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A large number of reference works on the history of 

mathematics seem to suggest either that an in-depth 

discussion of the ideas which led up to the simul­

taneous discovery of logarithms by Napier and Burgi 

would be too arcane to be of interest, or that not much 

did lead up to the achievement of these two discoverers 

and that the idea of logarithms simply spontaneously 

created itself in Napier and Burgi, as if of nothing. 

Much the same attitude seems prevalent in the area 

of what the discovery of logarithms meant in subsequent 

developments in mathematical thinking. Ease of 

calculations is of course mentioned, but subsequent 

contributions to the development of calculus and the 

considerable scientific importance of the discovery of 

the number e, which occurred as a direct result of the 

discovery of logarithms, most often receives scant 

attention. 

In fact, however, the history of logarithms 

stretches from Babylon to Newton, and a considerable 



number of interesting problems and ingenious solutions 

can be encountered along the way. 

The purpose of this thesis has been to explore in 

considerable detail the development of the idea of 

logarithms and of logarithms themselves from the first 

logarithmic-like tables of the Babylonians through the 

work of Isaac Newton. 

No known study of the history of logarithms in such 

detail either exists or is currently available. This 

work attempts to fill that void. Additionally, the 

history of logarithms runs parallel to, is influenced 

by, or is in turn influential in a number of other 

significant developments in the history of mathematics 

and science, not the least of which is the development 

of trigonometry. These parallels and influences are an 

interesting source of study in their own right. 
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CHAPTER I 

INTRODUCTION 

1.1 Introduction. A large number of reference 

works on the history of mathematics seem to assume 

either that an in-depth discussion of the ideas which 

led up to the nearly simultaneous discovery of 

logarithms by Napier and Burgi would be too arcane to be 

of interest, or that not much did lead up to the 

achievement of these two discoverers and that the idea 

of logarithms simply spontaneously created itself in 

them, as if of nothing. 

Much the same attitude seems prevalent in the area 

of what the discovery of logarithms meant in subsequent 

developments in mathematical thinking. Ease of 

calculations is of course mentioned, but subsequent 

contributions to the development of calculus and the 

considerable scientific importance of the discovery of 

the number e, which occurred as a direct result of the 

discovery of logarithms, most often receives scant 

attention. 

In fact, however, the history of logarithms 

stretches from Babylon to Newton, and a considerable 

number of interesting problems and ingenious solutions 

can be encountered along the way. 
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1.2 Statement of the Problem. The purpose of this 

thesis is to explore in considerable detail the 

development of the idea of logarithms and of logarithms 

themselves from the first logarithmic-like tables of the 

Babylonians through the work of Isaac Newton. 

1.3 Importance of the Study. No known study of the 

history of logarithms in such detail either exists or is 

currently available. This work attempts to fill that 

void. Additionally, the history of logarithms runs 

parallel to, is influenced by, or is in turn influential 

in a number of other significant developments in the 

history of mathematics and science, not the least of 

which is the development of trigonometry. These 

parallels and influences are an interesting source of 

study in their own right. 

1.4 Sources of Information. Libraries of the 

Kansas Regents' universities have been used to complete 

the study. 

1.5 Organization. The thesis has been divided into 

six major parts. Chapter I introduces the subject. 

Chapter II explores early Babylonian work with tables 

which resemble logarithmic tables as we know them today, 

and additionally explores Archimedes' work on extremely 

large numbers and his discovery, in consequence, of
 

logarithmic-like laws. Chapter III discusses parallel
 

developments in trigonometry, especially during the 16th 

Century and most especially the work of Viete. Such 



3 

work influenced the staff of Tycho Brahe and their work 

was in turn known to Napier. Chapter IV examines the 

period in which logarithms were actually discovered: 

their nearly simultaneous discovery by John Napier and 

Jobst Burgi, and the introduction of the concepts of 

base number and exponent. Chapter V discusses the 

subsequent discovery of the number e, and the later work 

of Newton which expanded the use and mathematical 

interest in logarithms. Finally, Chapter VI summarizes 

and draws conclusions based on the study. 
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CHAPTER II 

THE IMPETUS 

The Babylonians and Archimedes 

2.1 Introduction. If we might say that the problem 

of the computation of very large and very small numbers, 

often over and over again, was not truly solved until 

the inventions of fully-functional and efficient 

calculators and computers, we may also say that a major 

step in the improvement of such calculations was made in 

the Seventeenth Century with the invention of 

logarithms. For what made such complicated calculations 

far simpler as was then becoming increasingly necessary 

was the new-found ability to reduce multiplication to 

the vastly simpler act of addition. Division thus 

became a process of subtraction, finding powers simple 

multiplication, and that of finding roots equally simple 

diVision. 

But these processes, though infrequent in 

antiquity, were neither especially new nor unknown to 

those who may rightly claim for themselves the invention 

of logarithms. They are found upon Babylonian tablets 

dating as far back as 2400 B. C. I and in Archimedes' The 

Sand Reckoner we find the rule students of logarithms 

2have learned for nearly four centuries, a-an = a-· n. 



5 

The proper beginning for a study of the history of 

logarithms, then, takes us into the past more than 4000 

years. 

2.2 The Babylonians. What is commonly considered 

or termed 'Babylonia' was a series of Mesopotamian 

civilizations which existed between the Tigris and 

Euphrates rivers from about 2000 to 600 B.C., which 

neither at the beginning nor at the end were entirely 

dominated by Babylonia itself. Indeed, Babylonia's fall 

to Cyrus of Persia in 538 B.C. brought an end to the 

Babylonian empire, but what historians continue to call 

Babylonian mathematics continued until nearly the birth 

of Christ,3 and going all the way back to the fourth 

millennium before the present era we find a remarkable 

period of cultural development and a high order of 

civilization, which included the use of writing, the 

wheel and metals.· Throughout this entire period we find 

a people who were highly skilled computationally, makers 

of sophisticated mathematical tables, and sophisticated 

algebraists. 6 Babylonian mathematicians skillfully 

developed algorithms for mathematical procedures of 

considerable complexity, one of which was for "a square­

root process often ascribed to later men."6 

This process was, it is claimed, highly efficient, 

but Babylonians seemed to prefer what we may consider 

the much more modern approach by resorting to tables, 

which were seemingly in abundance. 7 Of some 300 
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mathematical tablets recovered to date by archeologists 

fUlly 200 of these are table tablets covering such 

topics as multiplication, reciprocals, squares and 

cubes, and exponentials. In combination with 

interpolation these latter tables seem to have been used 

in problems relating to compound interest. s In the 

opinion of mathematics historian Carl B. Boyer, "There 

is a clear instance [in the Babylonian texts] of the use 

of interpolation within exponential tables wherein the 

scribe also uses the compound interest formula a = 

P<l+r)n. "5 

If such a degree of sophistication seems 

surprising, historian Howard Whitley Eves gives the 

following description of to just what extent the 

Babylonians had developed a financial system which could 

include the processes of compund interest: 

Even the oldest tablets show a high level of 
computational ability and make it clear that 
the sexagesimal positional system was already 
long established. There are many texts of 
this early period dealing with farm deliveries 
and with arithmetical calculations based on 
these transactions. The tablets show that 
these ancient Sumerians were familiar with all 
kinds of legal and domestic contracts, like 
bills, receipts, promissory notes, accounts, 
both simple and compound interest, mortgages, 
deeds of sale, and guaranties. 10 

And such tablets are said to have existed around 2400 

B. C. 11 

The floating-point process used in such tables is a 

familiar one to those of us who have used slide rules or 

worked with logarithms, and hence belongs in our 
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discussion of the earliest history of logarithms, 

however no single number was used as a base as in our 

present system. 12 In the table below the sexagesirnal 

system is used, but the numbers have been written in a 

form we can more easily understand. The number 23, for 

example, will stand as 23, while the number 63 will be 

written 1:3, and 147 will be written 2:27 (60 X 2 + 27). 

Fractions were a continual problem to Babylonian 

mathematicians, such that, as an example, 2 9/20 (2 9/20 

= 49/20 = 147/60) would also be written as 2:27. The 

context would presumably determine whether one meant 2 

9/20 or 147. 13 

TABLE 1 

Sexagesimal Numbers and Their Inverses 

Number Inverse 
2 30 
3 20 
4 15 
5 12 
6 10 
8 7:30 
9 6:40 
10 6 
12 5 
15 4 
16 3:45 
18 3:20 
20 3 
24 2:30 
25 2:24 
27 2: 13:20 
30 2 
32 1:52:30 
36 1:40 
40 1:30 
45 1: 20 
48 1: 15 
50 1: 12 
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54 1:6:40 
1:4 56: 15 
1: 12 50 
1: 15 48 
1:20 45 
1:21 44:26:40 

To understand how the table works we might notice 

that the products of the first and second column for the 

first five rows is sixty, or 1:0. In the sixth row 7:30 

is equivalent to 60 X 7 + 30, or 450, and the product of 

8 and 450 is 3600, which is 1:0:0 in sexagesimal form. 

The product of the two numbers is the same in the 

seventh row and then returns to 60 in the next three 

rows. In fact, the products of the numbers in each of 

the rows is a power of 60 (see, for example, 27 X 

2: 13:20 = 26 X 8000 = 216,000 = 60 3 = 1:0:0:0), which 

would mean, given the Babylonian practice of dropping 

terminal zeros, that the products of the numbers in each 

of the rows is 1. 

Now, to use modern terminology, since the product 

of a number and its multiplicative inverse is one, the 

consequence of the preceding observations is that the 

numbers in the second column are the multiplicative 

inverses of the numbers in the first column, and since 

it is possible to perform division, which was a lengthy 

and difficult process for the Babylonians, by 

multiplying the dividend by the multiplicative inverse 

of the divisor, we see in the second column of the above 

table the number to use as a factor if we wish to divide 

by the number in the first column. 
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Suppose, for example, we wish to divide 506 by 18 

(28 1/9). This converts into 8:26 divided by 18 in 

sexagesimal notation. In the table above we see that 

3:20 is the multiplicative inverse of 18, and so we now 

have a problem which converts to 8:26 X 3:20, and is 

performed as follows: 

8:26 X 3 = 24 + 78 = 24 + 1:18 = 25:18 

8:26 X 20 = 160 + 520 = 160 + 8:40 = 168:40 

2:48:40 

Adding: 

25: 18 + 2:48:40 = 28:6:40. 

We know from context that 28 is the whole number and 

6:40 is the fraction. 60 X 6 + 40 = 400 is the 

numerator in our own terms and 3600 is the denominator, 

yielding 28 1/9, the correct quotient. 

It should be noted that all integers in the table 

are always factorable into powers of two, three and 

five, as these always have terminating multiplicative 

inverses in base 60 t H but this did not eliminate the 

possibility of using such tables for other numbers. By 

proportional parts the Babylonians were able to 

interpolate intermediate values. Says Boyer, "Linear 

interpolation seems to have been a commonplace procedure 

in ancient Mesopotamia." 16 

Such, then, was the first example of procedures
 

which foredate the use of logarithms. Impressive as
 

such calculations were, they were not applied generally 
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to all problems in which large numbers were to be 

multiplied or divided. That was to wait until Napier, 

but in the ancient world there was but one more impetus 

to logarithms, and to that one we may now turn. 

2.3 Archimedes. To place Archimedes among the 

greats of Greek mathematics is perhaps to be a bit 

misleading if we think only of the classical Greek 

period. He was, it is true, born in Syracuse, a Greek 

settlement on Sicily, and it was there to which he 

returned to live out the rest of his life upon the 

completion of his education, but he was educated in 

Alexandria,16 and that makes all the difference in the 

kind of mathematics he did. As Morris Kline puts it: 

Of course mathematics had a most important 
place in the Alexandrian world, but it was not 
the mathematics that the classical Greek 
scholars knew. No matter what some 
mathematicians may say about the purity of 
their thoughts and their indifference to, or 
elevation above, their environment, the fact 
of the matter is that the Hellenistic 
civilization of Alexandria produced a kind of 
mathematics almost opposite in character to 
that produced by the classical Greek age. The 
new mathematics was practical, the earlier 
entirely unrelated to application. The new 
mathematics measure the number of grains of 
sand in the universe and the distance to the 
farthest stars; the older one refused to 
measure. 17 

It turns out that he who measured the number of 

grains of sand which could be fitted into the universe 

insofar as he could determine its size was Archimedes, 18 

and while the breadth of his work covers ten entire 

known treatises, as well as traces of lost worksl~ we 
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must content ourselves with that which counts the grains 

of sand in the universe: the Sand Reckoner; and in 

which, it might be noted, we find that Aristarchus, a 

contemporary mathematician and friend of Archimedes, 

advocated the Copernican system of the universe. 20 As 

Archimedes himself noted, most astronomers of the time 

rej ected such theories. 21 

The Sand Reckoner itself was an essay addressed to 

the king of Syracuse to argue the premise that whomever 

would argue that grains of sand cannot be counted are in 

error, and that such large numbers as would be necessary 

are possible in the Greek system of numeration, in spite 

of the fact that the Greeks "never possessed the boon of 

a clear, comprehensive symbolism."22 

The first task, of course, was to determine the 

size of the universe. This he did by using the accepted 

estimates of the size of the earth, moon, sun, and the 

distances from each to the other and to the stars. His 

determination was that the "diameter of the ordinary 

universe as far as the sun is less than 10'0 stades," 

wherein one stade is about one tenth of a mile. 23 

The next task, of course, is to estimate the size 

of one grain of sand. For the sake of the argument his 

estimates throughout the treatise were over-sized, and 

thus was it that he considered a poppy seed no larger 

than 10,000 grains of sand, that a poppy seed is at 

least one fortieth of the width of a finger breadth, and 
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on and on until it is estimated that the known universe 

can be no larger than would contain 10 61 grains of sand. 

To then allow for the size of the universe advocated by 

Aristarchus, Archimedes increased his estimate to 

1063 24
• 

It should be pointed out here that such numbers did 

not appear in the forms rendered above. In fact, what 

we accept as exponents in modern notations were for 

Archimedes, Eutocius and Diophantes how denominators of 

fractions were expressed. 26 

Archimedes instead introduced the concept of period 

(or order), wherein the first period began with one and 

ended at ten to the eighth itself raised to the ten to 

the eighth power less one. The second period began at 

ten to the eighth power raised to the ten to the eighth 

power, and there were successive periods through the 10 

to the eighth period. 26 Some sense of the size of such 

numbers may be gathered from the observation that the 

second period begins, in modern notation, with the 

number 1 followed by 800,000,000 zeroes, and that his 

system continued up to "that which we should write down 

with 1 followed by 80,000 million million ciphers. "27 

In spite of the absence of exponents, the above 

suggests a system of writing large numbers which uses a 

base number, in the case of Archimedes, 100,000,000 or 

lOB. From the above we know that such a base would have 

periods (or orders) functioning not unlike our own 
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exponents, and in connection with this Archimedes 

mentions, "all too incidentally," that to multiply 

numbers expressible in such a base and by such periods, 

one need only add the orders. 28 The tremendous size of 

such a base number as Archimedes' may seem strange to 

modern readers, and there is nothing in his work which 

resembles modern exponential notation. Still, in the 

Sand Reckoner Archimedes created a system of notation 

and expressed an idea which we now associate with a-a" = 

a- +", and, which we shall subsequently see, led 

directly to the invention of logarithms nearly 2000 

years later. 

2.4 Summary and Conclusions. The contributions of 

the Babylonians and of Archimedes himself toward the 

ultimate invention of logarithms are impressive, even if 

frustrating. They would seem to come so close to what 

to us must seem so obvious. The Babylonians ingeniously 

developed tablets which used shorthand methods for the 

calculation of interest, but seemed either not 

interested in or unable to extend their methodology to 

more general problems and thus to general principles. 

Archimedes as well acknowledged the possibility of 

performing multiplication by the device of adding 

"orders," but there the notion dies. 

Still, we see the impetus from which logarithms 

came into being - to somehow simplify the complicated 

calculations which are the inevitable by-products of 
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increasingly sophisticated societies. 

the Babylonian scribes and Archimedes 

demonstrated shortly. 

The influence 

shall be 

of 
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CHAPTER III 

WORKING UP TO IT 

From Antiquity to Francois Viete 

3.1 Introduction. Mathematical progression toward 

the invention of logarithms from Archimedes to John 

Napier begins slowly and proceeds painfully through the 

interference of the Roman hegemony and the Middle Ages 

to the renewal of learning in the Renaissance and in the 

late sixteenth century hastens to its conclusion. 

Three distinct but not separable elements each 

contributed to Napier's discovery - trigonometry, map­

making and astronomy, and each of these deserve 

attention in order to understand the magnitude of the 

discovery of logarithms. Trigonometry had, of course, 

been a source of interest throughout the period to which 

we refer, though so dormant one could hardly see it 

breathing. Map-making became a matter of economic as 

well as intellectual interest in the wake of Columbus' 

discovery of an entirely new world where none was 

supposed to exist. And the virtual revolution in 

observational astronomy brought about by the work of 

Tycho Brahe and Johannes Kepler had not only severely 

tested the computational abilities of those who tried to 

make sense of the discoveries they were making, but 
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brought about a technique of making complicated and 

difficult computations called 'prosthaphaeresis,' a 

procedure known to Napier and influential upon his work. 

This chapter will seek to examine these influences 

with consideration of their chronological order. 

3.2 Early Significant Work in Trigonometry. Of 

course the term trigonometry was not coined until not 

long before the invention of logarithms, but the 

Elements of Euclid is said to have contained "all the 

essential ingredients for the development of plane 

trigonometry to the level attained before the co­

ordinate method made it possible to deal with direction 

as opposed to static magnitude. 29 By the second half of 

the second century B.C. the astronomer Hipparchus of 

Nicea compiled the first trigonometric table and has 

thus earned the right to be called the father of 

tr igonometry. 30 

Ptolemy's Almagest, a text which is said to have 

"enjoyed a prestige on all fours with that of Euclid's 

Elements" from 800 A. D to 1500 31 contained tables of 

sines which "remained an indispensable tool of 

astronomers for more than a thousand years. "32 To this, 

subsequent Arab mathematicians added Hindu notations and 

"added new functions and formulas. "33 

3.3 The Middle Ages. Corresponding developments in 

mathematical thinking as well began slowly to contribute 

to the ultimate development of mathematics. Thomas 
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Bradwardine (1290?-1349), for example, challenged 

Aristotelian assumptions about the determination of 

velocity and theorized that 

To double a velocity that arises from some 
ratio or proportion F/R, he said, it was 
necessary to square the ratio F/Rj to triple 
the velocity, one must cube the 'proportion' 
or ratio F/R. This is tantamount to asserting 
that velocity is given in our notation, by the 
relationship V = K log F/R, for 10g(F/R)n= n 
log (F/R) 34 

Extending Bradwardine's work, as well as making 

considerable contributions of his own, was one Nicole 

Oresme (1323?-1382), a Parisian who ultimately became 

Bishop of Lisieux. 35 He generalized Bradwardine's 

theory to include any rational fractional power and to 

give rules for combining proportions which are 

equivalent to our laws of exponents, i.e., as had 

Archimedes. 36 Additionally, Oresme "was the first 

person to grasp the significance of a fractional index 

and the relevance of mapping to the notion of an 

algebraic fraction. "37 Of final note, but perhaps of 

greatest significance in the history of logarithms, 

Oresme was the first to conceive of the outline of a 

figure as a locus of points.~ 

3.4 The Renaissance. Though we know him usually by 

the name of Regiomontanus, John Mueller (1436-1476), a 

German, is important to our study, even if briefly, for 

it is to him we owe the revival of trigonometry, which 

shall become more important anon. Mueller was a student 

of George Peurbach, a Viennese scholar, in both 
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astronomy and trigonometry, and he extended the work of 

his master, who had in turn perceived the errors in the 

Latin translations of the Almagest and as well had 

argued that neither had Arabic authors remained true to 

the Greek originals. 3' 

But more to the immediate point was the work of one 

Nicole Chuquet (1445?-1500?), of whom little is known 

save that he was French. Curiously, while both Chuquet 

and Stifel, some fifty years later, regarded negative 

numbers as absurdities,·o it was Chuquet who first 

recognized positive and negative integral exponents and 

used them in his notations. Indeed, they are nearly 

recognizable for what they are to our own eyes. 5x- I , 

for example, would be written by Chuquet as .5. 1.,.1 

where the m stands for the French word mains - his own 

word for subtraction.·2 Having then developed 

exponential notation it was not difficult for Chuquet to 

restate the laws of exponents and then to further 

observe the relationships between the powers of the 

number two, which he did in a table from 0 to 20. Of 

course the products of the powers correspond to the sum 

of the exponents, which Chuquet demonstrated and his 

work, despite the gaps, is perhaps the first near table 

of logarithms since those of the Babylonian scribes. 

Stifel (ca. 1487-1567) carried Chuquet's work with 

tables of base two to the use of negative exponents, 

i.e .• 2- 1 = 1/2, 2-2 = 1/4. 2- 3= 1/5, etc., but he did 
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not use Chuquet's exponential notation. 43 

Map-making became a particularly important concern 

to mathematicians in the latter half of the sixteenth 

century, but although logarithmic-like tables were 

developed by at least two men, the influence of such 

work on Napier is unknown. 

The problem for map makers is, of course, that 

spheres cannot be laid out on flat surfaces without 

distorting either distances, angles or both between 

points. Gerhard Kremer (1512-1594), sometimes known as 

Mercator, devoted his entire life to the development of 

trigonometric means of solving the problem,44 however 

two British mathematicians are credited with developing 

logarithmic tables to aid in the processes of 

calculations - Edward Wright (1558-1615) published his 

in 1610 (four years before Napier) and, later, Thomas 

Harriot (1560-1621).45 Both men, however, seem to have 

been unconscious of the significance of their work. 46 

3.5 Prosthaphueresis and Francois Viete. The vast 

number of calculations needed for map-making and the new 

work by Tycho Brahe (1546-1601) in observational 

astronomy in Denmark and Prague had left a glaring need 

for efficient methods of doing such calculations with 

speed and accuracy, one which was in general use as 

opposed to the somewhat private and specialized methods 

of Wright and Harriot, and such a method, before 

logarithms, became known as Prosthaphaeresis, a Greek 
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term meaning adding/ subtracting.·7 More to the point 

for our study, prosthaphaeresis permitted mathematicians 

and other scientists to perform complicated 

multiplications and divisions through, respectively, 

addition and subtraction, as did, of course, the 

subsequent invention of logarithms. While it is 

generally recognized that Brahe's only major 

contribution to the history of science is that he was 

the first to see the necessity for "precise and 

continuous" observational data in astronomy,·8 it is 

also true that Brahe's use of prosthaphaeresis and his 

methodology for it had come to be known by Napier 

through one Dr. John Craig as early as 1590.·~ But such 

a methodology first reqUired the contributions of one 

Francois Viete (1540-1603), considered to be the 

greatest French mathematician of the sixteenth cen­

tury.50 Whi le his most famous work was In artem, which 

did much for the development of symbolic algebra, 6\ he 

is important to us in our work for the development of 

sum-to-product and product-to-sum trigonometric 

identities. 

If we begin with the formulas for the cosines of 

the sum and difference of two angles, which were known 

at the time of Viete, we have: 

cos(x + y) = cos x cos y - sin x sin y, and
 
cos(x - y) = cos x cos y + sin x sin y.
 

Adding the two identities together gives us:
 

cos(x + y) + cos(x - y) = 2 cos x cos y,
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wherein the sin x sin y terms have dropped out. All 

that is necessary to arrive at the formula for which 

prosthaphaeresis was used is to divide both sides of the 

identity by two, resulting in: 

cos x cos y = [cos(x + y) + cos(x - y)] /2. S2 

An example cited by historian Carl Boyer perhaps 

best illustrates how prosthaphaeresis worked: 

If, for example, one wished to multiply 98,436 
by 79,253, one could let cos A = 49,218 (that 
is, 98,436/2) and cos B = 79,253. (In modern 
notation we would place a decimal point, 
temporarily, before each of the numbers and 
adjust the decimal point in the answer.) 
Then, from the table of trigonometric 
functions one reads off angles A and B, and 
from the table one looks up cos(A + B) and 
cos(A - B), the sum of these being the product 
desired. Note that the product is found 
without any multiplication having been 
performed. 53 

To illustrate the validity of the method, and not 

coincidentally, the accuracy of Boyer's description 

thereof, the author has written a program in Turbo 

Pascal which essentially duplicates the method, and it 

does work! A description of the program and the program 

itself can be found in Appendix A at the end of this 

study. Quotients were handled in the same manner by 

using tables of secants and cosecants. s • 

It is important to note, too, that for the process 

to work accurate tables were required, and by 1596 such 

tables had been worked out correctly to seven decimal 

places at intervals of ten seconds. 66 

3.6 Summary and Conclusions. Clearly, then, the 
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growing sophistication of trigonometric methods, the 

pressures of map-making and astronomy, and the 

development of prosthaphaeresis had set the stage for 

the final assault on what was to be the invention of 

logarithms. Some had come close and some had made 

significant discoveries which aided Napier and his 

contemporaries in their final development of what Napier 

himself called "the marvelous rule of logarithms." It 

is to such work that we may now turn. 
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CHAPTER IV
 

FULFILLMENT
 

John Napier and the Invention of Logarithms
 

4.1 Introduction. "One of the great diseases of 

this age," wrote Barnaby Rich 0540?-1617) in 1600, "is 

the multitude of books that doth so overcharge the world 

that it is not able to digest the abundance of idle 

matter that is every day hatched and brought into the 

world. "&6 Rich himself not only complained of the 

problem, he contributed to it. A self-educated soldier 

and writer of innumerable light romances, one of which 

is said to have inspired Shakespeare's "Twelfth Night," 

he brought into the world much of what he so eloquently 

complains. &7 And of the sheer volume of work we can 

hardly dispute him. But even if we take only the twenty 

years, 1594-1614, in which John Napier is said to have 

worked on logarithms, we encounter, beyond the "idle 

matter" of Barnaby Rich, what must be one of the most 

productive, tumultuous and intellectually important 

periods in history. 

It was the time of Shakespeare, Elizabeth I, Sir 

Walter Raleigh, Sir Francis Drake, Francis Bacon and the 

Spanish Armada (1597), Oliver Cromwell was born in 1599 

and Elizabeth herself died in 1603, not before, however, 
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the Earl of Essex in 1601 would lead a revolt against 

her and was executed for treason that same year for his 

trouble. James I succeeded Elizabeth to the throne, 

arousing Raleigh against him, for which Raleigh was 

himself sent to prison that same year. Peace between 

England and Spain was declared in 1604, but the next 

year saw Guy Fawkes try to blow up the House of Lords, 

for which he is remembered in England to this day. 

Shakespeare wrote and produced some of his greatest 

works during this period: "The Two Gentlemen of Verona," 

"Love's Labor Lost," and "Romeo and Juliet" appeared in 

1594. "A Midsummer Night's Dream," and "Richard II" 

followed in the next year. "The Merchant of Venice" 

appeared in 1596, "Henry IV" appeared in both parts the 

following year, "Much Ado about Nothing" the year after 

that, "Julius Caesar," "As You Like It," and "Twelfth 

Night" in 1599; "Hamlet" and "The Merry Wives of 

Windsor" in 1600j "King Lear" and "MacBeth" in 1605, and 

other works until fire destroyed the Globe Theatre in 

1613, and the great man himself died in 1616. 

Sir Francis Bacon pUblished his influential The 

Advancement of Learning in 1605. The authorized version 

of the King James Bible was pUblished in 1611, and in 

the following year, coincidentally one assumes, there 

occurred the last recorded burning of heretics in 

England. Passionate disputations regarding the evils of 

Protestantism by Catholics and of Catholicism by 
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Protestants, too many to even begin to list (but one by 

our own John Napier), were pUblished during the period, 

but amidst all that Raleigh found the time to write and 

publish his great A History of the World in 1614. 

Some evidence of the extraordinary work in science 

and mathematics during the period has already been seen. 

There is more. Galileo invented the thermometer, 

Johannes Kepler pUblished De admirabli proportione 

coelestium orbium, and the Trigonometric Tables of G. D. 

Rheticus were published posthumously, all in the year 

1596. In 1598 Tycho Brahe published an account of his 

work and a description of his instruments, already 

noted, and in 1600 he and Kepler began their brief, 

stormy but infinitely important work together. Dutch 

opticians invented the telescope that year as well. In 

1604 Kepler published his Optics. Galileo invented the 

proportional compass in 1606 and in the following year 

constructed an astronomical telescope. In 1606 Kepler 

published his greatest work, De motibus stellea Hartis. 

And while Napier himself is often given much of the 

credit for popularizing the decimal point, it was 

Bartholomew Pitiscus, a German mathematician, who first 

used them in trigonometric tables in 1612. 

In 1614 John Napier published Hirifici
 

logarithmorum canonis descriptio. 58
 

The publication of this book certifies for most 

historians the invention of logarithms by John Napier in 
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1614. "There is evidence," writes J. M. Dubbey, "that 

he established the theoretical principles twenty years 

earlier at a time when indices were not generally used, 

when there was little idea of functional relationships, 

and even decimals were hardly respectable."n Lord 

Moulton is even more impressed: 

The invention of logarithms came on the world 
as a bolt from the blue. No previous work had 
led up to it; nothing had foreshadowed it or 
heralded its arrival. It stands isolated, 
breaking upon human thought abruptly without 
borrowing from the work of other intellects or 
following known lines of mathematical 
thought. 60 

The purpose of this study has been, of course, to 

argue otherwise and the rest of Lord Moulton's address, 

upon the occasion of Napier's tercentennial and cited 

above, seems to argue as much in support of the thesis 

of this study as his own. Yet still another controversy 

arises - that of the priority of the invention of 

logarithms. Florian Cajori cites evidence from Kepler 

that Jobst Burgi 0552-1632)61 "had a complete set of 

logarithmic tables sometime between 1603 and 1611, but 

had declined to publish them before Napier did his in 

1614."62 And Carl Boyer contributes the possibility that 

"the idea of logarithms had occurred to Burgi as early 

as 1588, which would be half-a-dozen years before Napier 

began work in the same direction. "63 

Still, priority for the invention of logarithms is 

generally given to Napier, and even to Cajori, "Few 

inventors have a clearer title to priority than has 
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Napier to the invention of logarithms. "64 His argument 

is a fairly simple one: First, Napier clearly published 

first. Second, that Burgi is entitled to the honor of 

independent invention. And finally, though he offers no 

evidence in support of this contention, Napier had begun 

his work in 1594 and that this was, therefore, "probably 

much earlier than Burgi. "65 

That Napier did conceive of, develop and then 

publish a table of logarithms independently of anyone 

else does seem beyond contention, and that he was the 

first to publish his results, regardless of any claims 

to the prior existence of tables by Burgi, does seem to 

assure Napier the unassailable right of priority. As a 

result, this chapter is entirely devoted to Napier and 

his invention of logarithms, with the following chapter 

devoted to Burgi, Briggs, Vlacq and others up to Newton 

whose work with or independently of Napier so enriched 

his invention. After a brief look at what is known of 

the man Napier himself, the derivation of Napier's 

logarithms will be discussed in detail, followed by an 

examination of what is speculated about how he came to 

such invention. 

4.2 Napier, the Man. Little is known of Napier, 

"but," as to what is known says Lord Moulton, "it 

suffices to show him strong and self-reliant, a man of 

solitary habits of thought and untiring industry, and 

am content with such a delineation of the man of whom 
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am about to speak. "66 That may be, but it is also true 

that Napier was a nobleman, Lord of Merchiston, and he 

was not in the slightest either a professional 

mathematician, or one who considered his mathematics the 

source of his ultimate fame. Even at the time of his 

birth the issue of whether Protestantism or Catholicism 

would prevail among the Scottish people had begun. 67 

Napier himself was the son of his father, Protestant to 

the core, as had been his father before him,68 and "I t 

came to be," wrote P. Hume Brown, "his burning 

conviction that the salvation of mankind was bound up 

wi th the overthrow of the Papacy. "69 To argue to this 

end he wrote A Plaine Discovery of the Wflole Revelation 

of St. John,70 which brought him far more fame in his 

own lifetime than ever did the invention of log­

ari thms. 71 

Napier's motivation for beginning the work which 

led ultimately to his discovery is not especially 

obscure. Carl Boyer points to the considerable interest 

in trigonometry during the period, a time, however, 

"primarily of synthesis and textbooks" on the subject. 72 

Pitiscus, for example, first published his book, already 

cited, in 1595, which seems to have given the subject 

its name, 73 and Lord Moul ton suggests that 

his original idea was only to construct tables 
that would enable the product of two sines to 
be readily ascertained. If I am right in 
this, the suggestion may well have come to him 
from his familiarity with the well-known 
trigonometrical formula 
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Sin A Sin B = 1/2[Cos(A - B) - Cos(A + B)], 

which expresses the product of two sines in 
terms of the cosines of the sum and difference 
of the angles. 74 

J. VI. 1. Glaisher seemingly concurs" .. that 

Napier's table was one of sines, connecting him with the 

great table-makers of the previous century. His 

principal object was to facilitate the multiplication 

and division of sines, and this was effected by his 

table."7l' How he proceeded to such effect can and shall 

be examined, but to greater effect, perhaps, if we 

examine first what he invented and how it works. And to 

that we may now turn. 

4.3 The Logarithms of John Napier. It should be 

pointed out at the outset that Napier's logarithms, as 

he first invented them, will not appear familiar to a 

reader who is familiar only with such versions as have 

since evolved. First of all, they will be without 

decimal points at their beginning. "Napier's object," 

Joseph Frederick Scott reminds us, "was to simplify 

trigonometrical computation. Since it was still 

customary to regard sines as lines drawn in a circle of 

suitable radius, the necessary accuracy could be 

obtained by making the radius very large, say of the 

order of 10,000,000. Napier followed the practice. "76 

And as his logarithmic tables were tables of the 

logarithms of sines, we shall find therein sines from 0 

to 10,000,000. Another difference is that as sines 
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become smaller the logarithms themselves become larger. 

For example, the sine 2327 has a logarithm of 6063128 in 

Napier's tables published in 1616, while the sine of 

999998 has the logarithm of 2.2 in the same table. 77 

But whatever the seeming oddities of Napier's 

tables, Napier understood that, in the words of Lord 

Moulton, 

In order to create tables which would enable 
numbers to be multiplied together without 
actually performing the operation, they must 
not be represented as resulting from 
continuous addition [but] as resulting from 
continuous mUltiplication. 76 

The first step, then, in creating a table of 

Naperian logarithms is to create a geometrical sequence, 

in which, by definition each succeeding element of the 

sequence is the product of a single factor used one more 

time than in the preceding element. For this Napier 

used 

r, r(l-l/r), r(1-1/r)2, ... , r(l-l/r)", 

where r = 10,OOO,OOO.7~ The logarithm, then, of each 

succeeding sine is the exponent of the factor l-l/r 

which was used to reach that element. And this pattern 

can be observed from the output of a Turbo Pascal 

computer program in Appendix B, written to generate 

Napierian logarithms by this method. In that program 

the angles corresponding to the sine of the angles are 

also given and they correspond to Napier's own. 

The result is that there is a correspondence 

between each element in an arithmetic sequence and 
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another element in a geometric sequence, giving rise to 

what is Napier's own definition and explanation of a 

logari thm: 

The logarithm of a given sine is that 
number which has increased arithmetically with 
the same velocity throughout as that with 
which the radius began to decrease 
geometrically, and in the same time as the 
radius has decreased to the given sine. 

T d S 

g g 

b c i 

a a 

Let the line TS be the radius, and dS a 
given sine in the same line; let g move 
geometrically from T to d in certain 
determinate moments of time. Again, let bi be 
another line, infinite towards i, along which, 
from b, let a move arithmetically with the 
same velocity as g had at first when at T; and 
from the fixed point b in the direction of i 
let a advance in just the same moments of time 
up to the point e. The number measuring the 
line be is called the logarithm of the given 
sine dS. BO 

Napier is understandably proud of his achievement 

and seems not to tire of providing examples of its 

trigonometric properties and their usefulness. An 

example of a theorem in a section devoted to right-angle 

triangles may prove interesting. "In a right-angle 

triangle the Logarithm of the leg is equal to both the 

Logarithm of the angle opposite thereto, and the 

Logarithm of the Hypotenuse."BI Using the triangle in 

Figure 1, the right angle is at A, with a hypotenuse of 

9385 and legs of 9384 and 137. Suppose we know the 
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hypotenuse and the leg AB but wish to determine the 

angles at Band C. We look in the tables for the log of 

9385, 63587, and the log for 9384, 63480. The 

difference is 107. This is the log of 89 degrees, 9 3/4 

minutes, which is the Angle at C. The angle at B is the 

complement, or 0 degrees, 50 1/4 minutes. Corresponding 

examples are given for finding each of the other two 

elements if the other two are given. 82 

FIGURE 1
 

Napier Right-Angle Triangle
 

c. 

9384 

B I ..IA 
137 

4.4 Methods of Discovery. While Napier's system, 

its derivation and the uses of logarithms seem simple 

enough, the process of discovery, lasting, as has been 

noted, some twenty years, is one of some controversy 

among his most respectful admirers. Most explanations 

of Napier's system begin with a two-line drawing such as 

that provided by Napier himself in the explanation cited 
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above, thus giving rise to the supposition that, as 

David Eugene Smith has put it, " .. Napier approached 

logarithms through considerations seemingly qUite 

geometrical or mechanical. "83 But Lord Moulton argues 

forcibly that the process began quite differently and 

followed three successive stages. 

Moulton seems to feel that Napier's first problem 

was to deal with the question of how to create a 

geometric sequence of sines in descending order. " Hence 

it came to pass," he states, "that Napier's first idea 

was to start from this large figure of 10,000,000 and to 

mul t iply repeatedly by a factor slight ly less than 1." 84 

He did so by the method which has already been 

described. Having then found such a series, says 

Moulton, Napier then discovered that he had found a 

second series, what Napier called logarithms, which was 

arithmetic in ascending order. 

In this way [writes Moulton] every number less 
than 10,000,000, that is to say every sine, 
would be very close to some number produced by 
a known number of these repeated operations of 
multiplication by the chosen factor, and might 
without appreciable error be taken to be the 
actual result of that number of operations. 86 

The first stage, then, was to discover the 

arithmetic means by which a radius, or sine, could be 

reduced by means of continued mUltiplication and then to 

assign a number which represented the number of times 

such an operation had to be performed in order to reach 

a given radius or sine. The second stage of discovery, 
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according to Moulton, was to begin representing the 

continual reduction of the radius by a line. Thus was 

the line representing the radius successively cut to 

represent the new, shorter radius, while at the same 

time a second line grew by a single element at the same 

ti me. 86 

This, according to Moulton, "naturally gave rise to 

the idea of a moving point whose velocity is 

proportional to its distance from the other end of the 

line."87 Vhile Moulton agrees, however, that this new 

description differs little from what has already been 

described, i.e., it merely gives a geometrical 

representation to an arithmetic operation, he states 

that at this point Napier took a critical, though 

certainly obvious, step: He states that "the logarithms 

of proport ionals are 'equally differing, I "88 and it was 

this step which permitted him to affirm that his system 

of logarithms permitted its users to "find continued and 

mean proportionals of all kinds, to extract roots, to 

calculate powers."8~ Further, 

His representation of the single operations by 
equal distances on the logarithmic line 
adapted itself perfectly to the new line of 
thought. Equal groups were represented by 
equal lengths on the logarithmic line, and 
thus he came to view the addition of a certain 
length to the logarithms of numbers as giving 
you the logarithms of those numbers after they 
had been reduced in a given proportion.~o 

This concentration on groups of operations, states 

Moulton, now led Napier to what Moulton considers the 
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third and, to Moulton, the most interesting stage of 

development - the notion of changes of 'determinant 

moments' so small as to make the reduction by each 

single operation infinitely small, "and the number of 

operations infinitely great."~l To Moulton this 

represents a jump from "discontinuity to continuous 

motion, "~2 and he seems happily stunned that Napier 

ignored such theoretical difficulties as presented 

themselves thusly for the simple reason that his system 

worked anyway. "Napier," he states, "saw that his work 

must be true of continuous motion if it was true of all 

discontinuous motion, and that he was not going to be 

delayed in his great and practical task by any 

metaphysical difficulties that he foresaw could not 

affect his results." ~3 

Whatever Lord Moulton's enthusiasm, however, Julian 

Coolidge remains unimpressed. Referring to Moulton's 

earlier assertion that Napier might have been influenced 

by his awareness of a product-to-sum formula in 

trigonometry to develop logarithms, Coolidge states, "I 

cannot feel that this point is well taken. We shall see 

that he began with a comparison of arithmetical and 

geometrical series, even though his first logarithms 

were merely those of sines. "~4 Yet in seeming 

contradiction of at least a part of the above, Coolidge 

later asserts that Napier, "Instead of following the 

natural arithmetical route suggested by the relation of 
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arithmetical and geometrical progressions, he introduced 

geometrical considerations which seem to me to have 

compl icated the matter enormously. "~5 Cool idge then 

goes on to describe moving points on lines such as what 

have already been considered, and as a final sWipe at 

Moulton, and without offering evidence, Coolidge states 

that he is "not convinced that Napier had really the 

difficult idea of an instantaneous velocity which was so 

baffling to Newton and the other early writers on the 

ca lcul us. "~6 

4.5 Summary and Conclusions. By whatever the means 

of discovery, John Napier, Lord of Merchiston, inventor 

of logarithms, died in 1617, a scant three years after 

his invention was completed, though not before he could 

himself make considerable contributions, as shall be 

seen, to its continued development. It is probable that 

he knew little of the controversy that would eventually 

surround his invention. and it is pleasant to read his 

near boyish enthusiasm as he describes its wonders. 

But perhaps it is good that he died when he did. 

The Thirty-Years War would begin in 1618 and Sir Walter 

Raleigh would be executed that same year. England and 

Scotland had already begun to nearly tear themselves 

apart in religious and political strife, spurred on by 

the rise of Puritanism. Galileo had faced the 

Inquisition for the first time in 1615 and was 

prohibited from further scientific work the following 
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year. Dark clouds seemed to be gathering. 

The Age of Reason, however, had only just begun, 

and dark prejudices could not stern the flood of books. 

"Already," wrote Robert Burton (1577-1640) in 1626, 

appropriately enough the author of The Art of 

.Melancholy,·j7 "we shall have a vast chaos and confusion 

of books; we are oppressed with them, our eyes ache with 

reading, our fingers with turning.",e 
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attributes to Burgi the inventions of decimal fractions 

and logarithms, though Burgi did not pUblish his work 

until six years after Napier had published his and had 

become famous throughout Europe through the influence of 

Kepler. 100 As has been observed earlier herein, there 

seems little question that Napier deserves priority in 

the invention of logarithms for the reasons already 

given, a more contemporary historian has offered the 

additional observation that Burgi's logarithms were "not 

nearly so sophisticated or useful" as Napier's. 101 

Burgi's work was not unlike that of Napier's. He 

conceived of a correspondence between arithmetic and 

geometrical series, and his method of calculation was 

very similar to Napier's. That is, there is a common 

multiplier of 108, a common ratio, and an exponent which 

indicated the number of times an operation needed to be 

performed and which had correspondence to the number for 

which we wish to find the logarithm. A sample of 

Burgi's logarithmic tables may help to clarify his 

methods. 
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TABLE 2 

Sample of Logarithmic Tables 
of Jobst Burgi 

# Log. 
========================= 

o 1 0000 00000 
10 1 0001 0000 
20 1 0002 0001 
30 1 0003 0003 

990 1 0099 4967 

The common ratio, then, is 1.0001, and each 

individual element is determined by the following 

formula: 

10 X n = 10· X (1. OOOl)n 102 

Boyer seems more impressed with Burgi's tables than 

with Napier's. He argues, for example, that Burgi's 

tables are very nearly those of the natural logs as we 

know them today. For one thing, if we were to divide 

all the numbers in the left-hand column (Burgi called 

these the red numbers and had them printed in red) by 

105 , and all the numbers in the right-hand column (the 

'black' numbers) by 108 , we would have "virtually a 

system of natural logarithms." Further, he points out 

that (1 + 10- 4 ) is approximately equal to e correct10-4 

to four decimal places. 103 

All of this was published in 1620, presumably at 

the great urging of Kepler, but by that time, three 

years after Napier's death, great changes were being 

undertaken in Napier's system. Logarithms to base ten 

had been discussed by Napier and Briggs and the long, 
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hard work of constructing those tables was underway. 

They would first appear in 1624 and occupy the energies 

of more than one outstanding mathematician. It is to 

such work that we may now turn. 

5.3 Common Logarithms. In the remainder of the 

seventeenth century, and before Newton, the world of 

mathematics would encounter Descartes, Fermat and 

Pascal. But before them, says Lancelot Hogben, "the 

invention of logarithms was by far the most outstanding 

mathemat ica I i nnovat ion made by Western Christendom," 104 

though Boyer cautions us that while logarithms had 

ultimately 
a tremendous impact on the structure of 
mathematics. at the time it could not be 
compared in theoretical significance with the 
work, say, of Viete. Logarithms were hailed 
gladly by Kepler not as a contribution to 
thought, but because they vastly increased the 
computation power of the astronomer. lOS 

No one, however, was probably more excited by the 

invention of logarithms than one Henry Briggs, who has 

been heretofore only just mentioned. Thomas Smith in 

his 1707 biography of Briggs, characteristically for the 

time entitled "A Memoir on the Life and Work of that 

Most Famous and Learned Man, Henry Briggs," refers to 

the enthusiastic response of the scientific and 

mathematical world to Napier's Descriptio in 1614 and 

continues: 

but none did so more than our Briggs, who took 
the canon, which cleverly and ingeniously 
condensed such great matters into so few small 
pages, and studied it in every aspect; and 
furthermore, just as if he himself discovered 
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by his own efforts, he penetrated into the 
deeper secrets of it. This book gave him the 
keenest delight. He carried it about in his 
hands or in his pocket, and read it through 
over and over again with most eager eyes and 
the closest attention. In 

Quite apparently the feelings of admiration were 

reciprocated. Briggs had offered to visit Napier, a 

journey in those days of considerable distance and 

discomfort. When delayed Napier is said to have grown 

despondent that Briggs would not appear, but when at 

last Briggs did present himself, notes the variously 

described astrologer and astronomer William Lilly, 

"almost one quarter of an hour was spent, each beholding 

the other with admiration, before one word was 

spoke. " 107 

But Henry Briggs brought with him no uncritical 

admiration. Napier's logarithms were cumbersome by 

modern standards as a boon to calculation. The working 

rules for multiplication, division, powers and roots 

were complicated, and multiplication or division by ten 

necessitated, in Napier's logarithms the addition or 

subtract ion of the ponderous number 23025842. 108 Caj or i 

offers this description of what happened next: 

Briggs suggested to Napier the advantage of 
what would result from retaining zero for the 
logarithm of the tenth part of the same sine, 
i. e. 15°44' 22" . Napier sa id that he had 
already thought of that change and he pointed 
out a slight improvement on Briggs's idea; 
viz. that zero should be the logarithm of one, 
and 10 7 that of the whole sine, thereby making 
the characteristic of numbers greater than 
unity positive and not negative, as suggested 
by Briggs. 10' 



43 

Cajori's description confirms the level of 

cooperation between the two men, which seems to have 

been a matter of some controversy some little time after 

a publication of Briggs's logarithms in 1624. It seems 

clear, in other words, that Briggs not only accepted but 

readily concurred in Napier's suggestions as "'by far 

the most convenient.' "'10 

The first clear indication of the 'convenience' of 

such a system can be found in the following table, 

wherein the logarithms of the various portions of 'the 

whole sine' have been easily calculated. 

TABLE 3 

Logarithms of 'Whole Sines' 

Briggs Common Modern Common 
Number Logarithm Logarithm 

=================================~=================== 

1 10° o 
10 10' 1 

100 102 2 
1,000 103 3 

10,000 104 4 
100,000 106 5 

1,000,000 106 6 
10,000,000 107 7 

The question now remains how Briggs and subsequent 

mathematicians calculated the values for the numbers 

between these powers of ten. While some descriptions of 

the process vary in detail, the general process is 

called "proportional parts. "',\ An examination of the 

numbers and logs to base 2 will provide an understanding 
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of this simple process. 

log o 1 2 3 4 5 

number 1 2 4 8 16 32 

It might be observed that in the first row each number 

is the arithmetic mean of the two before and after it. 

For example, 3 is the arithmetic mean of 2 and 4. Each 

of the numbers in the second row, however, is the 

geometric mean of the two before and after it. Thus we 

may conclude that the number having the logarithm base 

two of three is the geometric mean of the numbers whose 

logarithms base two are 2 and 4 respectively. To find 

the geometric mean of any two numbers we find their 

product and take the square root of it. Hence we may 

find the number which has the logarithm base two of 

three by taking the product of 4 and 16, which is 64, 

and finding the square root of that, 8. And, of course, 

eight is the number which has the logarithm base two of 

3, as can be seen above. 

By exactly the same process did Briggs and others 

find the common logarithms of the numbers between powers 

of ten. Suppose, for example, we wished to find the 

missing number in the second row below which has the 

common logarithm 1.5. 

log o 1 1.5 2 

number 1 10 100 
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total of 47 times."113 The technique, however, was more 

complicated than that. We need first to understand that 

Briggs began by taking a large number of geometric means 

between unity and given primes - in this case two, 

though that is not immediately apparent in what follows 

- and then halving repeatedly the numbers corresponding 

those for which the roots are logarithms. A sample of a 

table of these results follows. 

TABLE 4 

Logarithms by Geometric Mean 

NUMBERS LOGARITHMS 
=============================~==================== 

10 1 
3.162277 . 0.5 
1. 778279 . 0.25 
1. 333521 . 0.125 
1. 154781. .. 0.0625 

Briggs used 30 decimal places in his calculations and 

was eventually able to extract 54 roots of 10! At that 

point he was able to determine that the logarithm of 

1.00000000000000012781914932003235 was 

0.0000000000000000551115123125782702. Briggs was 

additionally able to determine that numbers of the above 

form, i.e., 1 followed by 15 zeros and seventeen or 

fewer significant digits, had logarithms proportional to 

those significant digits. By proportions he then 

concluded that the log of 1.0000000000000001 was 

0.0000000000000000434294481903251804. This was 

significant because it permitted him to determine the 

logarithm of any number of the form 1.000000000000000x 
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simply by multiplying the x by 4.34294481903251804. 

But this only sets the stage for the calculation of 

the logarithm of 2. The first step in the actual 

calculation is to raise 2 to the tenth power, i.e. 

1024. Dividing that by 1000 gives us a number, 1.024, 

between 2 and unity. The taking of the square root of 

that number 47 times then provides us with a number of 

the form above, 1.00000000000000016851605705394977, to 

be exact, and the multiplication of 4.342 ... provides 

the logarithm of that quantity, or 0.00000000000000­

00731855936906239336, which when multiplied by 2 raised 

to the 47th power gives the logarithm of 1.024, which is 

then 0.01029995663981195265277444. All that remains, 

after all that, is to add the characteristic 3 and 

divide by 10 to get the logarithm of two: 0.301029995­

663981195. Clearly such was a labor of love. 114 

Henry Briggs published the first common logarithms 

in 1617, the year of Napier's death. It contained the 

logarithms of the numbers 1 to 1000 to fourteen decimal 

places, of which a portion appear below. It might be 

noted, however, that no decimal points appeared as the 

'whole sine' was still considered 10 7 or 108 
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TABLE 5
 

Partial List of Logarithms
 
by Henry Briggs
 

NUMBER LOGARITHMI
 
============================================= 

1 00000,00000,0000 
2 30102,99956,6398 
3 47712,12547,1966 

34 15314,78917,04226 
35 15440,68044,35028 
67 18260,74802,70083116 

Briggs later published his Arithmetica 

Logarithmica, sive Logarithmorum Chiliades Triginta in 

1624, which contained the logarithms of the first 20,000 

numbers and those from 90,000 to 100,000. Adrian Vlacq, 

a Dutch bookseller, published the logarithms of the 

numbers 20,000 to 90,000 to ten decimal places, along 

wi th Briggs's prior work, in 1628. 116 Vlacq made 

considerable contributions to the understanding of the 

principles underlying the computation and use of 

logarithms in his book Trigonometria Artificialis, 

published around the year 1633. In it and subsequent 

works Vlacq introduced the word characteristic as 

follows: 

Here you will note that the first figure of 
the logarithm, which is called the 
characteristic, is always less by unity than 
the number of figures in the number whose 
logarithm is taken. For example, because log 
3567894 is 6.5524118, it follows that 

log 3.567894 = 0.5524118 
log 35.67894 = 1.5524118 
log 356.7894 = 2.5524118 

and so on. 117 
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Considerable work on the refinement of common 

logarithms to ever-greater accuracy occurred throughout 

the three centuries which have passed since the 

development of common logarithms, but except for one 

notable exception to be encountered a little later, 

these are beyond the scope of this study. What we have 

seen so far is that common logarithms arose from flaws 

in Napier's logarithms obvious even to him, and that 

while he clearly understood what needed to be done, he 

was blessed by the friendship of one who would carry his 

great work beyond him. 

But neither Briggs nor those who followed after him 

completed the full invention of logarithms as we know 

them today. John Gunter came up with the idea of 

inscribing logarithms on linear scales and the result 

was what came to be known as Gunter's Scale, a precursor 

to William Oughtred's invention of the slide rule not 

long afterwards. 118 Hyperbol ic or natural logarithms 

were to flow out of Napier's work as well, and that is 

what shall be examined next. 

5.4 Natural Logarithms. Previous descriptions of 

Napier's tables of logarithms lead easily to the 

conclusion that while the concepts of base and exponent 

were entirely foreign to him, Napier's logarithms, 

despite the absence of decimal points, would in modern 

terminology be described as having a base of l/e."~ 
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Thus, the transition to base e not long after Napier's 

logarithms should hardly come as a major surprise. In 

fact, John Speidell, a contemporary of Briggs's, 

published in 1619 the first known natural logarithms of 

the trigonometric functions. A subsequent publication 

by Speidell in 1622 expanded his work to include the 

numbers from one to 1,000.'= The source of Speidell's 

development of natural logarithms is obscure and 

deserves far more study than it has seemed to receive, 

obviously, but we are aware that the use of infinite 

series to explore such problems as the square root of 2 

had been undertaken first by one Pietro Antonio Cataldi 

(1548-1626) of Bologna. Gregory St. Vincent was the 

first, at about 1668, to examine the curve y = In(x), 

but his influence was of little regard and much of what 

he accomplished was subsequently to be rediscovered much 

later by others. 121 His work with quadratures, however, 

is fascinating, and in 1647, in the words of Florian 

Cajori, St. Vincent 

found the grand property of the equilateral 
hyperbola which connected the hyperbolic space 
between the asymptotes with the natural 
logarithms, and led to these logarithms being 
called 'hyperbolic.' By this property Nicolas 
Mercator in 1668 arrived at the logarithmic 
series, and showed how the construction of 
logarithmic tables could be reduced by series 
to the quadrature of hyperbolic spaces. 122 

Mercator (1620-1687) was Danish but he lived in 

London for some considerable time and then moved to 

France in 1683 to design the fountains at Versailles. 
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The second part of his book of 1668, Logarithmotechnia, 

contains a number of approximation formulas for 

logarithms. It had been known from Gregory St. Vincent 

that the area under the hyperbola y = 1/(1 + x) from x = 

o to x = x is In(l + x). And long division followed by 

integration does give the infinite series 

x/1 - x 2 /2 + x 3/3-x4 /4 + . 123 

Still another approximation of the natural logarithms 

can be found in Appendix C. The computer program found 

therein uses Simpson's Rule to numerically integrate the 

function f(x) = l/x. 

In spite of the presence and widespread acceptance 

of the system of natural logarithms, the concept of base 

e was little understood, if at all. Work by Oughtred, 

Halley and Euler on the compound interest law ultimately 

brought about the discovery of e = 2.718 ... ,124 but it 

was not until Leonhard Euler in 1727 or 1728 that e was 

formally presented as the base of the system of natural 

logarithms. 

In spite of the rapid development of logarithms in 

both ease of computation and theoretical development, 

some historians chafe at what one calls "the incredibly 

tortuous approach to the construction of tables of 

logarithms by Napier and Briggs" - and, one presumes, 

others. 126 The influence of Wallis and Newton, he 

continues, "universalized the use of negative and 

fractional exponents," and so, it would seem, placed the 
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final brick into the structure we now know as 

logarithms. 

5.5 Summary and Conclusions. Wi th or without 

'Napier's Bones,' Gunter's Scales, the slide rule and 

even negative and fractional exponents, the construction 

of logarithm tables, indeed of tables of every kind, 

took on vast proportions from the time of the first 

tables by Napier to the invention of calculators more 

than three centuries later. The standardization of 

logarithmic tables to base 10 and base e made possible 

vast improvements in the means, speed and accuracy of 

computations, in addition to theoretical implications of 

logarithmic curves and infinite series. 

Yet the story of logarithms is not complete without 

reference to a gentleman of our own century who seemed 

to beckon back to a time when life was simpler and, it 

would seem, a lot more tedious. His name was W. E. 

Mansell and he was a London accountant. He retired 

at the age of 47, became a recluse, and devoted the next 

twelve years of his life to the construction of natural 

and common logarithms of the numbers one to 1,000 to 110 

decimal places, entirely without any means of assistance 

in his calculations! His work was finally published in 

1964 and discovered to have been without a single 

error. 126 That such an achievement was considerable is 

obvious, that it was useful is doubtful. 

Yet it is, somehow, a fitting end. 
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CHAPTER VI
 

OVERVIEW
 

Summary and Conclusions
 

6.1 Introduction. The chronological scope of this 

study has been a period of something over 4,000 years ­

from the table-makers of Babylonia around 2400 B.C. to 

the standardization of notation by Wallis and Newton in 

the late seventeenth century. It has touched virtually 

every significant period of mathematical development 

during that time, and it has discussed the work, even if 

only incidentally at times, of more mathematicians than 

one would care to count. 

This study has been an attempt to write as complete 

as possible a history of a subject - logarithms - which 

has not, by itself, seemed to have absorbed the interest 

of historians of mathematics or science, save as 

incidental to what has seemed more pressing to the 

curious intellect, done in the hope, one might add, of 

showing that the history of that subject is more 

interesting than might have been presupposed. 

While one hopes that that has been achieved, it 

must be admitted that whatever might have been hoped for 

in regard to completeness, there remain large gaps in 

the fabric of this study, beyond the present resources 
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of this author to repair, and not, one hopes, for lack 

of effort or intellect to comprehend what might be all 

too clear to others. The purpose of this chapter is to 

condense what has been found into a whole, and to point 

out what one can only wish had been discovered. 

6.2 Summary. The story is essentially one of how 

to make complex computations more qUickly, easily 

and accurately, and it began nearly as it ended - with 

table-makers. The Babylonians constructed them of all 

kinds, including ones for the computation of compound 

interest, the very topic central to the discovery of the 

number e four thousand years later. One of them was 

explored for how it used reciprocals for simplifying 

division. 

Archimedes in the Alexandrian Greek period added 

the significant contribution in The Sand Reckoner of 

developing large numbers by what amounted to the use of 

the laws of exponents to facilitate multiplication and 

division. Save for the fact, however, that neither the 

Babylonians nor Archimedes, typical of their time in the 

history of mathematics, looked beyond the particular 

application to general theory, we might speculate that 

such discoveries might easily have brought about the 

invention of logarithms far earlier than what did in 

fact occur. 

European mathematics was slow to regain the 

initiative toward discoveries which would unfold the 
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mysteries of logarithms. There was, of course, the 

steady development of trigonometry even before the 

Renaissance, including the product-to-sum formulas which 

would figure so prominently in the sixteenth century. 

Too, there was the rediscovery of the laws of exponents, 

which with Stifel's arrangement of the table of base-two 

indices seems to us in retrospect to teeter on the brink 

of logarithms. 

But that would wait for map-making and astronomy. 

Edward Wright compiled the first table of logarithms, 

but he, like his ancient forbearers, looked no further 

than his own particular application. And astronomers, 

eager to simplify their massive computational problems 

ultimately developed a method for multiplying by 

addition, which we have discussed under the name of 

prosthaphaeresis. 

At last, in 1594 John Napier began his twenty-year 

search for a system of logarithms which could be used to 

simplify all of the basic computational needs of the 

user of mathematics. He saw the need to match an 

arithmetic sequence with a geometric one, such that the 

multiplication, division, taking of roots and raising to 

powers of the numbers in the geometric sequence would 

require only the respective operations of addition, 

subtraction, division and multiplication of the 

corresponding elements in the arithmetic sequence. His 

system, as first published in 1614, did not work well, 
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but incurred the passionate support of his friend and 

intellectual benefactor, Henry Briggs. 

Jobst Burgi as well published a table of 

logarithms, his in 1620, though some have speculated he 

had begun his work even earlier than had Napier, but 

Burgi seems not to have been one to assert himself, and 

besides, he did not have a Briggs to follow after him. 

Briggs offered such suggestions as, with a few 

suggestions of Napier's own, ultimately led to what we 

now know as Briggs or common logarithms, and most often 

as base-10. The compilation of the successive tables by 

Briggs, Vlacq and others who followed must have been a 

massive one, but it met with much success and acceptance 

by those whose work was now correspondingly less taxing. 

While the basic work of the invention of logarithms 

was by 1624 Virtually completed, much more work was to 

follow. John Speidell published the first table of 

natural logarithms in 1620, and others followed with 

significant and related studies on logarithmic curves 

and the relationship of the natural logarithms to the 

hyperbolic curves. Finally, Wallis's and Newton's use 

of fractional and negative exponents rendered not only 

respectability to both these forms of notation, but 

finally opened the theory and function of logarithms to 

the understanding of the entire scientific and 

mathematical community. 

Yet while all this may seem complete enough, as has 
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already been mentioned, gaps remain in the history of 

logarithms and seem worthy of further study. 

6.3 Need for Further Study. Occasional reference 

has been made in various parts of the study to possible 

controvery between various historians on one topic or 

another, and some mention of these should be made. 

Still other gaps in our knowledge, or in the sources 

available for this study, should be included as well. 

Many of these would seem to require examination of 

primary sources, not available to this study and 

possibly not even in English. 

One such of the latter type concerns the apparent 

lack of research on just how the Babylonians used their 

tables to perform calculation, especially exponential 

and compound-interest tables. While it may be 

stretching credulity to speculate that such uses were 

logarithmic-like, one cannot know for sure without 

further study. 

A second area of concern would seem to have little 

relevance to any further understanding of the 

development of logarithms, but would, it seems, be 

interesting nonetheless, i.e., the origin and 

development of the computational device known a 

prosthaephaeresis. There are, of course, historians who 

strive to be relevant, but noted historian Barbara 

Tuchman has suggested that those who are, are probably 

doing something other than history. 
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By way of controversy, Jobst Burgi's claim to 

priority in the invention of logarithms has not as yet, 

in the opinion of this author, been sufficiently 

dismissed. While one must admit, as has been mentioned 

in an earlier chapter, that Napier's prior publication 

gives him a virtual strangle-hold on the question of 

priority in the invention of logarithms, there still 

remains whether Burgi began working before Napier and 

whether there had been a working model in the hands of 

a mathematician - Johannes Kepler - prior to Napier's 

first publication in 1614. And, even if none of the 

answers to these questions even slightly dent Napier's 

claim to priority, there is the historical question, 

entirely ignored in the sources available to this 

researcher as to what prompted Burgi and how he 

proceeded. 

And finally, there is little or no information in 

the sources available to the researcher on the questions 

of why and how John Speidell developed his system of 

natural logarithms, a development of such importance in 

the history of science and mathematics as to deserve, it 

seems, far more attention than it has apparently 

received. 

6.4 Conel usions. There is, then, much to be done 

in the study of the history of logarithms, some 

interesting only for its own sake, others of it which 

shall possibly help us to understand the history of such 



59 

areas of mathematics as have been deemed more 

interesting. If this study has helped to promote an 

understanding of the history of logarithms and to 

advance its candidacy as one of the areas worthy of 

interest to the serious scholar, then it has more than 

accomplished its purpose. 
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APPENDIX A
 

A COMPUTER SIMULATION OF PROSTHAPHAERESIS
 

The following program in Turbo Pascal is an 

illustration by the author of this study of the method 

of phosthaphaeresis in use by astronomers in the late 

sixteenth and early seventeenth centuries before the 

invention of logarithms in 1614 by John Napier. The 

reader will note, however, three deviations from the 

strict form described by Carl Boyer and quoted in this 

study on page 23. First, the periodic divisions and 

multiplications by 100,000 are the author's means of 

dealing with positioning of decimals parenthetically 

discussed by Carl Boyer in the text cited above. 

Second, as Turbo Pascal's only inverse trigonometric 

function is the arctangent function, on two separate 

occasions the cosines of the angles had to be translated 

into the tangents of those angles, and from these, of 

course, each of the corresponding angles was determined. 

Finally, since Mr. Boyer's description of the process 

used five-digit integers as illustrations, and to allow 

for the use of integers not in that range would have 

unnecessarily complicated a program designed only to 

illustrate prosthaphaeresis, this program is designed 

only for use with five-digit integers. 
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A number of tests of the program yielded results 

from prosthaphaeresis exactly the same as regular 

multiplication, except one which showed a difference of 

three one-hundredths. The author assumes that a 

difference that small was due to a rounding error and 

could have occurred in determining the tangent of one or 

both of the angles from their respective cosines. 

program prosthaphaeresis (input,output)j 

var
 
a real;
 
b real;
 
halfa real;
 
sum real;
 
product real;
 
cosa real;
 
cosb real;
 
tana real;
 
tanb real;
 
anglea real;
 
angleb real;
 

begin 
wri te (' Please enter a 5-digi t number: '); 
readln (a); 
halfa := a/2; 
cosa := halfa/100000; 
tana := (sqrt(1 - cosa * cosa» / cosa; 
anglea := arctan(tana); 
write(' Please enter a second 5-digit number: 
, ) ; 

readln (b) ;
 
cosb := b/100000;
 
tanb := (sqrt(1 - cosb * cosb» / cosb;
 
angleb := arctan(tanb);
 
sum := «cos(anglea + angleb) + cos<anglea
 
angleb» * 100000 * 100000);
 
product := a * b;
 
writeln(' The regular product is:
 
• ,product: 14: 2); 
writeln(' The product by prosthaphaeretic 
multiplication is: '. sum: 14: 2) j 

readln 
end. 
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PROGRAM OUTPUT: 

se ente~ ~ 5-digit number: 27659.00 
se enter a second 5-digit number: 95304.00 
,regular product is: 2636013336.00 
product by prosthaphaeretic multiplication i e · 2636013336.00 
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APPENDIX B
 

A PROGRAM FOR CONSTRUCTING NAPIER LOGARITHMS
 

The program which follows constructs a very 

abbreviated table of Napier logarithms in the manner 

described in Chapter IV of this study and following the 

guidance of Napier's first book on the subject of 

logarithms, A Description of the Admirable Table of 

Logarithms, pUblished in London in 1616. The results, 

published below, correspond to Napier's own tables. 

The program begins by calculating the various sines 

according the the formula r * (1 - l/r)n. For each 

sine, then, the program shifts to a procedure to 

determine the angle for that sine, and finally all three 

figures are printed in tabular form. As was true of the 

first program, there were certain extra steps which had 

to be taken because Turbo Pascal provides for no other 

inverse trigonometric function than arctangent. The 

cosine function had to be determined, and the tangent 

was then determined by dividing the sine, as determined 

earlier, by the cosine. Angles then were converted from 

radians into degrees and minutes. One additional note: 

r = 106 was used in the program instead of 10 7 because 

the tables in Napier's book were so constructed. 

The program follows, and on the following page one 
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may find a printed copy from running the program. 

program napierlogs (input. output); 

uses 
crt; 
{printer; } 

const 
r == 1000000; 
Y == 10; 

type 
logari thms array[0 .. 10] of integer; 

var 
distance real; 
rlog real; 
factor real; 
degree real; 
minute real; 
expt integer; 
t integer; 
napier logarithms; 

procedure angleconstruct(distance real; var 
degree, minute: real); 

var 
tana real; 
sina real; 
cosa real; 
angle real; 

begin 
sina :== distance / r; 
cosa :== sqrt(1 - sina * sina); 
if (cosa == 0.0) then 

begin
 
degree :== 0;
 
minute :== 0
 

end
 
else
 

begin 
tana :== sina / cosaj 
angle :== arctan(tana) * (180 / pi); 
degree :== int(angle)j 
minute :== frac(angle) * 60 
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end 
end; 

begin 
clrscr; 
wri te (' PRESS ENTER TO BEG IN: ' ) ; 
readln; 
factor := 1 - l/r; 
writeln;writeln;writeln; 
writeln(' Angle'); 
writeln(' degrees minutes Napier 
Logarithm Sine'); 
writeln('======================================= 
===== ===== ==========='); 
for expt := 0 to y do 

begin
 
if (expt = 0) then
 

distance := r
 
else
 

if (expt = 1) then
 
begin 

rlog := 0; 
distance ­ r * factor; 

end 
else 

if (expt >= 2) then 
begin 

distance ;= r; 
for t ;= 1 to (expt) do 

begin 
distance := distance * 

factor 
end 

end; 
napier[exptJ := expt; 
angleconstruct(distance,degree.minute); 
wri teln(' 

'.degree:3:0.minute:l0:3,expt: 17.distance:25:
 
2)
 
end;
 
writeln;writeln;writeln;
 

wr i te ( , PRESS ENTER TO CONT I NUE: ' ) ; 
readln 

end. 
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PROGRAM RESULTS:
 

Angle 
degrees minutes Napier Logarithm Sine 

i==========================================~================= 

0 0.000 0 1000000.00 
89 55.138 1 999999.00 
89 53.125 2 999998.00 
89 51.579 3 999997.00 
89 50.277 4 999996.00 
89 49.129 5 999995.00 
89 48.091 6 999994.00 
89 47.137 7 999993.00 
89 46.249 8 999992.00 
89 45.415 9 999991.00 
89 44.626 10 999990.00 
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APPENDIX C 

THE NUMERICAL APPROXIMATION OF
 
f(x) = l/x USING
 

SIMPSON'S RULE
 

The following is a program in Turbo Pascal which 

approximates the integration of the function f(x) = l/x 

using Simpson's Rule. More accurate approximations 

could have been obtained by the use of a larger n, but 

the value of n was kept low so that differences between 

the approximations using Simpson's and the actual values 

could be observed. The program follows: 

program SimpsonsRule(input, output); 

uses
 
crt;
 

const
 
a = 1;
 
n = 100;
 
x = 1 i
 

var
 
i integer;
 
b integer;
 
c
 integer;
 
f real;
 
mfx real;
 
factor real;
 
sum real;
 
approx real;
 
actual real;
 
difference real;
 

begin 
clrscr; 
writeln;writeln;writeln; 
writeln(' THIS PROGRAM DETERMINES BY NUMERICAL 
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METHODS' );
 
writeln(' THE NATURAL LOG OF INTEGERS FROM ONE
 
TO THE NUMBER ');
 
writeln(' SELECTED BY THE USER. IN FIRST
 
COLUMN BELOW EACH');
 
writeln(' INTEGER WILL APPEAR. IN THE SECOND
 
COLUMN IS THE NATURAL')j
 
writeln(' LOG OF THE INTEGER DETERMINED BY
 
USING SIMPSONS RULE,');
 
writeln(' WITH N == 100. IN THE THIRD COLUMN
 
IS THE COMPUTER VALUE');
 
writeln(' OF THE NATURAL LOG OF THE INTEGER,
 
AND THE FOURTH COLUMN');
 
wr i te I n ( , I S THE DIFFERENCE BETWEEN THE TWO
 
VALUES. ' );
 
writeln;
 
write(' PLEASE ENTER THE NUMBER OF INTEGERS
 
YOU WISH TO EXAMINE: ' );
 
readln(c);
 
clrscr;
 
wri teln (' Numerical Computer');
 
writeln(' Integer Method Statement
 
Difference' );
 
writeln('=======================================================
 
======= ========= ==============================');
 
for b := 1 to c do
 

begin
 
factor :== (b - a) / (3 * n);
 
sum :== 0;
 
for i :== 0 to n do
 

begin 
f := frac(i / 2); 
if (i == 0) then mfx := 1 
else 

if (i = n) then mix :== l/b 
else 

if (f == 0) then mix := 2 * (1 
/ (x + «b - a) * i / n») 
else mfx :== 4 * ( 1 / (x + 
«b -a) * i / n»); 

sum :== sum + mfx 
end; 

approx :== factor * sum; 
actual : == In (b) ; 
difference := approx - actual; 
wri teln (. 
',b,approx: 18:5,actual:20:5,difference:20: 
5) ; 

end;
 
writeln;
 
wr i te ( , PRESS ENTER TO CONT I NUE: • ) ;
 
readln
 

end. 
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PROGRAM OUTPUT: 

SIMPSONS RULE 

THIS PROGRAM DETERMINES BY NUMERICAL METHODS 
THE NATURAL LOG OF INTEGERS FROM ONE TO THE NUMBER 
SELECTED BY THE USER. IN FIRST COLUMN BELOW EACH 
INTEGER ~ILL APPEAR. IN THE SECOND COLUMN IS THE NATURAL 
LOG OF THE INTEGER DETERMINED BY USING SIMPSONS RULE, 
~ITH N = 100. IN IHE THIRD COLUMN IS THE .COMPUTER VALUE 
OF THE NATURAL LOG OF THE INTEGER, AND THE FOURTH COLUMN 
IS THE DIFFERENCE BET~~EN THE TWO VALUES. 

PLEASE ENTER THE NUMBER OF INTEGERS YOU WISH TO EXAMINE: 20 

Nu:nerical Computer 
Integer Method Statement Difference 

=====~=======~======================================== =========== 

1 0.00000 0.00000 0.00000 
2 0.69315 0.69315 0.00000 
3 1.09861 1.09861 0.00000 
4 1.38629 1.38629 0.00000 
5 1.60944 1.60944 0.00000 
6 1. 79176 1. 79176 0.00000 
7 1.94591 1. 94591 0.00000 
8 2.07944 2.07944 0.00000 
9 2. 19723 2.19722 0.00000 
10 2.30259 2.30259 0.00000 
11 2.39790 2.39790 0.00000 
12 2.48491 2.48491 0.00000 
13 2.56496 2.56495 0.00001 
14 2.63907 2.63906 0.00001 
15 2.70806 2.70805 0.00001 
16 2.77260 2.77259 0.00002 
17 2.83323 2.83321 0.00002 
18 2.89040 2.89037 0.00003 
19 2.·94447 2.94444 0 ..00003 
20 2.99577 2.99573 0'.00004 
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