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The photoelectron yield for small grains can be much larger than the 

bulk values, due to the large surface to volume ratio, which leads to an 

increase in the probability of escape of a photoelectron. Emission of 

photoelectrons from small interstellar dust grains is believed to be a 

significant source of heating of interstellar gas. The heating rate is sensitive 

to the photoelectric yield of the proposed dust grains. A model based on the 

Mie solution to the vector electromagnetic wave equation in the presence of a 

sphere is adopted. Unlike the traditional Mie scattering problem, the 

electromagnetic fields inside the sphere are considered. Previous 

calculations utilizing the model are extended. In particular, the relationship 

of the relative photoelectron yield to wavelength and grain size via a complex 

index of refraction is investigated. Graphite and silicate grains are 

considered because they are possible components of interstellar dusts. The 

published values of absolute photoelectric yield for bulk samples are then 

used to calculate the absolute yield of small dust grains. The use of exp(iwt) 

and exp(-iwt) time-conventions in this problem are compared. 
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Chapter 1
 

Introduction
 

The physical properties ofthe interstellar medium are described by its 

density, temperature and phase. The density varies from approximately 

5xl03 to more than 1xlfI particles per cubic meter. The temperature 

depends on the balance of heating and cooling mechanisms, and varies from 

15 to 5xl05 K. Hydrogen is the most abundant element in the universe and 

describing the phase consists of stating the predominant form of hydrogen as 

molecular (H2 ), neutral atomic (H!) or ionized (HI!). According to the three­

phase model of McKee and Ostriker1
, the interstellar gas has four principal 

components. These are cold (15 K) molecular H2, cool (80 K) atomic HI, a 

warm (8000 K) mixture ofHI and HII, and hot (5 xl05 K) ionized HII 1.1. 

The interstellar medium is believed to consist of a diffuse hot ionized HII 

component, the intercloud medium within which are located denser clouds. 

The so-called diffuse clouds consist of cool atomic HI surrounded by warm 

HI and HI!. Dense molecular clouds are similar to the diffuse clouds but 

contain a cold molecular H 2 region in the center. The cold molecular H 2 and 

cool atomic HI regions are separated by a so-called photodissociation region. 

All these components are maintained by pressure equilibrium. Interstellar 

clouds contain hydrogen atoms, assorted molecules and dust grains. These 

clouds evolve and eventually contract into stars. Cloud temperatures of 
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100 K or more must be the result of energy exchange among the interstellar 

radiation field, hydrogen gas, molecules and the dust grains within the 

cloud. Understanding this energy balance within clouds is very important to 

quantitative theories of interstellar clouds. Research shows that dust grain 

photoelectron heating may dominate the gas heating of the intercloud 

medium and diffuse clouds. It is also significant in HI! regions. 

Interstellar grains play an important role in the energy balance within 

clouds because they are believed to serve as an intermediary in transferring 

stellar radiant energy or gas chemical energy into the interstellar gas. The 

three mechanisms which can transfer starlight energy to gas via grains as 

described by Hollenbach1
.
2 are photoelectron emission, collisions and 

desorption. 

Interstellar gas may be heated as a result of the emission of 

photoelectrons from grains (Watsoni. For grains which lie near stars with 

significant ultraviolet (UV) fluxes, the UV absorbed by the grains results in 

the emission of energetic photoelectrons into the gas. At the same time, free 

electrons may be captured by the grain. The energy of the ejected electrons 

is determined by the photoelectric emission process, but the energy of the 

captured electrons is determined by the free electron temperature. 

Therefore, there is net heating if the ejected electrons carry more energy than 

the electrons absorbed by the grains. 

The gas may be heated by collisions with grains. Deep in the opaque 

molecular gas associated with a nearby star, starlight is absorbed by grains. 

Some of this energy is in turn reradiated by the grains, generally in the 
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infrared part of the electromagnetic spectrum. Some of this energy can be 

reabsorbed by the grains and cause temperatures to occur in the range of 

30-100 K. The cooler gas collides with the warm grains and is heated by 

conduction, while the infrared photons radiated by the warm grains are 

absorbed by molecules H 20 or atom 0 in the opaque, molecular gas. 

Collisions of these excited molecules and atoms transfer the excitation 

energy to the gas . 

Interstellar gas may also be heated by desorption from thermally 

fluctuating small grains (Duleyt. Gas heating results from the escape of 

highly vibrationally excited atoms and molecules from small grains following 

a sudden temperature increase after the absorption of a single photon. 

Under special circumstances, this process may be of comparable importance 

to grain photoelectric heating. 

The physical process of grain photoelectric heating is based on the 

absorption ofUV photons by grains and the subsequent ejection of energetic 

electrons into the gas. Calculating the photoelectric emission from very 

small particles is very complicated, especially for different geometries and 

charged grains. The sizes and compositions of dust grains are not certain. 

but a distribution of spherical graphite and silicate grains represents an 

acceptable model of interstellar dust.4 In this research, we use Watson's 

model and numerical methods to calculate the relative photoelectron yield, 

for spherical graphite and silicate grains as compared to the bulk values. We 

then multiply the published values of the photoelectric yield of bulk samples 

by this factor to calculate the absolute photoelectron yield of small particles. 
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In Chapter 2, we present the basic theory. This includes Watson's 

model of photoelectric emission from grains, the Mie solution to the 

electromagnetic wave equations, and the detailed numerical methods needed. 

In Chapter 3, our research results, including tables and graphs are presented. 

In Chapter 4, we discuss our conclusions. In Appendix A we compare the 

exp(i OJt) and exp(-iOJt) time-conventions as they relate to Watson's model. 

Appendix B presents an example of the type of calculation that can be 

carried out using our results. 

4
 



Chapter 2
 

Theory
 

1. Watson's Model 

Watson presents the basic results of his model, but very few details of 

the calculations. In order to check the final result and obtain some necessary 

analytical expressions we have reconstructed a complete derivation of 

Watson's model. The photoelectric yield Y is defined as the number of 

electrons emitted divided by the number of incident photons. The basic 

assumption of Watson's model is that the number of electrons excited in any 

volume element in the solid is proportional to the number of photons 

absorbed per unit volume at that location. The number of photons absorbed 

at any location is calculated from the classical distribution of electromagnetic 

energy within the material. This model is highly simplified, but it will serve 

as a first approximation. 

Consider a plane, monochromatic electromagnetic wave of angular 

frequency OJ incident on a spherical grain of radius a. The electric and 

magnetic fields E and H within the grain can be obtained from the Mie 

solution~ of the vector wave equation in spherical coordinates. The number 

of photons absorbed per unit time inside the grain can be calculated by 

integrating the Poynting vector S= E x Ii over the surface of the grain and 

dividing by the energy per photon, that is 
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_J (s oii)dS = _J --c--(V----'-.S)dV_ 
A +.. __ V . (1) 

The minus sign accounts for the fact that energy flows into the grain, but the 

normal vector Ii points out of the grain at the surface. Gauss' theorem is 

used to convert the surface integral to a volume integral. It is concluded that 

(:~) is the number of photons absorbed per unit volume per unit time at a 

particular position within the grain. 

Photons absorbed by the grain can liberate electrons from individual 

atoms, but these do not all escape from the grain. In the case of a bulk 

sample, Pepper6 has given a theory which describes the motion of the 

electron to the surface. The probability for a photoelectron to be emitted 

from the surface of a bulk solid when light is absorbed at a distance x below 

the surface is assumed to be C exp(- xlLe ). L e is a characteristic distance 

which is known as the escape length and C is a constant. Both Le and C can 

be determined independently from photoemission experiments with bulk 

matter. The total number ofelectrons emitted per unit time from a volume of 

depth x is 

(-V.S) -x/LedV.J Ce (2)
V nm 

Then the bulk yield Yb is given by 
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J(V. S)Ce(-X/ Le ) dV 
Y = :..-V~ _ (3)b	 

f(V.S)dV 
v 

If there is no magnetic dissipation and the material is isotropic then, 

JCe(-X/ Le }(£* .E}tV 
E - -'-v---=-:.-----.---	 (4) 
b -	 f(E* . E}tV 

V 

A solution of the boundary value problem shows that 

E"'· E= Ke(-x/La ) , (5) 

where K is a constant and the absorption length La is given by, 

A. 
(6)

La = 141Z"lJ.n(m)l" 

where Im(m) is the imaginary part of the materials' refractive index. In this 

case Yb can be calculated analytically. The integral in equation(4) can be 

written as, 
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00IIdydzJCe 
-Yr 

L'.e-j{adx 
1[,= A ° (7)

IIdydzJ e-j{adx 
A ° 

where K has been eliminated from the numerator and denominator. Assume 

that A is the large but finite surface area of the bulk sample. Then 

Le+La ) 
(1Ce-x L,La dx C( LeLa) (e -00 _ eO) 

Le+Lav ° __---"--,.__-----=-~. (8)
.lb = -x - ( -00 0)

00 - La e -eJeLadx 

° 
that is 

CLe (9)1[, = L +L 
e a 

Watson has applied the preceding theory to the case of a spherical grain. In 

a bulk sample, x is a one-dimensional distance. In a small spherical dust 

grain, the substitution is made x=a-r, where a is the radius of the dust grain 

and r is the radial position within the sphere. If it is assumed that the 

same constant C applies to spherical grains, then equation (9) may be used 
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2. Mie Solution 

A physical time-harmonic electromagnetic field in a linear, isotropic, 

homogeneous medium satisfies the vector wave equations, 

\72E+k 2m2E= °
 
\72H+k2m2H =0, (11)
 

and the boundary conditions 

\7·E= 0,
 

\7·H= 0, (12)
 

where k is the wave number and m is the complex index of refraction of the 

medium. 

Now, two vectors are defined as 

M =\7x (rqJ) (13) 

- (\7 xM)
N= , (14)

mk 

where rp is a solution of the following scalar wave equation 

\72qJ + m2k2qJ = 0. (15) 
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simple substitution shows that if u and v are two solutions of the scalar wave 

equation and Mu , Mv ' Nu ' Nv are the derived vector fields, then 

Maxwell's equations are satisfied by 

E=M:v +iNu 

Ii =m(-Mu+iNv). (16) 

According to Watson2 within the sphere, the independent solutions of the 

scalar wave equation u and v can be expanded as 

u =cos¢ ~mCn( -it 2n +1 
P;(cosB)in(mkr) 

n =1 n(n +1) 

v = sin¢ ~mdn( _i)n 2n +1 
P;(cosB)in(mkr), (17) 

n = 1 n(n+ 1) 

Here Pn 
1
( cos 0) is an associated Legendre polynomial and in is the 

spherical Bessel function. The coefficients en, dn can be obtained from the 

boundary conditions. It should be noted that the general solution of the 

scalar wave equation should include associated Legendre polynomials of all 

orders P~ (cosO) . However, when the incident plane wave is expanded in 

spherical coordinates its expansion only includes I =1 terms. Therefore, 

only the I = 1 terms are needed for the solution in equation (17). Watson's 
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research paper includes few details. We want to extend Watson's numerical 

calculations. The following derivation provides all analytical expressions 

which are necessary for this purpose. 

By introducing the scalar spherical hannonics 7 

1': - I (2n + 1) 1 1tp (18). 
nl - "\ 4iZ1l(n + l)Pn (cosB)e

v can be written as 

00 . n ~ (2n+1) . ()
V= L mdn(-z) 41l' In(mkr)Im Yn1 . 

n=l n(n+l) 

(19) 
Then 

M =V x (rv). (20)v 

The vector spherical hannonics X are defined by 8 

- i (21)X = - ~ ( ) r x VYn1 . 
n n+l 

Because the function 'lin (mkr) only has a radial component, then 

r x 'lin (mkr) =o. (22) 

On the other hand, 
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Xn =- I_J_~. rx V[R~Ynd+iIm(Ynl)]1\ 

=- I i [r x V(R~Ynd)] + Jnf~ + n[r x v(rm(Ynl ))] 

· (23)=Xnr +Xni 

We have defined X nr and Xn; by 

Xnr =- L/_~ . 1\ [r x V(Re(Ynl ))] (23.1) 

Xni = lui _~ . 1\ [r x V(rm(Ynl))]' (23.2) 

Then 

00 

M = L mdn(-i)n J4Jr(2n + l)in(mkr)Xni · (24)v 
n=l 

Similarly, 

N = ~ ~ {en (_i)n + 1J4Jr(2n + l)V x [in (mkr)Xnr ]} (25)u kn=l 

The vector spherical harmonics Xn has 
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* {I,4Jl' _ _ (n = n')J X n · Xn,dO,= 0 (26)(n ;t: n')"o ' 
It can be shown that 

41C _* _ I , (n =n') 
(27)6X nr · Xn,rdo' ={0, (n;t: n') , 

41C_* _ I , (n= n' ) 
(28)6Xni'Xn'idO,= {0, (n;t:n') . 

On the other hand, 

i* .E=(Mv+iNu )* .(&Iv +Nu ) 

- * - - -* - - * - ­=M v·M -iM ·N u+iN ·M v+N ·Nv v u u u 
(29) 

Therefore, 

a 4n­

f(i* .i)dV = f r2dr J(E* .E)dO
 
V 0 0 

a 2 4n- ( _ * _ _* _ 
=Jr dr J"M v' M v - iM v . N u + 

o 0 

iN*u' Mv +N*u .Nu)do' 

(30) 

The integral relations for vector spherical hannonics is used, then 
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r4Jr r47r- ... - - • ­J M v . NudO =Jo N u' MvdO =0, (31)
O 

and 2 

47r 00 

JM*v. MvdO =4trlml2 L: ~nI2(2n + l)j*n(mkr). jn(mkr), 
o n=l 

(32) 

47r 00 
2JN·u' NudQ =4tr L Icn I (2n+ 1){lm2 Ii·n(mkr). in (mkr) + 

o n=l 

2~~[ri·n(mkr)~(rin(mkrn]}
kr a- a­

(33) 

Using equation (24) and (25), Y' can be written as, 

c!e-<r - a) ILfr(M~.1\1" +1Il: Nu)an}2dr 
(34) 

y.~ fK ]6(M~.Mv +N~.Nu)dQ r 2dr 

Using the result of Pepper,6 if the material making up the bulk is the same as 

that of the small spherical particle, then Y'lYb is independent of C. Thus the 

photoyield enhancement for a sphere of radius a as compare to the bulk 

material can be calculated from the following ratio 
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3. Numerical Calculation Method 

In order to obtain values of fa /fb, the coefficients Cn, dn must be 

calculated. The formulas are different depending on which kind of time­

conventions is used. The following results are obtained using the exp(iQJt) 

time-convention. The use of the exp(iQJt) and exp(-iwt) conventions are 

compared in Appendix A. 

A discussion of numerical methods which may be adapted to our 

problem is given by Bohren and Huffinan.10 From the boundary conditions 

satisfied by the electromagnetic field, the coefficients Cn, dn are given by9, 

i 
c =-------------- (36) 

n mlf/n(mx){[Dn(mx)/m+n/ x]'n(x)-'n_l(x)} 

I
d n =-------------- (37)

If/n(mx){[mDn(mx) / m+ n / x] (n(x) -(n-l(x)} 

Where the logarithmic derivative Dn(x) = If/~ (x) / If/n(x) is introduced, 

If/n(x) and ( n(x) are Ricatti-Bessel functions, and m is still the 

material's complex index of refraction. The details of this calculation are 

shown in Appendix A. The reason for writing these expressions using Dn is 

that Dn satisfies the following backward recurrence relation 10 
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n l_~ __ (38)
Dn-1(x) =x - Dn(x) + : 

From the above Dn-l and Dn function, the following result can be 

obtained that: if en is the error in Dm and the error in Dn-1 generated from the 

above recurrence relation is en- then en-1 «en' Thus, beginning with a h 

coefficient Dn where n is larger than the number of terms required for 

convergence, more accurate lower-order logarithmic derivatives can be 

generated by the downward recurrence. The FORTRAN program PE­

DING.FOR which performs this calculation process is listed in Appendix C. 

On the other hand, in order to obtain the numerical value of en. tin. 

Ricatti-Bessel functions fJ/ n(X) and 'n(X) must be calculated. The 

definitions of Ricatti-Bessel functions are 

If/n(X) =xJ",,(x) 

'n(x) =xhn(x), (39) 

where jn(x) and hn(x) are the Spherical Bessel and Hankel functions which 

are defined from the ordinary Bessel and Hankel functions J and Y, 

in(x) = ~ ;r J 1(x),
2x n+­

2 
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Yn(X) =t' Y I (x). (40)
2x n+­

2 

The Hankel functions of the first and second type are defined by11 

h},l)(X) = in(x) +iYn(x) , (41) 

h},2)(X) = in(x)-iYn(x), (42) 

Which kind of Hankel function should be used depends on which time­

convention is used in the calculation. In this research the exp(icot) time-

convention is used, therefore h},2) (x) was used throughout the calculation. 

A detailed explanation for this choice is given in Appendix A. 

The calculation of Ricatti-Bessel functions has been difficult because 

of the instability of the generation of Bessel functions of complex argument. 

A downward recurrence method was used in calculations beginning with an 

arbitrary starting value for the two initial high orders, and renormalizing 

after reaching the known zeroth-order Ricatti-Bessel function 

'IIo(x) =sin(x) , (43) 

For Yn upward recurrence is stable beginning with 

Y-l{X) = sin{x) 
x 
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Yo = _COSX (44)
x ' 

any order of Yn may be calculated. In the mean time, 

(n(X) = Xh(2)n(X) 

=x(in(x)-iYn(x)) (45) 

= f//n(x)-Uyn(x) 

Using the recurrence formula for spherical Bessel functions 12: 

2n +1 . () . () . ()--In x = In-l x + In+l x , (46) 
x 

(n(X) can be obtained from known numerical methods. 

Unfortunately, there are no numerical values for CJb tin available in the 

literature. However, the scattering coefficients aJb bn are given by Bohren 

and Huffman 9. Therefore, the only way to check if these results are correct 

is to produce an, bn using the same method as calculating CJb tin in this 

research. The results obtained agree with the published values. More 

details are given by Shi. 13 

Substituting z =mkr in equations (32) and (33), and using the 

recurrence relations (38), (39) and (46), the relative photoelectron yield 

Y'IYb can be written as 
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(a -(r-a)ILe 
y, (Le + La)J e F(r)4:rr2dro

Yb Le ra
J F(r)4m-2dr o 

where 

1 ex:> 

F(r) 2-2 L(2n+l)Un(z)1
2 

x
 
k r k=l
 

{lci[IDi + nC;I; 1)] +~i} 

(47) 

This expression for F(r) can be calculated numerically. By determining the 

convergence of the series by iteration or using Wiscomb's formula, the 

termination of the calculation of F(r) can be obtained. In the FORTRAN 

program PE-DING.FOR, the termination is based on Wiscomb's formula14
.. 

More details are again given by Shi. 1J.~ 
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Chapter 3 

Results 

The numerical method is used in the FORTRAN program PE-DING. 

We have used this program to calculate the photoelectron yield enhancement 

for small dust grains. We have used these results to calculate the absolute 

photoelectron yield using the published bulk sample's photoelectron yield 

values. The complete program is shown in Appendix C. 

Table 1 presents results of the PE-DING.FOR program. The input 

parameters are from Watson1 
. These results are compared with that of 

Watson's in Table 2. Our results are almost identical to Watson's. Watson 

didn't give the complete results for m=O. 71-0.018i , possibly because of the 

small imaginary part of m compared to the real part. In our calculations we 

have noticed that these same values are very difficult to calculate, because 

the program takes much more time. 

Watson's results have been extended by including more wavelengths, 

grain sizes, and realistic values for the complex index of refraction from 

Draine and Lee.4 These calculations suggest some interesting features. It 

should be noticed that the size of a dust grain should be compared to the 

wavelength of incident light. For example, a grain with a radius of 100 A is 

a small dust grain compare to a wavelength of 2000 A, but it can not be seen 

as a small grain when the wavelength is 150 A. In fact, a dust grain with a 

radius of 5000 A can be thought as a bulk, because the most important 
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photon wavelengths in this research are between 912 A to 1500 A. Grain 

sizes from 20 A to 5000 A are used in this research. The reason for this 

range is that absorption by interstellar hydrogen cuts off this light field at 

912 A and photons with wavelengths beyond 1500 A have small 

photoelectron yields. Nevertheless, photoelectron yield enhancement of 

photon wavelengths from 227.9 A to 10000 A are also calculated. Several 

figures are presented. Figure 1, 2, 3 are the results from graphite and silicate 

grams. 

The complex index of refraction depends on wavelength. The 

Imagmary part of complex index of refraction is more important to 

photoelectron yield, for it affects the photon's absorption length. When the 

absorption length is small, more absorbed photons will be distributed in the 

region near the grain's surface, therefore, photoelectrons are more easily 

produced and emitted in this case. When the absorption length is large, 

photons are absorbed deep in the material, and produce fewer 

photoelectrons. 

Graphite and silicate grains are considered. In the case of graphite, 

the average photoelectron yield is presented in the final result, because the 

polarization is considered. The direction of incident light can be separated 

into two components: one is parallel to the grain's axis, another is 

perpendicular to it. The final photoelectron yield comes from assuming one­

third parallel yield and two-thirds perpendicular yield. 

Figure 1 and 2 are graphite yield enhancement. Radius of this dust 

grain is 100 A and 1000 A. Both the complex index of refraction and the 
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photoelectron yield enhancement are shown in the figures. In the region, 

wavelength smaller than 5000 A, the absolute photoelectron yield Ea 

displays oscillations as a function of complex index of refraction m and 

wavelength. When the wavelength is larger than 5000 A, the photoelectron 

yield enhancement increases with the wavelength. It supports the 

assumption that small size effects can play an important role. The similar 

conclusion can be obtained from figure 3, which is for silicate grains. For 

the most interesting wavelength region, 912 A to 1500 A, certain important 

results can be obtained. Figure 4 and Figure 5 present the behavior of 

various sizes of graphite and silicate dust grains. The radii are from 20 A to 

5000 A. These figures clearly show that for a given wavelength the absolute 

photoelectron yield decreases as the grain's radius increases. Relative 

photoelectron yield is always greater than one, indicating that the small 

grain's photoelectron yield is greater than that of a bulk sample. The 

absolute photoelectron yield can be obtained by using the photoelectron 

yield enhancement from this numerical method times published bulk yield 

values. The results are shown in Figure 4 and Figure 5. When radii become 

large, the relative photoelectron yields are closer to one, because the dust 

grains are more like bulk material. 
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----------

RAD 
IfAl 

m=1.4-Q.81 i m=2.5-1.0i m=0.71-o.0181 
WAVEL 
IfAl 

Le=10 A Le=100A 

1.60 1.204 

Le=10 A Le=100A 

1.23 1.105 

Le=10A Le-100A 

57.91 18.52100 500 
1000 2.67 1.57 2.14 1.42 110.61 35.94 
1250 3.27 1.77 2.64 1.58 137.43 44.68 
2000 5.08 2.35 4.14 2.05 218.49 70.93 
3000 7.50 3.13 6.10 2.68 326.99 105.96 

250 500 1.23 1.09 1.07 1.03 28.86 14.32 
1000 1.50 1.27 1.17 1.12 54.48 27.72 
1250 1.66 1.37 1.24 1.18 66.16 34.17 
2000 2.32 1.76 1.78 1.51 101.13 53.51 
3000 3.38 2.34 2.69 1.99 148.95 79.5 

500 500 1.15 1.06 1.05 1.02 17.16 10.53 
1000 1.25 1.14 1.08 1.04 30.57 19.92 
1250 1.30 1.18 1.09 1.06 37.72 24.81 
2000 1.52 1.37 1.18 1.15 57.22 38.57 
3000 1.88 1.68 1.37 1.34 81.28 56.11 

Table 1.	 Relative photoelectron yield Ea calculated by using input 

parameters from Watson. a is the grain radius. L e is the 

electron escape length. m is the index of refraction. 
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RAD 
tAl 

m=1.4.Q.81 i m=2.5-1.0i m=O.71.Q.018i 
WAVEL. 
tAl 

Le=10A Le=100A Le=10 A Le=100 A Le=10 A Le=100A 

100 500 1.61 1.21 1.23 1.11 57.9 18.5 
1000 2.7 1.58 2.14 1.42 111 35.9 
1250 3.31 1.78 2.64 1.58 137 44.6 
2000 5.14 2.37 4.14 2.05 
3000 7.59 3.15 6.1 2.68 

250 500 1.23 1.09 1.07 1.03 28.9 14.3 
1000 1.51 1.27 1.17 1.12 54.5 27.7 
1250 1.68 1.38 1.24 1.18 66.2 34.7 
2000 2.35 1.78 1.78 1.51 
3000 3.42 2.36 2.69 1.99 

500 500 1.15 1.06 1.05 1.02 17.2 10.5 
1000 1.25 1.14 1.08 1.04 30.6 19.1 
1250 1.31 1.19 1.09 1.06 37.7 24.8 
2000 1.53 1.37 1.18 1.15 
3000 1.9 1.67 1.37 1.34 

Table 2. Watson's results of relative photoelectron yield Ea using the 

same parameters as Table 1. a is the grain radius. Le is the 

electron escape length. m is the index of refraction. 
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Figure 1. Graphite grains relative photoelectron yield Ea and complex 

index of refraction m vs wavelength. Re(m) is the real part ofm, 

IIm(m)1 is the value of the imagnary part ofm. Radius of this dust 

grain is a=lOOA. Wavelength is from 227.9A to lOOOOA. 
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Figure 2. Graphite grains relative photoelectron yield Ea and complex 

index of refraction m vs wavelength. Re(m) is the real part 

ofm, IIm(m)1 is the value of the imagnary part ofm. Radius of 

this dust grain is a=lOOOA. Wavelength is from 227.9A to 

lOOOOA. 
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Chapter 4 

Conclusions 

This research has extended previous work by Shi.13 It investigated 

one of the mechanisms by which interstellar gas is heated and the emission 

of photoelectrons from graphite and silicate dust grains. It is found that 

grain size is important in the efficiency of photoelectron emission. 

We have found that the relative photoelectron yield is always greater 

than one for both graphite and silicate grains. This confirms Watson's idea 

that enhanced photoemission from small dust grains can be significantly 

larger than bulk matter. We have reproduced Watson's numerical results 

and extended them. 

This research presents the relationships of photoelectron yield, photon 

wavelength and grain size as well as the complex index of refraction. These ••
relations are complicated and may be significant in the interstellar medium. i 
More research, especially using a different model, may be necessary in the 

future. Ultimately, the photoelectron yields of known interstellar grains 

should be measured experimentally, although this will be a difficult task. 

We have also discussed analytical and numerical methods in this 

thesis. It is clear that these numerical methods are powerful, and provide a 

useful general method for future study of the interaction of small grains with 

photons. 

The absolute photoelectric yields calculated in this research will be 
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used in the future to calculate the number of photoelectrons emitted from 

small grains in different environments. 
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Appendix A
 

Exp(iil¥) and Exp(-iil¥) time-conventions 

(1) exp(-iwt) time-convention: 

In Gaussian units, Maxwell equations can be written as 

v x Ii = 4il' i +!dfi 
c c dt • 

D=EE , 

VXE=-~ dB 
c dt • 

d 
- dp

ivI+-=O 
dt 

(AI) 

The boundary conditions are 

divD =4il'p, 

V·H=O. (A2) 

The electromagnetic wave field can be described 

and 

E(r ,t) = E(f)e -iox 
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ii(f,t) = ii(r)e- iUJt 
. (A3) 

Substituting these electric field and magnetic fields into the Maxwell's 

equations, and using the electric field i(r, t) to express the magnetic field 

H(r,t), one obtains 

- (j) ( 41Ca) ­
VXH=-i~ &+im E. (A4) 

Thus, two definitions are given as 

I 
m2 =& + i 41Ca (AS) I• 

(j) .. 
~ 

~ 

, ~ 
k=(j) , 

c I 

where c is the speed of light, OJ is the incident light's frequency. Then 

- . 2­VXH=-lkm E. (A6) 

Because 

V.(VxH)=O, 

V.(m2i)=O. (A7) 
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On the other hand, 

- IdH 1 ()d( ) ­V x E =--- = --H r - -iwt = ikH, (A8)
c dt c dt 

and from vector calculation formulas, one can obtain, 

Vx (V x i) =V( v· i) - v2i =-v2i. (A9) 

Thus 

v2i +k2m2i = o. (AIO) 

This is the famous wave equation. Thus its scalar wave function is 

2V2 1f/ +k 2m 1f/ = o. (All) 

Here, V/ is a solution of this scalar wave equation. If two vectors M,N 

are defined as, 

M = V x (r If/) 

N = (VxM) (AI2)
mk ' 
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then, the following expressions satisfy Maxwell equations, 

E=:Mv +{N"u 

Ii =,,(-Mu+iNv). (AI3) 

From electromagnetic field boundary conditions, and change the Gauss unit 

to SI unit for simplify the equations, one can obtain, 

in(mx )cn+hn(
1
) {x)bn= in (X ) 

, , , 
,u[mxin(mx)] Cn+ ,ul[X/z,z(1) (x)] bn= ,ul[xil(X)] 

pmin{mx)dn+ ,ulh,,(I){x)an =,ulin{x) 
, , 

[mxin(mx)] dn+m[x/z,z(I)(x)] an = m[xin(x)]. (AI4) 

These results can be found in the book written by Bohren & Huffman.l~ But 

one must notice that, the unit used in Bohren & Huffman's book is SI Unit. 

Therefore, the fonn of wave equation in Bohren & Huffman is different from 

above discussion. In the case, Ji = J.11' one can solve these equations and 

obtain 

, , 
in (x)[xhn(1) (X)] - /z,z(1) (xXxin (x)] 

Cn =, (A15) 

in (mx)[xhn(1)(X)] - hn(1)(X)[mxin(mx)]' 
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, , 
min(x)[xhn(l)(x)] - mhn(l)(x)[xin(x)]

dn = , 
m2in(mx)[xhn(l)(x)] - hn(l)(x)[mxin(mx)] 

(A16), , 
in(x)[xhn(l)(x)] - hn(l)(x)[xin(x)] 

- , , 
min(mx)[xhn(1)(X)] - hn(l)(x)[xin(mx)] 

In order to separate m for exp(-iOJt) and exp(iOJt) , from now on, m+ and m_ 

are used to instead ofm, then equations(14) and (15) can be written as, 

, , 
in(x)[xhn(1) (x)] - hn(1)(x)[xin (x)] 

en = , . (AI7) 

in (m_x)[xhn(l)(x)] - hn(1)(X)[m_xin (m_x)] 

, , 
m-in(x)[xhn(1) (x)] - hn(1 )(x)[xin (x)] 

dn = , . (AI8) 

m_ 2in (m_ x)[xhn(
1
)(x)] - hn(1) (x)[m_ xin (m_ x)] 

(2) exp(iOJl) time-convention: 

No matter what kind of time-convention, the Maxwell equations are the 

same form. However, the electromagnetic wave field in this case can be 

described as E(r,t) =E(r)eiUX 
, and H(r,t) =H(r)eiaN 

. Substituting these 
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electric field and magnetic fields into the Maxwell's equations, and using the 

electric field E(r, t) to express the magnetic field li(r,t), one obtains, 

- . (j) ( . 4 trCF) ­
V'xH=z~ &-Z---;;;- E. (AI9) 

Thus, two definitions are given as 

m+ 2 =& _ i 4JrCF ~ 

(AlO) t 
OJ I

I 

I
j,k=OJ , 

c 

where c is also the speed oflight, ro is the incident light's frequency. Then 

- . 2­
V' x H =zkm+ E. 

Because 

V,(V'xH)=O, 

V· (m+ 2i) = O. 

On the other hand, 

- IdH l-')d()V' x E =--- =--H(r - iOJt 
c dt c dt 

(A2I) 

(A22) 

-= -ikH, (A23) 
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and from vector calculation formulas, one can obtain, 

v x (V x i) =v(v. i) - v2i = -v2i. (A24) 

Thus the same result as the exp(-iwt) time-convention is obtained 

V 2i+k2
m+ 

2i =0. (A25) 

Thus its scalar wave function is 

V2lf/ + k 2m+2lf/ = O. (A26) 

Similarity, fj/ is a solution of this scalar wave equation, and two vectors 

M,N are defined as, 

M = V x (rlf/)
 

N= (VxM)
 (A2?) 
m+k ' 

then, the following expressions satisfy Maxwell equations, 

i=M:v+fNu 

Ii = m+( -Mu+iNv). (A28) 

From electromagnetic field boundary conditions, one can obtain16
, 
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\}In(x)-an(n(.X) =m+Cn\}ln(Y) 

, , ,
 
\}I~ (x)-an(n (x) = cn\}In (y) 

\}In (x) -bn(n(x) = dn\}In(Y) 

, , ,
 
\}In (x)-bn(n (x) = m+dn\}In (y). (A29) 

These results can be found in van de Hulst. 9 Solving these equations, one 

obtains, 

i 
Cn = , , 

\}In (Y)(n(x) -m+\}I(y)(n (x)n 

i
dn =, , , (A30) 

m+\}In (Y)(n(x)- \}In(Y)(n (x) 

where y =m+x, X =ka . 

(3) The relations of en' d from exp.(-icut) and exp(icut) time-eonventions:n 

In order to make difference between these two cases, cn (+), dn (+) 

will be used to represent the results from exp(icut) time tenn, c (-), dn(-)n 

will be used to represent the results from exp(-icut) time tenn. 

44
 



From the exp(-imt) time-convention, 

}n(x)[xhn(1) (x)r-hn(1)(x)[X)n(x)r 
cn (-)= , .' (A31) 

}n(m_x)[Xh (l)(x )] -hn(1 )(x)[m_x}n(m_x)]n

because 

'Ifn(X) =xin(x) 

(n(X) = xhn(x), 
, ,
 

'¥n (X)(n(X) - '¥n(X)(n (X) =i (A32) 

en (-) can be written as 

, ((1) ,)'f'n(x r (1) (x) __n_'f'n (x) 
~n xx 

C (-) = ( ) , r (i) , ( ) 
n 'I'n m_x (n(l) (x)-~'I'n m_x 

m_x 

'f'n(x)(n(I)' (x)-(n(I)'f'n' (x) 

'f'n{m_x)(n(I)' (x)-(n(I)'f'n' (m_x) 
m 

-m_i 

- 'f'n( m_x) (n (1)' (x)-m_ (n(1)'f'n' (m_x) . 
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... 
-m+ i 

(A33) 

'¥n{m/X)[S)2l'(x)r-m+ O[;plf'¥n'hOx) 

Because, in (imt) time-convention: 

2 2C;n( ) (X) =xhn( ) =x[in (x) - iyn ( x)] (A34) 

while in (-icot) time- convention: 

C;n(1)(X) = xhn(1) (x) = x[i n(X) + iyn(X)] . (A35) 

The relation of C;n(l) (x) and C;)2)(x) is, 

... 
C;n(l)(x) = [C;n(2)(x)] . (A36) 

The following relationship for a function of a complex variable will be 

useful. 

Tn{z*) = [Tn (z)r (A37) 

This is not true in general, but is true for functions which are real for real 

arguments, for example polynomials with real coefficients. This property is 

known as the Schwarz Reflection Principle17
. The Bessel functions and all 
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functions derived from them satisfy this condition. The relationship was 

also checked with the Mathematica18 computer algebra software. 

Thus 

'" 
-m i 

cn {-) = , + I •I 
'Pn{m+x)(n(2) (x) - m+(n(2)'Pn' (m+x) 

(A38) 

On the other hand, from above calculation, 

i (x)[xh (l)(x)]' -h (1)(X)[Xi (x)]' 
(_) _ n n n n

dn - ,
 

m_in{m_x)[xhn(1) (X)] -hn(I)(x)[xin{m_x)]
 

'" 
in (x){[ xhn(2)(x)n-h(2l (x)nxin(X)]' 

h *)inh*X){[Xhn(2 l(x)l r-[hn(2 l(x)nxinh*x)]' 

{ii x){[xhn(2) (x)f}-[hn(2) (X)][Xin(X) f}*
 

= {( m+ )in(m+x){[xhn12l (xlf)-[hn(2) (xl][Xin(m+x)r}'
 

{in(x){[x~(2)(x)J'}-[11n(2)(x)][xin(x)fr
 
= {( m+ )in(m+xl{[xl;,(2)( xln-[1;,(2)(xl][xJn( m+x)rr
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{In(X){[Xh,,(2)(x)f}-[~(2)(x)J[xJn(x)f}* 

~ {( 1J\r )I (1J\rx ){[xh,P)(x)]}[h,.(2)(X)][ XJ ( m+x)]}n n

j
 'fIn(X),( ) (n(X)'I' '(x)
 r 
----'-'----- ( n x x n ~ 

~ 'I'n(m+X)r(2) '(x) (2)n(x)'I'n'(m+x)Jl ~ nx m+x 

J 11lt-['fIn(x) (n'(X)-'fIn'(X)(n(X)] l*
 
L11lt-'fI (m+x)((2) n'(X)-((2) n(X)'fIn'(m+x) J. (A39)
n

I 11lt- i l 
111lt-'fin ( m+x)((2) n'(x )_((2) n(X)'fIn'( m+x) J 

Thus 

dn ()- = [ 2' m+i 2 ' J* (A40) 
m+ 'fin (m+x )s< )n (x)-s< )n(x)'fIn (m+x) 

From above exp(imt) time-convention 

Cn (+) =, (2) I (2/ 
'lin (m+x)~n (x)-m+'¥(m+x)~n (x) 
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dn (+) = 
i 

, , 

m+'fin' (m+x)'n(2)(x)-\{Jn(m+x)'n(2) (x) 

(A41 ) 

equation(A6) and (A7) can be written as 

r . r 
l -m+l Jc (-) ­ , 

n - (2) (2)'
'fIn(m+x)'n (x) -m+'n (x)'fIn (m+x) 

=-m+·dn"''( +) 

(A42) 

that is 

Cn ( - ) = -m+ >I< dn >I< ( +) . (A43) 

Similarity, 

I . l* 
I m+l I 

dn(-) =l ( ) (2) , (2) '()Jm+'fin m+x' n (x) -, n(x)'fIn m+x 

* * =-m+c+(+) 

thus 

* * dn(-) =-m+ cn (+) 

(A44) 

(A45) 

(4) The relative photoelectron yield Y'/Yb: 
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From equation(28), the relative photoelectron yield can be written as 

a -(a-r)! L [4Jl' ] 
y' {Le+La}le e b(M:'Mv+N:'Nu)dO hr 

(A46) 
Yb Le a[4Jr }! b(M;'Mv+N:'Nu)dO 2dr 

where2 

(::) =Vx (~). 

in the exp( iwt) time-convention, but 

(::) =vx(~)
 

in the exp(iwt) time-convention. Therefore the relative photoelectron yield in 

the exp(-iwt) time -convention can be written as 

1-(a-r)! L [4Jl' } 
y, (Le+La)Oe e b(M~.Mo+N:.Ne)dQ 2dr 

4 (A47) 
Yb I.e 1b" (M~'Mo+N:'Ne)dQJ2dr 

Because 

4jM~.M~Q = 4Jl'lm_1 2 ~ Idn(-)1 
2(2n+n/"n(m_kr). in(m_kr)

o n=l 
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2 
== 4n-lm1 4 ~ Icn(+)1 (2n+l)jn(m+kr). /Cn(m+kr) 

n
41r ==1 (A48) 

2 f - '" ­== Im1 Mv'MvdO 
o 

Similarly, it is easy to show that 

41r 41r -'" - I 1
2 JNU·NUdO.'" - (A49)Ne·NedO=m ­J

o 0 

Using the cn( +), dn( +) to express the above equation, that is 

j -(a-r)/4/4n- _ ... _ ... 1 
y, (Le+La)Oe l b(Mo·Mo+Ne·Ne)dOJ2dr 

Yb Le JJ4r(M~.Mo+N;.N,)dQ }2dr 

1-(a-r)/Le 14n- 1 
(Le+La)Oe Imll b(M~:'Mv+~:'~u)doJ2dr 

e 
L Jlll4f(- .. __ -) 12$ o m l 0 My·My+Nu·Nu dOI dr 
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as -(a-r)/Le [4H( _... ... ] 2 
(Le+La)o e l Mv·Mv+Nu·Nu)dQ r dr 

(A50) 
e H_* _ _ *_ 2L a[4 }! !(Mv·Mv+Nu·Nu)at:l dr 

Equation (A24) and equation(28) are equal. It is clear that the final 

result of relative photoelectron yield is the same no matter in what kind of 

time~conventions. That means that even though the results for en and dn will 

change with the time-convention, the final result of photoelectron yield will 

be the same. It is not dependent on the time~convention. 
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Appendix B
 

The emission of photoelectron from dust grains is perhaps the most 

important heating mechanism of the interstellar gas. If the energy of the 

ejected photoelectrons is more than the energy of the electrons which are 

absorbed, then there is a net heating of the surrounding gas. In order to 

reduce the uncertainty in the photoelectron yield of small grains as much as 

possible, the absorption efficiency Qabs must be evaluated. The following is 

an example which uses the photoelectron yield Yp that has been calculated 

from the computer program PE-DING. 

Generally speaking electrons are strongly bound in a solid but those of 

highest energy may overcome the surface potential barrier. For a given 

material, this process only occurs for photons having energy greater than the 

work function 

¢ =hvl' (Bl) 

The energy E of the ejected photoelectron depends on the energy of the 

incident photon via 

E =hv-hvl' (B2) 

If a is the spherical grain's radius, then the cross-section for the absorption 

of radiation is given by 1Q12 Qabs . 
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Not every absorbed photon gives rise to a photoelectron. It depends 

on the photoelectron yield Yp . If the grain is situated a distance r from a 

source of radiation of luminosity Lv , the flux density at frequency v at the 

gram IS 

Lv (B3)
4nr2 . 

However, the most important quantity is the number of photons being 

intercepted by the grain. Thus, the number of photons in the frequency 

range v ~ v +dv arriving at the grain is 

Lv d (B4)4:rr2hv v. 

Then the total rate at which photoelectrons are emitted is 

00

2J Lv (BS)
,peff 4Jrr2h V Yp 11lJ QabPv. 

If the grain is positively charged, it becomes more difficult for the electrons 

to escape from the grain: the Coulomb attraction between grain and electron 

effectively increases the photoelectric work function of radius a by an mount 

given by 
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Ze2 

(B6)
4JlGoa' 

where Ze is the positive charge on the grain. Therefore the work function in 

this case can be written as 

Ze2 

CB?)¢Jeff =hVl + 4Jl'E a 
o 

The absorption efficiency Qabs can be obtained from FORTRAN 

program. The energy Lv can be obtained from Planck formula and some 

other descriptions. Future study will be done in this area. 
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Appendix C
 

*********************************************************************
 
* -PROGRAM: PE DING.FOR * 
* * 
* -AUTI-lOR: YuShi * 
III 

III 

-DATES: May I, 1992 

* 
* 

III 

III 

III 

-LAST MO
-DATE: 

DIFIED BY: Jorge Ballester and Yihong Ding 
February 18, 1994 

* 
* 
* 

'" -DESCRIPTION: Calculates the photoyield enhancement y'ly * 
III for a given sphere refractive index, mediwn * 
III refractive index, radius, and free space * 
'" wavelength. * 
III * 
'" -NOTES: Input fonnat has been changed! * 
********************************************************************* 
* 

IMPUCIT DOUBLE PRECISION (A-H,O-Z) 
COMMONIBLCKO/C(500),E(500) 
COMJ\.fONIBLCKI/x,Y,NSTOP 
COMJ\.fONIBLCK2/ WAVEL,REFREL,REFMED,RAD 
COMJ\.fONIBLCK31 A,B,KQ,ESCPL 
COrvlPLEX REFREL 
COrvlPLEXY 
COrvlPLEX C,E 
PARAMETER (pI=3.14159265, TOL=1.0D-4, DEPTH=IO) 
DATA ESCPL,REFMED/IO,l.OI 
WRITE(6, "')'TIllS IS PE_DING!' 
WRITE(6, "')'DEPTH=',DEPTH 

********************************************************************* 
* Input real refractive index for surrounding mediwn REFMED. *
 
****-****************************************************************
 
*option WRITE(6, lIt) 'REFMED='
 
*option READ(S, lIt) REFMED
 
*
 
*	 Open input and output files. 

OPEN(IO,file='radius.dat',status='old') 
OPEN(16,file='refindx.dat',status='old') 
OPEN(20,file='pe-out',status='unknoMl') 

* 
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********************************************************************* 
* Input escape length (ESCPL) and radius (RAD) in angstroms. * 
********************************************************************* 

********************************************************************* 
* Input from keyboard with the following statements. * 
*option WRITE(6t*)'RADIUS=' * 
*option READ(5,*)RAD * 
*option WRITE(6t*)'ESCAPE LENGTI-I=' * 
*option READ(St *) ESCPL * 
********************************************************************* 
* 
* 
* Read radius (RAD) from input file. Return to label 30 after calculating 
* yield enhancement for all photon wavelengths (fixed radius). 

30 READ(lOt*tEND=160)RAD 
WRITE(6t*)'RAD='tRAD 
WRITE(20t*)'RAD='tRAD 
WRITE(20t*)'DEPTH=\DEPTH 

* 
* Read wavelength (WAVEL) in Angstrornst and complex refractive 
* index (REFREtREFIM) from input file. Return to label 40 
* after calculating yield enhancement for each wavelength. 

40 READ(16t*tEND=140)WAVELtREFREtREFIM: 
* 
********************************************************************* 
* Input from keyboard with the following statements. * 
*option WRITE(6t*)'WAVELENGTH=' * 
*option READ(S, *) WAVEL * 
*option WRITE(6t*)'REFRE=,REFTIvI=' * 
*option READ(S, *) REFRE,REFIM: * 

********************************************************************* 
REFREL=CMPLX(REFREtREFll\If)/REF1vfED 
X=2.*PI*RAD*REF1vlEDIWAVEL 
Y=X*REFREL 

* 
* Calculate the photon absorption length ALENGTH. 

ALENGTH=WAVEU(4. *PI*ABS(REFIM) 
* 
* Deterntine number oftenns in series (NSTOP). 

XSTOP=ABS(Y)+4.*(ABS(Y»"(l.l3.)+2.0 
*option	 NSTOP=XSTOP 

NSTOP=! 
TEMP=O 
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- -

DO 77 JI=0,50 
*option NSTOP=NSTOP+1 

NSTOP=I.5"'NSTOP+1 
* Call the coefficients c nand d n. 

CALL COEFL(C,E) 

* 
* Input lower limit A and upper limit B for radial integrals. 
* A cannot equal 0 but can be a very small nwnber. 
·option	 A=.OOI 

B=RAD 
*
 
.. Use the flag KQ to calculate the nwnerator (KQ=O),
 
.. or the denominator (KQ=1).
 

A=O.OOI
 
KQ=O
 
CAll INTEGRA(S)
 
DENOl\.1INATOR=S
 
A=MAX(O.OOI,RAD-DEPTII*ESCPL)
 
KQ=1
 
CAll INTEGRA(S)
 
OMINATOR=S
 
YlliLD=Ol\.1INATOWDENOMINATOR
 
YIELD=(ESCPL+ALENGTH)"'YIELDIESCPL
 
WRITE(6,*)NSTOP,YIELD
 

.. 
* Check for convergence, if reached, exit loop. 

IF (ABS(YlELD-TE?vfP).LT.ABS(TE?vfP)*TOL) GOTO 70 
TEMP=YlliLD 

77 CONTINUE
 
WRITE(6,*)'need to sum more terms'
 
STOP
 

* 
70 WRITE(6,848)NSTOP,WAVEL,YIELD 

* 
*	 Write to output file. 

WRITE(20,858)WAVEL,YIELD 
* 
* Return to read next wavelength. 

GOT040 .. 
140 CONTINUE 

.. Finished with list of wavelengths. 
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* Rewind to the beginning of wavelengths. 
REWIND 16 

* 
•	 Return to read next radius. 

GOT030 
* 
160 CONfINUE 

* Finished with list of radii. 
* Close files. 

CLOSE(1O~status='keep') 

CLOSE( 16~status='keep') 

CLOSE(20,status='keep') 
* 
858 FORMAT(f12.4,f14.4)
 
848 FORMAT( 'IYIELD(',I3,')='~FI0.4~IOx,FlO.4)
 

* 
STOP 
END 

************************************************************ 
* Compute the coefficients c_n, d_n. * 
************************************************************ 

SUBROUTINE COEFL(C~E) 

IMPUCIT DOUBLE PRECISION(A-H,O-Z) 
COtv1MONIBLCKI/X~Y~NSTOP 

COtv1MONIBLCK2IWAVEL,REFREL~REFMED~RAD 

CO:rvIPLEX XI,XI1~D(500)~C(500)~E(500) 

CO:rvIPLEX I,CPSI(500),COMX,Y 
CO:rvIPLEX REFREL 
DOUBLE PRECISION RBESSJ(500) 
YMOD=ABS(y) 
NMX=MAX(NSTOP,INT(YMOD»+15 

************************************************************ 
* Calculate the logarithmic derivative D_n. * 
************************************************************ 

CALL DERIV(NMX,D~Y) 
I=C:MPLX(O.O~1.0) 
ZERO=O.O 
COMX=C:rvIPLX(X,ZERO) 

************************************************************ 

* Call subroutines to compute Riccati-Bessel fimction with * 
* complex and real arguments (only for PSI fimction) * 
.*********************************************************** 

CALL BESSJR(NSTOP+I,X,RBESSJ) 
CALL BESSJ(NSTOP+1,Y,CPSn 
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••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

PSIl=SIN(X)
 
CillO=-SIN(X)
 
Cilll=COS(X)
 
XIl=CMPLX(pSIl,Cilll)
 
DO 777 N=I,NSTOP
 

RN=N
 
DN=N
 
PSI=RBESSJ(N+I)


'" Calculate XI fimction using upward recurrence method. • 

Cill=(2.*DN-I.)"'CIDI/X-CIDO 
XI=Cl\.1PLX(pSI,Clfl) 
E(N)=(REFREL"'D(N)+RN/X)"'XI-XII)*CPSI(N+I) 
E(N)=I/E(N) 
C(N)=((D(N)+REFREL"'RN/X)"'XI-REFREL"'XII )"'CPSI(N+I) 
C(N)=I1C(N) 

ClllO=Cllll
 
Cilll=Cill
 
XI I=XI
 

777 CONTINUE
 
RETURN
 
END 

• Perl'onn integrations. • 
• Adapted from 'Numerical Recipes' by Press, et. al. • 

SUBROUTINE INTEGRA(S)
 
IMPUCIT DOUBLE PRECISION(A-H,O-Z)
 
COM1vlONIBLCKO/C(500),E(500)
 
COM1vlONIBLCKIIX,Y,NSTOP
 
COM1vlONIBLCK2IWAVEL,REFREL,REF1vffiD,RAD
 
COM1vlONIBLCK3/A,B,KQ,ESCPL
 
COMPLEX C,E
 
PARAMETER (EPS=1.E-6,JMAX=20)
 
OST=-1.E30
 
OS=-1.E30
 
DO 11 J=I,JMAX
 

CALL TRAPZED(ST,J) 
S=(4. ·ST-OST)/3. 
IF (ABS(S-OS).LT.EPS"'ABS(OS» RETURN 
OS=S 
OST=ST 
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11 CONTINUE
 
PAUSE 'too many steps'
 
END
 

SUBROUTINE TRAPZED(S,N)
 
llv1Pucrr DOUBLE PRECISION(A-H,O-Z)
 
CONIM:ONIBLCKO/C(500),E(500)
 
CONIM:ONIBLCKII X,Y,NSTOP
 
CONIM:ONIBLCK2IWAVEL,REFREL,REFMED,RAD
 
CONIM:ONIBLCIGIA,B,KQ,ESCPL
 
DO 33 K=1,NSTOP
 

33 CONTINUE
 
IF (N.EQ.1) THEN
 
S=.5"'(B-A)"'(BFUNC(A)+BFUNC(B»
 
IT=1
 
ELSE
 
TNM=IT
 
DEL=(B-A)nNM
 
XX=A+.5"'DEL
 
SUM=O
 
DO 11 J=I,IT
 

SUM=SUM+BFUNC(XX)
 
XX=XX+DEL
 

11 CONTINUE
 
S=.5*(S+(B-A)"'SUMITN1vl)
 
IT=2*IT
 
END IF
 
RETURN
 
END
 

********************************************************************* 

* Compute F(r). * 
********************************************************************* 

FUNCTION BFUNC(R) 
llv1PUCIT DOUBLE PRECISION(A-H,O-Z) 
CONIM:ONIBLCKO/C(500),E(500) 
CONIM:ONIBLCKlIX,Y,NSTOP 
CONIM:ONIBLCK2IWAVEL,REFREL,REF1vIED,RAD 
CONIM:ONIBLCIGIA,B,KQ,ESCPL 
COtvlPLEX Z,DZ,ZPSI(500),zdn(500) 
COtvlPLEX C,E,REFREL 
DOUBLE PRECISION NN,M1vf,K,mn 

61 



••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

• • 

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

mn=O.O
 
NN=O.O
 
Nllvf=O.O
 
K=2. "'3. 1415926"'REFlvlliDIWAVEL
 
Z=K"'R"'REFREL
 
DZ=Z
 

• Calculate Riccati-Bessel function with complex argument (mkr) • 

CALL BESSJ(NSTOP+I,DZ,ZPSI)
 
NAN=NSTOP+15
 
CALL DERIV(NAN,ZDN,Z)
 
DO 888 N=NSTOP,I,-1
 
RN=N
 
mn=mn+(2. "'m+1.)"'(abs(zpsi(n+1»)......2....
 
$ «abs(c(n») 2....(abs(zdn(n»)......2.+
 
$ (abs(e(n») 2.+m...(m+1.)...(abs(c(n»)......2.
 
$ /«abs(z» 2.»
 

• The following program is another way to computer F(r) • 

• ~=~+(ABS(E(N»)......2 (2....RN+1.)'" • 
• $ (ABS(ZPSI(N+l») 2.1(K 2.) • 
• NN=NN+(ABS(C(N») 2."'(2. "'RN+1.)'" • 
• $ «ABS(ZPSI(N)-ZPSI(N+1)"'RN/(REFREL...K*R»)......2. • 
• $ /(K......2.) • 
• $ +RN"'(RN+1.)"'(ABS(ZPSI(N+1»)......2. • 
• $ /«ABS(REFREL»......2....(K......4. • 
• $ ...R...... 2.») • 

• 
888 CONTINUE
 

IF(KQ.NE.O)TIIEN
 
BFUNC=(mn)"'EXP«R-RAD)/ESCPL)
 

ELSE
 
BFUNC=mn
 

ENDIF
 
RETURN
 

END 
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****••••••••••**.*****.*****••********.******************.*****. 

* Calculate Riccati-Bessel function with complex arguments • 
* using downward recurrence. Adapted from 'Numerical Recipes.' • 
.***********.***********.***••**.*****.********••*.**********••* 

SUBROUTINE BESSJ(N,Y,RBESSJ) 
COMPLEX Y,BJM,BJ,BJP,BESJO 
COMPLEX RBESSJ(500),RATO 
PARAMETER( lACC=40,BIGNO=I.E20,BIGNI=1.E-20) 
YMOD:=ABS(Y) 
RBESSJ(l}=SIN(Y) 
BESJO=SlN(Y) 

M=2"'«N+INT(SQRT(FLOAT(lACC"'N))/2) 
BJP=CMPLX(O,O) 
BJ=CMPLX(I,O) 

DO 12 J=M,I,-1 
BJM=«2"'J+1)*BJ)N-BJP 
BJP=BJ
 

BJ=BJM
 

* 
IF(ABS(BJ).GT.BIGNO) TIffiN 

* 
* Renonnalize to prevent overflows. 
* 

BJ=BJ*BIGNI
 
BJP=BJP"'BIGNI
 
BJM=BJM"'BIGNI
 
DO 555 ID=J+2,N
 

RBESSJ(ID)=RBESSJ(ID)"'BIGNI 
555 CONTINUE
 

ENDIF
 
RBESSJ(J+1)=BJP
 

12 CONTINUE 
* 
* Normalize the results. 
* 

RATO=BESJOIBJM
 
DO 44 JJ=2,N
 

RBESSJ(JJ)=RBESSJ(JJ)"'RATO
 
44 CONTINUE
 

END
 

SUBROUTINE DERIV(NMX,D,VAR) 
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********************************************************************* 
* Calculate the logarithmic derivative D(J) by downward * 
* reCWTence beginning with initial value 0.0 + O.O"'i at J=NMX. * 
********************************************************************* 

llvIPUCIT DOUBLE PRECISION(A-H,O-Z) 
COMPLEX D(500),VAR 
D(NMX)=CMPLX(O.O,O.O) 
NN=NMX-l 
DO lZ0 N=I,NN 
RN=NMX-N+l 

lZ0 D(NMX-N)=(RNNAR)-(l./(D(NMX-N+1)+RNNAR»
 
RETIJRN
 
END
 

********************************************************************* 
* Calculate the Riccati-Bessel fimction with real fimctions. * 
********************************************************************* 

SUBROUTINE BESSJR(N,Y,RBESSJ) 
**************************.****•••*.****•••***•••••••••••••••••**••*••••**•••••* 

• CALCULATE THE RICCATI-BESSEL USING DOWNWARD RECURRENCE * 
**.*.*••••••••**.**••••***••••••****•••••*****••••*••••••••**•••*•••***•••••**** 

DOUBLE PRECISION Y,BJM,BJ,BJP,BESJO 
DOUBLE PRECISION RBESSJ(500),RATO 
PARMAE1'£R( IACC=40,BIGNO=I.EZO,BIGNI= I.E-ZO) 
RBESSJ(I)=SIN(Y) 
BESJO=SIN(Y) 

M=Z"'«N+INT(SQRT(FLOAT(lACC"'N»»/Z) 
BJP=C:MPLX(O,O) 
BJ=CMPLX(I,O) 

DO lZ J=M,I,-1 
BJM=«Z*J+1)*BJ)/Y-BJP 
BJP=BJ 
BJ=BJM
 

IF(ABS(BJ).GT.BIGNO) THEN
 
• 
• Renonnalize to prevent overflows. 
* 

BJ=BJ"'BIGNI
 
BJP=BJP"'BIGNI
 
BJM=BJM"'BIGNI
 
DO 555 ID=J+Z,N
 

RBESSJ(ID)=RBESSJ(ID)"'BIGNI
 
555 CONTINUE
 

ENDIF
 

64
 



RBESSJ(J+ l)=BJP
 
12 CONTINUE
 

• 
• Nonnalize the results.NORMALIZE TIlE RESULTS 
• 

RATO=BESJOIBJM
 
DO 44 JJ=2,N
 

RBESSJ(JJ)=RBESSJ(JJ)*RATO
 
44 CONTINUE
 

END
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