovay showed in 1964 that we can not prove M '# peR) 

without AC. Briefly stated, if AC is not accepted, he proved that there is a "mathematical 
world" where all subsets of R are Lebesgue measurable, Le. M =lP(R). This world, 

though it denies power to AC, holds true with a related axiom. It has a disadvantage 

however in that Solovay's proof uses and must use an additional controversial axiom in set 

theory ([Ci], pg. 55). 

Let's go back to accepting the Axiom of Choice. Since M '# peR), an appropriate step is to 

see if we can improve, or extend, Lebesgue measure. Can we find a measure u such that 
for a a-algebra of sets, properties (ii), (iii), and (iv) hold and Me M*? Such functions 
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u: M*~[O,oo) are called extensions of Lebesgue measure. Any function defined on a a­

algebra and satisfying (ii)-(iv) is called an invariant measure. 

Members of the Polish Mathematical School proved several results concerning extensions. 

For one, there does exist an extension of Lebesgue measure and it is an invariant measure. 

For another, there is no final extension that outdoes all others as far as domain size (there is 

no maximal invariant measure). Thus if we restrict our view to invariant measures, then 

Lebesgue measure is not the richest. However, the same defect exists for any other 

invariant measure. Thus, by only comparing the sizes of domains of invariant measures 

there is no best answer. If we carefully restrict our view without the Axiom of Choice then 

all sets are Lebesgue measurable ([Ci], pg. 56). So, this fact along with the natural ease of 

the m* construction, makes Lebesgue's measure a great unique candidate. 

Of course, like in the rationals, there are alternatives besides just compromising property 

[(i)]. One idea is to drop translation invariance and construct a countably additive [(iii)] 

measure defined on all sets [(i)] where the measure of an interval is the interval's length 

[(ii)]. This construction is possible but besides losing translation invariance we must 

additionally assume a very strong axiom that mathematicians usually don't accept [the 

continuum hypothesis]. This is a high price to pay. So another idea is to weaken countable 

additivity to finite additivity. Does there exist a finitely additive translation invariant 

measure defmed on all sets? In 1923, Stefan Banach proved that on a plane (n = 2) and on 

a line (n = 1) such a measure exists. But due to Banach and Alfred Tarski in 1928, we 

know there is no such measure for n ~ 3 ([Ci] , pg. 57). Before continuing, let's 

summarize the give and take of measures in R with the following: 

IMPOSSffiLE NOT KNOWN COUNTING MEASURE 

i. T i. T i. T 
ii. T ii. T 11. 

111. T iii. T iii. T 

iv. T IV. IV. T 
m* m*on M 

i. T i. a-algebra 

ii. T ii. T 

iii. Subadditivity iii. T 

iv. T iv. T 

;t

--.J
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FORRIANPR2 
i. T
 

ii. T 

iii. fmite addivity 

iv. T 

Banach and Tarski's surprising finding that a finitely additive translation invariant measure 

does not exist for n ~ 3 leads to a more startling conclusion known as the Banach-Tarski 

Paradox. It is often stated in expressive fonn: "a pea may be taken apart into finitely many 

pieces that may be rearranged using rotations and translation to fonn a ball the size of the 

sun" ([Wa], pg. 3). This result is probably as discomforting to us now as the unutterable 

length of f1 was to Pythagorean school. It is also one of the strongest arguments against ! 
:~ the use of the Axiom of Choice since the construction depends on it Here is where much 
,~ 

I

j
t
i 

future study awaits and where this paper ends. We began with what appeared to the 

Pathagoreans as a paradox but instead was a need for more infonnation. We'll end with 
'~ 
,~ 

this new paradox that awaits more infonnation. Enlarging the number system from Q to R 
~ 
{ solved the fIrst paradox. Perhaps, an enlargement in our notion of volume will solve the J 

second. Together, it's a continued study in the heart of measure theory. 
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