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This thesis is intended for an audience familar with basic linear algebra. 

The topic covered is the assignment problem. Chapter I is the introduction to the 

problem and the assumptions made. Chapter 2 discusses Kuhn's algorithm for solving 

the assignment problem. An example is done throughout the discussion. Chapter 3 

discusses the Hungarian method for solving the assignment problem. An example fol­

lows this method. Chapter 4 discusses finding the optimal solution and Chapter 5 

summarizes the two methods and gives a direction for further study. 
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CHAPTER I
 

Introduction
 

The assignment problem is a well studied problem in combinatorics and operations 

research. The problem has arisen in a variety of contexts and, hence, it has received many 

names such as the marriage problem, the maximal transversal problem, and the name 

which we will use in this paper, the assignment problem. 

Let us first describe it in the context of the marriage problem. Given n men, mI, 

m2, ms' ... , mn and k women, wI' w2 ' ws' ... , Wk we assign to each pair of a woman 

and man a I if they are willing to marry and a 0 if not. The marriage problem asks, "What 

is the maximum number of marriages possible." Actually the problem considered in this 

work is a bit more general. Suppose to each man, and each woman, a positive integer 

could be assigned (a happiness rating?) to their future as a married couple. The Question 

addressed here is how the marriages should be arranged to maximize the total level of 

happiness. [4, p.620] 

The problem in this work will consider the case n=k. Mathematically stated the 

assignment problem is as follows: Let R be an n x n matrix with positive integer entries. 

The optimal assignment problem consists of choosing n entries, so that no two chosen 

entries come from the same row or column and such that the sum of the entries is 

maximized. 

Consider the assignment problem in the following context. Given n individuals 

and n jobs, the entry in the ith row jth column, rij , of R denotes the rating value given to 

the i th individual doing the jth job. The optimal assignment problem seeks to determine 

the "best" possible pairing of individuals to jobs. 



MathematicallY, the assignment problem can be stated as follows: 

" Maximize: L Tij with (h, b jg, ... , jn) 
I,j= 1 I 

a permutation of (I, 2, 3, ... ,n) 

The General Assignment Problem makes several assumptions: 

A I. The number of individuals equals the number of jobs. 

A2. Each individual can do each job. 

A3. No two individuals are paired to the same job; and no individual is paired to more 
than one job. 

This paper will cover two methods of solving the General Assignment Problem. 

First, Kuhn's method will be discussed which deals with using the dual of the problem and 

second, the Hungarian method which uses a more direct approach to solving the problem. 
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CHAPTER 2
 

Kuhn's Algorithm
 

STATEMENT OF THE PROBLEM 

The first algorithm to be discussed, Kuhn's method, solves the problem by finding 

a solution to what Kuhn referred to as a dual problem. Kuhn's dual is stated in the 

following manner 

minimize E
II 

(uj + VI) 
i=1 

Subject to Uj + vj ~ rjj 

Note that if uj's and vJ,'s can be found such that uj + vir = Til,' where vI, is the job 

assigned to individual i and (h, j2' js' ... , jn) is a permutation of ( I, 2, 3, ... , n ), then 

the original maximizing problem has been solved. 

Since uj + v ~ rjj for all i, j J 

II II 

Then E (Uj + Vi ) ~ E TIJ, with (h, h, h, ..., jn ) a 
1=1 i=1 

permutation of (I, 2, 3, ... , n) 

II II 

Then min E (uj + Vi) ~ max ETu, rjj 
1=1 i=1 

Thus if there exists a combination of Uj' and vJ, such that uj + vI, = TIj, 

for i = 1, 2, 3, ... n, and (jl' j2' js' ... , jn) is a permutation of (I, 2, 3, ... , n) then the 

minimization problem and the original maximization problem have been solved. 

It is interesting to note that this method predates the simplex method.[l,p.206] The 

label of dual in Kuhn's method is consistent with the use of that term in the theory of 

3
 



linear programming in the following sense. The optimal assignment problem can be stated 

as follows: 

II II 

Maximize: L LXI'iJ 
;=1 }=1 

Subject to: L
II 

x4I =1 for each j, 
1= I 

L
II

x4I = 1 for each i, 
1=1 

x4I "'O,I, 

where xij = 1 means individual i is paired to job j, and xij = 0 

means that individual i is not paired to job j. It has been shown by [1, p. 500] that this is 

equivalent to 

II II 

Maximize: L L xI'41 
1=1 1=1 

II 

Subject to:LxiJ=1 for each j, 
;=1 

II 

Lx4I =1 for each i, 
1=1 

Xii~O. 

Then the linear programming dual of this problem is given by 

II 

Minimize: L"I+v;, 
i=1 
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Subject to: uj + Vj ~ r jj . 

Uj, vj unrestricted. 

Kuhn's algorithm considers the problem from the dual point of view. Kuhn has 

developed a computational method that will use this dual in an effective manner. 

Recall the assumptions Al - A3 made in Chapter 1. For Kuhn's method we also 

assume that the entries r jj in the R matrix are positive integers. Before discussing this 

method further some definitions are required. 

An assignment is a set of k pairings, k ~ n, of individuals to jobs. A transfer is a 

shifting of individuals paired to jobs so as to increase the number of pairings. An 

individual i is Qualified to do job j if Uj + vj = rij . Note each individual can do each job, 

but each individual is not qualified to do each job. 

The following notation will also be used. Let Q denote the qualified matrix, with 

entries qij = 1 if individual i is qualified for job j; and 0 otherwise. 

A L in (i,j) in Q implies that the ith individual has been assigned the jth job. 

Kuhn's method of solving the assignment problem has three major components, 

first, the initialization stage which initializes the variables and gives an initial assignment; 

second, Routine I, which is used to attempt transfers to improve a given assignment; and 

third, Routine II, used to decrease u's and v's to increase the number of individuals 

qualified for jobs. 

5
 



INITIALIZATION 

In the initialization stage Kuhn used the following method for determining the 

initial uj's and v/s. 

Let aj be the maximum of {rjj I I ~ j ~ n } and let a = L• aj' Let bj be the 
i=1 

• 
maximum of {rjj I I ~ i ~ n } and let b = L hi" 

j=1 

Since we want to minimize L• uj + 'Vj , we will use the minimum of a and b. 
i=1 

If a ~ b let uj = aj i = I, 2, 3, ... ,n and
 

'Vj = 0 j = I, 2, 3, ... , n.
 

If a > b let uj = 0 i = I, 2, 3, ... , nand
 

v.
1 

= b·J 
j = I, 2, 3, ... , n. 

Clearly either choice for the initial assignment of Uj'S and 'V/s is a feasible solution 

to the dual problem and preference is given to the one producing the smaller initial sum. 

Once the uj's and v/s have been initialized the Qualified matrix Q must be 

constructed. Recall the entries, Qjj' of Q are I if Uj + 'Vj = rij and 0 otherwise. Once Q 

has been constructed, an assignment must be made. Kuhn's method for creating an initial 

assignment is as follows: Proceed down column j for j = I, 2, 3, ... , n. The first I 

located in column j that does not have a 1* in its row becomes a 1*. Proceed to the next 

column until all columns have been checked. After this is completed, there should be no 

row or column with more than one 1* in it. The initial assignment is done; Q is ready to 

be sent to Routine I. An example of the initialization of the u's and v's along with the 

construction of Q follows. 

6 



9 9 8 9 7 
1 S 3 6 6 

Given the rating matrix R = 13 4 4 3 21 recall that ai is the maximum 
4 4 4 S 3 
3 3 2 8 7 

II II 

entry in row i, L ai = a, bj is the maximum entry in column j, and L bj = b. Since in our 
i=l i=1 

example, a = 32 and b = 42, the following initial assignment is made. Let u l = 9, u2 = 6, 

ua = 4, u4 = 5, u6 = 8; and vi = 0 for j = 1, 2, 3, ... n. Given these u's and v's, the 

following Q is produced. 

1 1 0 1 0 
o o 0 1 1 

Q= 10 1 1 o 0 
o o 0 1 0 
o o 0 1 0 

Next an initial assignment is needed. Recall Kuhn's method for an initial 

assignment is to proceed down each column. If a I is found without a 1* in its row, then 

the I becomes a 1*, Using this method the initialization of Q produces the following. 

1· 1 0 1 0 
o 0 0 1· 1 

Q = 10 1· 1 0 0 
00010 
00010 

Now Q has been constructed and an initial assignment has been made. Q is ready 

for Routine I. 
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ROUTINE I 

Routine I is used to determine if it is possible to make a transfer in order to 

increase the number of pairings in the given assignment. Given the Q matrix, Routine I 

has two possible outcomes: 

IA - A transfer has been made, thus improving the 
number of pairings in the assignment. The 
altered Q is sent to Routine I to determine if 
any other transfers are possible. 

IB - No transfers were made in the Q entered in 
Routine I. Q is now ready to be sent to 
Routine II. 

An equivalent definition for a transfer is needed before Routine I can be 

discussed. A transfer is a shifting of l's (people qualified for jobs) and l*'s (people 

assigned to jobs) to increase the number of l*'s. 

A definition for an essential row is also needed before discussing the algorithm for 

Routine I. A row that has a 1* that is needed for a transfer, but can not be used, is an 

essential row. This row is termed essential because the individual assigned to this job can 

not be transferred to a different job. 

Once entering Routine I, a check is made to determine if each column has a 1*. If 

a column is found that does not have a 1* in it, then a search for a 1 in that column is 

made, so a transfer can be attempted. If a 1 is not found a transfer can not be attempted 

and that column is passed over. 

Recall that no column or row can have more than one 1*. So if a 1 is found in the 

column, say in row k, before it can be shifted to a 1* a check of row k is done to 

determine if there is already a 1* in the kth row. If not, the shift of that 1 to a 1* is done. 

A transfer has been completed and outcome IA has occurred. Now that Q has been 

altered, Routine I must be performed again to check for any other transfers. 
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If a 1* is found in row k, then a search is done to determine if that 1* can be 

shifted to a 1 in its column. If so, a transfer is made and outcome IA has occurred again. 

If the 1* can not be shifted to a 1 in its column and no transfer is made, then the row in 

which the 1* is in becomes essential and the algorithm proceeds to the next column. 

Once Routine I has passed through all the columns of Q, with no transfers being 

made, Q is ready to be sent to Routine II. An example of Routine I follows. 

Recall the Q from the previous section, 

.
 
1* 1 0 1 0 
0 0 0 1· 1 

Q= 10 1· 1 0 0 
0 0 0 1 0 
0 0 0 1 0 

Given this Q a search is made for 1* in each column. Proceeding down each 

column l*'s are found in columns one and two. Column three does not have a 1* so a 

search for a 1 in column three is done in order to attempt a transfer. A 1 is found in qss' 

Since no row or column can have more than one 1*, a search is made of row three to 

determine if a 1* is already in that row. A 1* is found in qS2. Next a search of column 

two is made for a 1 to transfer the 1* to, from the qS2 position. A 1 is found in Q12' but 

once again, a search for a 1* in that row must be done and a 1* is found in qu. A search 

for a 1 in column one is now done to attempt to reassign the 1* in qu. A 1 is not found so 

no transfer can be made and row one is designated essential. Since the first 1 found in 

column two could not be assigned the 1*, a search of column two is made attempting to 

locate another 1. No other 1 is found, no transfer is made and row three is labeled 

essential. The 1 we were attempting to convert to a 1* was in q33' so column three is 

searched for a different 1 and none is found, hence we proceed to the next column. 

Proceeding down column four a 1* is found; go to next column. Proceeding down column 

9 



five, no 1* is found, the search for a I is done. A I is found in Q2S' Row two must then 

be searched for a 1* and a 1* is found in Q24' Then a I in column four is needed to 

attempt to transfer the 1* from Q24' A I is found in q14' but the same result that occurred 

when the first transfer was attempted will also occur here. That is, the 1* in qll can not 

be reassigned so no transfer is done. If row one had not already been labeled essential it 

would now be labeled as such. 

Column four is now searched for another I to attempt to reassign the 1* that is in 

q24' A I is found in q44' A search is made of row four for a 1*. Since one is not found, 

the I in q44 is assigned the 1*. The 1* in q24 becomes a I and the I in Q2s becomes a 1*. 

The transfer has now been completed. Once this has been done all previously essential 

rows become inessential and the altered Q is sent to Routine I again. The altered Q is as 

follows. 

r 
1* 1 0 1 0 
0 

Q = I0 
0 
l' 

0 
1 

1 
0 

I' 
0 

0 0 0 l' 0 
0 0 0 1 0 

When entering Routine I a transfer will again be attempted using the I in Qss' 

When the transfer still can not be completed, rows one and three will once again be 

designated as essential. All the other columns of Q have I*'s in them so no other transfers 

are attempted. Since no transfers were made Q is now ready for Routine II. 
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ROUTINE II 

Upon entering Routine II all possible transfers have been made. The following 

definitions will be useful in discussing Routine II. 

An essential column is a column with a 1* in an inessential row. Since all essential 

rows also have 1* in them the number of essential rows and columns equals the number of 

* . Q1 's In . 

In this method of solving the General Assignment Proble~, the only acceptable 

pairings of individuals to jobs are those of individuals Qualified to jobs, that is uj + vi = rjj' 

An optimal solution is an assignment of n pairings (n l*'s in Q). Note an assignment is a 

set of k pairings such that k ~ n, assumptions Al - A3 hold, and all rij are positive 

integers. Recall that in solving the dual we want to minimize E
II 

Uj + vi which we will 
i=1 

refer to as the budget. 

Routine II is used to determine whether an optimal solution has been found. If an 

optimal solution has not been found, a reduction in the budget will be made. 

Before the algorithm for Routine II can be discussed, the relationship between the 

number of essential rows, ER, inessential rows, IER, essential columns, EC, and inessential 

columns, IEC, must be understood. Note that EC + IEC = nand -ER + IER = n. As stated 

before ER + EC = the number of 1* in Q. Hence, ER + EC ~ n. The only time ER + EC 

= n is when ER = 0 and EC = n. The reason for this is that if ER + EC = n, then there are 

n l*'s in Q. This would mean that every column had a 1* in it, so it is impossible that a 

transfer is attempted, but not completed. Therefore ER would be zero. 

The next relationship that is needed is between ER and IEC. By the trichotomy 

principle there are three cases. 
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CASE I	 IEC < ER, adding EC to both sides of this 
equation leads to the following:
 

IEC + EC < ER + EC. Since IEC + EC = n
 
and ER + EC ~ n, we have this equation:
 
n < ER + EC ~n.
 

This is a contradiction.
 

CASE II	 IEC = ER, adding EC to both sides of this
 
equation then leads to IEC + EC = ER + EC.
 
Which leads to n = ER + EC ~ n. This implies
 
that ER + EC = n, therefore ER = 0 and EC = n.
 
This is the trivial case.
 

CASE III	 IEC> ER, which follows directly. 

The last relationship that needs to be understood is between EC and IER. Since 

IEC = n - EC and ER = n - IER, then the above yields the following relationship between 

EC and IER. Either EC = IER which implies ER = 0, EC = n or EC < IER. With these 

relationships clarified, the algorithm for Routine II is discussed. 

Upon entering Routine II the essential rows have been recorded, and next the 

essential columns must be recorded. Once this is done, if there are no inessential columns, 

then there are n essential columns and the assignment of I· is an optimal solution. Thus 

the General Assignment Problem and its dual have been solved. 

If there are inessential columns, then a reduction in the budget can be made. To 

determine the amount of the reduction, first compute d, the minimum of u j + Vi - r jj 

taken over all inessential i's and j's. Once d has been computed there are two mutually 

exclusive cases. 

CASE I	 Uj > 0 for all inessential rows. If this
 
occurs, compute m, the minimum of d and Uj taken
 
over all inessential i. Then the reduction in
 
the budget is done as follows:
 

Replace Uj by Uj - m for all inessential i.
 
Replace Vi by Vi + m for all essential j.
 

Recall that EC < IER so this will always produce a budget reduction. 
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CASE II	 u j = 0 for some inessential row. If this
 
occurs, let m = d. Then the reduction in
 
the budget is done as follows:
 

Replace uj by uj + m for all essential rows i. 
Replace vj by vj - m for all inessential columns j. 

Note that in Case II d will always be less than or equal to the minimum of all Vj 

taken over all inessential j. 

Proof: Let v be the minimum of all vi taken over all inessential j. Let d be the 

minimum Uj + vi - rjj taken over all inessential i and j. 

In Case II recall that Uj = 0 for some inessential i, therefore Uj + vi - rjj will be the 

smallest when Uj = 0 and vi = v. So 0 + v - rjj = d ~ v for all inessential i, j. 

Recall that IEC > ER, so this too will always produce a budget reduction.
 

Two questions must be addressed at this point. Does the condition uj + vi ~ rjj
 

still hold after a budget reduction? Has the number of l's in Q increased, thus providing 

more qualified individuals? 

Consider the first question. When entering Routine II there are two possible cases: 

Uj > 0 for all inessential rows i or Uj = 0 for some inessential row i. Under either case 

there are two alternatives, m = d, or m = u. 

It must be shown that with any combination of these that Uj + vj ~ rjj still holds. 

Note that in both cases, m = minimum (d, u) where d = minimum of Uj + vi - rij taken 

over all inessential i, j and U = minimum Uj taken over all inessential i. 

Let vi * and Uj* denote the values of vi and Uj after a budget reduction. 

CASE 1 Uj > 0 for all inessential rows i. 

Budget reduction: Uj* = Uj - m for all inessential rows i, 

Uj* = Uj for all essential rows i, 
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* = v + m for all essential columns j,Vi J
 

vi * = vJ for all inessential colulmns j.
 

A. Let m = d. Then the budget reduction causes the following changes. 

1.	 If uj is in an essential row, and vi is in an essential column, then 

uj* + vJ* = Uj + vJ + m ~ rij' 

11.	 If uj is in an essential row, and vJ is in an inessential column, then 

Uj* + vi * = Uj + vi ~ rjj' 

iii.	 If uj is in an inessential row, and vJ is in an essential column, then 

Uj* + vJ* = Uj - m + vJ + m = Uj + vi ~ rij' 

iv.	 If uj is in an inessential row, and vJ is in an inessential column, then 

Uj* + vi * = Uj - m + vJ ~ rij since m = d is the minimum of 

Uj + vi - r jj taken over all inessential i,j. 

B. Let m = u. Then the budget reduction causes the following changes. 

1.	 If Uj is in an essential row, and vJ is in an essential column, then 

Uj* + vi * = uj + vJ + m ~ r jj . 

11. If Uj is in an essential row, and vi is in an inessential column, then 

U j * + vi *	 = uj + vJ ~ rij' 

111.	 If Uj is in an inessential row, and vJ is in an essential column, then 

Uj* + vi * = uj + m + vi - m = uj + vJ ~ rij' 

IV.	 If Uj is in an inessential row, and vJ is in an inessential column, then 

Uj* + vi * = uj - m + vi ~ r jj since m = U ~ d = minimum of 
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uj + VJ - r jj over all inessential i,j. 

Therefore if u j > 0 for all inessential i, then after the budget reduction is made, 

the condition that Uj + vJ ~ rjj still holds. 

CASE 2 uj = 0 for some inessential row i. 

Budget reduction: uj* = uj + m for all essential rows i, 

uj* = uj for all inessential rows i, 

vJ• = vi - m for all inessential columns j, 

vi. = vJ for all essential columns j. 

Recall that in Case II, uj = 0 for some inessential row i, that m = d. 

Then the budget reduction causes the following changes 

i. If uj is in an essential row, and vi is in an essential column, then 

Uj* + vi. = uj + m + vJ ~ rij' 

11. If uj is in an essential row, and vi is in an inessential column, then 

Uj* + vi. = Uj + m + vJ - m = Uj + vi ~rjj' 

111. If uj is in an inessential row, and vJ is in an essential column, then 

Uj* + vi. = Uj + vi ~ rjj' 

IV. If uj is in an inessential row, and vJ is in an inessential column, then 

Uj* + vi. = Uj + vi - m ~ rij since m = d is minimum of 

Uj + vi - r jj taken over inessential i,j. 

Next, consider the second question: Will the number of l's in Q increase after a 

budget reduction? 

Since d is the minimum of Uj + vi -rjj' if m = d then at least one new I will 
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definitely be introduced. If m = u then a new 1 may not be introduced after the first 

budget reduction. But when Routine II is applied again, then u j = 0 for some inessential i, 

so Case II will occur, m will equal d, thus a new 1 will be introduced. So even if we go 

through Routine II and a new 1 is not introduced, then when we go through it the next 

time a new 1 will definitely be introduced. 

Once Q has been altered, the new Q is sent to Routine I again. An example of 

Routine II follows. 

Recall the Q used in the previous section. Once Q has been sent to Routine I 

twice, and it has been determined that no further transfers are possible, the algorithm 

proceeds to Routine II. At this point recall Q has the following form: 

E E 
I- I 0 1 OlE 
0 0 0 1 1­

Q = 1 0 I- I 0 OlE 
0 0 0 1- 0 
0 0 0 1 0 

Note that rows one and three are essential. Then by definition, columns four and 

five are essential. A search needs to be done to determine if the given assignment is an 

optimal solution. Since there are inessential columns, the assignment is not an optimal 

solution, and a budget reduction must be done. 

In order to do a budget reduction, R must be used, so we return to the ratings 

matrix R. 

Recall the matrix R used in the first section. 

9 9 897 
1 S 3 6 6 

R=13 4 4 3 2 
4 4 4 S 3 
33287
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Compute d, the minimum of uj + vJ - r jj taken over inessential i, j. The rows and 

columns that are essential in Q are also considered essential in R. 

Recall u 1 = 9, u2 = 6, u3 = 4, u4 = 5, u5 = 8, and all the v/s = O. Since rows 2, 4, 

and 5 are inessential and columns 1, 2, and 3 are inessential we have: 

u2 + VI - = 6 + 0 - 1 = 5,r21 

u 2 + v2 - r 22 = 6 + 0 - 5 = 1, 

- =6 + 0 - 3 = 3,u2 + v3 r23 

u4 + VI - = 5 + 0 - 4 = 1,r41 

u 4 + v2 - r 42 = 5 + 0 - 4 = 1, 

u 4 + v3 - r 43 = 5 + 0 - 4 = 1, 

u5 + VI - = 8 + 0 - 3 = 5,r 51 

u 5 + v2 - = 8 + 0 - 3 = 5,r52 

u 5 + v3 - r53 = 8 + 0 - 2 = 6. 

Given these values, d = 1. Once d has been determined, it can be seen that we 

have CASE I, Uj > 0 for all inessential rows i. Thus, m, the minimum of d and Uj 

(inessential i) is determined. In our case, m = d = 1. Given m = 1 and Case I, the 

reduction in the budget is as follows. 

u1 = 9, u2 = 6 - 1 = 5, u3 = 4, u4 = 5 - 1 = 4, u5 = 8 - 1 = 7 and 

VI = 0, v2 = 0, v3 = 0, v4 = 0 + 1 = 1, Vs = 0 + 1 = 1 

With the new values for u's and v's, Q is now altered in the following way: 

l' 1 0 0 0 
0 1 0 1 l' 

Q= 1 0 I" 1 0 0 
1 1 1 I" 0 
0 0 0 1 0 . 
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Note that when the altered Q is sent to Routine I again, column three will be searched for 

a 1*, but a 1* will not be found. This will cause a transfer to be attempted with the 1* in 

Q32' the 1 in Q12' the 1* in Qll' the 1 in Q41' the 1* in Q44' the 1 in Q24' and the 1* in Q26. 

This will not be possible. Thus row one will be labeled essential. Next colulmn four will 

be searched for a different 1 with which to attempt a transfer. A transfer will then be 

attempted with the 1* in Q32' the 1 in Q12' the 1* in Qll' the 1 in Q41' the 1* in Q44' and the 

1 in Q64. This time the transfer is possible and the altered Q is as follows. 

1 I" 0 0 0 
0 1 0 1 I" 

Q= 10 1 I" 0 0 
I" 1 1 1 0 
0 0 0 I" 0 

Once Q has been altered in this way, and sent back to Routine II it will be 

determined that an optimal assignment can be found. This will be due to having a 1* in 

each column, so an optimal assignment of 1*'s has been found. 
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CHAPTER 3
 

Hungarian Method
 

STATEMENT OF THE PROBLEM
 

The second method of solving the General Assignment Problem is the Hungarian 

Method. Recall assumptions Al - A3 made in Chapter I. For the Hungarian Method, we 

also assume that the problem is a minimization problem, but given a maximization problem 

it can easily be converted to a minimization problem by multiplying all entries in the 

rating matrix R by -1. Before continuing with the discussion of the Hungarian Method, 

some notation and definitions are needed. 

Since the Hungarian method is one of minimization, the matrix which is used to 

determine an optimal assignment is referred to as ~, the cost matrix. The entry Cij in C 

represents the cost of individual i doing job j. 

As before, an assignment is a set of n entries with no two entries from the same 

row or column. The sum of the entries of an assignment is referred to as the cost of the 

assignment. 

The last definition needed is that of an optimal assignment. which is the 

assignment with the smallest possible cost. 

The basis for the Hungarian method is the following theorem. 

Theorem - If a number is added to or subtracted from all of the entries of anyone 

row or column of a cost matrix, then an optimal assignment for the resulting cost matrix is 

also an optimal assignment for the original cost matrix. 

Proof: 

Let L
II 

eiJ where <h, j2' j3' ... jn) is a permutation of (1, 2, 3, ... n) 
i, j=l I 

be the optimal assignment. 
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" Let L djk where (j l' j2' j3' ... jn) is a permutation of (l, 2, 3, ... n) 
i, j.1 I 

be any other assignment. 

" " 
Note L ell :s: L dlk · 

I, j.1 I I, j.1 I 

Let s be a constant added to some row t. There is only one entry modified in any 

given assignment, since an assignment can not have more than one entry from any row or 

column. Therefore 

(It ell,) +8 :s:(~ dlk,) +8 

Thus, the optimal assignment is preserved. 

Given this theorem, the Hungarian method attempts to go through a process that will 

reduce the entries in the matrix and eventually produce a zero in each row and column so 

that an assignment can be chosen from the given zeros. Thus we are seeking an 

assignment with zero cost. 
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OUTLINE OF THE ALGORITHM 

The procedure is as follows: 

~- Subtract the smallest entry in each row from all the entries in that row. 

Step 2 - Subtract the smallest entry in each column from all the entries in that 
column. 

~- Draw the minimum number of lines through appropriate rows and columns 
so all zero entries of the cost matrix are covered. 

Step 4 - If the minimum number of lines is equal to n, then an optimal assignment 
of zeros is possible and we are finished. If not proceed to Step 5. 

Step 5 - Determine the smallest entry not covered by any line, subtract that entry 
from all uncovered entries. Then add it to all entries covered by a both a 
horizontal and a vertical line. Return to Step 3. 

Step I	 introduces at least one zero entry in each row. 

Step 2	 ensures that each column has a zero entry. Note that because of 
Step I, some columns already have zeros. 

Step 3	 is done using a Maximum Flow Algorithm from Network Theory 
[I, p. 571] 

Step 4	 is often referred to as the optimality test. To verify that it is 
a test for optimality it must be shown that it takes a minimum of n lines 
to cover an optimal assignment. If it takes a minimum of n lines to cover 
all zeros then this implies that there are n zeros with no two in the same 
column or row. Since an optimal assignment has n zeros, no two coming 
from the same column or row, then an optimal assignment exists. [4, p. 623] 

Step 5	 is equivalent to finding the smallest uncovered entry, say co' and 
subtracting Co from all entries in the matrix. Next add Co to all 
entries in the rows and columns covered by a line. Any entry covered by 
only one line will have no change, but any entry covered by two lines will 
increase by Co so that an adjustment needs to be made. The reason for 
adding back Co to covered rows and columns is that these rows and columns 
have zeros in them which would become negative values when Co is 
subtracted from them. Since the Hungarian method desires an optimal 
assignment of zeros, negative values are avoided. Note by Theorem I, this 
adding and subtracting of Co will not change the optimal assignment in the 
matrix. 

Using these steps until step 4 yields n lines will give an optimal assignment. 

The following proof shows that an optimal assignment will be attained after a 

21 



OUTLINE OF THE ALGORITHM 

The procedure is as follows: 

~- Subtract the smallest entry in each row from all the entries in that row. 

Step 2 - Subtract the smallest entry in each column from all the entries in that 
column. 

Step 3 - Draw the minimum number of lines through appropriate rows and columns 
so all zero entries of the cost matrix are covered. 

Step 4 - If the minimum number of lines is equal to n, then an optimal assignment 
of zeros is possible and we are finished. If not proceed to Step 5. 

Step 5 - Determine the smallest entry not covered by any line, subtract that entry 
from all uncovered entries. Then add it to all entries covered by a both a 
horizontal and a vertical line. Return to Step 3. 

Step 1 introduces at least one zero entry in each row. 

Step 2	 ensures that each column has a zero entry. Note that because of 
Step 1, some columns already have zeros. 

Step 3	 is done using a Maximum Flow Algorithm from Network Theory 
[l,p.571] 

Step 4	 is often referred to as the optimality test. To verify that it is 
a test for optimality it must be shown that it takes a minimum of n lines 
to cover an optimal assignment. If it takes a minimum of n lines to cover 
all zeros then this implies that there are n zeros with no two in the same 
column or row. Since an optimal assignment has n zeros, no two coming 
from the same column or row, then an optimal assignment exists. [4, p. 623] 

Step 5 is equivalent to finding the smallest uncovered entry, say co' and 
subtracting Co from all entries in the matrix. Next add Co to all 
entries in the rows and columns covered by a line. Any entry covered by 
only one line will have no change, but any entry covered by two lines will 
increase by Co so that an adjustment needs to be made. The reason for 
adding back Co to covered rows and columns is that these rows and columns 
have zeros in them which would become negative values when Co is 
subtracted from them. Since the Hungarian method desires an optimal 
assignment of zeros, negative values are avoided. Note by Theorem 1, this 
adding and subtracting of Co will not change the optimal assignment in the 
matrix. 

Using these steps until step 4 yields n lines will give an optimal assignment. 

The following proof shows that an optimal assignment will be attained after a 

21 



- -

- -

finite number of iterations of Step I through Step 5. 

To show finiteness we need to show that the reduced costs are always positive. 

Let Sr	 = {iI' i2, ••• ip } a set of uncovered rows in C. 

Let Sr =	 set of covered rows in C. Note that Sr has n-p elements. 

Let Sc	 = {jl' j2' ... jq } set of uncovered columns in C. 

Let Sc	 = set of covered columns in C. Note that Sc has n - q elements. 

So p =	 number of elements in Sr and q = number of elements in Sc.
 

Let eiJ = the entries in C after Steps I and 2.
 

Let eiJ = the entries in C after a reduction from Step 5 has 
been made. 

Let n = number of rows or columns in C. 

Let Co = smallest uncovered entry found in Step 5. 

Let k = maximum number of zeros in an assignment = minimum 
number of lines needed to cover all zeros in C. [4, 623] 

"" ." 
Proof:	 E E e,j - E E c,J = reduced cost 

1=1 j=1 1=1 j=1

". .. 
E E	 elj - E E c,J= 

1=1 j=1 1=1 j=1 

E CD + E 0 + E 0 + E -CD 
S S - - - ­,x •	 S,xS. S,xS. S,xS. 

= pqc	 - (n - p)(n - q)c = n(p + q - n)c ' but p + q = number of uncovered rows ando	 o o 

columns = 2n - k. So n(p + q - n)c = n(2n - k - n)c = n(n - k)c • Since Co > 0, n > °ando o o

n > k then n(n - k)c > 0. Therefore, the sum of all costs is being reduced by a positive o 

integer each time step 5 is performed, so the process in the Hungarian method is finite. 

22
 



Q Q I 21 
2 
1 

EXAMPLE OF HUNGARIAN METHOD
 

Recall the rating matrix R used in Kuhn's method.
 

9 9 897 
1 536 6 

R = 13 4 4 3 2 
4 445 3 
33287
 

Since our R is a rating matrix and we want to maximize our rating, we need to 

multiply the matrix by -1. We will refer to the matrix -R as C, the cost matrix. 

-9 -9 -8 -9 -7 
-1 -5 -3 -6 -6 

C = 1-3 -4 -4 -3 -2 
-4 -4 -4 -5 -3 
-3 -3 -2 -8 -7 

Applying Step I, the smallest entry in each row is subtracted from all entries in its 

row, producing the following matrix: 

0 0 1 0 2 
5 1 3 0 0 

C = 11 0 0 1 2 
1 1 1 0 2 
5 5 6 0 1 

Since the smallest entry in each column is zero, Step 2 makes no changes. 

Step 3 leads to covering C in the following manner. 

C = 11 
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Therefore the minimum number of lines needed is 4 which is less than n = 5. So 

by Step 4, an optimal assignment can not yet be obtained. Hence, we apply Step 5. In 

applying Step 5, the smallest uncovered entry, I, is subtracted from all uncovered entries 

and added to all entries covered twice leading to the following C. 

o o 1 1 2 
5 131 o 

C = 11 002 2 
o 000 1 
4 450 o 

After Step 5, we return to Step 3. This time C is covered in this way. 

6 8 1 1 2 
S 1 3 1 9 

C= 1,," 9 g 2 2 
9 po 9 9 9 "\1 .. .. S 9 9 

Step 4's test for optimality holds since the minimum number of lines needed was 5, 

which is equal to n. Therefore, an optimal assignment is found, and we are done. 
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CHAPTER 4
 

Determination of Optimal Assignments.
 

After using either Kuhn's method, or the Hungarian Algorithm to determine that 

an optimal solution can be found, the solution needs to be determined. Note that it only 

has been determined that an optimal solution can be found, it doesn't determine what that 

optimal solution is. 

If using Kuhn's method, an optimal solution has been found if there are n essential 

rows, which means there were n I*,s in the Q matrix. Once it has been determined that an 

optimal solution can be found, the actual assignment is the assignment of individual i to 

job j where there is a I* in qij' 

Recall the Q matrix in Kuhn's algorithm after it had been determined that an 

optimal assignment was possible. 

.
 
1 l' 0 0 0 
0 

Q= I0 
1 
1 

0 
l' 

l' 
0 

1 
0 

l' 1 1 1 0 
0 0 0 1 l' 

Then the assignment, with the highest possible rating is ql2' q24' qgg, q41' q55' 

Recall the rating matrix R in Kuhn's algorithm. 

9 9 8 9
 
1 S 3 6
 

7
6 

R
 = 13 4 3 2
4
 
4 4 4 S 3
 
3 3 2 8
 7 
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The rating associated with Q12 is 9, Q24 is 6, Qss is 4, Q41 is 5 and Q55 is 7. Then the 

total rating for the optimal assignment is 31. 

When using the Hungarian method, an optimal assignment of zeros can be found 

when the minimum number of lines needed to cover all zeros is equal to n. Recall that to 

find the minimum number of lines a maximum flow algorithm is used. Once that 

algorithm is done, the path of the flow determines which zeros to choose. 

Both methods produce only one optimal assignment, but other optimal assignments 

may exist. One way to find other optimal assignments is to rearrange the order of the 

columns so that in Kuhn's method the initial assignment differs. Also this will give a 

different maximum flow result in the Hungarian method. Note, however, that the sum of 

the rij will have the same value for all optimal assignments for a 'given matrix R. Thus it 

will not improve the solution, but just produce an equivalent one. Also, note, that there 

may be only one optimal solution. So rearranging columns may not produce a different 

solution. 
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CHAPTER 5 

Summary and Conclusion 

While both the Hungarian method and Kuhn's algorithm are effective techniques 

for solving the assignment problem, neither is trivial. 

The Hungarian method requires finding the minimum number of lines needed to 

cover all zero entries. If the matrix is small this may be an easy task, but relatively 

speaking in any n x n matrix with n > 5, the task becomes difficult. In Kuhn's method the 

task of checking the l's and l*'s needs to be performed efficiently. Much has been done 

in the computer programming field to produce programs to alleviate the complexity of 

each of these methods. [8, p.793]. Others have produced methods for speeding the process 

in which an optimal solution can be found. [9, p. 194] The use of computer programs and 

acceleration methods can greatly improve both the efficiency and the effectiveness of the 

two methods. 

Both of the methods require certain assumptions made. Of the assumptions Al - A3, 

the only one that can be modified is AI, the number of jobs must equal the number of 

individuals. If this assumption doesn't hold, for example, n jobs and n + 1 individuals, a 

dummy job can be introduced into the matrix with a rating of 1 in Kuhn's method and a 

cost larger than all other costs in the Hungarian method. then whichever individual was 

assigned that job would not be assigned to any job. 

The information on this topic is vast. The assignment problem has applications in 

many other areas. In most introductory texts on linear programming the assignment 

problem is addressed as a specific case of either the transportation problem, [6 p.490] or 

the traveling salesman problem. [7, p.259] Usually when it is discussed, it is solved using 

the Hungarian method instead of Kuhn's method. In the context of the traveling salesman 
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problem, usually found in introductory network theory texts, the covering of all zeros is 

discussed as a maximum flow problem [7, p.323]. However, when the assignment problem 

is presented in the context of the transportation problem the covering of zeros is not 

thoroughly investigated. [6, p.491] The transportation problem is consistently found in 

basic linear programming texts and the traveling salesman problem is usually found in 

network Theory texts. In either case, the covering of zeros is never presumed to be a 

trivial matter. 

The assignment problem also is also treated in textbooks on operations research ego 

[7, p.l12] and in systems analysis ego [7, p.114]. In order to study this subject further and 

determine a more efficient algorithm for the assignment problem, further research in the 

areas of network and graph theory would be essential. 
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