




k kget «Ol)QSy)k == a (mod 2~). This implies (_l) kaSky 
E a (mod 

2~) .•. (*). Let IND(ak) = [a' ,y']; then 

k(-l)Q'SY' == a (mod 2~) ••. (#). Congruences (#) and (*) 

imply (-l)Q'SY' == (-l) kaSky (mod 2~). By Theorem 4.3, 

[a',y'] =[ka,ky] (mod [2,ep(2~-1)]) or 

[a,y] = k[a,y] (mod [2,ep(2~-1)]). Therefore 

IND(ak) == k IND(a) (mod [2,ep(2~-1)]). 0 

Examples: 

a. Solve 11x5 == 7 (mod 32).
 

By Theorem 4.4, this congruence is equivalent to the
 

congruence S IND(x) == IND(7) - IND(ll) (mod [2,ep(2 4 
)]). To
 

solve this second congruence, we must know the value of
 

IND(7) and IND(ll) (mod 16). From the examples worked
 

earlier in this section, we recall that IND(7) = [1,2] and
 

IND(ll) = [l,S]. Therefore
 

S IND(X) == [1,2] - [l,S] (mod [2,8])
 

or S IND(X) == [0,-3] (mod [2,8]). Now we find the inverses
 

of S (mod 2) by solving Sy == 1 (mod 2) (we obtain y = 1),
 

and the inverse of S (mod 8) by solving Sy' == 1 (mod 8) (we
 

obtain y' = S). Thus we have IND(x) == [O,-lS] (mod [2,8])
 

or IND(x) == [0,1] (mod [2,8]). The value of x is given by x
 

== (-l)OSl (mod 32). Hence the solution is x == S (mod 32).
 

b. Solve 3x == 7 (mod 32).
 

This congruence is equivalent to x IND(3) 
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IND(7) (mod [2,8]. We know IND(7) = [1,2]. To find the 

value of IND(3), we consider the congruences 

(-1)°5 == 3 (mod 32) for y = 1,2, ... 8, and 

(-1)15 == 3 (mod 32) for y = 1, 2, •.. 8. We find 

(-1)15 3 == -125 == 3 (mod 32) since 321-128. Therefore 

IND(3) = [1,3] and the original congruence becomes [1,3]x 

[1,2] (mod [2,8]). The inverse of 3 (mod 8) = 3, so the 

equation becomes x == [1,6] (mod [2,8]). The value of x is 

given by x == (_1)15 6 (mod 32). Thus the solution is x == 23 

(mod 32). 

4.3 INDICES FOR ANY COMPOSITE MODULI 

In this section we are going to employ the results of 

the previous two sections to generalize the theory of 

indices to any composite moduli. 

To this end, let n = 2PP~lP;2 . . . p:m be the canonical 

prime factorization of n and let a be an integer relatively 

prime to n. If we let the ordered m-tuple 

[gl' ... , gm] be the primitive roots of p!i, then, as 

defined in section 4.1, the index vector of a (mod P~lP~2 

p:m) is the ordered m-tuple [h~l, h;2,. . ., ~m], where 

h 1 = indq (a) (mod p~1), ... ,hm = indq (a) (mod p:m).
1 m 

The factor 2P requires the consideration of two cases. 

Recall that, according to Theorem 2.6, if ~ $ 2, 2P has a 

primitive root. Trivially 1 is the primitive root of 2 and, 
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since 32 = 1 (mod 4), 3 is the primitive root of 4. Call 

these roots go and their indices hoe For ~ ~ 3, we defined 

IND(a) (mod 2P) to be the ordered pair [a,y] such that 

(-1) a5 Y = a (mod 2 P). 

We can now combine these various ideas and definitions 

to arrive at the following definition for the index vector 

of an integer a, relatively prime to n, where n is any 

composite moduli. 

Definition: 

For any composite moduli n and for an integer a, 

relatively prime to n, the index vector of a modulo n is 

defined to be [h;o, h~l, . . ., ~m] if ~ ~ 2 and 

[a,y;h~1,h;2, ..• , ~m] if ~ ~ 3. This definition assumes 

the conditions as described above. 

Examl2.les: 

3

a. For n = 60 = 22_3- 5, find IND(ll) and IND ( 4 3) .
 

Since ~ ~ 2, we use 3 as a primitive root of 4. And 2 is a
 

primitive root for 3 an 5. To find IND(ll), we must find
 

the index of 11 (mod 4), (mod 3) and (mod 5) by solving the
 

following congruence equations:
 

X = 11 (mod 4), which has the solution 31 = 11 (mod 4)
 

2x = 11 (mod 3), which has the solution 2 1 = 11 (mod 3)
 

2x = 11 (mod 5), which has the solution 2 4 = 11 (mod 5)
 

87
 



Thus INn(ll) = [1,1,4]. To find INn(43), we must solve the 

following congruence equations:
 

3X == 43 (mod 4), which has the solution 31 == 43 (mod 4)
 

2x == 43 (mod 3), which has the solution 22 == 43 (mod 3)
 

2x == 43 (mod 5), which has the solution 23 == 43 (mod 5)
 

Thus IND(43) = [1,2,3].
 

b. For n = 120 = 23-3-5, find INn(17) and IND(41).
 

Since ~ ~ 3, we use the ordered pair [a,r] situation. To
 

find IND(17), we solve the following equations:
 

(-1)Q5Y == 17 (mod 8), which becomes (_1)°52 == 17 (mod 8)
 

2x == 17 (mod 3), which has the solution 2 1 == 17 (mod 3)
 

2x == 17 (mod 5), which has the solution 21 == 17 (mod 5)
 

Thus IND(17) = [0,2:1,1]. To find IND(41), we solve:
 

(-1)Q5 Y == 41 (mod 8), which becomes (-1)°5° == 41 (mod 8)
 

2x == 41 (mod 3), which has the solution 2 1 == 41 (mod 3)
 

2x == 41 (mod 5), which has the solution 2 4 == 41 (mod 5)
 

Thus IND(41) = [0,0, :1,4].
 

Theorem 4.5 

Let a and b be integers relatively prime to n. Then 

(1) IND (ab) _{ IND (a) + IND (b) (mod [4>(2 1S ) , 4>(p~') , ~ .. ,41 (P:·)] ~, if J3 ~2
 
IND(a) +IND(b) (mod [2,4>(2 1S-1 ) i4>(P/), ... , 41 (Pm·) ]), if P~3
 

() ( 
k) -k (){ (mod [4>(2 1S ) , 4> (p:') , ... ,41(p;·)]), if J3~2
 

2 IND a IND a 1S-1.' ....

(mod [2 , 4> (2 ); 4> (P1 ) , .•. , cI> (Pm )] ), J.. f P~ 3 

Proof: 

The proof follows directly from Theorems 4.1 and 4.4. 0 
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We close this section with examples of applying index 

theory to congruence equations with composite moduli. 

Examples: 

a. Solve 11x7 = 43 (mod 60). 

This congruence is equivalent to 

IND(ll) + 7IND(x) =IND(43) (mod [2,2,4]), or to 

7IND(x) =IND(43) - IND(ll) (mod [2,2,4]). Recall from the 

examples earlier in this section, that 

IND(43) = [1,2,3] and IND(ll) = [1,1,4]. Therefore 

7IND(x) = [1,2,3] - [1,1,4] = [0,1,-1] = [0,1,3] 

(mod [2,2,4]). Since 7 is relatively prime to 2 and 4, we 

find the inverses of 7 modulo these integers. The inverse 

of 7 (mod 2) = 1 and 7 (mod 4) = 3. The congruence becomes 

IND(X) = [0,1,3-3] = [0,1,1] (mod [2,2,4]). The integer x, 

then, will have to satisfy the following congruences: 

3° = x (mod 4) 

2 1 =x (mod 3) 

2 1 = x (mod 5) 

The Chinese Remainder Theorem can be used to identify x. 

Since 4-3-5 = 60 and 60/4 = 15, 60/3 = 20, and 60/5 = 12, we 

consider the following congruences: 

15x =1 (mod 4) for which x = 3
 

20x = 1 (mod 3) for which x = 2
 

12x =1 (mod 5) for which x = 3
 

Then X = 1-15-3 + 2-20-2 + 2-12-3 = 197. But 
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197 =17 (mod 60). Therefore, a solution to the original 

congruence is x = 17 (mod 60). 

b. Solve 13x7 =281 (mod 792).
 

This equation is equivalent to
 

IND(13) + 7IND(x) = IND(281) (mod [2,2;6,10]), or to
 

7IND(X) =IND(281) - IND(13) (mod [2,2,6,10]) ••• (*).
 

What is IND(281)? What IND(13)? To find IND(281), we solve
 

the following congruences:
 

(-1)Q5Y =281 =1 (mod 8), which becomes (_1)°5° =1 (mod 8)
 

2x =281 = 2 (mod 9), which has the solution 2 1 = 2 (mod 9)
 

2x =281 =6 (mod 11), which becomes 29 = 6 (mod 11).
 

Thus IND(281) = [0,0;1,9].
 

To find IND(13), we solve the following congruences:
 

(-1)Q5Y = 13 (mod 8), which becomes (-1)°51 = 13 (mod 8) 

2x =13 =4 (mod 9), which has the solution 22 =4 (mod 9) 

2x =13 =2 (mod 11), which becomes 2 1 =2 (mod 11) 

Thus IND(13) = [0,1;2,1]. Congruence (*) therefore becomes 

7IND(x) = [0,0;1,9] - [0,1;2,1] = [0,-1;-1,8] = [0,3;5,8] 

(mod [2,2;6,10]). Again finding the inverses of 

7, (mod 2), (mod 6), and (mod 10), we have 

IND(x) = [0,3-1;5,8-3] = [0,1;5,4] (mod [2,2;6,10]). To 

find x, we can make use of Table 2 and Table 3 in section 

3.2. For mod 9 and mod 11, we find x = 5. Does this check 

with mod 8? Yes, since (_1)°5 1 = 5 (mod 8). Therefore a 

solution is x = 5 (mod 792). 
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Chapter 5 

PRIMITIVE ROOTS AND INDICES FROM AN ALGEBRAIC VIEWPOINT 

In this chapter we are going to study briefly the 

concepts of primitive roots and indices from an algebraic 

point of view. Certain definitions from abstract algebra 

will be assumed and most of the results will be stated 

without proofs. However references are given for those 

results stated without proof. 

In section 5.1 we introduce the ring of integers modulo 

n, Zn and investigate the group of its invertible elements. 

In section 5.2 we characterize the integers n that possess 

primitive roots as those integers for which the group of 

invertible elements in Zn is cyclic. 

The introduction of algebraic structures places the 

theory of indices in the more general setting of abstract 

algebra. This approach to the study of primitive roots and 

indices leads in a very natural way to generalize indices to 

arbitrary finite cyclic groups. section 5.3 discusses these 

ideas. 

In moving the sUbject matter of this paper from the 

area of number theory on to the province of abstract 

algebra, we show the strong relationship between the two 

fields. 
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5.1 THE RING OF INTEGERS MODULO n 

First, let us recall the concept of a congruence class 

mod n. If a € I, then the set of integers congruent to a 

mod n, a = {x € I I x =a (mod n)}, is called a congruence 

(or residue) class mod n. Let In denote the set of all 

congruence classes mod n. The set In can be made into a 

ring by defining addition and mUltiplication on I as 

follows: 

For a,o€ In' we define a+o=a+b, and a.o =ao. With 

respect to these operations, it is routine to show that In 

is a commutative ring with identy, namely 1. This ring is 

called the ring of integers mod n. 

Next, we are going to study the set of units in In , 

that is the set of mUltiplicatively invertible elements in 

In. So the question is "What are the units of I h ?" An 

element a € In is a unit if and only if there exists x € In 

such that a x: = 1. But a x = 1 is equivalent to saying 

that the congruence equation, ax =1 (mod n), is solvable 

and this in turn is equivalent to saying d11, where d = 

gcd(a,n). We know that dl1 if and only if d = 1. Thus 

a € In is a unit if and only if a is relatively prime to n. 

Moreover, since there are ¢(n) integers relatively prime to 

n, In has ¢(n) units. In particular, if n = p is a prime, 
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then every non-zero element of I p is a unit and therefore 

(Ip ,+,-) is a field. 

The following theorem summarizes the above discussion. 

Theorem 5.1 

An element a € In is a unit if and only if 

gcd(a,n) = 1. There are exactly ~(n) units in In' In is a 

field if and only if n is a prime. 

In what follows, we denote the set of all units of In 

by U(n). It follows from Theorem 5.1 that if 

{rll r 2l • • ., r4f>(D)} is a reduced residue system mod n, then 

U(n) = (r1 ,r2l ••• ,r4f>(D)}' 

5.2 PRIMITIVE ROOTS AND THE GROUP STRUCTURE OF U(n) 

In a more general context than U(n), for any ring 

(R,+,-) with identity we denote by U(R), the set of all 

units in R. 

Theorem 5.2 

(U(R),-) is a group. 

(The proof of this theorem can be found in [4], page 185.) 
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The group U(R) is called the group of units of R or the 

group of invertible elements of R. In particular, U(n) is a 

group for any integer n; it is the group of invertible 

integers mod n. From Theorem 5.1, it follows that the order 

of the group U(n) is ¢(n). Note that order, in the context 

of group theory, is defined to be the number of elements in 

U(n) . 

Our objective in this section is to analyze the 

structure of the group U(n). It turns out that U(n) is 

either a cyclic group or a direct product of a cyclic group. 

In fact the next theorem gives necessary and sufficient 

conditions for the group U(n) to be cyclic. 

Theorem 5.3 

(U(n),·) is cyclic if and only if n possesses a 

primitive root. 

Proof: 

Assume that U(n) is cyclic. Thus there exists g € U(n) such 

that (g) = U(n). Hence the least positive integer k such 

that ~ = 1 is k = ¢(n). Thus the order of g mod n is ¢(n) 

and therefore g is a primitive root mod n. conversely, 

assume that g is a primitive root mod n. Then the subgroup 

of U(n) generated by g is U(n) since the order of g (mod n) 

is ¢(n); that is, (g) = U(n). Thus U(n) is a cyclic group. 

o 
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Theorem 5.3 together with Theorem 2.6, implies the 

following result. 

Corollary 

U(n) is cyclic if and only if n is of the form 2, 4, 

pk, or 2pk, where p is an odd prime and k ~ 1. 

Our next objective is to analyze the structure of U(n) 

when n is other than of the form stated in the previous 

corollary. 

The next three theorems (whose proof can be found in 

[14], pages 80-82) permit us to give a complete description 

of the group U(n) for any positive integer n. 

Theorem 5.4 

If m and n are relatively prime positive integers, then 

(U(mn),e) is isomorphic to the direct product U(m) x U(n). 

For the integers n of the form 2, 4, pk, and 2pk, the 

group U(n) is cyclic and therefore U(n) is isomorphic to the 

additive group of integers mod ¢(n). That is (U(n),e) is 

isomorphic to (Z~(n)' +) • 

In the case where n = 2k when k ~ 3, we have the 

following result. 
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Theorem 5.5 

The group (U(2 k ),e), where k ~ 3 is isomorphic to the 

direct product of the additive groups (Z2f+) and Z2k -2,+). 

That is, U(2k 
) :::::::: Z2 X Z2k -2. 

Theorem 5.6 

Let n = 2k o P~l P~2 • . • p~r be the canonical prime 

factorization of n. 

(1) The group U(n) is isomorphic to the direct product 

U (2ko ) X U (p~1) x • X U(p~r). 

(2) U(p~i) is a cyclic group of order ¢ (p~i) and thus 

isomorphic to (Z4>(P~i' +) . 
J. ) 

(3) U(2ko ) is a cyclic group of order 1 and 2 for 

ko = 1 and 2, respectively. If ko ~ 3, then U(2~) is 

isomorphic to the direct product of two cyclic groups, one, 

(Z2f +), of order 2, the other, Z2k O-2, +), of order 2k o-2• 

5.3 INDICES IN GROUPS 

First we are going to see how the definition of indices 

can be formulated in group theoretic language. Let n be a 

positive integer with a primitive root g. Then it follows 

from Theorem 5.3 that U(n) is a cyclic group and ij is a 

generator of U(n). That is, U(n) = (ij). Thus for any 

a € U(n), or in other words, for any integer a relatively 

prime to n, there exists a unique integer k, where 
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o ~ k ~ ¢(n)-l and such that ~ = a; That is, for any 

integer a, there is a k such that gk =a (mod n). The index 

of a to the base g mod n is the unique integer k. From this 

it follows that if a and b are integers relatively prime to 

n and a =b (mod n), then a = b and hence indg(a) = indg(b). 

Conversely, if indg(a) = indg(b), then a = b and hence 

a = b (mod n). Thus we may consider the index as a map from 

the mUltiplicative group (U(n),-) into the additive group 

(Z4>(O)'+). Therefore we have the map indg : (U(n),-)-+ (Z4>(O)'+) 

defined by indg (a) =indg (a). If we let a = ~ and b = g", 

then aD = ~ - g" or aD = ?,,+h. This implies 

indg (aE) • indg (a) + indg (5) (modej> (n) ) ; hence indg is a group 

homomorphism. Clearly indg is one-to-one and onto. Thus we 

have the following theorem. 

Theorem 5.7 

The map indg : (U (n) , - ) -+ (Z4>(O)' +), as defined above, is a 

group isomorphism. 

Note that this group isomorphism is analogous to the 

well-known group isomorphism of the mUltiplicative group of 

positive real numbers (R+,-) onto the additive group of all 

real numbers given by loge: (R+,-)-+(R,+), where a is a 

positive real number. Theorem 5.7 leads directly to the 
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concept of vector indices. Let n be any odd positive 

integer and let n = P~l • • • p~ be the canonical prime 

factorization of n. By Theorem 5.6, we know there is a 

group isomorphism \II: U(n) ..... U(p~l) x . x U(p~). Each of 

the groups U(p~i) for i = 1, 2, ... , 4 is cyclic and hence, 

if (g) = U (p~i), then the map indgo : U (p~i) ..... Zt/>(P~i is a group 
~ ~ ) 

isomorphism. The index vector mod n relative to the base 

g = [gl' •.. , gr] is defined as the composition of the two 

group isomorphisms \II and indgo . Thus 
~ 

\II k k
INDg U(n) --->~ U (Pll) X • • • x U (Prr) 

[indgu · . ., indg1 ] 

Zt/>(p~r X • • • X Zt/>(pkr 
~ ) r ) 

is given by INDg (a) = [indgl (a l ) , ... , indg (ar )], where 
r 

\Vea) = [au ... , a ].r 

In the case n = 2k, where k ~ 3, by Theorem 5.5 we have 

U (2 k) ::::: Z2 X Z2k-2. By Theorem 4.2, we know that if a € 

U(2k}, then there exist unique integers a and y with a = 0 

or 1 and 1:5 y:5 2k-2 such that a = (-l)Q ST. Thus the index 

vector mod n is defined as the group isomorphism IND : 

U(2k~-.Z2 X Z2k-2 given by IND(a) = [a,y]. 

The foregoing discussion leads easily to the 

generalization of indices to finite cyclic groups. 
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Definition: 

Let G be a finite cyclic group of order n. Let g be a 

generator of G. For a € G, we define the index of a 

relative to g to be the least nonnegative integer k for 

which gk = a. We denote the index of a relative to g by 

indga. 

Clearly 0 S indga S n-1 and giDdgll = a for any a € G. 

The following two theorems are immediate and their proofs 

follow directly from the definition above and the basic 

properties of groups. 

Theorem 5.8 

Let G = (g) be a cyclic group of order n. Let a and 

b € G. Then a = b if and only if indg(a) = indg(b) (mod n). 

Theorem 5.9 

Let G = (g) be a finite cyclic group of order n and let 

a, b € G. Then 

(1)	 indge = 0, where e is the identy element of G 

(2)	 indgg = 1 

(3)	 indga- 1 = - (indga) (mod n) = n - indga 

(4)	 indg(ab) = indga + indgb (mod n) 

(5)	 indg(ak) =k indga (mod n), where k is any integer 

(6)	 giDdgll = a and indggk = k (mod n) 

(7)	 If g' is another generator 0 G, then
 

indga = (indg,a) • (indgg') (mod n).
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We are going to illustrate Theorem 5.10 by an example. 

Let G = {1, -1, i, -i} with ordinary multiplication of 

complex numbers. G = (i) is a cyclic group • 

• 0 • d1. = 1 -+ 1.n i1 = 0
 

i 1 = i -+ indi i = 1
 

i 2 = -1 -+ indd-1) = 2
 

P = -i -+ indd-i) = 3
 

Let us verify property (4) • 

indi «-l) (-i» 5 indi (-l) + indi (-l) (mod 4) 

LHS=indd(-l)(-i» =inddi) =1 

RHS = indi (-l) + indi(-i) = 2 + 3 + 5 

Thus indi «-l) (-i» = 1 5 indi (-l) + indi(-i) = 5 (mod 4) 

Next let us verify property (5). 

indd(-i)5) =5 indd-i) (mod 4). 

LHS = indi «-i)5) = indi(-i) = 3 

RHS = 5 indi(-i) = 5(3) = 15 

Thus indi «-i)5) = 3 5 5 indi(-i) = 15 (mod 4) 

Now we verify property (3). 

indd-1)-1 5 -indd-1) (mod 4) - 4 - indd-1) 

LHS = indd-1) -1 = indd-1) = 2 

Thus	 indi (-1)-1 = 25 -2(mod 4) = 4 - indd-1) = 4 - 2. 

Finally,	 we are going to verify property (7). 

g' = -i is another generator of G. 

indd-1) 5 ind_d-1). indi(-i) (mod 4) 

LHS = indi (-l) = 2 

RHS = ind_d-1). indd-i) = (2) (3) = 6 
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Thus indd-1) = 2 iii ind_d-1) - indd-i) = 6 (mod 4). 

If G = (g) and indga = k and m is an integer such that 

m iii k (mod n), then m = k + nr for some integer r and this 

implies ~ = gk _ (gn)r = a(e)r = a. Thus we have indga f k. 
Hence we may regard the index as a map from the 

mUltiplicative group G into the additive group of the ring 

of integers mod n,ln: that is indg : (G,-) ~ (In' +). This 

map is called the index map to the base g or simply the 

index map. 

Theorem 5.8 implies the map indg is one-to-one and, 

since the order of (G,-) equals the order of (In' +), then 

indg is onto. Theorem 5.9(4) implies indg is a group 

homomorphism. Thus we have proven the following theorem, a 

theorem from which Theorem 5.9(1,2,3, and 5) follows 

directly. 

Theorem 5.10 

The index map, indg (G,-) ~ «In' +), is a group 

isomorphism. 

Having established that the map indg is a group 

isomorphism, we are in a position to appreciate the 

importance of the concept of indices in group theory. The 

index provides no more and no less than a complete 

description of the whole group since the members of the 
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group G are determined by the powers of the generator, g. 

That is, for any a € G, a = giDdCJIA). 
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Chapter 6
 

SUMMARY AND CONCLUSION
 

In this thesis we have investigated the theory of 

indices modulo n. In the process we have indicated 

similarities to the theory of logarithms. 

To make the paper self contained, in Chapter 1 we 

provided definitions and theorems from elementary number 

theory which would be useful to the reader as background. 

Since primitive roots are basic to the theory of 

indices, we spent the next chapter investigating this idea. 

We began with the concept of the order of an integer modulo 

n. This led to the definition and the study of the basic 

properties of primitive roots. Chapter 2 concluded with a 

complete characterization of which integers have primitive 

roots and which do not. 

The objective of Chapter 3 was the study of scalar 

indices and their basic properties. Where appropriate, we 

indicated similarities between indices and logarithms in 

both theory and applications. The analogy between indices 

and logarithms additionally served as a motivation to 

introduce certain results. We defined scalar indices for 

integers with primitive roots and we discussed their basic 

properties. We indicated that scalar indices can be used to 

solve various types of congruence equations. We discussed 

the theory involved as well as provided numerous examples. 
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In an extended examination of another application, we 

constructed a modular slide rule based on the properties of 

indices. We illustrated its use in solving congruence 

equations. This slide rule illustrates another point of 

similarity between indices and logarithms: each is the basis 

for a slide rule. 

In Chapter 4 our objective was to extend the theory of 

indices to arbitrary moduli. We considered first arbitrary 

odd moduli and defined the appropriate index to be a vector 

index. We then considered moduli that were powers of 2. 

Finally, combining the two previous discussions, we could 

give a definition of the index for any modulo integer n as a 

vector index. 

The tone and style of our investigation changed with 

Chapter 5. Chapter 5 became something of a cryptic 

discussion of primitive roots and indices from an algebraic 

point of view. In section 5.1, we introduced the ring of 

integers modulo n and directed our attention to the group of 

invertible elements in Zn' We then characterized the 

integers which possessed primitive roots as those integers 

for which the group of invertible elements in Zn is cyclic. 

Next we characterized indices in group theoretic language as 

group isomorphisms. This in turn allowed for the natural 

extension of indices to any moduli. We concluded the 

discussion of indices with a generalization of indices to 

arbitrary finite cyclic groups. 
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We acknowledge the fact that this thesis could have 

begun with Chapter 5. We could have defined indices in 

cyclic groups and moved on to consider the group of 

invertible elements in In as a specific example. We present 

that approach to the study of indices as a challenge for our 

reader to develop. 

We also suggest for further study the expansion of the 

theorems and ideas that we dealt with only briefly in 

Chapter 5 to include, for example, finite abelian groups. 
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