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bulk values, due to the large surface to volume ratio, which leads to an
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significant source of heating of interstellar gas. The heating rate is sensitive
to the photoelectric yield of the proposed dust grains. A mode! based on the
Mie solution to the vector electromagnetic wave equation in the presence of a
sphere is adopted. Unlike the traditional Mie scattering problem, the
electromagnetic fields inside the sphere are considered. Previous
calculations utilizing the model are extended. In particular, the relationship
of the relative photoelectron yield to wavelength and grain size via a complex
index of refraction is investigated. Graphite and silicate grains are
considered because they are possible components of interstellar dusts. The
published values of absolute photoelectric yield for bulk samples are then
used to calculate the absolute yield of small dust grains. The use of exp(iwt)

and exp(-iwt) time-conventions in this problem are compared.
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Chapter 1

Introduction

The physical properties of the interstellar medium are described by its
density, temperature and phase. The density varies from approximately
5x10° to more than IxI0® particles per cubic meter. The temperature

depends on the balance of heating and cooling mechanisms, and varies from

1510 5x10° K. Hydrogen is the most abundant element in the universe and
describing the phase consists of stating the predominant form of hydrogen as
molecular (), neutral atomic (1) or 1onized (HII). According to the three-
phase model of McKee and Ostriker’, the interstellar gas has four principal
components. These are cold (15 K) molecular H;, cool (80 K) atomic HI, a
warm (8000 K) mixture of HI and HII, and hot (5x10° K) ionized HII .

The interstellar medium is believed to consist of a diffuse hot ionized HIJ
component, the intercloud medium within which are located denser clouds.
The so-called diffuse clouds consist of cool atomic HI surrounded by warm
HI and HII. Dense molecular clouds are similar to the diffuse clouds but

contain a cold molecular A, region 1n the center. The cold molecular H, and
cool atomic HI regions are separated by a so-called photodissociation region.

All these components are maintained by pressure equilibrium. Interstellar
clouds contain hydrogen atoms, assorted molecules and dust grains. These

clouds evolve and eventually contract into stars. Cloud temperatures of

1



100 K or more must be the result of energy exchange among the interstellar

radiation field, hydrogen gas, molecules and the dust grains within the
cloud. Understanding this energy balance within clouds is very important to
quantitative theories of interstellar clouds. Research shows that dust grain
photoelectron heating may dominate the gas heating of the intercloud

medium and diffuse clouds. It is also significant in HII regions.

Interstellar grains play an important role in the energy balance within
clouds because they are believed to serve as an intermediary in transferring
stellar radiant energy or gas chemical energy into the interstellar gas. The
three mechanisms which can transfer starlight energy to gas via grains as
described by Hollenbach'? are photoelectron emission, collisions and

desorption.

Interstellar gas may be heated as a result of the emission of
photoelectrons from grains (Watson)?. For grains which lie near stars with
significant ultraviolet (UV) fluxes, the UV absorbed by the grains results in
the emission of energetic photoelectrons into the gas. At the same time, free
electrons may be captured by the grain. The energy of the ejected electrons
is determined by the photoelectric emission process, but the energy of the
captured electrons i1s determined by the free electron temperature.
Therefore, there is net heating if the ejected electrons carry more energy than

the electrons absorbed by the grains.
The gas may be heated by collisions with grains. Deep in the opaque
molecular gas associated with a nearby star, starlight is absorbed by grains.

Some of this energy is in turn reradiated by the grains, generally in the
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infrared part of the electromagnetic spectrum. Some of this energy can be
reabsorbed by the grains and cause temperatures to occur in the range of
30-100 K. The cooler gas collides with the warm grains and is heated by
conduction, while the infrared photons radiated by the warm grains are
absorbed by molecules H,0O or atom O in the opaque, molecular gas.
Collisions of these excited molecules and atoms transfer the excitation

energy to the gas .

Interstellar gas may also be heated by desorption from thermally
fluctuating small grains (Duley)’. Gas heating results from the escape of
highly vibrationally excited atoms and molecules from small grains following
a sudden temperature increase after the absorption of a single photon.
Under special circumstances, this process may be of comparable importance

to grain photoelectric heating.

The physical process of grain photoelectric heating is based on the

absorption of UV photons by grains and the subsequent ejection of energetic

electrons into the gas. Calculating the photoelectric emission from very
small particles is very complicated, especially for different geometries and
charged grains. The sizes and compositions of dust grains are not certain,
but a distribution of spherical graphite and silicate grains represents an
acceptable model of interstellar dust.* In this research, we use Watson’s
mode] and numerical methods to calculate the relative photoelectron yield,

for spherical graphite and silicate grains as compared to the bulk values. We

then multiply the published values of the photoelectric yield of bulk samples
by this factor to calculate the absolute photoelectron yield of small particles.



In Chapter 2, we present the basic theory. This includes Watson’s
model of photoelectric emission from grains, the Mie solution to the
electromagnetic wave equations, and the detailed numerical methods needed.
In Chapter 3, our research results, including tables and graphs are presented.
In Chapter 4, we discuss our conclusions. In Appendix A we compare the
exp(imt) and exp(-iwt) time-conventions as they relate to Watson’s model.
Appendix B presents an example of the type of calculation that can be

carried out using our results.



Chapter 2
Theory

1. Watson’s Model

Watson presents the basic results of his model, but very few details of
the calculations. In order to check the final result and obtain some necessary
analytical expressions we have reconstructed a complete derivation of
Watson’s model. The photoelectric yield Y is defined as the number of
electrons emitted divided by the number of incident photons. The basic
assumption of Watson's model is that the number of electrons excited in any
volume element in the solid is proportional to the number of photons
absorbed per unit volume at that location. The number of photons absorbed
at any location is calculated from the classical distribution of electromagnetic
energy within the material. This model is highly simplified, but 1t will serve
as a first approximation.

Consider a plane, monochromatic electromagnetic wave of angular
frequency @ incident on a spherical grain of radius a. The electric and
magnetic fields E and H within the grain can be obtained from the Mie
solution® of the vector wave equation in spherical coordinates. The number
of photons absorbed per unit time inside the grain can be calculated by
integrating the Poynting vector S = E x H over the surface of the grain and

dividing by the energy per photon, that is



S ii)dS V-S)av
—IA( :a)) =_IV(_—__ha)) - (1)

The minus sign accounts for the fact that energy flows into the grain, but the
normal vector I points out of the grain at the surface. Gauss’ theorem is

used to convert the surface integral to a volume integral. It is concluded that

(%—SJ is the number of photons absorbed per unit volume per unit time at a
@

particular position within the grain.

Photons absorbed by the grain can liberate electrons from individual
atoms, but these do not all escape from the grain. In the case of a bulk
sample, Pepper® has given a theory which describes the motion of the
electron to the surface. The probability for a photoelectron to be emitted

from the surface of a bulk solid when light 1s absorbed at a distance x below

the surface is assumed to be C exp(—x/ Le). L, 1s a charactenstic distance

which is known as the escape length and C is a constant. Both L, and C can
be determined independently from photoemission experiments with bulk
matter. The total number of electrons emitted per unit time from a volume of

depth x is

Ce_x/Le av . (2)

Then the bulk yield Y, is given by



f(v- S)ce™ "+ av
%4

j(v-S)dV

Y, =

If there is no magnetic dissipation and the material is isotropic then,

ICe('x/Le)(E* -E)dV
L=t P
[ 8

A solution of the boundary value problem shows that

B E = Kel /%),

where K is a constant and the absorption length L, is given by,

A

3

“4)

(3)

(6)

where Im(m) is the imaginary part of the materials’ refractive index. In this

case Y}, can be calculated analvtically . The integral in equation(4) can be

written as,



” dydzT Ce _%e - e—%" dx
0

B =4

— , (1)
” dydzj e /L“ dx

A 0

where K has been eliminated from the numerator and denominator. Assume

that A4 is the large but finite surface area of the bulk sample. Then

(Le+L,,)
e -x
j‘ Ce N Lela /g, C( LL, ) (e'°° _eo)
L +L
=4 R Y
© La(e_00 —-e )
IeL“dx
0
that 1s
f=—te_ )
L,+L,

Watson has applied the preceding theory to the case of a spherical grain. In
a bulk sample, x is a one-dimensional distance. In a small spherical dust
grain, the substitution is made x=a-r, where a is the radius of the dust grain

and 7 is the radial position within the sphere. If it is assumed that the

same constant C applies to spherical grains, then equation (9) may be used



to solve for C in terms of the experimental bulk yield ¥y,

L +L
C=( e; “]Yb. (10)

e




2. Mie Solution

A physical time-harmonic electromagnetic field in a linear, 1sotropic,

homogeneous medium satisfies the vector wave equations,

V2E+k?m?E=0

VIH+k’m*H =0, (11)
and the boundary conditions
V-E=0,
V-H=0, (12)

where k is the wave number and m is the complex index of refraction of the
medium.

Now, two vectors are defined as

M=Vx(Tp) (13)
N (VM) (14)
mk

where ¢ is a solution of the following scalar wave equation

V2p+m?klp=0. (15)
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simple substitution shows that if # and v are two solutions of the scalar wave
equation and IVIu , IVIV N u N , are the derived vector fields, then

Maxwell’s equations are satisfied by

—

=M, +iN,

(1)

—

H

m(-M,+iN, ). (16)

According to Watson® within the sphere, the independent solutions of the

scalar wave equation % and v can be expanded as

2n+1

1 .
Ty FA (cos0) (k)

(¢ o)
u=cosg Ymc,(-i)"
n=1

o0
v=sing Smd,(~i)" 2n+i)PJ(0059)fn(mkr)= amn

n=1 n(n+

Here Pnl(cos 6) is an associated Legendre polynomial and j, ts the

spherical Bessel function. The coefficients ¢;, d, can be obtained from the
boundary conditions. It should be noted that the general solution of the

scalar wave equation should include associated Legendre polynomials of all
orders P,f (cos@). However, when the incident plane wave is expanded in

spherical coordinates its expansion only includes / =1 terms. Therefore,

only the / = 1 terms are needed for the solution in equation (17). Watson’s
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research paper includes few details. We want to extend Watson’s numerical
calculations. The following derivation provides all analytical expressions
which are necessary for this purpose.

By introducing the scalar spherical harmonics ’

2n+1 ;
Y, = ‘/%P,}@se)e‘?’ (18)

v can be written as

_ @ N (2n+1) .
v—n-Z__lmdn( i) /47rn(n+1)1n(mkr)lm(Yn1).

(19)
Then
M, =V x (). (20)
The vector spherical harmonics X  are defined by ®
X=-—>L __FxVY,. 1)
n(n +1)
Because the function Vj,(mkr) only has a radial component, then
7 x Vj, (mkr)=0. (22)

On the other hand,

12



ar X (23)

We have defined X,,, and X,,; by

\/n(n_+[rx V Re( ))] (23.1)

X, = ‘/n(;—ﬂ) [ x A{im{,))] (232)
Then
M, = 3 mdy (-0 En 1), iRy 28
Similarly,
N, = %’E 1{0" (i A+ )V <[4, (mkr)i(nr]} (25)

The vector spherical harmonics X , has

13



4”** . 1 (n=n
éxn-xn,d£2={0, (nen') (26)
It can be shown that
41”5(* X, do=i@=m) @7
o M 0, )
4fr5(* %, da={>®"") 28
o 0, e =
On the other hand,
—k = — — * — —
E-E=(M,+iN,) - (M, +N,)
=My M, M, Ny +iN, My +N, K,
(29)
Therefore,
a 4
—~k 2 %k _
j[E .E]dV=jr drj(E -E]dQ
Vv 0 0
a A, - ~ _
= rdr | (", -, M, N, +
_. %k _. _. Xk .
N, M, + N, N, JdQ
(30)

The integral relations for vector spherical harmonics is used, then

14



47 o w A7 . w
jo Mv-NudQ=jo N*.-M,dQ =0, 31)

and 2

4x o
JM*V . Mde = 471'}7”‘2 Zl 'dn{z(zn + l)j*n (mkr) . jn (mkr),
0 "=

(32)
4 . - 5
[N*u N dQ =4z zl|cn| (2n+1){\m2 i n(mkr)- j, (mkr) +
0 n=

kzlrz g[’j*"(mkr)‘g(’jn(mkr))]}

(33)
Using equation (24) and (25), Y’ can be written as,
cletr-a)/ L{‘ (N, +NGN )dQ}zdr
o 0 o' " v (34)
B . ,
(J) (M, N1, + RGN JaQ r2dr

Using the result of Pepper,® if the material making up the bulk is the same as
that of the small spherical particle, then Y'/Yb is independent of C. Thus the
photoyield enhancement for a sphere of radius @ as compare to the bulk

material can be calculated from the following ratio

15



—(@-P) Ly | A7 ok~ w 5
v (Le+ [j(') [Mv Mv+Nu-Nu)dQ}r dr
Y, L al 4n
b . g
e (j)[ j (™) M, +K;, Nu)dn}vza’r
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3. Numerical Calculation Method

In order to obtain values of Y, /Y, the coefficients ¢, d, must be
calculated. The formulas are different depending on which kind of time-
conventions is used. The following results are obtained using the exp(iw¢)
time-convention. The use of the exp(iwf) and exp(-iwf) conventions are

compared in Appendix A.

A discussion of numerical methods which may be adapted to our
problem is given by Bohren and Huffman.'® From the boundary conditions

satisfied by the electromagnetic field, the coefficients ¢,, d, are given by9,

e i 36)

~my, m){[D,(mx) /m+n/x¢,()-C, ()}

dn= i @37)
W (m{[mD,y(mx) / m+n/ x1C, () -C 1 (0}

Where the logarithmic derivative Dn(x) = !//;,(x) / l//n(x) is 1introduced,

!//n(x) and (¢ n(x) are Ricatti-Bessel functions, and m is still the

material’s complex index of refraction. The details of this calculation are
shown in Appendix A. The reason for wrnting these expressions using D, is

that D, satisfies the following backward recurrence relation *°
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n_ 1

D, (x)= " -
D, (x) + ;

(38)
From the above D,; and D, function, the following result can be

obtained that: if €, is the error in D,, and the error in D, generated from the

above recurrence relation is €,.,, then €, << €,. Thus, beginning with a

coefficient D, where n is larger than the number of terms required for
convergence, more accurate lower-order logarithmic derivatives can be
generated by the downward recurrence. The FORTRAN program PE-
DING.FOR which performs this calculation process is listed in Appendix C.

On the other hand, in order to obtain the numerical value of ¢,, d,,
Ricatti-Bessel functions ¥/, (x) and § ,,(x) must be calculated. The

definitions of Ricatti-Bessel functions are

W (%) = %, (%)
{n(x) = xhn(x), (39)

where j,(x) and h,(x) are the Spherical Bessel and Hankel functions which

are defined from the ordinary Bessel and Hankel functions J and ¥,

@)= T 1),

18
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Yn(x)= gYMl(x), (40)
2

The Hankel functions of the first and second type are defined by"'

KD(x) = jiu(x) +iva(x), (41)
hr(zz)(x) = Jn (x) - iyn(x)’ (42)

Which kind of Hankel function should be used depends on which time-

convention is used in the calculation. In this research the exp(iwt) time-
convention is used, therefore h,(lz) (x) was used throughout the calculation.

A detailed explanation for this choice is given in Appendix A.

The calculation of Ricatti-Bessel functions has been difficult because
of the instability of the generation of Bessel functions of complex argument.
A downward recurrence method was used in calculations beginning with an
arbitrary starting value for the two initial high orders, and renormalizing

after reaching the known zeroth-order Ricatti-Bessel function

wo(x) = sin(x), (43)

For y, upward recurrence is stable beginning with

sin(x)

y1(x) = .

19



COSx
Yo=-——2, (44)

any order of }), may be calculated. In the mean time,

nlx) = 1 (x)
= x{(Jn(%) = 1¥a(x)) (45)

= ¥ (%)~ 01y, (x)
Using the recurrence formula for spherical Bessel functions '%:

2n+1
x

Jn(%) = Juo1(X) + Jp1(x), (46)

¢n(x) can be obtained from known numerical methods.

Unfortunately, there are no numerical values for ¢,, d, available in the
literature. However, the scattering coefficients a,, b, are given by Bohren
and Huffman ®. Therefore, the only way to check if these results are correct
is to produce a,, b, using the same method as calculating ¢,, d, in this
research. The results obtained agree with the published values. More
details are given by Shi. **

Substituting z = mk? in equations (32) and (33), and using the
recurrence relations (38), (39) and (46), the relative photoelectron yield

Y’/Y, can be written as

20
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a —(r—a)/Le 2
Y’ (Le+La) F(r)4ﬂ7’ dr
L~ L J:F (r)4mtdr
where
1 (¢ o]
F(r)y= 53
k r k=

2 n(n+1)
{I Cn| |:|Dn| i ] ‘dn|}

(47)

This expression for F{r) can be calculated numerically. By determining the
convergence of the series by iteration or using Wiscomb’s formula, the
termination of the calculation of F{r) can be obtained. In the FORTRAN
program PE-DING.FOR, the termination is based on Wiscomb’s formula'*..

More details are again given by Shi. 1>

21



Chapter 3

Results

The numerical method is used in the FORTRAN program PE-DING.
We have used this program to calculate the photoelectron yield enhancement
for small dust grains. We have used these results to calculate the absolute
photoelectron yield using the published bulk sample’s photoelectron yield
values. The complete program is shown in Appendix C.

Table 1 presents results of the PE-DING.FOR program. The input
parameters are from Watson?. These results are compared with that of
Watson’s in Table 2. Our results are almost identical to Watson’s. Watson
didn’t give the complete results for m=0.71-0.018i , possibly because of the
small imaginary part of m compared to the real part. In our calculations we
have noticed that these same values are very difficult to calculate, because
the program takes much more time.

Watson’s results have been extended by including more wavelengths,
grain sizes, and realistic values for the complex index of refraction from
Draine and Lee.* These calculations suggest some interesting features. It
should be noticed that the size of a dust grain should be compared to the
wavelength of incident light. For example, a grain with a radius of /00 A is
a small dust grain compare to a wavelength of 2000 A, but it can not be seen
as a small grain when the wavelength is /50 A. In fact, a dust grain with a

radius of 5000 A can be thought as a bulk, because the most important

22



photon wavelengths in this research are between 9/2 A to 1500 A. Grain
sizes from 20 A to 5000 A are used in this research. The reason for this
range is that absorption by interstellar hydrogen cuts off this light field at
912 A and photons with wavelengths beyond 1500 A have small
photoelectron yields. Nevertheless, photoelectron yield enhancement of
photon wavelengths from 227.9 A to 10000 A are also calculated. Several
figures are presented. Figure 1, 2, 3 are the results from graphite and silicate

grains.

The complex index of refraction depends on wavelength. The
imaginary part of complex index of refraction is more important to
photoelectron yield, for it affects the photon’s absorption length. When the
absorption length is small, more absorbed photons will be distributed in the
region near the grain’s surface, therefore, photoelectrons are more easily
produced and emitted in this case. When the absorption length is large,
photons are absorbed deep in the material, and produce fewer

photoelectrons.

Graphite and silicate grains are considered. In the case of graphite,
the average photoelectron yield is presented in the final result, because the
polarization is considered. The direction of incident light can be separated
into two components: one is parallel to the grain’s axis, another is
perpendicular to it. The final photoelectron yield comes from assuming one-

third parallel yield and two-thirds perpendicular yield.

Figure 1 and 2 are graphite yield enhancement. Radius of this dust

grain is 100 A and 1000 A. Both the complex index of refraction and the

23
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photoelectron yield enhancement are shown in the figures. In the region,
wavelength smaller than 5000 A, the absolute photoelectron yield E,
displays oscillations as a function of complex index of refraction m and
wavelength. When the wavelength 1s larger than 5000 A, the photoelectron
yteld enhancement increases with the wavelength. It supports the
assumption that small size effects can play an important role. The similar
conclusion can be obtained from figure 3, which is for silicate grains. For
the most interesting wavelength region, 972 A to 1500 A, certain important
results can be obtained. Figure 4 and Figure 5 present the behavior of
various sizes of graphite and silicate dust grains. The radii are from 20 A to
5000 A. These figures clearly show that for a given wavelength the absolute
photoelectron yield decreases as the grain’s radius increases. Relative
photoelectron yield is always greater than one, indicating that the small
grain’s photoelectron yield is greater than that of a bulk sample. The
absolute photoelectron vield can be obtained by using the photoelectron
yield enhancement from this numerical method times published bulk yield
values. The results are shown in Figure 4 and Figure 5. When radii become
large, the relative photoelectron yields are closer to one, because the dust

grains are more like bulk material.
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m=1.4-0.81 =2.5-1.0i m=0.74-0.018I
RAD|WAVEL|Le=10 A Le=100A |Le=10A Le=100A |Le=10A Le=100A
A) l(A)
100| 500 1.60 1.204 123 1.105 57.91 1852
1000 267 1.57 214 1.42 110.61 35.94
1250 3.27 1.77 2.64 1.58 137.43 44,68
2000 5.08 2.35 414 2.05 218.49 70.93
3000 7.50 3.13 6.10 2.68 326.99 105.96
250] 500 1.23 1.09 1.07 1.03 28.86 14.32
1000 150 1.27 117 112 54.48 27.72
1250 1.66 1.37 1.24 1.18 66.16 34.17
2000 232 1.76 1.78 1.51 101.13 53.51
3000 3.38 2.34 2.69 1.99 148.95 79.5
soo] so00 1.15 1.06 1.05 1.02 17.16 1053
1000 1.25 1.14 1.08 1.04 30.57 19.92
1250 1.30 1.18 1.09 1.06 37.72 24.81
2000 152 1.37 118 115 57.22 38.57
3000 1.88 1.66 1.37 1.34 81.28 56.11

Table 1. Relative photoelectron yield E, calculated by using input

parameters from Watson. a is the grain radius. L, is the

electron escape length. m is the index of refraction.
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m=1.4-0.81i m=2.5-1.0i =0.71-0.018i
RAD|WAVEL. [Le=10 A |Le=100A |Le=10A |Le=100A |[Le=10A |Le=100 A
(A} 1(A)
100 500 1.61 1.21 123 111 57.9 185
1000 27 1.58 2.14 1.42 111 359
1250 3.31 1.78 2.64 1.58 137 446
2000 5.14 237 414 2.05
3000 7.59 3.15 6.1 268
250 500 1.23 1.09 1.07 1.03 28.9 14.3
1000 1.51 127 1.17 1.12 54.5 27.7
1250 1.68 1.38 1.24 1.18 66.2 34.7
2000 2.35 1.78 1.78 1.51
3000 3.42 2.36 2.69 1.99
500 500 1.15 1.06 1.05 1.02 17.2 10.5
1000 1.25 1.14 1.08 1.04 30.6 19.1
1250 1.31 1.19 1.09 1.06 37.7 248
2000 1,53 1.37 1.18 1.15
3000 19 1.67 1.37 1.34

Table 2. Watson’s results of relative photoelectron yield £, using the
same parameters as Table 1. a is the grain radius. L, is the

electron escape length. m is the index of refraction.
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Graphite Yield Enhancerment

a=100 A
100 ,
© ]
[1}]
'>'_‘_ |
S
B 12
2 E
S 101 a | ¢
o ,”‘- by “.\
L VAN .
Q.
2 Rem) — \ // | I T +1
E N
[}
- fmm)
T i et t t —+—+—+—+—++ ()
100 1000 10000

wavelength (A)

Figure 1. Graphite grains relative photoelectron yield £, and complex
index of refraction m vs wavelength. Re(m) is the real part of m,
| Im(m)| is the value of the imagnary part of m. Radius of this dust
grain is a=/00A. Wavelength is from 227.9A to 10000A.
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Photoelectron Yield (Ea)

Graphite Yield Enhancement

a=1000 A
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Figure 2. Graphite grains relative photoelectron yield £, and complex

index of refraction m vs wavelength. Re(my) is the real part

of m, | Im(m)| is the value of the imagnary part of m. Radius of
this dust grain is a=/000A. Wavelength is from 227.9A to
10000A.
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Silicate Yield Enhancement
a=1000 A
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Figure 3. Silicate grains relative photoelectron yield £, and complex index
of refraction m vs wavelength. Re(m) is the real part of m,
| Im(m)| is the value of the imagnary part of m. Radius of this
dust grain is a=1000A. Wavelength is from 227.9A to 10000A.
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Graphite Particle Yield
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Figure 4. Various sizes of graphite dust grains absolute photoelectron yield
Y. vs wavelength. Grain sizes are from 20A to 5000A.
Wavelength is from 900A to 1500A.

30



Silicate Particle Yield
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Figure 5. Various sizes of silicate dust grains absolute photoelectron yield

Y, vs wavelength. Grain sizes are from 20A to 5000A. Wavelength
is from 900A to 1500A.
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Chapter 4

Conclusions

This research has extended previous work by Shi.'* It investigated
one of the mechanisms by which interstellar gas is heated and the emission
of photoelectrons from graphite and silicate dust grains. It is found that

grain size is important in the efficiency of photoelectron emission.

We have found that the relative photoelectron yield is always greater
than one for both graphite and silicate grains. This confirms Watson’s idea
that enhanced photoemission from small dust grains can be significantly
larger than bulk matter. We have reproduced Watson’s numerical results

and extended them.

This research presents the relationships of photoelectron yield, photon
wavelength and grain size as well as the complex index of refraction. These
relations are complicated and may be significant in the interstellar medium.
More research, especially using a different model, may be necessary in the
future. Ultimately, the photoelectron yields of known interstellar grains
should be measured experimentally, although this will be a difficult task.

We have also discussed analytical and numerical methods in this
thesis. It is clear that these numerical methods are powerful, and provide a
useful general method for future study of the interaction of small grains with

photons.

The absolute photoelectric yields calculated in this research will be
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used 1n the future to calculate the number of photoelectrons emitted from

small grains in different environments.
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Appendix A

Exp(iax) and Exp(-iax) time-conventions

(1) exp(-iwt) time-convention:

In Gaussian units, Maxwell equations can be written as

div'1’+d—=o. (Al)

The boundary conditions are

divD =4np,
V-H=0. (A2)

The electromagnetic wave field can be described

B(F.1) = B(f)e ™
and
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A(F, () = A(F)e " (A3)
Substituting these electric field and magnetic fields into the Maxwell’s

equations, and using the electric field E(F ,t) to express the magnetic field

ﬁ(? ,t), one obtains

\7xﬁ=—if"—(s+i4ﬂ)ﬁ. (Ad)
C (1))

Thus, two definitions are given as

m =cg+i—— (AS)

where c is the speed of light, @ is the incident light’s frequency. Then

V x H = —ikm*E. (A6)
Because

Vv (V X ﬁ) =0,

V. (mzﬁ) =0. (A7)
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On the other hand,

VAV PR P 278 P - | (A8)
c dt
and from vector calculation formulas, one can obtain,
Vx(VxE)=V(V-E)-V’E=-V’E. (A9)

Thus
V2E +k*m*E =0. (A10)

This is the famous wave equation. Thus its scalar wave function is
Vi +k*mty =0. (Al1)

Here, I/ is a solution of this scalar wave equation. If two vectors M, N

are defined as,

M=V x(Fy)
N- (VM) (A12)
mk
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then , the following expressions satisfy Maxwell equations,
E=M, +iN,
H=rm-M,+iN,). (A13)

From electromagnetic field boundary conditions, and change the Gauss unit

to SI unit for simplify the equations, one can obtain,

Jn(mx)eq + ()b, = ju(%)
p[mxj,,(mx)]’ Cp #l[xh'n(l)(x)]’bn = Iy [xfl(x)]’
ponj(mx)d, + i (%)a, = p117()
[, (m)] d, +m[xh.,,(l)(x)]’an = m[x7, ()] (Al4)
These results can be found in the book written by Bohren & Huffman.!® But

one must notice that, the unit used in Bohren & Huffman’s book is SI Unit.

Therefore, the form of wave equation in Bohren & Huffman is different from
above discussion. In the case, {4 = W, one can solve these equations and

obtain

i (x)[xh,,(l)(x)]' ~ B, (x) 7, (X)]’
Jn (mx)[th(l)(x)] ~ b, (x)mog, (mx)]’

Cp =

(A15)
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)V x)] = b, ()]

m? j,,(mx)[xh,,(l)( x)]’ ~hY (x)[mxj,,(mx)]

!

(A16)
), P(0)] = ()i )]
mjn(mx)[xhn(l)( x)] - hn( 1)(x)[xjn(mx)]’

In order to separate m for exp(-iwf) and exp(iwt) , from now on,M_ and m_

are used to instead of m, then equations(14) and (15) can be written as,

n

O] -]

_(A17)
Jn(m_ x)[xhn(l)(x)] -~ hn(l)(x)[m_ xj, (m_ x)]

m_ i@, )| b O (5)]
m_? j,(m_ x)[xh,,(l) (x)] -h, " (x)[m_ xj (m_ x)]

d, = (A18)

!

(2) exp(imt) time-convention:

No matter what kind of time-convention, the Maxwell equations are the

same form. However, the electromagnetic wave field in this case can be

described as E(F,t) = E(F)e’”, and H(F,#) = H(F)e'”. Substituting these
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electric field and magnetic fields into the Maxwell’s equations, and using the

electric field E(F ,t) to express the magnetic field ﬁ(f" ,t), one obtains,

Vxﬁ=i9(5—i4—m—)1§. (A19)
C w

Thus, two definitions are given as

m’=g-i—"— (A20)

VxH=ikm,'E . (A21)
Because
v.(vX")=o,
v. (me) =0. (A22)
On the other hand,
_  1dH 1., .d _
VxE=—-——=—--H(r)—(iot) = —ikH, A23
§ c dt c (r)dt(l ) ’ (A23)
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and from vector calculation formulas, one can obtain,

—

Vx(VxE):V(V-E)—V2E=—V2E. (A24)
Thus the same result as the exp(-iwf) time-convention is obtained
VE +k*m,*E=0. (A25)
Thus its scalar wave function is
Vi +k*m *y =0. (A26)

Similarity, §/ is a solution of this scalar wave equation, and two vectors

M, N are defined as,

then, the following expressions satisfy Maxwell equations,

— —

E=M, +iN,

—

H-= m+(—NIu+iNv). (A28)

From electromagnetic field boundary conditions, one can obtain’,
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Y, (x) —a,6, (x) =m,c, ¥, (y )
¥y (1) -a,Cn (x) = p %y ()
LPn (x) - bngn (x) = dnLPn (y)

¥, () =bnl, (2)=m,d, ¥, (¥). (A29)

These results can be found in van de Hulst. > Solving these equations, one

obtains,

!

)0 -m I (),

Cn

dn = 7 : 7 > (A30)
m, ‘Y, (y)gn(x)—an(y)gn (x)

where y=m.x, x =ka.

(3) The relations of C, , dn from exp.(-iwt) and exp(iwt) time-conventions:
In order to make difference between these two cases, c, (+) d, (+)
will be used to represent the results from exp(iwt) time term, c,, (—) d,,(—)

will be used to represent the results from exp(-icwf) time term.

44



From the exp(-iwt) time-convention,

In (x)[xh t)] h xjn (x)]

e ()= -, (A31)
sl e ]—hn [m-xfn(m-xn
because
W (%) =7, (x)
(%) = xh, (%),
LPn’ (x)Cn (x)- T, (x)Cn’ (x) =i (A32)

c, (—) can be wntten as

B ) (g
ZCERTPNE T

X

Cn(—) =

2,06, (9-¢,0%,
() ) (¢, 0, (n)

—-m_i

1Pn('"—"') é’n(l)’(x)—m_ 4n(l)lyn’(m—x) |
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. + . (A33)

l11,,(»1 )[ ()(x):| [ ]l{!

Because , in (iw¥) ttme-convention:

&, (x)= xh,(?) = A jn(x) = ivs (x)] (A34)

while in (-ict) time- convention:
é’n(l)(x) = xh,,(l)(x) = x[jn(x)+z'yn(x)]. (A35)

The relation of n(l)(x) and £ n(z)(x) is,

4n(1)(x) _ [;n(z)(x)]*_ (A36)

The following relationship for a function of a complex variable will be

useful.

» *
v, (z ) = [‘P,, (z)] (A37)
This is not true in general, but is true for functions which are real for real

arguments, for example polynomials with real coefficients. This property is

known as the Schwarz Reflection Principle'’. The Bessel functions and all
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functions derived from them satisfy this condition. The relationship was
also checked with the Mathematica'® computer algebra software.

Thus

—-m_i

¥(m,x)¢ ,,(2)’ (x)-m.¢ ,,(2)‘11,,’ (m +x)

cn(-) =

(A38)

On the other hand, from above calculation,

In (x)[th(l)(x)] | _hn(l ) (x)[xjn (x)] |
m_j, (m_x)[xhn(l) (x)] ‘hn(l)(x)[xjn (m—x)]l

dn (_) =

D] | D] T

O THERS  FECTE) L G TS | PR |

{jn(x){[xhn(z)(x)]l}—[h,,m(x)][xjn(x)]’}

[ onlme ot ] s, ]

{j,,(x){[x;,nm(x)]’}_[hn(z)(x)][%(x)],}.
{( m+)fn(m+x){[xhn(2)(x)]'}_[hn(2)(x)][vn(m+x)]r}
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{j"("){["”ﬂ(z)(")]l}‘["n(”(x)][xjn(x)]'}*
{( my ) Jnl m+x){[xhn(2)( x)]'}_[ hn(z)(x)][xjn( m+x)],}:

¥ '
J L (x) £, (x)- é’nix)

x
Y \m, x n(x)
n(x+) (2) ( )— 4 x n(”’+x)d

+

¥, (x)

-k

¥, (x)¢, (x)-¥, (x)¢,(x)
:1‘m+‘P m[ - ) ] (A39)

+x 4—(2) "(x)-¢P, ()¥, (m+x)J '
I mi ]
im?n(m+x)§(2)n'(x)—é'(2)n(x)‘1’n,(m+x)_

Thus

L)~ , m.i : A40
n( ) {mﬁ’n(mﬁux)é'(z)n (x)—f(z)n(x)q’n (’"+x) o

From above exp(iwf) ime-convention

en(#) = — "

¥, (m+x)§n(2)(x) - m+‘P(m+x)§,,(2)’ (x)
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i

d,(+)=

!

m, ¥, (m,x ) (x) ¥ (m+x) (x)

equation(A6) and (A7) can be written as

|_ -m_i _|*
cn(—) = 7 +
[Tn(m+x) gnm (x)—m, én(”( )T,, (m_l_x)j

=-m,'d,"(+

that is
en(-)= m+*d,,*(+)
Similarity,
i) %_ m,i
T D ()= ¢ ) () |
= —m,c,(+)
thus

* X
d, (-)= —my ¢, (+)
(4) The relative photoelectron yield Y '/Y,:
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From equation(28), the relative photoelectron yield can be written as

where?

in the exp(iwr) time-convention, but

(li'le] =V x (:r_u_j
M, P

in the exp(iwf) time-convention. Therefore the relative photoelectron yield in

the exp(-iwf) time -convention can be written as

%L s | - (A4T)
b j I (MM, + RS-, a2 Jﬂdr

Because

O*ﬁ

AQ= 47r|m \ Z ‘d( )’ (2n+1)j n(m Ia) jn(m Ia)
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< axll® T ) @ in(mte) - )

5 drx (A48)
= |m| é NI:-Mde
Similarly, it 1s easy to show that
4z 4z
— ok — —
NS -NdQ=lm] [N, -N,dQ. (A49)
0 0

Using the cn(+), dy(+) to express the above equation, that is

Y (L+1,) 0
Yb - Le
Tﬁ: (M, -M,+N; Ne)dQ}2dr
ok ©
—(a—r)/Le 2|—47Z o * —| 2
_(Le”La)(T)e b L (I) (Mv'Mv+Nu'Nu)dQJ’ ar
- L
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]’.e—(a—r)/Le [4::(_ x ook

=(Le+La)0

O —

Equation (A24) and equation(28) are equal. It is clear that the final
result of relative photoelectron yield is the same no matter in what kind of
time-conventions. That means that even though the results for ¢, and d, will
change with the time-convention, the final result of photoelectron yield will

be the same. It is not dependent on the time-convention.
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Appendix B

The emission of photoelectron from dust grains is perhaps the most
important heating mechanism of the interstellar gas. If the energy of the
ejected photoelectrons is more than the energy of the electrons which are
absorbed, then there is a net heating of the surrounding gas. In order to
reduce the uncertainty in the photoelectron yield of small grains as much as
possible, the absorption efficiency Qups must be evaluated. The following is
an example which uses the photoelectron yield ¥, that has been calculated
from the computer program PE-DING.

Generally speaking electrons are strongly bound in a solid but those of
highest energy may overcome the surface potential barrier. For a given
material, this process only occurs for photons having energy greater than the

work function
¢ =h V1. (Bl )

The energy E of the ejected photoelectron depends on the energy of the
incident photon via

E =hv-hvy. (B2)

If a is the spherical grain’s radius, then the cross-section for the absorption

of radiation is given by m*Q,,. .
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Not every absorbed photon gives rise to a photoelectron. It depends
on the photoelectron yield ¥,. If the grain is situated a distance r from a
source of radiation of luminosity L, , the flux density at frequency v at the

grain 1s

LV
4

. (B3)

However, the most important quantity is the number of photons being
intercepted by the grain. Thus, the number of photons in the frequency

range v — v +dv arriving at the grain is

LV
Amrihy

dv. (B4)

Then the total rate at which photoelectrons are emitted is

[o¢]

Y na V. BS
j 4nr2hv Qabxd (55)
¢eﬂ'

If the grain is positively charged, it becomes more difficult for the electrons
to escape from the grain: the Coulomb attraction between grain and electron
effectively increases the photoelectric work function of radius a by an mount

given by
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Ze?
4reqa

(B6)

where Ze is the positive charge on the grain. Therefore the work function in

this case can be written as

Zé*
dreqa

¢eff =h vi+ (B7)

The absorption efficiency Q. can be obtained from FORTRAN
program. The energy L, can be obtained from Planck formula and some

other descriptions. Future study will be done in this area.
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Appendix C

LA E RS SRR RS2SR R R R R R A IR R R R R E R ]

-PROGRAM: PE_DING.FOR

-AUTHOR: Yu Shi
-DATES: May 1, 1992

»
-LAST MODIFIED BY: Jorge Ballester and Yihong Ding »
-DATE: February 18, 1994 *

»

-DESCRIPTION: Calculates the photoyield enhancement y'/y
for a given sphere refractive index, medium
refractive index, radius, and free space
wavelength.

-NOTES: Input format has been changed!

LR LSRR RSS2 STt PRI RS ESEEERERE L]
»

»
]
]
*
*
*
*
*
L ]
*
%
*®
*®
L ]

IMPLICIT DOUBLE PRECISION (A-H,0-Z)
COMMON/BLCK0/C(500),E(500)
COMMON/BLCK1/X,Y,NSTOP
COMMON/BLCK?2/ WAVEL,REFREL,REFMED,RAD
COMMON/BLCK3/ A,B,KQ,ESCPL
COMPLEX REFREL
COMPLEX Y
COMPLEX C,E
PARAMETER (PI=3.14159265, TOL=1.0D-4, DEPTH=10)
DATA ESCPL,REFMED/10,1.0/

WRITE(6, *)'THIS IS PE_DING!"
WRITE(6, *)DEPTH=",DEPTH

0tk 200 20 ok 20 e e e 26 2 e e 26 20 ok e 200 0k 2 26 0k A 30 0 e e 3 o o o a3 oI R 3 af 3 ok o ok k2 e o8 2 3 ok k2 3 2 ok 2 3k ok ak 2 2k oK ok o

* Input real refractive index for surrounding medium REFMED. *

558 30 3 20 308 5j¢ N N8 20t 38 5 N 3T NE 5 5 i 5 5 NE 5 N 3 5K N 5 N8 0 8 305 300 5fn 308 30t 308 30K 308 30K 30E 30 308 30K 3K 08 30K 3 N8 0K 308 20K 3T 3 20E K 308 N8 K 38 3T 3 8 3R 8 3K 3O R
*option WRITE(6,*) REFMED='
*option READ(5,*) REFMED
* Open input and output files.
OPEN(10, file="radius.dat’,status="old")
OPEN(16, file="refindx.dat',status="old")
OPEN(20,file="pe-out', status="unknown')

»
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2k 2 205 355 355 08 2 20 3f ok 38 K 3 e 3 36 ok 3 ok o6 3E 4K 3k 365 a0 65 38 a0 i 3 3 ok e 3R 3 2 6K 2 2 ok i e 3 3 2 ok 26 A N i e e o e ol e ke 2k ok ke i ok ok K K K K

* Input escape length (ESCPL) and radius (RAD) in angstroms. *

45 22 2 3 30 e e e 3 3 306 4K 20 e 2K 300 e 3 36 306 e 08 e 2 e 3k 26K e 2K 3 e 30 ok 3 3 2k 20k 3 2 a8 2k 2 3 o 2 2 3 2 o 3 o 3 o 2k 2k ofE o o 0 O o R R R

9030030 20 2 e 0 22 o o a0 2l 0 2 0 30 30 3 o e 3 3K 3 3K 2 o 3 3 30 o e ok o 2 2 a oK e e e o 0 0 o e e 0 2 e o0 N R K R KR R KR

* Input from keyboard with the following statements.
*option  WRITE(6,*)RADIUS='

*option READ(5,*)RAD

*option  WRITE(6,*)ESCAPE LENGTH='
*option READ(5,*) ESCPL

08 350 3 30 2k 205 305 205 2 30 3K 3K 38 e 3 30 3K 3K 2 30 3 2K 3 26K 2K 36K 3 48 3 e 30K e 30 e e o e e ol i e 2k e 2k R O K 8 2K 38 3K 36 3 ok 38 ok 2 ok 2K e ok ok 8 ok kR

% & ® *

*
*

* Read radius (RAD) from input file. Return to label 30 after calculating
* yield enhancement for all photon wavelengths (fixed radius).
30 READ(10,*, END=160)RAD
WRITE(6,*)RAD=',RAD
WRITE(20,*)RAD="RAD
WRITE(20,*)DEPTH="DEPTH
* Read wavelength (WAVEL) in Angstroms, and complex refractive
* index (REFRE,REFIM) from input file. Return to label 40
* after calculating yield enhancement for each wavelength.
40 READ(16,* END=140)WAVEL,REFRE REFIM

430 25 2 205 50 e 3 300 3 300 30 3je 306 5k 3 3 e 3 36 30 e 3 2K 3 i 20 30 e 38 e ok kK e e o o8 3 2 3 3 3k 38 e 3 3 38 300300 00 e e 38 ol e e o 3 K 3 3 e R O O 0

* Input from keyboard with the following statements.
*option  WRITE(6,*)WAVELENGTH='

*option READ(5,*) WAVEL

*option ~ WRITE(6,*)REFRE= REFIM='

*option READ(5,*) REFRE REFIM

% * % x *

26 3 2 6 3 26 05 20 2 6 2 2 e 3K 30 300 ok 30 3 6 e 3 e 3 6 3 e e 3 2 28 e 9 58 SR 3 3R e ke e e 6 306 30 30 o e e o ke 30 306 e e e 3 e 3e 3 ok ok 3 3 e O koK
REFREL=CMPLX(REFRE,REFIM)/REFMED
X=2*PI*RAD*REFMED/WAVEL
Y=X*REFREL

L]

* Calculate the photon absorption length ALENGTH.
ALENGTH=WAVEL/(4.*PI* ABS(REFIM))

*

* Determine number of terms in series (NSTOP).
XSTOP=ABS(Y)+4.*(ABS(Y))**(1./3.)+2.0
*option NSTOP=XSTOP
NSTOP=1
TEMP=0
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DO 77 J1=0,50
*option NSTOP=NSTOP+1
NSTOP=1.5*NSTOP+1

* Call the coefficientsc nandd _n.
CALL COEFL(C,E)

»

* Input lower limit A and upper limit B for radial integrals.
* A cannot equal 0 but can be a very small number.
*option A=.001

B=RAD
* Use the flag KQ to calculate the numerator (KQ=0),
* or the denominator (KQ=1).

A=0.001
KQ=0

CALL INTEGRA(S)

DENOMINATOR=S
A=MAX(0.001,RAD-DEPTH*ESCPL)

KQ=1

CALL INTEGRA(S)

OMINATOR=S

YIEL D=OMINATOR/DENOMINATOR
YIELD=(ESCPL+ALENGTH)*YIELD/ESCPL
WRITE(6,*)NSTOP, YIELD

-

* Check for convergence, if reached, exit loop.
IF (ABS(YIELD-TEMP).LT.ABS(TEMP)*TOL) GOTO 70
TEMP=YIELD
77 CONTINUE
WRITE(6,*)'need to sum more terms'
STOP

*

70 WRITE(6,848)NSTOP, WAVEL,YIELD

* Write to output file.
WRITE(20,858)WAVEL, YIELD

* Return to read next wavelength.
GOTO 40

»

140 CONTINUE
* Finished with list of wavelengths.
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* Rewind to the beginning of wavelengths.
REWIND 16

*

* Return to read next radius.
GOTO 30

]

160 CONTINUE
* Finished with list of radii.
* Close files.
CLOSE(10,status='keep")
CLOSE(16,status="keep')
CLOSE(20,status='keep")
858 FORMAT(f12.4,f14.4)
848 FORMAT( '1YIELD(,I3,")="F10.4,10x,F10.4)

STOP
END

0t 25 300 208 3 3k 2 2 2 30 K 3k 20030 e e 38 30 e 3 38 3 ok e 2 3 a0 0 a3 R e K 3 o e i e o R R K e a0 o e e ol o ok e ok ok o 2 Ok

* Compute the coefficients ¢ n, d_n. *

2 2 30 2 3 0K 3 240 ok 20 0 N R 3R R K 2 2 2 K 20 30K 3 3K e e 3 R 30K 3K 36K 6K 20 2K 06 30 30T 3K K 2 a6 3K 3 K R K R 2 3 e 2k e o0 e ok ok 0k

SUBROUTINE COEFL(C,E)
IMPLICIT DOUBLE PRECISION(A-H,0-Z2)
COMMON/BLCK1/X,Y,NSTOP
COMMON/BLCK2/WAVEL,REFREL,REFMED,RAD
COMPLEX XI,XI1,D(500),C(500),E(500)

COMPLEX L CPSI(500), COMX,Y

COMPLEX REFREL

DOUBLE PRECISION RBESSJ(500)
YMOD=ABS(Y)
NMX=MAX(NSTOP,INT(YMOD))+15

300 30 30 2t 380 o0 30 0 30 o 3 3 e e ok 3 ik 3 3 ok e e R e 2K e e 3K ek 8 K2 K 2K 28 3K afe 3K 283K 3K 2 2k e 3 K 26 e e ol 3 o R oK K oK K

* Calculate the logarithmic derivative D_n. *
2 300 20 306 300 00 36 2K 200 0K 26 59 26 A8 3 208 2 206 2 a0 3R 2K 3 26 3 20 3 208 300 200 2K 388 2 208 2 2 08 e 220K 3 6K N0 o0 0K 36 K 26 20K 2 e 0 0 00 o
CALL DERIV(NMX,D,Y)
[=CMPLX(0.0,1.0)
ZERO=0.0

COMX=CMPLX(X,ZERO)

30200 2 2 2300 2 0K 30 200 2 00 30 0K 2K 36 300 20K 208 200 00 26 0K 206 K 306 20 08 S 000 206 3 308 K00 2 3 20K 205 20K 206 0 200 2 3 2K 26K 2 2K 0K 30 308 3K 2 3 s ok ok o

* Call subroutines to compute Riccati-Bessel function with *
* complex and real arguments (onty for PSI function) *

e 30 30 20 2 200 3R 390 2K 3 e 2R e 3 2 e e 2 e 8 e e NE R e e e 3 e e e e 3 e iz K o8 e e e N e e e e o K 3 K K 20 2 3 3R e e o e ok e

CALL BESSJR(NSTOP+1,X,RBESST)
CALL BESSJ(NSTOP+1,Y,CPSI)
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PSI1=SIN(X)
CHIO=-SIN(X)
CHI1=COS(X)
XI1=CMPLX(PSI1,CHI1)
DO 777 N=1,NSTOP
RN=N
DN=N
PSI=RBESSJ(N+1)
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* Calculate XI function using upward recurrence method. *

CHI=(2.*DN-1.y*CHI1/X-CHI0
XI=CMPLX(PSLCHI)
E(N)=((REFREL*D(N)+RN/X)*XI-XI1)*CPSI(N+1)
E(N)=VE(N)
C(N)=((D(N)+REFREL*RN/X)*XI-REFREL*XI1)*CPSI(N-+1)
CN)=VC(N)

CHIO=CHII

CHI1=CHI

X11=X1

777 CONTINUE
RETURN
END
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* Perform integrations. »
* Adapted from Numerical Recipes' by Press, et. al. *

20 0 2o 2 0 2 e ol 3 o O O O 0o 0 0 o R 0 2 R 3 o 0 o o 3 o ol o o e o o o R O O O O

SUBROUTINE INTEGRA(S)
IMPLICIT DOUBLE PRECISION(A-H,0-Z)
COMMON/BLCK.0/C(500),E(500)
COMMON/BLCK 1/X,Y,NSTOP
COMMON/BLCK2/WAVEL,REFREL, REFMED,RAD
COMMON/BLCK3/A,B,KQ,ESCPL
COMPLEX C,E
PARAMETER (EPS=1.E-6,JMAX=20)
OST=-1.E30
0S=-1.E30
DO 11 J=1,]MAX
CALL TRAPZED(ST,J)
S=(4.*ST-OST)/3.
IF (ABS(S-0S).LT.EPS*ABS(0S)) RETURN
0S=S
OST=ST
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11 CONTINUE
PAUSE 'too many steps'
END

SUBROUTINE TRAPZED(S,N)
IMPLICIT DOUBLE PRECISION(A-H,0-Z)
COMMON/BLCK0/C(500),E(500)
COMMON/BLCK1/ X,Y,NSTOP
COMMON/BLCK2/'WAVEL, REFREL,REFMED,RAD
COMMON/BLCK3/A,B,KQ,ESCPL
DO 33 K=1,NSTOP
33 CONTINUE
IF (N.EQ.1) THEN
S=.5*(B-A)*(BFUNC(A)+BFUNC(B))
IT=1
ELSE
TNM=IT
DEL=(B-A)/TNM
XX=A+.5*DEL
SUM=0
DO 11 J=1,IT
SUM=SUM+BFUNC(XX)
XX=XX+DEL
11 CONTINUE
S=.5*%(S+(B-A)*SUM/TNM)
IT=2*IT
END IF
RETURN
END

206 3 30 39 3 3¢ 3 K 0 2K 3K 3K 30 2 35 e 20 e 35 e e e e 30 39 K e 200 3 8 8 38 0C 3K 246 3K e e e e e e e N e e K e N e R e e ik ol o ot ok e 3K e K

* Compute F(r). b
FUNCTION BFUNC(R)
IMPLICIT DOUBLE PRECISION(A-H,0-2)
COMMON/BLCKO0/C(500),E(500)
COMMON/BLCK1/X,Y,NSTOP
COMMON/BLCK2/WAVEL,REFREL,REFMED,RAD
COMMON/BLCK3/A,B,KQ,ESCPL
COMPLEX Z,DZ,ZPSI(500),zdn(500)
COMPLEX C,E,REFREL
DOUBLE PRECISION NN MM,K. mn
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mn=0.0

NN=0.0

MM=0.0
K=2.*%3.1415926*REFMED/WAVEL
Z=K*R*REFREL

DZ=Z

00 20 28 30 2 e ofe 2 2 20 0 3R 308 38308 3 4R 38 38 ok 3 308 3 ke 3 ke R 308 R 308 2 20K 3 20 3K 3 e 20k 200 R 3R 3 ofe 2 ke R 308 38 e 0k 3 3 ok 3 o 3 30K e 30 3l afe ol aiE 308 R O ol ok

* Calculate Riccati-Bessel function with complex argument (mkr) »

e e 2 50 3 20 2 38 30 208 2 2 30 208 2 28 30 2 o 55 36 2 20 o A 23 o 0 ol e 2 ok ol e e 2 e 3 e o o o0 3E 2 o 3 o ok 2 30 30 e e 2 20 e 2 o o0 o O A ok Ok

CALL BESSJ(NSTOP+1,DZ,ZPSI)
NAN=NSTOP+15

CALL DERIV(NAN,ZDN,Z)

DO 888 N=NSTOP,1,-1

RN=N
mn=mn+(2.*m+1.)*(abs(zpsi(n+1)))**2.*

$ ((abs{c(n)))**2.*(abs(zdn(n)))**2.+

$ (abs(e(n)))**2.+m*(m+1.)*(abs(c(n)))**2.
$ /((abs(z))**2.))

LA R R RS ELEIESELELELELEREE RIS IR bl ]

* The following program is another way to computer F(r)
»

MM=MM-+(ABS(EN)))**2.*(2.*RN+1.)*

$ (ABS(ZPSI(N+1)))**2./(K**2.)
NN=NN+(ABS(C(N)))**2.*(2.*RN+1.)*

$ ((ABS(ZPSI(N)-ZPSI(N+1)*RN/(REFREL*K*R)))**2.
S /(K**2.)

$ +RN*(RN+1.)*(ABS(ZPSI(N+1)))**2.

$ /((ABS(REFREL))**2.*(K**4.

$ *R*2)))

a6 200 2 28 206 265 2k 26 2 266 2k 08 2 308 2 28 30 208 28 28 30 208 2 2 30 208 2 28 2 28 208 e 2 308 2k 3 08 o 2 e 20 08 2 2 2 2 20 e 0 2 2 2 20 20 o0 0 o 2 ok 38 o o ok o ok Ok Kk

% K X X B B ® B
% % % x * x5 x W 5 ¥

*x

888 CONTINUE
[F(KQ.NE.0)THEN
BFUNC=(mn)*EXP((R-RADYESCPL)
ELSE
BFUNC=mn
ENDIF
RETURN
END
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* Calculate Riccati-Bessel function with complex arguments »
* using downward recurrence. Adapted from Numerical Recipes.” *

3000 20 200 o 20 e 0 e 0t K X 0 ol 20 00 o 0 a0 ol 0 g e 30 2l e o e a0 a0 3 R 0 O K 0 8O0 0K e ol e age 0 i e e ofe e o 3 K ok

SUBROUTINE BESSJ(N,Y,RBESSJ)

COMPLEX Y,BIM,BJ,BJP,BESJO

COMPLEX RBESSJ(500),RATO

PARAMETER( IACC=40,BIGNO=1.E20,BIGNI=1.E-20)

YMOD=ABS(Y)

RBESSJ(1)=SIN(Y)

BESJO=SIN(Y)
M=2*((N+INT(SQRT(FLOATIACC*N))))2)
BIP=CMPLX(0,0)

BJ=CMPLX(1,0)

DO 12 J=M,1,-1
BIM=((2*J+1)*BJ)/Y-BIP
BJP=BJ

BI=BIM

IF(ABS(BJ).GT.BIGNO) THEN

»

* Renormalize to prevent overflows,

BJ=BJ*BIGNI
BJP=BJP*BIGNI
BIM=BIJM*BIGNI
DO 555 ID=J+2,N
RBESSJ(ID)=RBESSJID)*BIGNI
555 CONTINUE
ENDIF
RBESSJ(J+1)=BJP
12 CONTINUE

* Normalize the results.

RATO=BESJO/BIM
DO 44 JJ=2N
RBESSJI(J)=RBESSJ(J))*RATO
44 CONTINUE
END

SUBROUTINE DERIV(NMX,D,VAR)
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* Calculate the logarithmic derivative D(J) by downward *
* recurrence beginning with initial value 0.0 + 0.0*1 at J=NMX. *

bR ELE RS RS EEES R R R R LR L]

IMPLICIT DOUBLE PRECISION(A-H,0-7)
COMPLEX D(500),VAR
D(NMX)=CMPLX(0.0,0.0)
NN=NMX-1
DO 120 N=1,NN
RN=NMX-N+1
120 DONMX-N)=(RN/V AR)-(1./(D(INMX-N+1)+RN/VAR))
RETURN
END
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* Calculate the Riccati-Bessel function with real functions. *

06 20 30 6 556 0 0k 6K 556 46 2 2 3 2 3K 3 3 356 3 3 3K 3K e 38 2 3 340 3 e e 30e e e e 3k 36 3 e e 26 e 3 e e e 30 3 o K K 5 3 2 o 26 2 2 3 3 2 K e e A K o K

SUBROUTINE BESSJR(N,Y,RBESSJ)

LSRR LR ELEE SRR RIS SRS R E R R R R R R R R R R L L]

* CALCULATE THE RICCATI-BESSEL USING DOWNWARD RECURRENCE *

L2 b R R R RS ELEESSEEL L ERRREELEEEEERELEE RS EESS

DOUBLE PRECISION Y,BIM,BJ,BJP,BESJO
DOUBLE PRECISION RBESSJ(500),RATO
PARAMETER( IACC=40,BIGNO=1.E20,BIGNI=1.E-20)
RBESSJ(1)=SIN(Y)

BESJO=SIN(Y)
M=2*((N+INT(SQRT(FLOATTACC*N))))2)
BJP=CMPLX(0,0)

BJ=CMPLX(1,0)

DO 12 I=M, 1,-1
BIM=((2*J+1)*BJ)/Y-BJP
BJP=BJ
BJ=BIM

IF(ABS(BJ).GT.BIGNO) THEN

»”

* Renormalize to prevent overflows.
»

BJ=BJI*BIGNI
BJP=BJP*BIGNI
BIM=BJM*BIGNI
DO 555 ID=J+2,N
RBESSJ(ID)=RBESSJ(ID)*BIGNI
555 CONTINUE
ENDIF

64



RBESSJ(J+1)=BJP
12 CONTINUE

»

* Normalize the results. NORMALIZE THE RESULTS

RATO=BESJO/BIM
DO 44 JJ=2,N
RBESSJ(JT)=RBESSJ(JI)*RATO
44 CONTINUE
END
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