
AN ABSTRACT OF THE THESIS OF

Jun WU for the Master of Science

in Mathematics presented on Dec. 7th. 1992.

Title: Finite State Automata and Regular Languages.

Abstract approved: ~r
I)

r 23
T~ :::::.

This thesis is intended for an audience familar with

basic formal language theory and finite state automata theory.

Chapter 1 is the introduction to regular languages and the

operations among them. Chapter 2 is the introduction to

deterministic finite state automata and their computation.

Chapter 3 is the introduction to nondeterministic finite state

automata and shows the equivalence of deterministic finite

state automata and nondeterministic finite state automata.

Chapter 4 proves the famous Kleen's Theorem and builds up the

relationship between regular languages and finite state

automata. Chapter 5 discusses the minimization of

deterministic finite state automata. Chapter 6 summarizes the

thesis.

FINITE STATE AUTOMATA AND REGULAR LANGUAGES

A thesis

Presented to

the Division of Mathematics & Computer Science

EMPORIA STATE UNIVERSITY

in Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Jun Wu
~

Dec. 1992

en
 ",.0 ii

'_ h,\J \

CONTENTS

CHAPTER 1: lANGUAGES. . . • • • • • • . . • . • • • . . • . . • • . • 1

CHAPTER 2: DETERMINISTIC FINITE STATE AUTOMATA 8

CHAPTER 3: NONDETERMINISTIC FINITE STATE AUTOMATA 15

CHAPTER 4: THE RELATIONSHIP BETWEEN

REGULAR LANGUAGES AND

FINITE STATE AUTOMATA ••..•..•......••..... 32

CHAPTER 5: MINIMI ZATION ••..........•..••.•.....•..... 39

CHAPTER 6: CONCLUSIONS 54

REFERENCES •••••..•..•....•••.•••••••••••••••••.••••.•• 57

http:�..�....���.�����������������.����
http:�..��.�.....�
http:�..�......��
http:������..�.���..�..��.�

(';-s; :~l'I8V.L

t-s; :3:'I8V.L

S:3:'I8V.L ..!IO .LSI'I

LIST OF FIGURES

FIGURE 2-1

FIGURE 2-2

FIGURE 2-3

FIGURE 3-1

·... 9

·........ 9

·.. 11

·........ 17

FIGURE 3-2(a) 20

FIGURE 3-2(b) 20

FIGURE 3-3(a) 21

FIGURE 3-3(b) 22

FIGURE 3-4 24

FIGURE 3-5 30

FIGURE 4-1 33

FIGURE 4-2 33

FIGURE 4-3 33

FIGURE 4-4 34

FIGURE 4-5 35

FIGURE 4-6 35

FIGURE 4-7 37

FIGURE 4-8 38

FIGURE 5-1 40

FIGURE 5-2 41

FIGURE 5-3 ·...... 49

FIGURE 5-4 50

Chapter 1 Languages

Section 1-1. Introduction

In this chapter we shall introduce the concept of

languages, especially the concept of regular languages. We

shall first introduce the necessary terminology and notation

about languages and then give the definition of languages and

the operations among them. Finally, we shall give the

inductive definition of regular languages and illustrate this

by an example.

section 1-2. Strings and Languages

Definition 1-1. An alphabet is a nonempty finite set of

symbols.

Thus an example is, naturally, the Roman alphabet

{ a, b, ... , z }. In fact, any object can be in an alphabet.

It is simply a finite set of any sort.

Definition 1-2. A string over an alphabet is a finite

sequence of symbols from the alphabet.

Instead of writing strings with parentheses and commas,

1

as we denote sequences, we simply juxtapose the symbols. Thus

"taxis" is a string over the alphabet { a, b, c, ... , z },

and $ab% is a string over { $, %, a, b, c }. As another

example, a binary numeral such as 1011 is a string over to,

I}. A string may have no sYmbols at all. In this case it is

called the empty string and is denoted by A. The set of all

strings, including the empty string, over an alphabet ~ is

denoted by 1:. •

The length of a string is its length as a sequence; thus

in the examples above the length of the string "taxis" is 5

and the length of the string "$ab%" is 4. We denote the length

of a string w by Iwl; thus 1101 = 2 and I A I = o.

Alterrati.vel.y, a st::r:iTg WE1:· am m cx::rB:id:!tl:r as a :f.i.n::t:im w: {1, 2, 3, ... }.... 1:

; the value of w(j), where j E Nand 1 ~ j ~ Iwl, is the

sYmbol in the jth position of w. For example if w = taxis,

then W(l) = t and w(5) = s.

Two strings over the same alphabet can be combined to

form a third by the operation of concatenation. The

concatenation of string x and string y, written simply as xy,

is the string x followed by the string y. Formally,

w = xy if and only if the following 3 conditions hold:

(1) Iwl =Ixl +Iyl
(2) w(j) = x(j) for j = 1, ... , lxi, and

(3) w(Ixl + j) = y (j) for j = 1, . . ., Iyl.
For example, the concatenation of 01 and 110 is 01110.

2

Obviously, WA = AW = w for any string w. And concatenation is

associative: (wx)y = w(xy) for any strings w, x, and y.

section 1-3 Regular Expressions and Regular Languages

Definition 1-3. Any set of strings over an alphabet ~,

that is, any subset of ~. will be called a language.

Thus ~., 0, and ~ are languages. Since a language is

simply a special kind of set, we can specify a finite language

by listing all its strings. For example, {aba, czr, d, f) is

a language over {a, b, ... , z). However, most languages of

interest are infinite. So another way of describing languages

is by using what are called regular expressions. This method

attempts to mimic the "verbal" description of a language. For

example, we may describe a language L by saying that L

consists of strings beginning with two l's, followed by three

O's, and followed by an arbitrary number of either 2's or 3's.

Thus 110002332 is in the language, while 11000211 is not. It

turns out that it is possible to develop a precise

mathematical formalism for such descriptions. We begin with

3

preliminary concepts and terminology.

Definition 1-4. Let L, L1 , and L2 be languages.

1. The language L1L2 is defined to be the collection of

all strings obtained by concatenating a string from L1 with a

string from L 2 • Formally, L 1L 2 = { X 1X 2 IXl ELl' X2 EL 2 }.

2. The language L 1 +L2 is the collection of all strings

that either belong to L 1 or to L 2 • Thus, L 1 +L2 is just the set

union	 of L 1 and L 2 : L 1 +L2 = {XIXEL1 or XEL2 } = L1 UL2 •

3. The language L· is the collection of strings obtained

from concatinating an arbitrary but finite number of strings

from L. Thus L· = {X1X 2 ••• x I Xi E L, i = 1, 2, •.. , n} wheren

n is a nonnegative integer. In this definition of L· we allow

n = 0, in which case X 1X 2 ' , ,x is to be interpreted as A, then

empty string. Thus for any language L, A E L·.

We illustrate those by some examples. Let L1 = {01, 1001}

and	 L2 = {II, 00, I}. Then

L1L2 = {0111, 0100, 011, 100111, 100100, 10011} and

L 1 +L2 = {01, 1001, 11, 00, I}.

It is	 obvious that in general, L 1L 2 *L2L 1 • A string in L; say

1100111: x 1 =11, x 2 =OO, x 3 =1, and x 4 =11 where each X i EL2 • Such a

4

representation (partition) is not unique. The same string

1100111 could be represented as x 1 =1, Xz=l, X 3 =OO, x 4 =1, X s =l,

and x 6 = 1.

We now come to the concept of a regular expression over

an alphabet ~. Regular expressions over an alphabet ~ and the

languages denoted by them are defined inductively as follows:

Definition 1-5. Let ~ be an alphabet. A regular

expression over E is defined inductively by

Base:

1. 0 is a regular expression over ~ and 0 denotes the

empty language, that is the language with no strings at all.

2. A is a regular expression over ~ and it denotes the

language { A }, i.e., the language containing the empty string

A.

3. For each a E~, a is a regular expression and it

denotes the language { a }, the language consisting of the

single string a.

Induction:

4. If rand s are regular expressions over ~ denoting

language L1 and Lz respectively, then rs, r + s, and r· are

regular expressions, where rs denotes the language L1Lz , r +

s denotes L 1 + L z , and r· deno tes L; •

Closure:

5

5. Any regular expression can be obtained by a finite

number of applications of rules 1 through 4.

A comment should be made about points 1 and 2 of the

above definition. The regular expression A is different from

the regular expression 0. A denotes the language consisting

of one empty string, while 0 denotes the language which

contains no strings at all, not even the empty string.

Now we illustrate the definition by giving an example.

Let ~ = {a, b, c}. Examples of regular expressions over ~ are

a, a + b, ab + e, and a* + be. The languages they represent

are as follows:

a represents the language { a }.

a + b represents the language { a } + { b } = { a, b }

consisting of two strings: a and b.

ab represents the language { a }{ b } = { ab }.

Thus ab + e represents the language { ab } + { C } =

{ ab, c }.

a* represents the language { A, a, aa, aaa, •.. }.

a* + be represents the language { bc, A, a, aa, ... }.

Regular expressions may be considerablly more complicated

than that. Consider, for instance, a regular expression

X = abe a + be)*(be + ea).

A verbal description of a string x in the language X is as

follows: x must begin with ab, followed by some finite number

6

(or none) of strings each one of which is either a or bc,

and ending with either bc or ca. Thus, for instance, ababcaaca

is in X, but baabcab is not.

The languages which can be represented by regular

expressions are called regular languages. For example, the

language X we mentioned above is a regular language because it

can be represented by the regular expression abe a + ab)*(be

+ ea). The languages we shall deal with later will all be

regular languages. So we shall simply call them languages

although they are only a special kind of language.

7

Chapter 2 Deterministic Finite state Automata

Section 2-1. Introduction

In this chapter we shall introduce the concept of a

deterministic finite state automaton. We shall first motivate

the concept through an example, and then, precisely define it.

We shall also introduce the necessary terminology and notation

concerning finite state automata.

A deterministic finite state automaton will be simply

denoted by DFSA.

section 2-2. Example

Let us consider a simplified version of a soft drink

vending machine. Let us assume that

(1) Each drink is 50 cents,

(2) The machine will accept only quarters,

(3) No changes will be returned.

That is, you will get a can of drink after inserting 2

quarters and pressing the drop button. But if you insert 3 or

more than 3 quarters what you get after pressing the button is

also one single drink. No changes will be returned to you. Now

we show how the machine works by a diagram (Fig. 2-1).

8

fsh tht _6l(~

one ,uartet' two or more
.__ . _ 1U4rCer.s tAre accepted

.(S accepted II 3114rl!1and drillk.-d1'r1ppl'lJ
is rea1Y

FIGURE 2-1

inje.rt
, !uarter

pus/, the butfJn (a drink wilt JJ e. dY'~ppeti)- -

no 'tAarfers

,ta the hutto/]
f'" -­

FIGURE 2-2

9

We can imagine that the machine could be in 3 different

are accepted

input (quarter-inserting or button-pressing) is given and what

the input button-pressing is given, or move to the state that

two or more quarters are accepted. The machine will stay in

the original state or move to another state depending on which

given. The arrow " __ " means "move to" or "transit to" under

the given

that no quarters are accepted, it will stay in that state if

one quarter is accepted if the input quarter-inserting is

states: no quarters are accepted, one quarter is accepted, and

state it is in. For example, if the machine is in the state

For convience, the states no quarters are accepted, one

quarter is accepted, and two or more quarters are accepted are

denoted by A, B, and C respectively. similarly, the inputs

quarter-inserting and button-pressing are denoted by a and b

respectively. So Fig. 2-1 can be redrawn as Fig. 2-2. In fact,

this is a DFSA and Fig. 2-2 is usually called a stste diagram.

Now we are ready for a rigorous definition.

Section 2-3. Definition

Definition 2-1. A DFSA is a quintuple M = (s, E, ~, s,

F)

where

S is a nonempty finite set of states,

E is a nonempty finite set (the input alphabet),

s E S is the initial state,

F ~ S is the set of finial states,

and ~, the transition function, is a function fromSxE

to S.

In the example of vending machine S = { A, B, C }, E =

{ a, b }. Also, s = A and F = { C }. The transition function~

is

~ (A, a) = B,

10

~ (A, b) = A,

~(B, a) = C,

~ (B, b) = B,

~ (C, a) = C,

~ (C, b) = A.

section 2-4. Movements, Languages, and DFSA

Now we have some basic idea about DFSA. The value ~ (q,

x) of the transition function of a DFSA describes the next

state. It depends only on the present state q and the present

input x, and is completely independent of past moves and

inputs. The DFSA stops after it reads all the symbols of the

input string. Let us consider the example of the vending

machine. On the definition, the machine M could be defined as

M = (S, ~, ~, s , F), where

S = { A, B, C },

~ = { a, b },

s = A,

F = C.

The transition function ~ is defined as in Fig. 2-2.

a

FIGURE 2-3

11

The state diagram of M can be depicted as in Fig. 2-3.

The arrow ~ pointing to A indicates that A is the initial

state. The final state C is enclosed in a double circle. We

usually indicate the initial state with an arrow, and indicate

the final states in double circles in a state diagram. If the

input string to the vending machine is baba, then the machine

would go through the following sequence of moves:

b a b a
A--~A--~B--~B--~C.

M M M M

x
Here the symbol qi--~qj means that the machine M changes

M

state from qi to qj upon reading the input x, i. e., a (qi l x)

= qj' where qi qj E Sand xEE. After the entire input stringl

has been read the machine will be in the state C, the final

state.

DFSA may be used to "recognize" or "accept" certain kinds

of strings and rej ect others, depending on the state the

machine is in after the string has been read. Given a DFSA M,

when a string 0=X1X 2 • "xn is presented to M, it executes the

sequence of moves beginning with the initial state and the

symbol Xl. After the symbol x has been read we observe then

state which the machine has stoped in. If the state is one of

the final states, we say that the machine accepts 0,

12

otherwise we say that M does not accept o. In the example

described above, the string 0 = baba is accepted by the

vending machine because it begins with the initial state A and

stops in the final state C, after the whole string is read.

But the string babb is not accepted by the machine.

To facilitate describing the movements of a machine, we

introduce the concept of configuration. A configuration of a

machine M (S, ~, ~, s, F) is a pair (q, 0), where q E S

and 0 = ak ak +1 • •• am is the unread portion of the input string

a1 a 2 • , • a k ak +1 , , • am' where a1 , a2 , , •• , am E ~. If a machine M is

in configuration (q, a k ak +1 , •• am) and ~ (q, a k) = ~, The next

configuration of M is (~, ak +1 ak +2 ••• am). We denote this by

(q, a k ak +1 , , ,am) (~, ak +1 ak +2 • • ,am)

M

and call it a move. When the entire string has been read, the

configuration of M is (q, A), that is, the input string is

empty.

If for some sequence of configurations we have the

sequence of moves:

(%' 0 1) (q2' O 2) (qp'Op)'
M M M

we denote this by

* (%' 0 1) (qp' op)
M

13

and call it a transition. For example, in the example of

vending machine we have

(A, baba) -- (A, aba) -- (B, ba) -- (B, a) -- (C, A) •
M M M M

* So we may denote this by (A, baba) (C, A) •
M

Now we are ready to relate languages to DFSA by giving a

rigorous definition as follows:

Let M = (s, E, ~, s, F) be a DFSA. The language L(M)

recognized or accepted by M is defined as

* L(M) = { oEE· I (5,0) (q, A) for some qE F }.
M

14

Chapter 3 Nondeterministic Finite state Automata

section 3-1. Introduction and Definition

As we indicated in the previous chapter, a DFSA is

deterministic in the sense that for a given input and state,

the next state of the machine is completely determined.

In this chapter we add a powerful, though at first not

intuitive, feature to DFSA. This feature is called

nondeterminism, and is essentially the ability to change

states in a way that is only partially determined by the

current state and input symbol. That is, we shall now permit

several possible "next states" for a given combination of

current state and input symbol. The automaton, as it reads an

input string, may choose at each step to go into anyone of

these legal next states. The choice is not determined by

anything in our model, and is therefore said to be

nondeterministic. On the other hand, the choice is not wholly

unlimited either; only those next states that are legal from

a given state with a given input symbol can be chosen.

More formally, a nondeterministic finite state automaton,

simply denoted by NFSA, is a machine M defined as follows:

Definition 3-1

A NFSA is a quintuple M = (S, ~, ~, s, F)

15

where

S is a nonempty finite set of states,

L is an alphabet,

sES is the initial state,

F~S is the set of final states,

and a, The transition relation, is a finite subset

of Sx~·xS.

The significance of a triple (q, u, p) being in a is

that M, when in state q, may consume a string u (UE~·) from

the input string and enter state p. In other words, (q, u, p) Ea

U
if and only if an arrow q--~p appears in the state diagram of

M. Each triple (q, U, p) E a is called a transition of M. In

keeping with the idea that M is a finite device, we have

insisted that a be a finite set of transitions, even thoughS x ~. x S

is an infinite set.

The formal definition of computations by NFSA are very

similar to those for DFSA. A configuration of M is, once

again, an element of Sx~·. The relation --~ between

configurations is defined as follows: (q, w) --~ (ql, WI)

if and only if there is a u E~· such that w = uw l and

16

(q, u, q') E b.. Note that __ need not be a function. For-e

some configurations (q, w), there may be several pairs

(q', WI) or none at all such that (q, W) __ (q', W'). As-e

* before, a transition (%' WI) (qp' Wp) represents a

sequence of transitions

(%' WI) --- (q2' W2) --- ••• --- (qp' Wp)

where ql' q2' ••• , qp E S and WI' W2 ' ••• , Wp E ~ •.

Definition 3-2

A string WE~· is accepted by M if and only if there is

* a state qEF such that (s, w) --- (q, .t). Finally L(M), the

language accepted by M, is the set of all strings accepted by

M.

Q

bba

.h

FIGURE 3-1

17

Example 3-1

Figure 3-1 shows one of several possible NFSA that accept

the set of all strings containing an occurrence of the pattern

bab or of the pattern baab. Formally, this machine is (S,

~, ~, s, F), where

S = { qo' %' q2' q3' q4 },

~ = { a, b },

s = qo,

F = { q4 },

and

~ =	 { (%' a , qo)' (qo' b, qo), (%' ba , %), (%' b, q2)

(%' a , %), (q2' A, q4)' (%' b, q4)' (q4' a , q4) ,

(q4' b, q4) }.

When M is given the string baababaab as input, several

different sequences of transitions may ensue. For example, M

may wind up in the nonfinal state qo in case the only

transitions used are (%' a, qo) and (qo' b, qo) :

(%' baababaab) - -.... (%' aababaab)

- -.... (qo' ababaab)

. .. -- (qo' A)

The same input string may drive M from state qo to the final

state q4' and indeed may do so in three different ways. One of

the three ways is the following:

18

(qo' baababaab) __ (%' aababaab)-0

__ -0 (%' babaab)

__ -0

(q4' abaab)

__ -0

(q4' baab)

__ -0 (q4' aab)

- _-0 (Q4' ab)

__ -0 (Q4' b)

- _-0 (Q4' A.) •

since a string is accepted by a NFSA if and only if

there is at least one sequence of transitions leading to a

final state, it follows that baababaab E L(M).

Observe that a DFSA is just a special type of a NFSA: In

a DFSA, it happens that the transition relation 11 l;;;; SxE·xS is

in fact a function from SxE to S. In other words, a NFSA =

(s, E, 11, s, F) is really a DFSA provided that the

following condition is satisfied: If (q, u, q'

E 11 then Iu I = 1, and for e a c h QES and

aEE, there is a unique Q'ES such that (Q, a, Q') E 11.

19

Section 3-2. The equivalence of DFSA and NFSA

We next show that although NFSA appear to be more general

than DFSA, they are nevertheless no more powerful in terms of

the languages they accept: A NFSA can always be converted into

a DFSA.

Definition 3-2

Finite automata M1 and M2 are said to be equivalent if

and only if L(M1) = L(M2) •

Thus two automata are considered to be equivalent if

they accept the same language, even though they may use

different methods to do so.

0'; '" 0'"-1<

FIGURE 3-2(a)

... ~
~

FIGURE 3-2(b)

20

Theorem 3-1

For each NFSA there is an equivalent DFSA.

Proof: Let M = (S, ~, ~, s, F) be a NFSA. In order to

transform M into an equivalent DFSA, various posssibilities

must be eliminated: transitions (q, u, q') E ~ such that

U=A or such that IU I > 1; transitions that are missing or

undefined; and mUltiple transitions that may be applicable to

the same configuration. It is relatively easy to eliminate

moves (q, u, q') with IU I > 1. In essence, we introduce new

states such as those in Fig. 3-2 (b) to replace an arrow in

the state diagram such as that shown in Fig. 3-2 (a).

Formally, if (q, ° 1 ° 2 " • Ole' q') E ~ 01' 02' ... , Ole E ~, k~2,

then add new (nonfinal) states P1' ••• , Ple-1 to S and new

transitions (q, 01' P 1), (P1 , 02' P2)' ... , (Ple-l ' Ole' q/) to ~.

Let M' = (S', ~, ~', s', F') be the NFSA that results from

M when this transformation is carried out for each move (q, u,

q') of M such that lui> 1. It should be obvious that M' and

M are equivalent, and that Iu I ~ 1 for each move (q, u, q')

of M'.

Q

b Q

"

FIGURE 3-3(a)

21

b

FIGURE 3-3(b)

Example 3-2 when this transformation is carried out on

the NFSA of Fig. 3-3 (a), the NFSA of Fig. 3-3 (b) results.

We shall now construct a DFSA M" = (S", ~, ~H, s",

F") equivalent to M' i this construction will suffice to

establish the theorem. The key idea is to view a NFSA as

occupying, at any moment, not a single state but a set of

states: namely, all the states that can be reached from the

initial state by means of the input consumed thus far. So if

M' had five states { qOI "'I q4 } and, after reading a certain

input string, it could be in state qOI q2' or % but not % or

q4' its state could be considered to be the set { qo 1 q21 % },

rather than an undetermined member of that set. And if the

next input symbol could drive M' from qo to % or q2' fromq2

to qo' and from % to q2' then the next state of Mil could be

considered to be the set { qo 1 % 1 q2 }.

22

The construction formalizes this idea. The set of states

of MI I will be 28 ', the power set of the set of states of MI.

The set of final states of MI I will consist of all those

subsets of SI that contain at least one final state of MI.

The definition of the transition function of MI I will be

slightly more complicated. The basic idea is that a move of

Mil on reading an input sYmbol aE~ imitates a transition of

MI on input symbol a, followed by some number of transitions

of MI on which no input is read. To formalize this idea we

need a special definition.

Definition 3-3

For any state qES', let E(q) be the set of all states

of MI that are reachable from state q without reading any

input. That is,

* E (q) = { pe 5' I (q, l) --M'.... (p, l) }.

If MI moves without consuming any of its input, its operation

does not depend on what that input is. So another way to

define E(q) would be to pick any string WE~· and write

*
E (q) = {pes'l (q, w) --.... (p, w) } .

M'

23

'A.

FIGURE 3-4

Example 3-3

In the automaton of Fig. 3-4, E(qo) = { qo' %' q2' % },

E(% = { %' q2' % }, E (q2) = { q2 }, E (%) = { % },

E (q4) = { %' q4 }.

Now define M" = (SIt, E, 6//, sIt, F"), where

SIt = 25 ' ,

s" = E(s'),

F" = { Qr;;.S' I Qnp' ... 0 },

and for each Q S' and each symbol a E E,r;;.

6//(Q, a) = U{E(p) I pES' and (q, a, p) E A' for some q E Q}.

For example, if M' is the automaton of Fig. 3-4, then

s" = E (qo) = { qo' % ' q2' % }.

24

since (%' a, qo) E III and (%' a, q4) Ell', it follows that

aII ({ % }, a) = E (qo) U E (q4) = { %' %' q2' %' q4 }.

similarly, (%' b, q2) Ell' and (q2' b, q4) Ell' so

a" ({ qo' % }, b) = E (%) U E (q4) = { q2' %' q4 }.

It remains to show that Mil is deterministic and

equivalent to MI. The demonstration that Mil is deterministic

is straightforward since a" is single valued and well defined

by the way it was constructed. (It is quite possible that

a" (Q, 0) = 0 for s 0 m e QES", 0 El}. I n dee d

a" (0, 0) o for each 0 El}. But 0 is just another member of

S".)

Lemma 3-1: for any string wEl}-, and any states q, pE

S I ,

* ---+(q, w) (p, A)
M'

if and only if

* (E(q), w) ---+ (P, A)

Mil

for some set P containing p.

From this the theorem will follow easily. To show that M'

and M I I are equivalent, consider any string

25

*
 wEll·, Then WEL(M') iff (s', w) --- (f', A) for some f'EF' (by
M'

* definition and iff (E(s'), w) --- (0, A) for some Q
~

containing fl (by the Lemma 3-1); in other words, iff

* (s", w) (0, A) for some OEF".

Mil

The last condition is the definition of w E L(Mil).

We prove the lemma by induction on Iwl.
Basis step:

For Iwi = 0, that is, for w = A, we must show that

* (q, A) (p, A)
M'

* iff (E(q), A) (P, A) for some set p containing p.
Mil

* Suppose (q, A) --- (p, A) then p E E(q). Because
M'

* (E(q), A) (E (q), A) and pEE (q),

Mil

26

* we have (E(q), A) (P, A) for some set P containing p.
Mil

Because Mil is deterministic and the transition

* (E(q), A) (P, A)

Mil

is unique and as we know

* (E(q), A) (E(q), A),

Mil

* we have P = E(q). If (E(q), A) (P, A) for some set P
Mil

containing p. Since the transition function tJlI of Mil is

* deterministic and unique and (E(q), A) (E (q), A) , we
Mil

have P = E(q). That is p € E(q). So by the definition of

* E (q), (q, A) (p, A). This completes the proof of the
M'

basis step.

Induction Hypothesis:

Suppose that the lemma is true for all strings w of

length k or less for some k ~ o.

27

Induction step:

We prove the lemma for any string w of length k+l. Let

w=va, where v E 1:. and a E 1: •

* First suppose that (q, w) (p, A) • Then there are
M'

states

I 1 and I 2 such that

* * (q, va) (Ill a) (I2 , A) (p, A) •
M' M' M'

That is, M' reaches state p from state q by some number

of transitions during which input v is read, followed by one

transition during which input a is read, followed by some

number of transitions during which no input is read. Since

* * (q, va) (I1 , a), then (q, v) (Ill A) • Also since Ivi
M' M'

= k, by the induction hypothesis

* (E(q), v) (R1 , A) for some set R1 containing I 1 •
Mil

since (Ill a) (I 2 , }.), (I l' a, I 2) E A', then by the
M'

construction of Mil we get E(I 2) !:: t,1I (RlI a). But since

28

*
(X2 ' A) ---+ (p, A), p E E{ x 2) we find pEa"{Rl , a).

M'

Therefore (R l , a) ---+ (P, A) for some P containing p and
Mil

* ---+(E{ q), va) ~,; (Rl , a) (P, A) •

Mil

* Now suppose that (E{ q), va) ~,; (Rl , a) - --+ (P A) for
II ' M

some P containing p and some Rl such tha t a" (Rl , a) = P. Now by

the definition of a", a"{Rl , a) is the union of all sets

E{x2), where for every X1ER1 , (Xl' a, X 2) E a'. Since pEP and

P = aII (Rl' a) there is a particular x 2 such that p E E{ x 2)

* ---+and, for some X1ER1 , (Xl' a, x 2) E a'. Then (X 2' A) M' (p, A)

by the definition of E{ x 2). Also by the induction

* ---+hypothesis, (q, v) (Xl' A), and therefore
M'

* * (q, va) (Xl' a) ---+---+
M' (x2 ' A) M' (p, A) •

M'

29

a

Q

6

a

{10. ~/ a~. ~$.~]

b

{ 1.. Y. , 82 . ~.} I a .J

(f ~ 2 , ~L ~ 4 }] : ~ f !3. ~4 Jj I b oJ

This completes the proof of the lemma and the theorem.

FIGURE 3-5

Example 3-4

This example continues Example 3-3. Let M' be the

automaton of Fig. 3-4. Since M' has 5 states, M" will have2 5

= 32 states. However, only a few of these states will be

relevant to the operation of M", namely, those states that can

be reached from state sIt by reading some input string. We

shall build this part of M" by starting from s" and

introducinJ a new state only when it is needed as the value Of()11 (q, 0)

for some state q already introduced and some a E~.

We have already defined E(q) for each state q of M'.

Since sIt = E(qo) = { qo' %' q2' % } and

30

(ql' a, qa)' (%' a, q4)' and (%' a, q4)

are all the moves (q, a, p) for some q E s". It follows that

()"(S", a) = E(qa} U E(q4 } = (qa' %' q2' %' q4).

Similary,

(qa' b, %) and (q2' b, q4)

are all the moves (q, b, P) for some q E S", so

() II (s ", b) = E (q2) U E (q4) = { q2' %' q4 }.

Repeating this calculation for the newly introduced states, we

have the following:

() II ({ qa' ql' q2' q3' q4 }, a } = { qa' ql' q2' %' q4 },

() II ({ qa' %' %' %' q4 }, b } = { %' %' q4 },

() II ({ %' %' q4 }, a } = E(q4} = { q3' q4 },

and () II ({ q2' %' q4 }, b } = E (q4) = { %' q4 }.

Finally, ()II({ %' q4 }, a } = E(q4 } = { %' q4 },

() II ({ %' q4 }, b } = 0,

and ()II(0, a) = ()II(0, b) = 0.

The relevant part of Mil is illustrated in Fig. 3-5. F",

the set of final states, contains each set of states of whichq4

is a member, since q4 is the sole member of F'. So in the

illustration, the states { qa' %' q2' %' q4 }, { q2' %' q4 },

and { %' q4 } of Mil are final.

31

Chapter 4 The Relationship Between Regular Languages

And Finite state Automata

section 4-1. Introduction

In this chapter we shall relate regular languages to the

finite state automata by introducing Kleene's famous theorem

which was proved in 1956.

Depending on Kleene' s theorem, we shall be able to

recognize regular languages by finite state automata. That is,

this theorem solves the membership problem of regular

languages.

Section 4-2. Kleene's Theorem

It is easy to see that certain simple languages, for

example a·b· and {a, b}*, can be specified either by regular

expressions or by NFSA. We now show that any language that can

be represented in one way can also be represented in the

other.

Theorem 4-1 Kleene's Theorem

A language is regular if and only if can be accepted by

a NFSA.

Proof. (Only If) We proceed through the five parts of

32

F = (A)

L = (a)

s = A

ti = ((A, a, B) }

M = (5, L, ti, s, F)

ti = «B, a, B), (A, b, A)}

M = (5, E, ti, s, F)

5 = (A, B)

33

FIGURE 4-2

FIGURE 4-1

a

() J(A '\\
5 = (A, B)

L = (a, b, c)

s = A F = (B)

ti = ((A, a, B) }

FIGURE 4-3

M = (5, L, ti, s, F)b a

0
5 = (A, B)

L = (a, b)

s = A F = (B)

The automaton illustrated in Fig. 4-2 accepts only the

The automaton illustrated in Fig. 4-1 accepts exactly the

empty language A.

empty set 0.

a NFSA that accepts exactly the language arising from the five

parts of this definition.

the induction definition of regular expressions and construct

The automaton illustrated in Fig. 4-3 accepts only the

language { a }.

M1 = (51' Ell 41' 81' F1)

8 1 = A

F1 = { A1' Ax }
••• I

L(M1) = E

=M2 (521 E21 4 21 8 21 F 2)

8 2 = B

= ... , B }F2 { B11 s

L(M2) = F

FIGURE 4-4

Assume now that the regular languages E and Fare L(M1)

and L (M2) respectively , where both M1 and M2 are NFSA. We

designate M1 and M2 schematically as showen in Fig. 4-4.

Fig. 4-5 represents a NFSA that accepts precisely the

34

language designated by E + F, i. e. L{ M1) U L (~) •

®·
 ·
 ·

@

@
·•·

(@)
FIGURE

Fig. 4-6 illustrates

language designated by EF,

•
•

•

FIGURE

M = (S, 1:, Ii, s, F)

S = 8 1 U 8'1. U { C }

1:	 = 1:1 U 1:2

F	 = F 1 U Fz

Ii = 1i1 U liz U

{(C, A, A), (C, A, B)}

s = C

L(M) = E + F

4-5

a NFSA that accepts exactly the

L (M1) L (Mz) •

M = (S, 1:, Ii, s, F)

S = 8 1 U 8'1.

1: = 1:1 U 1:'1.

Ii = 1i1 U liz U

{{All	 A, B), ••• , (Ax' A, B)}

s = A

F	 = {B1 , ... , Bs }

L(M) = EF

4-6

Finally, we must obtain a NFSA that accepts exactly the

35

language designated by E·. Fig. 4-7 illustrates such a NFSA.

This completes the inductive proof that every language

represented by a regular expression is accepted by some NFSA.

That is, every regular language is accepted by some NFSA.

Now let us prove the other part of the theorem.

Proof. (If) Let L = L(M), where M = (S, L , a, s, F)

is a NFSA.

We suppose that S = { % I q2 I ••• I qn } and s = %. We

then set

* Rij = { W I (qi' w) --.... (qj I A) } where wEE·,
M

and it is then clear that

L = U{R1j I q j E F l.

Hance, if we can prove that each Rij , with i, j = 1,

2, ... , n, is regular, we can conclude that L, being a finite

union of such sets, is itself regular.

To prove the regularity of the Rij's, we introduce the

auxiliary sets

Rij
k = { W w leads M from qi to qj without passing

through any state other than % I q2 I ••• , qk in between }

* = { wswt I (qil Ws) -- (qrl A) implies 1 ~ r ~ k if 1
M

36

* s; IW t I, and (qi' WsWt) -- (qj' A.) }
M

where ws ' w t E E· .

We note immediately that RJj = { wEE· I (qi' w) --..... (qj' A.) }.

Because I::.. is f inite, RJj is f inite and hence regular,

while RIj = R ij • Hence, if we can prove, by induction on k,

that each Ri~ is regular, we are done. The basis step is

secure, and it only remains to prove the validity of the

induction step.

M = (S, L, 1::.., s, F)

S = 51

L = L1

I::.. = 1::.. 1 U

{ (All A, A), ... , (A , A, A) }r

s = A

F = F1 U { A }

FIGURE 4-7

Suppose, then, that we know Rj to be regular for all i,

j. We must prove that each Rf;l is also regular. Now, consider

(referring to Fig. 4-8) some w in Rft. Either it never

37

reaches qK+l' or else it can be broken up into segments

W1 W2 • •• Wml m ~ 2, where w1 takes us from qi to qk+l via

{ ql' . . ., qk } , and wm takes us from qk+l to qj via

{ ql' .. ., qk } , while each remaining wr

(if m > 2) takes us from qk+l back to qk+l via

{ %' ... , qk }.

In short, we may write

k+l k (k). k U k
R ij = R i • k+l R k +1 • k+l R k +1 • j Rij •

Since, by hypothesis, each of A = Rlk +1 , B = Rk~l.k+l' C =

Rk~l.j , and 0 = Ri~ is regular, we deduce that E = B* is

regular. Hence F = AE is regular, and so G = FC is regular, so

that, finally,

R~;l = G U D
~J

is regular. The regularity of L now follows.

Because of the equivalence of NFSA and DFSA, the result

of the theorem follows as a corollary for DFSA.

stat~s

fl,n'1!~

FIGURE 4-8

38

Chapter 5 Minimization

section 5-1. Introduction

In this chapter, we shall first show what the

inaccessible states of a DFSA are by an example. Then, we

shall introduce an algorithm to eliminate the inaccessible

states. Moreover, we shall introduce a more complicated

algorithm to eliminate the structurally redundant states. To

illustrate the algorithm we shall introduce the concept of

congruence. Then in the last part of this chapter, we shall

prove that the minimized DFSA is not only equivalent to the

original but also the minimum.

section 5-2. Elimination of Inaccessible states

Definition 5-1 Let M be a DFSA. We say that a state q of

M is inaccessible if there is no input string x such that

* (qo' x) (q, ,\,).

Here qo is the initial state of M.

In other words, a state q of M is inaccessible if,

beginning with the initial state qo' the machine will never

39

reach the state q, no matter what the input may be. For

example, the state ql of the machine in Fig. 5-1 is

inaccessible.

The following result is quite clear.

O. I

o

FIGURE 5-1

Theorem 5-1 Let be a DFSA and let M be obtainedM1 z

from M1 by removing all of the inaccessible states. Then

L (M1) = L (Mz) •

Given a DFSA M, all of its inaccessible states can be

found by using the following algorithm.

Algorithm 5-1 Inaccessible states of a DFSA

Input: A DFSA M = { s, E, 5, ~, F }.

Output: Collection I of Inaccessible states.

First, the collection of accessible states is constructed

as follows. We form a sequence { An } of sets of states of M

according to these rules:

1. Ao = { qo }, where qo is the initial state of M.

40

2. Suppose A k is already constructed for some k ~ o.

Form the set Ak+l by adding to A k all the states of M which

are accessible from A k in a single move. That is,

A k + l = A k U {q: for some p in A k and some x in E, & (P, x) = q}.

3. If A k = A k + l , that is, if no new states are added to

A k , we stop and set A = A k • Otherwise, go back to step 2.

Since there are only finite nUmber, say n, of states in

M, this process will eventually terminate in at most n-1

iterations. The set I of inaccessible sets is now obtained

from S by removing from it all the elements of A, that is,

I = S \ A.
I

I

FIGURE 5-2

Example 5-1 Let M be the DFSA given by the state

diagram in Fig. 5-2. The construction proceeds as follows.

Ao = { qo } by definition.

Al = { qo } U { % I q2 } = { qo I % ' % }, since

& (qo I 0) = % and & (qo I 1) = q2·

41

A2 = A1 U { q4 } = { qo' ql' q2' q4 }, since tl (q2' 0) = q4·

A 3 = A 2 since no new states can be reached from A 2 •

Thus, A = A2 = {qo' %' q2' q4} and I = { % } is the

collection of inaccessible states. The state q3 may be removed

from the machine M.

section 5-3. Elimination of structurally Redundant states

Now we assume that every DFSA has no inaccessible states

and concentrate on eliminating "structurally redundant"

states. The procedure for doing it is based on the concept of

congruence.

Definition 5-2 Let M = { s, E, s, tl, F } be a DFSA and

let k be a nonnegative integer. We say two states q and q' are

k-congruent if the following is true:

Let x be any input string of length at most k, and

* * suppose that (q, x) --.... (p, i..), (ql, x) __ (pI, i..). Then

either both p and p' are final, or both p and p' are not

final.

If q and q' are k-congruent, we denote this by q =k q'.

42

If q and q' are k-congruent for all k = 0, 1, •.. , we say that

q and q' are congruent and denote it by q = q'.

The heuristic meaning of k-congruent is as follows.

Suppose t is a string to be tested for membership in L(M).

We start the machine M in configuration (qo, t). M moves along

until it reaches configuration (q, r), where r is a string of

length at most k. If q and q' are k-congruent we may change

the state from q to q' and let it run from there (on the

input r), without changing the ultimate result. If, starting

from configuration (q, r), the machine will end up in a final

state, the same would be true if the machine started in

configuration (q', r). Suppose now q and q' are congruent. We

then may combine q and q' into a single state. It will have no

effect on the set of strings accepted by M. thus, to minimize

a DFSA M, we must determine which states are congruent to each

other. It is clear from the definition that

1. If % =k q-z then q-z =k % (Symmetric).

2. For any state q we have q =k q (Reflexive).

3. If ql =k q-z and q-z =k % then % =k % (Transitive).

Thus the relation =k is an equivalence relation. It is

also clear that the statements 1, 2, and 3, above, remain true

if =k is replaced by =, so the congruence = is also an

equivalence relation among the states of M. The task of

minimization of the machine M consists essentially of dividing

all the states of M into equivalence classes; any two states

43

within one class will be equivalent to each other, and any two

states from different classes will not be equivalent. The

minimized machine will then have these equivalence classes as

its states. It also turns out that this process yields the

smallest possible machine equivalent to the original one, that

is, the one with the fewest states.

Before presenting an algorithm for doing this, we need

two lemmas.

Lemma 5-1 If two states of a DFSA Mare (k+1) -congruent,

they are also k-congruent.

The proof is immediate from the definition.

Lemma 5-2 Let M = { s, E, s, ~, F } be a DFSA. Let k be

a nonnegative integer and let GlI G2 , ••• , G be the partitionn

of the states of Minto k-congruent classes: Two states from

each class are k-congruent each other, and two states from

different classes are not k-congruent. Let G be one of these

classes and let %' Q2' ••• , qm be the states of G. For each

symbol x E E and each state q E G let Hk(q, x) be the classGj

containing ~ (q, x). Then the states q and q' from G are

(k+1)-congruent if and only if

Hk(q, x) = Hk(q', x) foreachxEE (*)

44

Proof. Suppose q and q' are two states belonging to the

same class G and suppose that the equation (*) is true. We

want to show that q and q' are (k+l)-congruent, that is, if a

* is a string of length at most k+l, (q, a) (p, A) and

* (q', a) (p', A), then either both p and p' are final

states, or both of them are not final states. If the stringa

is of length at most k, we are done, since by hypothesis q and

q' are in the same =k-eqivalence class G, hence, q =k q'.

Suppose then that a has length k+l, that is, a = x1', where XE E

and l' is a string of length exactly k. But then

* (q, a) = (q, xt) --- (%' 't) (p, A) and

* (q', a) (q', x1') - - - (qi, 1') (p', A)

and both % and qi belong to the same class G' (because

equation (*) holds, Hk (q, x) = Hk (q', x)). Thus % =k qi and

since 't has length k, we see that p and p' are either both

final or both not final.

Conversely, suppose that q and q' are two (k+l)-congruent

states, we want to prove that equation (*) is true. Indeed,

45

if Hk (q, x) .". Hk (q' I x) for some x E I:, and as we have known

% = ~ (q I x) I qi = a (ql I x) , then % E Hk (q, x) and

qi E Hk (ql, x) are not k-congruent. Therefore there is a string't

* of length at most k, and (ql' 't) (P,).), and

*(qi I 't) (pl,).), such that p E F and pI E S\F or pI E F

and p E S\F. That is, there is a string X't of length at most

* * k+l, and (q, x't) --- (p,).) I (ql, X't) --- (pI,).), such that

P EF and pIE S\F or pIE F and p E S\F. So this contradicts

the hypothesis that q and ql are (k+l)-congruent.

When k = 0 the division of the states into O-congruent is

particularly simple. Two states are O-congruent if and only if

they are either both final or both nonfinal. Thus, for k = 0,

there are two eqivalence classes: Gf, all the nonfinal states,

and G~, all the final states. The algorithm for dividing up

the states into equivalence classes will basically operate as

follows. First we divide the states of M into two groupsGf

and G~, the eqivalence classes for the relation =0. Next,

46

using Lemma 5-2, we divide each one of these into further

subgroup; the resulting partition will form the equivalence

classes for =1. The operation is repeated over and over again,

until no new subdivisions occur. The formal, precise

description of this algorithm is as follows.

Algorithm 5-2 Minimal DFSA

Input: A DFSA M = (s, E, s, ~, F).

Output: A DFSA K, with the fewest possible states, such

that L(K) = L(M).

1. Construction of states of K. The states of K will be

the equivalence classes of the states of M under the

eq.ri.va1.En:e l:e1at.im =. 'llHt is, 1::ha state; of K am 1::ha sets G1 , G2 , ..., Gr

of states of M such that %' q2 are members of the Gi , i=1, 2,

... , r, if and only if % =q2. The construction of these

classes is as follows.

(1) Let G~ be the set of all nonfinal states and G~ be

the set of all final states of M.

(2) Suppose the sets of M have been split into

equivalence classes

k k kG1 , G2 , ••• , Gm (**)

under the relation =k. For each state q and each x E E let

Hk (q, x) be the class Gf that contains ~ (q, x). Subdivide

47

each of the sets Gf of (**) further as follows. Two states

q aU et c£ Gf willlElag to tre SI'e daB if aU oily ifHJc (q, x) = HJc (ql, x)

for any x in E. Let the resulting partition of the states of

M be

Jc+1 GJc+l G Jc+1G1 , 2 , ••• , n (***).

(3) If the sets in (***) are identical with those in

(**), then stop. The desired partition into equivalence

classes has been obtained. If there are more classes in (***)

than in (**), then go back to step (2).

2. The alphabet of K is the same as the alphabet of M.

3. The initial state of K is the equivalence class

containing the initial state qo of M.

4. The transition function of K is defined as follows:

Let G1 , G2 , ••• , G be the states of K. These are actuallyr

equivalence classes for that k for which the equivalence

classes in (***) are identical with those of (**). From

the construction in part 1, it follows that if q and q' are in

the same Gi , then HJc (q, x) = HJc (ql, x) for all x in E. Thus

the transition function of K

a' (G, x) = HJc (q, x) for any q in G

is well defined, that is, independent of q.

5. A state G is a final state if and only if it consists

of final states of M.

48

We illustrate Algorithm 5-2 in the following example.

a ab

b

FIGURE 5-3

Example 5-2 Let Mbe the DFSA given by the diagram in

Fig. 5-3. The class G~ (all nonfinal states) is

{ qo' ql' q2' q3' q4' q6' Q7' Q9 }.

The class G~ (all final states) is { Qs' Qs }. The next

subdivision is obtained by considering the functionHo(Q, x)

= the class GJ containing ~ (Q, x) . Thus for k=l the classG~

splits into two subclasses

G{ = { Qo' Q2 } and Gi = { %' %' Q4' Q6' Q7' % }.

49

The class G~ does not split (qs and qe produce identical rows)

and it becomes Gi. Further spliting is summarized by the table

in Table 5-1. We have omitted GiS and qls, retaining only the

relevant sUbscripts. Thus, Gi is entered as 3 and qs as 5. The

portion of k=O in Table 5-1 is identical to Table 5-2. No new

subclasses are introduced during k=3, so the equivalence

classes of M, and thus the states of K, are

G1 = { qo }, G2 = { % }, G3 = { ql },

G4 = { q3' q4' q6' %' q9}' Gs = { qs' qe }.

The initial state of K is G1 and the final state of K is Gs •

The transition function a' is essentially given by the

function H3 in Table 5-1. For example,

r,' (G4 , a) = G4

since H3 (%' a) = H3 (q4' a) = H3 (q6' a) = H3 (q7' a) = H3 • In

exactly the same way r,' (GS1 b) = G4 since

H3 (qs' b) = H3 (qe' b) = G4 •

Finally, the state diagram of K is given in Fig. 5-4.

FIGURE 5-4

50

We conclude this section by showing that Algorithm 5-2

works correctly.

Theorem 5-2 Let M and K be DFSA from Algorithm 5-2.

Then L(K) = L(M). Moreover, if K1 is another DFSA such

that L(Kl) = L(M) then the number of the states of Kl is

at least as large as the number of the states of K.

Proof. Let q and q' be two states of M and let G and G'

be the states of K such that q E G and q' E G'. From the

construction of K it follows that for any x E E

if ~ (q, x) = q' then ~/(G, x) = G' (5-1).

Let a = X 1X 2 • • • x p be a string accepted by M. The sequence of

moves of M on input a is

Xl X 2 X3 Xp
qo --.... qi -- qi qi (5-2)

1 2 p

where qi is a final state of M. Let Gi , Gi , ... , Gi be the
p 1 2 P

states of K such that qi E Gi • It follows from 5-1 that the
j j

sequence of moves of K is

Xl X2 X3 Xp

Go -- Gi --.... Gi --....... -- Gi •

1 2 P

since qi E Gi , the state is a final state of K, soa E
p p

Gi p

L(K). Conversely, if a is not in L(M) then the state qi in
p

51

5-2 is not a final state of M, and again, since qi E , the
p

Gi p

state Gi is not a final state of K, so a f L(K). Thus L(K) =
p

L(M) .

To show that the machine K has the fewest possible

states, we argue as follows. Let K1 be any DFSA with fewer

states than K. We shall show that L(K1) ¢ L(M) = L(K).

since all the states of M are accessible, all the states

of K are also accessible. Thus, for every G of K there is a

* a (G) E E· such that (Go' a (G)) -- ... (G, A) , where Go is the
K

initial state of K. Let Po be the initial state of K1 , and

consider the movements of K1 on the input a (G) for all

possible G of K. For each such G the machine K1 will end up in

some configuration (p (G), A) for some state p (G) of K1 • Since K1

has fewer states than K, there are going to be two distinct

states of K, say G' and G", such that p(G')=p(G"). In other

words, there are two distinct strings a (G') and a (G") such

that

1. On the input of both a (G') and a (G") the machineK1

moves from Po to the same state p.

2. On the input of a(G') and a(G") the machine K moves

from Go to two distinct states G' and G".

52

Let q' and q" be the states of M, and q' E G', q" E G".

since G' '" G", the states q' and q" are not congruent. Thus

for some input ~, the machine M will move from q' to qr and

from q" to qs where one of the states qr and qs is final and

the other one is not. This implies that one of the strings

(J (G /) ~ and (J (Gil) ~ is in L(M) while the other one is not.

Consider however, what happens when these strings are fed into

the machine K1 • On the input (J (G /) ~ the machine K1 moves from

the configuration (Po' (J (G /) ~) to (p, ~). Similarly, on the

input (J (Gil) ~ the machine K1 moves from (Po' (J (Gil) ~) to the

same configuration (p, ~) and then proceeds further, until the

string ~ is eXhausted. Thus, K1 must either accept both

strings (J(G/)~ and (J(G")~ or reject both of them. Thus L(K1)

'" L(M), since the machine M accepts exactly one of the

strings.

53

Chapter 6 Conclusions

The results of the thesis establish that the regular

languages are closed under a variety of operations and that

regular languages can be specified either by regular

expressions or by NFSA or DFSA. These facts, used singly or in

combinations, provide a variety of techniques for showing

languages to be regular. Moreover, we have also shown that

although NFSA appear to be more general than DFSA, they are

nevertheless no more powerful in terms of the languages they

accept: A NFSA can always be converted into a DFSA. And the

minimized DFSA can be found by applying the algorithms given

in Chapter 5.

54

~
~

tr

I

2

J-Io

t­ C1

() I

II

(2

~ I

4­ I

l I

7 I

9 I

5 /

8 /

K == 0

Gi'
h

2
f

I

..2

I .

I z ,

I

I

I
. :3

I
.•.

H,

f (i

e.' .;c:

..,
~-­
~I

1 2

4 ,:)

b .2

7 2

9 ~.

5 2

8 ::l

J< = /

/;

:3

~

I

:<

~

2

2

.2

.::2

.<
. ..

61·

I

:<

.3

4­

J1:;.

i tl

() 2

~
,

I -3 ., 3

.f. ~

6 ~

7 j

j 3

S :3

g ~

K=~

b

4

4

I

~

.g ,
~

3

~

='

.H~
(;3

z :,l b{ .
:.­

I () ~ S­

:; :< A 5"..­

... I 4­ '"' ~ ~

-3 414­
4­ 4 4

4 ~ 4­ 4­;)

7 d 4
j 4­ 4.

5 4 4
.:J

J 4. 4
x-~ - ./

TahLe 5-1

fj '{j '!j CI 0
r(J

'~ .sg 0

0'19

6g o'JJ /lJ
Lg o'lj /f9

'{9 9g 0'(:1 Q

-.

1/9 7j '{J o" D

0'/3 '{9 f~ '13 • 0

rg Y1 0 'fJ ()

o'fJ //} '9
at art) 0''1

([1" J) 01/ (f/ '/)'If
j 19 o l

°I-!

REFERENCES

[1]	 Harry R. Lewis, Christos H. Papadimitriou, ELEMENTS OF
THE THEORY OF COMPUTATION. Prentice-Hall, Englewood
Cliffs, N.J., 1981.

[2]	 Leonard S. Bobrow, Michael A. Arbib, DISCRETE
MATHEMATICS. W. B. Saunders, Philadelphia, P.A., 1974.

[3]	 John E. Hopcroft, Jeffrey D. Ullman, FORMAL LANGUAGES
AND THEIR RELATION TO AUTOMATA. Addison-Wesley,
Reading, M.A., 1969.

[4]	 Peter J. Denning, Jack B. Dennis, Joseph E. Qualitz,
MACHINES, LANGUAGES, AND COMPUTATION. Prentice-Hall,
Englewood CliffS, N.J., 1978.

[5]	 Zamir Bavel, INTRODUCTION TO THE THEORY OF AUTOMATA.
Reston PUblishing, Reston, V.A., 1983.

[6]	 Vladimir Drobot, FORMAL LANGUAGES AND AUTOMATA THEORY.
Computer Science Press, Rockville, M.D., 1989.

[7]	 Paul F. Dierker, William L. Voxman, DISCRETE
MATHEMATICS. Harcourt Brace Jovanovich, San Diego, C.A.,
1986.

Member

I q q vIk
Date'"

Emporia State university Graduate School

All Graduate Students Who Submit a Thesis or Research
Problem/Project as Partial Fulfillment of The
Requirements for an Advanced Degree

Finite State Automata And Regular Languages
Titl~f Thesis/Research Project

Distribution: Director, William Allen White Library
Graduate School Office
Author

bL L~4,A~4..e....-/ _

signature of Author

FROM:

I, Jun Wu, hereby submit this thesis/report to Emporia State
university as partial fuillment of the requirements for an
advanced degree. I agree that the Library of the university
may make it available for use in accordance with its
regulations governing materials of this type. I further agree
that quoting, photocopying, or other reproduction of this
document is allowed for private study, scholarship (including
teaching) and research purposes of a nonprofit nature. No
copying which involves potential financial gain will be
allowed without written permission of the author.

TO:

