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INTRODUCTION 

This paper will develop the topic of the spaces Co' £\1 and e~. We will 

study the properties of these spaces and their relationships to each other. Our 

inquiry will begin with the establishment of the relationships among these 

spaces and the consideration of them as vector spaces. It will then lead into 

the discovery that these spaces are Banach spaces. The topics of linear 

functionals, dual spaces, and extreme points will be discussed along the way. 

There will also be a serious treatment of the Hahn-Banach theorem. 

To begin, it is important to introduce the spaces on which we will 

concentrate. They are: 

DEFINITION 0.1: The set of all sequences of real numbers converging 

to zero is known as Co' 

DEFINITION 0.2: The set of all sequences of real numbers which are 

absolutely summable is known as e,. 
DEFINITION 0.3: The set of all bounded sequences of real numbers is 

known as £~. 

For our purposes, the field of scalars will be the set of all real numbers and the 

operations defined on our spaces will be componentwise defined vector 

addition and scalar multiplication. 
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CHAPTER 1
 
VECTOR SPACES
 

The purpose of this chapter is to establish the relationship among
 

Co' el , and e~ and to determine that they are indeed vector spaces. Once this 

has been done we will consider some properties that are inherent to them as 

vector spaces. 

Subsets 

Let us first consider whether any of the sets are subsets of one another. 

If we are able to determine subset relationships, the task of verifying that they 

are each vector spaces will be easier. To begin, recall that the set Co consists of 

convergent sequences of real numbers. Since such sequences are bounded, it 

seems intuitive that Co is a subset of e~. Thus, our first observation is this. 

THEOREM 1.1: The set Co is a subset of e~. 

PROOF: Let (an)ECo' Let £>0. By the definition of Co' we know that 

limn-.~ an =O. Then, there is a natural number k such that for all n ~ k, Ian I:s; £ . 

Then there are two cases to consider.
 

Case 1: lanl:S; £ for all n < k.
 

In this situation, we have lanl:S; £ for all n. Hence, (an) is bounded and an
 

element of e~. 

Case 2: lanl> £ for some n < k.
 

Since k is a positive integer, there is only a finite number of these terms.
 

Furthermore, there is one of them with the greatest absolute value; call it am'
 

Then lanl:S; laml for all n < k. Since lanl:S; £ for all n ~ k and £ < laml, then lanl:S; laml
 

for all n ~ k. Finally, we have lanl:S; laml for all n. Therefore, (aJ is bounded
 

and an element of e~. Therefore, Co is a subset of e~. Q.E.D. 
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Now, we have the task of determining where el fits. Recall the fact 

that the elements of e, are absolutely summable. In other words, for each 

sequence (aJ in f 1 the series I~=I lanl must converge. This implies that the 

original sequence must converge to zero. This leads us to our next 

observation. 

THEOREM 1.2: The set ej is a subset of cO' 

PROOF: Let (aJ E fl' Then (aJ is absolutely convergent. Let 

SI' S2' ... , Sn' ... be the partial sums of the series I~=llanI. Since (an) is 

absolutely convergent, limn.....~ Sn =S for some real number S. Notice, for any 

n, Sn = Sn_1 +laJ So, 

S = lim Sn = lim (Sn-l + Ian I) = lim Sn_l + lim Ian I· 
n~~ n~~ n~~ n~~ 

It then follows that limn-->~ lanl = S -limn-->~ Sn-l' Note that as n -7 00, Sn_l -7 S. 

And so we have limn-->~ Ian I=S- S=O. Hence, limn-->~ an =0, and (an) E Co' 

Therefore, f 1 is a subset of Co' Q.E.D. 

We have thus verified that e1 ~ Co C e~. This relationship will 

continue to be of importance throughout the study of these spaces, as it will 

facilitate many of the proofs that follow. 

Vector Spaces 

Now that subset relationships are known, let us move on to the 

consideration of vector spaces. As e~ is a superset of both Co and eJl we will 

first determine whether it is a vector space. 

THEOREM 1.3: The set e~ is a vector space. 

PROOF: Let (aJ, (bJ, (cJ E e~ and r, s, t"E R. Then, by definition of e~, 

there are real numbers M, N ~ 0 such that lanl::; M and Ibnl::; N for all natural 

numbers n. Now, since vector addition is defined componentwise, 

(aJ+(bJ=(an+bJ. Then, considering the terms of (an+bJ, 
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Ian +bJ:;lanl+lbnl (by the triangle inequality) 

$ M + N for all natural numbers n. 

Thus, (aJ + (bn ) is bounded and an element of e~. Therefore, f!~ is closed 

under vector addition. 

Next, consider r(an)' Since scalar multiplication is defined 

componentwise, r(aJ =(ran)' Observe that Irani =Irl'lanl $lrlM for all natural 

numbers n. Thus, r(aJ is bounded and an element of f!~. Therefore, e~ is 

closed under scalar multiplication. 

Finally, the properties of vector spaces must be verified: 

i) Associativity of vector addition. 

To determine if this property is satisfied in e~, we must inspect the 

addition of three vectors in e~. Note 

((an) + (bn») + (cn) = (an + bn)+ (cn) = ((an + bn)+ cn) = (an + (bn+ cn») 

= (an) +(bn+ cn) =(aJ+ ((bJ + (cJ). 

Therefore, vector addition in e~ is associative. 

ii) Existence of an identity element. 

Consider the sequence (0). For any MER +, 101 =°$ M. Therefore, (0) is 

bounded and (O)Ee~. Let (aJEe~. Then, (an)+(O)=(an+O)=(an). Likewise, 

(O)+(an)=(an). Therefore, (0) is the identity element in e~. 

iii) Existence of an inverse element for each element of e~. 

Let (aJ be an arbitrary element of e~. Then (-aJ=(-l·aJ=-l·(an) and 

since e~ is closed under scalar multiplication, (-an) E e~. Now, 

(aJ+(-an)=(an+-an)=(O). Similarly, (-aJ+(aJ=(O). Therefore, each 

element of e~ has an inverse element also in e~. 

iv) Commutativity of vector addition. 

To verify this property, we must look at the sum of two vectors in e~. 

Observe (aJ + (bn)= (an +bn)= (bn+ aJ = (bJ + (aJ. Thus, vector addition is 

E _u___ _ _ 
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commutative in e~. 

v) Distributivity of scalar multiplication over vector addition. 

Take note of the following: 

r((aJ + (bJ) = r( (an + bJ) =(r(an+ bJ) = (ran + rbJ =(raJ +(rbn) 

= r(aJ + r(bJ. 

Hence, scalar multiplication distributes over vector addition in I!oo. 

vi) Distributivity of scalar multiplication over scalar addition. 

Notice (r + s)(aJ =((r+ s)an)=(ran + saJ =(raJ + (saJ =r(aJ + s(aJ. 

Therefore, scalar multiplication distributes over scalar addition in I!oo. 

vii) Miscellaneous scalar property. 

Observe (rs)(an) =((rs)an)=(r(saJ) = r(saJ. The scalar property 

connected with vector spaces holds in I!oo. 

viii) Existence of a scalar identity. 

Consider 1E R; 1· (aJ =(1· aJ =(aJ. Thus, 1 is the scalar identity for eoo. 

Therefore, eoo is a vector space. Q.E.D. 

With this fact known, the task of verifying whether Co is a vector space 

is reduced to showing that it is a subspace of eoo. 

THEOREM 1.4: The set Co is a vector space. 

PROOF: Since we have already shown that Co is a subset of a vector 

space, namely I!oo, it suffices to show that Co is closed under vector addition 

and scalar multiplication. Let (aJ, (bn) E Co and r E R. Consider limn-7OO (an + bn). 

Since (aJ, (bn) E co' we know that both limn-.oo an and limn-7OO bn exist and are 

zero. Hence, 

lim (an +bJ=liman+limbn=0+0=0. 
n~~ n~~ n~~ 

Therefore, (aJ+(bn)ECO' Now consider limn-7OO ran" Since (an)EcO' limn-.oo an 

exists. Thus, 

lim ran = r lim an = reO) =O. 
n-700 n-7 00 
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Therefore, r(aJ E CO' Hence, Co is a vector space. Q.E.D. 

All that remains to be shown, in terms of vector spaces, is that f , is a 

vector space. We will use the preceding fact to verify this. 

THEOREM 1.5: The set f , is a vector space. 

PROOF: To show that f , is a vector space it suffices to show that it is 

closed under vector addition and scalar multiplication. Let (aJ, (bJ E f l and 

r E R. Since (aJ, (bJ E fJl they are both absolutely summable sequences. 

That is, limH~ I:=l lakl and limn--->~ I:=I Ibkl both exist. Call them S and R 

respectively. Then, 
n n n n 

lim I lak + bkI~ lim I (Iak1+ IbkI) =limI lakI+ lim I Ibk1= S + R. 
n~oo n~oo n~oo n~ook=1 k=1 k=1 k=1 

Thus, (an)+(bJ is absolutely convergent and an element of fl' 

Now consider the sequence r(aJ =(raJ. To show r(an) E f1' it must be 

an absolutely convergent sequence. To determine whether this is the case, we 

must evaluate limn--->~ I:=l lrakl· Observe 
n n n 

lim I lrakl =limlrlI jakl =Irllim I lakl =IriS. 
n~oo n~oo n----took=1 k=1 k=1 

Thus, r(aJ is absolutely convergent and an element of fl' Therefore, f l is a 

vector space. Q.E.D. 

Norms of Vectors 

We will move on to the topic of norms on vectors. Norms are 

generally used in an effort to define a measurement on vectors. 

DEFINITION 1.6: Let V be a vector space over the field of real 

numbers. Then a norm on V is a function, 11·11: V ~ R, which satisfies the 

following: (i) Ilvll ~ 0 for all v in V, (ii) Ilvll =0 if and only if v =0, 

(iii) Ilrvll =Irlllvil for all real numbers r and vectors v in V, and 

(iv) Ilv+wll~"v"+llwll for all vectors v and win V. 
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Since we have established that CO' £1' and £~ are all vector spaces, we 

take on the task of establishing a norm for each of these spaces. For our 

purposes, we shall use the absolute sum of a sequence to be its norm in £1' 

and the standard supremum norm will be used in £~ and co' Before we go any 

further, we shall take the time to prove that each of these fulfill the 

requirements of a norm in the specified space. First, we will verify the norm 

for £1' 

THEOREM 1.7: The function 11·1/:£1 ~R defined by 

IICaJII:= limn->~ I:Jakl = I~Jakl is a norm on fl' 

PROOF: To show that IICaJl1 = I~Jakl is a norm on £" we need to verify 

that the four properties of norms do indeed hold. Let Can),Cbn)E £1 and r be a 

real number. First, note that IICaJIl ~ 0 since it is a sum of absolute values 

which are all nonnegative. Next, consider the case where IICan)1I = O. That is, 

I~Jak 1= 0, which is a sum of nonnegative terms. For that to be so, lak1= 0 for 

all k. Hence, CaJ must be (0). Now, let CaJ = CO). Then,
 

IICaJII=llco)ll= I~)OI=O. Thus, IICan)II=O if and only if Can)=CO). At this time,
 

let us look at Ilrcanl Observe
 
~ ~ ~ 

lirean )11 = Ilc ran )11 = I lrakI= I Irl·lakI= IrlI lakI= Irl·llcan )11·
k=1 k=1 k=! 

Finally, we must attend to IICaJ + Cbn)ll; 
00 00 00 00 

IICan) + Cbn)11 = Ilcan+ bn)11 = Ilak+ bkl ~ I(lakl + Ibkl) = Ilakl + Ilbkl = IICan)11 + IICbn)lI·
k=1 k=! k=1 k=1 

Therefore, /1-11 is a norm on fl' Q.E.D. 

Now, we shall establish that the supremum norm satisfies the 

properties of a norm for the space £~. 

THEOREM 1.8: The function II'II:£~ ~R defined by IICaJII:= sUPn lanl is a 

norm on £~.
 

PROOF: Let Can)' CbJ E £~ and r be a real number. First, since lanl ~ 0 for
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all n, we know that sUPn laJ2: 0. This implies IICaJII2:°for all CaJ E R=. Next, 

let IICaJII=O. That is, sUPn lanl=O. Then 02:lanl for all n, but lanl2:0 for all n. 

Hence, lanl =°for all n. As a result, CaJ must be CO). Consider if Can) =CO), 

then 

I/Can)11 =11(0)11 =sup 101 =0. 

Thus, IICaJI/ =°if and only if Can) =CO). Now, consider IlrCaJII; 

IlrCan)11 =IICraJI/ =sup Irani =sup Irllanl =Irlsup lanl =Irli/CaJII·n n n 
Finally, we must look at !lCaJ + CbJII. Observe 

IICan)+ Cbn)11 =!lCan + bn)I/ =sup Ian + bnl $ sup lanl + sup Ibnl =IICan)I/ + IICbn)I/.n n n 

Therefore, 11-11 is a norm on e=. Q.E.D. 

Lastly, we need to confirm the supremum norm for Co' 

THEOREM 1.9: The function II· II: Co ---7 R defined by IICan)II:= sUPn lanl is a 

norm on Co' 

PROOF: Let CaJ,Cbn)E co' Then, since Co is a subset of R~, CaJ,CbJ E e~. 

Since the properties of norms hold for vectors in R=, then they also hold for 

CaJ and Cbn )· Therefore, 11-11 is a norm on co' Q.E.D. 
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CHAPTER 2
 
LINEAR MAPPINGS AND DUAL SPACES
 

In this chapter we will take our study of Co' el' and e"" as vector spaces 

one step further. Linear transformations between two of these spaces or 

between one and the field of scalars will be developed in detail. We will then 

take on the task of developing further relationships between the spaces Co' el' 

and e"". 

Linear Mappings 

DEFINITION 2.1: A linear mapping is a mapping j: VI -7 V2 , where 

VI and V2 are vector spaces over a field K, which satisfies the following two 

properties: (1) for any elements u and v in VI' j(u+v)=j(u)+ j(v); and (2) for 

all C in the field K and v in the vector space VI' j(cv) =cj(v). 

Let us consider a few examples of linear mappings between our three 

spaces. 

EXAMPLE 2.2: Let Lco -7 e"" be defined by L((aJ):= (aJ. Note that if 

(aJ E Co, then L((aJ) =(aJ E e"" since Co is a subset of e"". To verify that L is 

indeed a linear mapping, it is sufficient to look at L((aJ+r(bJ) where 

(an)' (bJ E Co and r is a real number. Now, 

L((an) + r(bn )) =L((an + rbn)) =(an + rbn) =(an) + r(bn)=L((an)) + rL((bn )). 

Since L satisfies both properties, it is a linear mapping. 

EXAMPLE 2.3: Let Lco -7 e, be defined by L((an )):= (a1,O,O,O, ... ). Let 

(an),(bJECo and rbearealnumber. First, notice that L((aJ)Ee\ since 

~~ i!(L((am))k)1 =~~ la11 = lall· 
k=l 

Next, consider 
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L((an) + r(bn)) =L((an+ rbn)) =(a l + rb] ,0,0, ... ) =(a l ,0,0, ... ) + (rb[ ,0,0, ... ) 

= (al'0'O, ... )+ r(bl'0'O, ... ) =L((aJ) + rL((bn)). 

This proves that L is a linear mapping. 

EXAMPLE 2.4: Let L:co -7 £[ be defined by L((an)):= (an) if (an) is 

absolutely convergent and (0) if not. Suppose that (an)' (bJ E Co such that (an) 

is absolutely convergent and (bJ is not. Then, (aJ + (bn) is not absolutely 

convergent. So, L((aJ+(bJ) =(0); but, L((aJ)+L((bJ)=(aJ+(O)=(aJ. 

Therefore, L is not a linear mapping. 

Linear Functionals 

DEFINITION 2.5: A linear functional is a linear mapping from a vector 

space into its field of scalars. 

EXAMPLE 2.6: Let L:£~ -7R be defined by L((aJ):= I;=lriaj where 

rl' rz,· .. ,rk are all real numbers. Then, I;=l riaj is a sum of real numbers and a 

real number itself. Let (aJ,(bJ E e~ and s be a real number. Now consider 

L((an) + s(bJ); 
k 

L((aJ+s(bJ) =L((an+sbn)) = Irj(ai +sb) 
i=1 

k k k 

= I (rjaj+ rjsbi) = I riai + I risbi 
, j=[ i=1 i=[ 

k k 

=Iriaj+sIrjb; =L((aJ)+sL((bJ). 
i=1 ;=1 

Thus, L is a linear functional. 

EXAMPLE 2.7: Let k be a natural number. Let Lco -7 R defined by 

L((an)):=ak • Since elements of Co are sequences of real numbers, L((aJ) is 

indeed a real number for any (an) E co' Now to demonstrate the property of 

linearity consider: 

L((an) + r(bn)) =L((an+ rbn)) =ak + rbk =L((an)) + rL((bn)), 

where r is any real number. Therefore, L is a linear functional. 
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Kernel and Image 

Two concepts that are intrinsic to the topic of linear mappings are 

kernel and image. The kernel of a linear mapping is a subspace of the 

domain, while the image of a linear mapping is a subspace of the range. Let 

F: V -7 W be a linear map. 

DEFINITION 2.8: The kernel of F is the set of all vectors v in V, the 

domain, such tha t F(v) =O. 

DEFINITION 2.9: The image of F is the set of all vectors w in W, the 

range, such that there exists an element v of V such that F(v)=w. 

Let us relate these concepts to the examples of linear mappings we 

have already considered involving the spaces CO' I!\' and I!~. 

EXAMPLE 2.10: Consider the linear mapping L from Example 2.3; 

Ker L ={(aJ E Co IL((aJ) =(0) }={(aJ E Co Ia j =0 } 

and 

1m L ={(bn) E I! II (bn) =L((an)) for some (an) E Co } ={(bn) E I! II bi =0 for all i :t: 1}. 

EXAMPLE 2.11: Next, look at the linear functional in Example 2.6;
 

Kef L= {(a.) E eJ L((a.)) = o} = {(a.) E eJ t,r,a, = 0 }
 

and 

ImL={rE R I r=L((an))forsome(aJEI!~}= R. 

Norms of Linear Mappings 

The concept of a norm is not something that merely applies to vectors. 

We can also discuss the idea of a norm with respect to functions. 

DEFINITION 2.12: Let L:V -7R be a linear functional and suppose V is 

a normed linear space. Let the norm of L, liLli, be given by M, where M is the 

smallest number such that IL(v)1 ~ Mllvll for all v E V, if such an M exists. 
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DEFINITION 2.13: A linear functional L is said to be bounded if such 

an M (as in Definition 2.12) exists. 

We shall begin the investigation of this concept by examining some 

examples. 

la

EXAMPLE 2.14: Let Lei -7R be defined by L(Can)): =a5. To find IIL/I we 

must find the smallest real number M such that /L(Can))I:::;MIICan)11 holds. First, 

note that IL(Can))I=la51· Next, recognize that IICaJII= I:I/aJ as Can)Ee j • Since 

5 / is a summand in that sum, we know that the inequality la5 1:::; 1· I:llail is 

true. If there are terms of Can), other than a5, that are nonzero, M may be less 

than one. However, the same M must work for all elements of fl' Consider 

elements of f j in which all the terms of Can) are zero other than a5. Then 

la51= I:llaJ In which case, M must be one for IL(Can))/:::; MIICan)11 to hold. 

Therefore, IILII =1. 

EXAMPLE 2.15: Let LeI -7R be defined by L(CaJ):= a1 +4a3 • Notice that 

for any Can) EeJl laj +4a31:::; lall + 41~1:::; I:141ail =41ICan)ll· That is, IL( (an))I:::; 411Can)11 

for all CaJ Eel' Hence, IILII:::;4 for this linear functional. Now, let CaJ Eel such 

that ~ is the only nonzero term. Then IL(Can))I=/4~1=4Ia31=41ICan)II. Note that 

M=4 is the smallest number for which the inequality IL( CaJ)I:::; MliCan)11 holds 

for this particular element of eJ • Therefore, IILII =4. 
EXAMPLE 2.16: Let Lco-7R be defined by L(CaJ):= a5 • Then for any 

CaJEco, IL(Can))I=!a5!:::;suPnlanl=IICan)ll. Thus, IILII:::;1. Now, consider the 

sequence Can)=CO,O,O,O,I,O,O, ...)ECO' Then IL(CaJ)1 = la51=III =1=Ilanll =1·llanll· 

That is, for Can) M=1 is the smallest number for which !L(Can))I:::; MIICan)II is 

true. Hence, /lLII =1. 

Now we shall look at a characteristic of norms that will facilitate any 

future use of norms. 
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LEMMA 2.17: Let L: V ~ R be a linear functional and V a normed 

linear space. Then /lLII =sUPIv!S] IL(v)l· 

PROOF: Let V be a normed linear space and L: V ~ R be a linear 

functional. Let vE V such that Ilvll:51. By the definition of norm of L, 

we know that IL(v)I:5IILllllvll. Then, since Ilvll:51 implies that xllvll:5x for all real 

numbers x, we have IL(v)I:5IILII. Now, since IL(v)I:5/1LII is true for all VE V such 

that Ilvll :51, we can conclude that SUP!¥1 IL(v)l:5 /lLII. Next, we need to show that 

IIL/I:5 SUP/vI!;] jL(v)l· Let sUP~vIISI IL(v)1 =a. Then, 

IL(v)1 =ILe~!nl =IlvIIIL(D~dl (since L is linear) 

:5 /lvlla (since II (I~II) II =1). 

Therefore, IL(v)l:5 allvl! for all v E V. Since IILII is the least M such that 

IL( v)l:5 Mllvll is true for all v E V, it may be deduced that IILII:5 a. That is, 

IILII :5 SUPI¥1 IL( v)l· Therefore, IILII =SUPHSI IL( v)l· Q.E.D. 

Continuous Linear Functionals 

As linear functionals have already been defined, and we have already 

looked at examples as well as defined norms on linear functionals, we are 

now ready to develop the concept of linear functionals one step further. The 

next thing we will do is determine what it means for a linear functional to be 

continuous. 

DEFINITION 2.18: Let X be a normed linear space. Let x':X ~R be a 

linear functional. Then x· is continuous if for each x EX, given E > 0, there 

exists a 0>0 such that if IIx-YII<o then Ix·(x)-x·(Y)I<E. Furthermore, x· is 

said to be continuous at some point Xo E X if given E > 0 there exists a 0> 0 

such that if XEX such that Ilx-xol/<o then Ilx·(x)-x·(xo)II<E. 

We will begin this discussion by developing some properties of 

continuous functionals. 
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THEOREM 2.19: Let X be a normed linear space. Let x':X ~R be a 

linear functional. Then x· is continuous if and only if x· is continuous at 

some point Xo EX. 

PROOF: Let X be a normed linear space. Let x':X ~R be a linear 

functional. Suppose that x· is continuous. Then x· is continuous at each 

x EX. Clearly then x· is continuous at some Xo EX. 

Suppose that x· is continuous at some point Xo EX. Then given £ > 0 

there exists a c5 > 0 such that if x EX and IIx - xoll < c5 then Ilx'(x) - x"(xo)11 < £. 

Now, let XEX such that Ilx-OII<c5. Then IIx-OII=II(x+xo)-xo/l<c5. Since x" is 

continuous at xo' we have /Ix'(x+xo)-x'(xo)/I< £. Since x" is additive, we 

arrive at /Ix'(x)+x'(xo)-x'(xo)/I<£ which yields Ilx·(x)II<£. Since x'(O)=O, 

Ilx"(x)II=llx·(x)-x·(O)II<£. Therefore, x" is continuous at OEX. 

Now, consider any y EX. Let £ > O. Then there exists a c5 > 0 such that 

for all x E X such that Ilxll < c5 we have /Ix"Cx)/1 < £, since x· is continuous at 

OEX. Suppose Ilx-y/l<c5. Then IICx-y)-O/l<c5,and Ilx·(x-y)-x·(O)II<£. 

Then, since x" is additive, /Ix·(x)-x·(y)-x·(O)II<£. This implies then that 

Ilx"(x) - x'(y)11 < £. Therefore, x" is continuous at each y EX. Q.E.D. 

Before making our next observation of continuous linear functionals, 

we need to consider the following characteristic of bounded functionals. 

LEMMA 2.20: Let X be a normed linear space and x':X ~R be a linear 

functional. Then x" is bounded if and only if {x"(x)lllxll.$l} is bounded. 

PROOF: Let X be a normed linear space and x":X ~R be a linear 

functional. Suppose that x" is bounded. Then, by Definition 2.13, we know 

that there is a real number M such that 

Ix"(x)l:::; Mllxll for all xEX. 

From this fact, we can infer that for those x such that IIxll:::; 1 

Ix"(x)I.$M. 
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Hence, {x'(x)lllx"~l} is bounded. 

Now, suppose that {x'(x)lllxll~l} is bounded. That is, there exists a real 

number M'?O such that Ix'(x)I~M for all XEX such that Ilxll~1. Let x' be an 

arbitrary element of X such that Ilx'II:f. O. Observe that 1111~:111 =1 and thus it is 

an element of {x·(x)l"xll~l}. Hence, 

IX'(II~:II)I ~ M. 

Since x· is linear, 

l;'~ ·Ix· (x')[ ~ M. 

This implies 

Ix' (x')1 ~ Mllx'll· 

Therefore, by Definition 2.13, x· is bounded. Q.E.D. 

Now that we have the above fact at our disposal, the proof of the 

following observation will be made easier. 

THEOREM 2.21: Let X be a normed linear space and x':X ~R be a 

linear functional. Then x· is continuous if and only if x· is bounded. 

PROOF: Let X be a normed linear space and x': X ~R be a linear 

functional. First, suppose that x· is continuous. Then specifically, x· is 

continuous at O. Let t: =1. Then there exists a 8> 0 such that for all x E X 

such that Ilxll ~ 8 then !x'(x)1 <1. Let x E X such that Ilxll ~ 1. Observe 

Ix'(x)\ =Ix'(t· 8x )1· 

Since x· is linear, 

Ix' (t .8x )1 =It .x· (8x)1 

By the properties of absolute value, 

It .x· (8x )/ =t Ix' (8x)1· 

Now, since Ilxll~l we know that "8xll~8. Consequently, Ix'(8x)I<1 which 

implies 

t Ix' (8x)1 <t . 
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Thus, substitution yields 

Ix'(x)l<t for all such XEX. 

Hence, {x' (x )lllxll $l} is bounded. Therefore, x· is bounded. 

Now, suppose that x· is bounded. Then we know that {x'(x)lllxll$l} is 

bounded. That is, there exists a real number M>O such that Ix'(x)I$M for all 

x E X such that Ilxll $1. Let c > 0 and 8 = tt. Now, for all x E X such that /Ixll <tt 

we have 

Ix' (x )1 =Ix' (tt .~ x)1 = tt Ix' (~ x)1· 

Since /Ixll< tt, we have II~ xll<l, and so Ix'(~ x)I<M. Thus 

tt Ix'( ~ x)1 < C. 

Therefore, for all c > 0 there is a 8> 0 such that if x E X such that Ilx/l < 8 then 

Ix'(x)1 < c. That is, x· is continuous at O. Therefore, x· is continuous by 

Theorem 2.19 since X is a normed linear space. Q.E.D. 

Dual Spaces 

The next step in our reflection on the spaces CO' £1' and £~ will be the 

consideration of dual spaces. 

DEFINITION 2.22: Let X be a vector space. Then the dual of X, 

denoted X', is the space of all bounded linear functionals on X. 

Since we have recently completed a discussion on the norm of a 

function and are now considering a space of functionals, let us begin by 

recognizing a connection between the two. 

THEOREM 2.23: The function IH:X' ~R defined in Definition 2.12 is a 

norm on X'. 

PROOF: Let LEX'. Then by definition of dual space, L is a bounded 

linear functional. That is, IILII exists. From Lemma 2.17, we have 

IILII =sup~xi~IIL(x)l· Since IL(x)1 ~ 0 for all x E X, sUPllx~~lIL(x)1 ~ 0 as well. Hence, 
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IILII ~ a for all LEX'. 

Now, let LEX' such that IILII =O. By definition of norm of L, 

IL(x)l::; IILllllxl1 for all x EX. Substitution yields IL(x)l::; a for all x EX. Since 

IL(x)1 is a nonnegative value, L(x) must be zero for all x EX. Hence, L is the 

zero functional. Next, let 0= LEX'. To determine IILII we consider the 

previously proven fact IILII =sUP~.x~"'lIL(x)l. Since L(x) =a for all x E X, we can 

conclude IILII =O. Thus, IILII =a if and only if L =O. 

Let r be a real number. Then, by Lemma 2.17, we have 

IIrLl1 =suo l(rL)(x)l·
114~1 

But, by definition of rL, (rL)(x) = r(L(x» and so 

suo l(rL)(x)1 =suo Ir(L(x»I.
l.xll~ 11.x1~ 

Now, by the properties of absolute values, 

suo jr(L(x»1 =suo IrIIL(x)l.
l.xll~ 11.x11~ 

Since r is a constant, 

suo IrIIL(x)1 =Irlsuo IL(x)l·
l.x~~ l.xll~ 

Hence, we have 

IrJsuo IL(x)1 =\rIIILII· 
l.xll~ 

Therefore, IlrL11 =IrIIILII· 
Finally, let ~,~ E X'. Thert II~ II and II~ II both exist. Consider II~ +~ II· 

By Lemma 2.17, 

II~ +~II=suol(~ +~)(x)l· 
l.xl~ 

Then, by linearity of ~ and~,
 

suo I(~ +~)(x)1 =suo I~(x)+ ~(x)l·
 
l.xl~ 14tl 

Now, by the triangle inequality, 

suo I~ (x) +~ (x)l::; suo (I~ (x)1 +I~(x)!). 
11.x~~ 11.x~~ 

Next, by the triangle inequality, 

~.xYl?(I~ (x)1 +I~ (x)!)::; f.xYl?I~ (x)1 +~.xVl?I~ (x )1· 
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Finally, by Lemma 2.17, 

SUD I~ (X)I+SUD ILz(x)1 = II~II +IILzII· 
~;tll~ 11;t1~ 

That is, II~ +LzII~II~II+IILzII· Therefore, II·II:Xo ~R satisfies the requirements 

for a norm. Q.E.D. 

Before considering the first relationship among our spaces and their 

duals, we will want to know the following fact. Although we are focusing on 

the space £] in the next proof, it will be useful to consider the corresponding 

fact for our other spaces as well. 

THEOREM 2.24: Let (ak) E £1' Then (ak) =I~=] an' en' where en is the 

unit sequence in which the nth term is the only nonzero term, and it is 1. 

PROOF: To show (ak) =I:=l an . en is equivalent to showing 

limn->~ I:=I ak . ek = (ak)· Thus, it suffices to show that 

limn->~ II (ak) - I:=I ak .ek II =0. 

Let (ak)E £1' Then I~~I lakl=S for some real number S. Now consider 
n 

~~II (ak) - I ak . ek II = ~~n;ll (a] ,a2,a3,···) - (aI' a2,···, an' 0,0, ...) II 
k=1 

= ~~II (0,0, .. .,an+1,an+2 ,···) II 
~ 

= lim Ilakl 
n->~ k=n+l 

~ !i;';(t,la,l- t,la,l]
 
n 

= S -limI lak I= S - S = °. 
n->~ k=1 

Therefore, (ak) =I~=] ak . ek . Q.E.D. 

We now begin the task of determining any relationships among our 

three spaces and their duals. The next theorem states £~=£Io. In other words, 

for each bounded linear functional L£I ~ R (i.e., each element of £1°) there 

must be some element in £~ that could be considered the "same" as Land 

each element of £~ must represent some bounded linear functional on £1' 
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Perhaps, in the proof that follows, we will develop a better grasp of this idea. 

THEOREM 2.25: The dual space of f 1 is f~. 

PROOF: To prove that two spaces are equal we must show that each is 

a subspace of the other. We shall begin by letting L E flo. By definition, 

L: f 1 --7R is a bounded linear functional. Let k j = L(e j ) for i = 1,2,3, ... , Then 

E R for all i. Consider the sequence (k ) with entries defined as above. Letkj n 

(an) E f,. Then, from Theorem 2.24, (an) =I:I aj So, by substitution we• ej • 

have 

L(a.l) =L(t. a,e,} 
Since L is bounded Theorem 2.21 applies and we may infer that L is 

continuous. Next, we can take advantage of a theorem found in the Bartle 

and Sherbert text. In summary, the theorem states: For any subset A of the 

real numbers, f:A --7R and c element of A the statement that f is 

continuous at c is equivalent to the statement that if (xn ) is a sequence of 

elements of A that converges to c, then (J(xJ) converges to f(c) (Bartle and 

Sherbert 141-142). Although this theorem is stated for subsets of the reals, it 

can be extended to apply to sequences of real numbers as well. Consider the 

sequence (sn) defined by sn = I~=l aj ·ei for all n. Note that (sn) --7 (an)' Then, 

making use of the above mentioned theorem, we have 

L((an)) =limn-+~ L((sn)) =limn-+~ L(I:, aj • ej ) • 

Since L is linear, we arrive at 

L((an)) = limn-+~ I
n 

L(aj • eJ. 
i=1 

That is, 

L(t. a,e} t. L(a,e,)
 
Now, since L is linear, 



20
 
~ ~ 

L L(ai ·eJ =L aj ·L(eJ. 
i=1 i=1 

By definition of k i , 

~ ~ 

L ai ·L(eJ= L aikj • 

j=1 i=1 

Therefore, (kJ is the sequence associated with the linear functional L. Since 

L is bounded, IL( (an»)1 :::; MII( an )11 for all (an) E f I' where M is a real number. In 

particular, IL(eJI:::; M for all n. Substitution yields Iknl:::; M for all n. Therefore, 

(kn ) is bounded and thus an element of f~. Hence, every LE fl' can be 

associated with a sequence (kJ E f~. Therefore, fl' c f~. 

Now, let (kn)E f~. DefineLfl ~R by L((aJ) =L~=l knan. Note that Lis 

linear. Consider IL((aJ)I. By the definition of L, 

IL( (an»)1 =Ii ankn·· 
n=1 

By the triangle inequality and properties of absolute values, 

i ankn/:::; i lanl'lkJ 
n=1 n=1 

Since (kn ) E f~, there exists a real number M such that Iknl:::; M for each n. 

Therefore, 
~ ~ 

L lanl·lknl:::;ML lanl· 
n=l n=l 

Now, L~=1 lanl = II(an)" since (aJ E fl' Thus, we arrive at 

IL((an »)!:::; MII(an)ll· 

Hence, L is bounded, by Definition 2.13, and thus an element of fl'· 

Therefore, every element of f~ can be associated with a bounded linear 

functional of fl" That is, f~ <;;;;; fl" Q.E.D. 

We will now proceed to explore the relationship between Co and its 

dual space. 

THEOREM 2.26: The dual space of Co is fl' 
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PROOF: Let (kn) E f l , Define I:co--7R by I(CaJ) = L~=I knan· Note that I 

is linear. Consider I/(Can))1 for all (an)Eco' By definition of I, we can infer 

I/((an))1 =IL~=I knanI· 

By the triangle inequality, 

f knaJ~ f IknaJ 
n=1 I n=1 

Since (an) E co' there exists a real number M > 0 such that IICan)1I = sUPn lanl = M. 

Therefore, 

L 
~ 

Iknanl ~ I 
~ 

Mlknl· 
n=1 n=1 

Observe that, by the property of distribution, 
~ ~ 

I Mlknl= ML IkJ 
n=1 n=1 

Now, note that since CkJ E f l , L~=l Iknl exists. Call it N. Then we have 

I/((an))1 ~ NIICan)11· 

Therefore, by Definition 2.13, I is bounded. Hence, f t is a subset of co'. 

Now, let L E co'. Let kn =L(eJ. Then, as demonstrated in the proof of 

Theorem 2.25, it suffices to show that (kJ E fl' Thus, we must consider 

L: IkJ Fix j. Let (bJ be the sequence defined as follows: for n ~ j, b =1 if 
I n 

kn ~ 0 and bn =-1 if kn< 0; for n > j, bn =O. Then for any natural number j, 

L((bJ) ~ L(t, b.e. } 

By the linearity of L, 

j j jJ 
L ( ~ bnen =~ L(bnen) =~ bnL(en). 

From the definition of kn's, we have 

I
j 

bnL(en) =I
j 

bnkn; 
n=1 n=1 

and from the definition of (bn ), 

j j

I bnkn=I IkJ 
n=J n=1 
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That is, L((bJ) =I~=llknl for all j. Since L is bounded Definition 2.13 tells us 

that there exists a real number M such that IL((bn))I:::;MII(bn)11 for all j. Note 

that II( bn)11 =1 for all j and so we have IL((bn))I:::; M for all j. Finally, by a 

property of absolute values, L((bn)):::; jL((bn))1 and transitivity yields 

L~=I Iknl:::; M for all j. Thus, L~Jknl exists and (kJ is an element of £1' 

Therefore, co' is a subset of £1' Q.E.D. 

Now that we have discovered some relationships among our spaces 

and their dual spaces, we will discuss linear functionals on dual spaces. Note 

that such a linear functional would take a bounded linear functional (from 

the dual space) to a real valued constant. 

EXAMPLE 2.27: Let X be a normed linear space and x EX. Define 

T](x):X' -7 R by T](x)(x') =x'(x) for all x· E X'. To check the linearity of T](x), 

we will consider T](x)(x'+ry') where x',y" EX' and rE R. From the 

definition of T](x) we have 

T](x)(x' + ry') =(x' + ry·)(x). 

Notice that x· + ry' is a sum of two functionals. Thus, 

(x· + ry' )(x) =x· (x) + ry' (x). 

Since ry' is a scalar multiple of a functional, 

x'(x) + ry~ (x) =x· (x) + r(y·(x)). 

Again using the definition of T](x), 

x'(x) + r(i(x)) =T](x)( x') + rT](x)(i). 

Therefore, T]( x) is linear. 

To determine IIT](x)II, we use the previously stated definitions and facts. 

If we begin by considering Lemma 2.17, then we have 

II T]( x)11 =sup IT]( x)(x· )1·
Ilx'II~1 

From the definition of Tf(x), 

sup ITf(x)(x')! =sup Ix·(x)l.
~x'I~1 Ilx'II~1 
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Since x' E X', it is a bounded linear functional. Then by Definition 2.13, 

Ix'(x)1 ~ Ilxlllxll for all x· E X'. Therefore, 

sup Ix' (x)1 ~ sup Ilx'11'llxll ~ Ilxll 
11J:'11~1 11J:'11~1 

and we have 1I1](x)11 ~ Ilxll· The reverse inequality can also be shown, as in 

previous examples, so that 111](x)11 =Ilxll· 
Then, since 1](x) is a bounded linear functional on X', 1](x) E X". We 

can then consider 1]: X -7 X" and whether it is a linear mapping. Let w,u EX, 

C E R and x' EX'. Then to determine if 1] is linear we must consider 

1](W+CU)(x'). By the definition of 1](x), 

1](w +cu)(x') =x'(w +cu). 

Now, since x' is linear, 

x' (w +cu) = x'(w) +cx'(u). 

Again using the definition of 1](x), we have 

x'(w) + cx'(u) = 1](w)(x') + c1](u)(x'). 

Finally, since 1](x) and c1](x) are both functionals on the same space, 

1](w)(x') +c1](u)(x') =(1](w) +c1](u))(x'). 

Therefore, 1] is a linear mapping. 
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CHAPTER 3
 
BANACH SPACES
 

The purpose of this chapter is to introduce the idea of Banach spaces 

and to propose and prove that each of the spaces Co' fl' and f~ are indeed 

Banach spaces. To begin, we must first define a Banach space. 

DEFINITION 3.1: A Banach space is a complete normed linear space. 

A normed linear space is simply a vector space on which a norm has 

been defined. The concept of a vector space was covered extensively in 

Chapter 1 where it was proven that Co' f l , and f~ are all vector spaces. In 

Chapter I, we also discussed norms and defined a norm on each of the spaces 

Co' f]l and e~. Therefore, the only thing left to discuss before we further 

develop the idea of Banach spaces is the concept of complete spaces. 

Complete Spaces 

We begin our discussion with a definition. 

DEFINITION 3.2: A space X is complete if every Cauchy sequence 

converges to a limit in X. 

To develop the concept of a complete space it will then be crucial to 

know the definition of a Cauchy sequence. 

DEFINITION 3.3: A sequence (xJ in a normed linear space is Cauchy if 

for each e > 0, there is some N E N such that for all n, m 2::: N, II Xn - Xm II < e. 

Let us examine some Cauchy sequences in our three spaces. 
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EXAMPLE 3.4: Let(x.) be the sequence in the space Co such that 

XI =(1, a, a, a, ) 

X2 =(1, 'r, a, a, ) 

x3 = ( 1, +, ±, a, a, ) 

X n =(1, +, t, ... , 2:-1 , a, 0, ... ) 

Let £ > 0. We wish to consider Ilxn - X m II. There exists a natural number N 

such that 2~ < £. Without loss of generality suppose that n > m. Then for all 

natural numbers n, m ~ N we have 

Ilxn -xmll=ll( a,a'''''2~ ""'2:-1 ,o,a, ... )11· 

Since xn,xm E co' we know that X n-Xm E Co also, and thus 

IIXn - xmll =2~ . 

2N 1Now, because m ~ N we have 2m 
~ which implies 2~:$ 2" < £. Therefore, 

(xn ) is a Cauchy sequence. 

EXAMPLE 3.5: Since Co is a subset of f~ with the same norm, the 

sequence (xn ) from Example 3.4 is also a Cauchy sequence in f~. 

Keeping the preceeding example in mind, we can make an observation 

regarding the completeness of a certain subspace of cO' 

PROPOSITION 3.6: Let S be the subspace of Co consisting of sequences 

that are finitely nonzero. Then S is not complete. 

PROOF: To show that S is not complete, it suffices to find a Cauchy 

sequence in S that does not converge to a limit in S. Consider the sequence 

(xn ) from Example 3.4. As shown in Example 3.4, this sequence is Cauchy. 

However, (x.) converges in Co to the sequence (1,+,t""'2:-' ,... ) which is not 

in S. Therefore, S is not complete. Q.E.D. 
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It may be difficult to show that every Cauchy sequence in a space 

converges to a limit in that same space. Therefore, we shall consider the 

following theorem which will facilitate proving completeness. The following 

theorem as well as the majority of the proof can be found in Royden's text 

(124-125). 

THEOREM 3.7: A normed linear space X is complete if and only if 

every absolutely summable series is summable. 

PROOF: Let X be a complete normed linear space. Let I.~=! Xn be an 

absolutely summabie series of elements of X. By definition of absolutely 

summable, I.~=!llxnll =M < where MER. Now, since lirnm4~ I.~=!llxnll =M,00 

we have for any c> 0 there exists an N£ E N such that for all N -1 ~ N£, 

,M - I.:=~!llxn II 1< c. Hence, I.~=N IlxnII <c. 

Let sn =I.:J Xi be the nth partial sum of the series I.~=l xn ' Then, for 

n~m~N, 

IISn -sm II=III X;- f Xi 11=11 I x; 
;=1 i=m+li=l 

By the triangle inequality, we have 

IXill~ IllxJ 
;=m+1 II i=m+! 

Now, by addition of infinitely many nonnegative terms, 
n ~ 

I. IIXi II ~ I.IIXj II 
i=m+l i=m+! 

(where equality is achieved only if I.:n+l Ilxill =0). Next, by addition of 

m + 1- N nonnegative terms we arrive at 
~ ~ 

I. Ilxill ~ I.llx;11 
j=m+1 i=N 

(in which case equality will occur only if I.: Ilxill=O). Finally, from above, we 

have 
~ 

I.llx;ll< c. 
i=N 
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Therefore, Iisn - smll < e. Thus, the sequence (sJ of partial sums is a Cauchy 

sequence by definition. Since X is complete, (sJ converges to an element s 

of X. That is, L~=, xn is summable. 

Now, let X be a normed linear space such that every absolutely 

summable series of elements of X is summable. Let (xn ) be a Cauchy 

sequence in X. For all e > 0, in particular for e = 2-k where k E 2, there is 
ksome integer Nk such that for all n,m::2: Nk, Ilxn - xmll < e = r . Now, we may 

choose nk's such that nk+1 > nk, nk ::2: Nk, and nk+1 ::2: Nk+l • In doing so, we can then 

consider the sequence (xnJ which is a subsequence of (xn). Now, let us define 

the sequence (Yn) such that YI =xn\ and Yk - xnk-\ for k > 1. Since= xnt 

nk > nk- 1 ::2: Nk_l , we have II Yk II = II xnt - xnt_ II s; 2-k+l for k > 1. Thus,
1 

~ ~ ~ 

L II Yk II =1/ YI 1/ + L II Yk II s; II YI II +I r k 
+

l = II Y1 II + 1 
k=l k=2 k=2 

(as L~=2 2-k
+

1 = 1 ). So then, by definition, (yJ is absolutely summable. Now, 

we have that (yJ is summable; that is, the sequence of partial sums of the 

series L~=l Yn (the sequence (xnJ ) converges to an element x of X. 

Now, all that is left to show is that (xn ) converges to an element of X. 

Since (xn ) is a Cauchy sequence, given e > 0 there exists a natural number N 

such that for all n,m::2:N, Ilxn -xmll~f. Since (xnJ coverges to x, there is a 

natural number K such that for all k::2: K, II xnt - xII < f . Now, let k be such that 

k > K and k::2: N. Then 

II Xk - x II s; II Xk - xnt II + II xnt - x II S; f + f = e. 

Hence, (xJ converges to x EX. Therefore, X is complete. Q.E.D. 

Banach Spaces 

We have already defined a Banach space as a complete normed linear 

space and discussed the characteristics that make a set a Banach space. Now 
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we are ready to further develop the study of the spaces Co' el , and e~ by 

considering them as Banach spaces. 

Before proving co' el , and e~ are Banach spaces, we consider some of 

the ideas we will encounter in those proofs. To begin, let us contemplate 

what might be involved in showing that any of our three spaces is complete. 

We have already revealed two ways to prove that a space is complete. The 

first would be to prove that every Cauchy sequence in the space converges to a 

limit in that space. The second way would be to show that every absolutely 

summable series in the space is summable. Let us concentrate on this second 

method. A series in any of our three spaces would necessarily be a series of 

sequences. Hence, absolute summability would then rely on norms instead of 

entirely on absolute values. Also, to show that such a series was summable, 

you would need to show that it converges to a sequence in the space. In any 

of our three spaces an absolutely summable series would be a series such as: 
~ 

"( n)~ (I I I I)L..J Xk k=1 = X p X2'X3'·· .,xn ,··· 
n=! 

2 2 2 2)+( XI 'X2 'X3 '···,Xn ,··· 

3 3 3 3)+( XI 'X2 'X3 ' .. ·,Xn ,· .. 

( n n n n)+ XI ,X2 ,X3 '·· "Xn , ••• 

where I~=I Ilxn 
1/ = M for some real number M. As mentioned above, the 

dilemma of showing such a series is summable lies in showing that it 

converges to an element of the space. For example, in e~ the task would be to 

demonstrate that 

(t, x;,t, x;,t, x;, ..,t, x;, ... )E I .. 
That would entail showing that (I~=I x~, I~=I x;, I~=I x;, ... ,I~=I x;, ...) is first 
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of all a sequence of real numbers and secondly that it is a bounded sequence. 

A similar argument would have to be followed when considering each of the 

other spaces. Keeping this in mind, we will proceed in the task of showing f= 

is a Banach space. 

THEOREM 3.8: The space f= is a Banach space. 

PROOF: It has already been shown that f= is a normed linear space. 

Thus, to show that f= is a Banach space, it suffices to show that f= is 

complete. To do this, we take advantage of the previous theorem and show 

that every absolutely summable series in f= is also summable. 
n nLet L~=l x , where x = (X;)~=l' be an absolutely summable series in f=. 

Then, by definition of absolutely summable, 
= 
L Ilx n 

1/ =M < 00 for some MER.
n=1 

Now, examine the series L~=l x n as it is a sequence with a kth term of 

L~=1 x;. For this sequence to be an element of f= it must be a sequence of real 

numbers and be bounded. We must first show that IL~=I x;1 < 00 for all 

natural numbers k. Note that by the triangle inequality the following 

relationship holds for all k: 

i x;l~ i Ix;l·
n=l n=lI 

Observe that Ix;1 ~ Isup; x;1 for each k. And so we have 

L 
= 

Ix;1 ~ I 
= 

sup/x;\ for all k. 
I 

n=l n=l 

Since each xnE f=, we know that Ilxnll =sup!x;l. Hence, 
I 

L 
= 

sup!x;j =L 
= 

\Ixnll· 
In=l n=l 

Finally, as previously stated, we have 

L 
= 

Ilxnll=M. 
n=1 

nTherefore, IL~=I x;! < M for all k. Thus, L~=I x is a sequence of real 
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numbers. Also, since the absolute value of each term of that sequence is 

bounded by M, we may conclude that L~=l x" is bounded and hence an 

element of e~. Therefore, L~=l x" is summable. Consequently, e~ is a 

Banach space. Q.E.D. 

Next we shall consider the space el • Recall from previous discussion 

that our task will include showing that a sequence such as 

(t x;,t x;,t x;,· ..,t x;,.J
"=1 "=1 "=1 "=1 ) 

is a sequence of real numbers that is absolutely summable. 

THEOREM 3.9: The space eI is a Banach space. 

PROOF: As previously demonstrated, £1 is a normed linear space. 

Thus, to show that et is a Banach space it is sufficient to show that £1 is 

complete. Let L~=l x" be an absolutely summable series in el , where 

x" =(X;)~=l' Now, since L~=l x" is a series in el , it is a series of sequences and 

thus a sequence itself. We shall call this sequence x. Note that the k th term 

of x is L~=I x;. For x to be an element of e xmust be an absolutelyl , 

summable sequence of real numbers. First, to show that each term of x is a 

real number we must have IL~=1 X;/<Mk for each k, where each Mk is a real 

number. By the triangle inequality, 

~ x; I~ ~ Ix;Ifor all k. 

Next, recall that the series L~=I x" is absolutely summable. That is, 

L:=l !lx"11 =M < 00 for some real number M. 

Since x" Eel' for all natural numbers n we have 

t,llx"ll~ t, (t,lx;l}
 
Observe the following inequality does indeed hold 

t,14; t,[t,lx;l)
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Hence, we arrive at the conclusion that 

'I.
~

x; I ::; M for all k. 
n=! 

Therefore, x is a sequence of real numbers. Next, for x to be absolutely 

summable, we must have 'I.~=! I'I.~=I x;j be a real number. By the triangle 

inequality we have 

~ It. x;1 ~ ~ (t.1x;l}
 
Using previous inequalities, we arrive at 

~I~X;I::;M.
 
nThus, x is an element of £j and 'I.~=j x is summable. Therefore, £, is a 

Banach space. Q.E.D. 

We may now turn our attention to the space CO' Our strategy this time 

will be different. We must still show that any absolutely summable series 

such as 'I.~=I (X;)~=l in Co is also summable in CO' but to do so we will take 

advantage of the fact that Co is a subset of a known Banach space, namely £~, 

and shares the same norm with that Banach space. 

THEOREM 3.10: The space Co is a Banach space. 

PROOF: As it is already known that Co is a normed linear space, the 

task of showing it is a Banach space is reduced to showing that it is complete. 

Let c > O. Let 'I.~=j x 
n be an absolutely summable sequence in Co' Then, since 

Co is a subset of £~ and they have the same norm, 'I.~=1 x n is also an absolutely 

summable series in e~. Since e~ is a Banach space, 'I.~=l x n is summable in 

e~. That is, 1I'I.~=1 xnll =M for some real number M. Then there exists a 

natural number N j such that for all k?:.Nj , 111'I.:=lxnll-M!<f. Fixk. Since 

n n x E Co for all n, 'I.:=, x E Co for kEN. That is, there exists a natural number 

N2 such that for all i?:. N2, \'I.:=I x;1 < f· Now let N =sup{N p N2 }. Then, for all 
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i '? N, consider II~=l x; I· Note 

n~ I I ~kI x i = I x; +I x;n=l n=l n=k+1 

By the triangle inequality, 
k ~ 

I x; + LX; ~I~ x j 

n 1+ln~lx; 
n=1 n=k+1 

Substitution yields 

n n n 

xit xi 1+ln~lx;I~I~ xinl+lln~lxnll~l~ I+IM-lit x 

Using previously stated relationships, 

£ £
<-+-=£.~x+ M-II~x' 2 2 

In summary, we have II~=I x;1 < £ for all i> N. Therefore, limi~~ I~=l x; =0 

and I~=l x n 
E CO· We can thus conclude that every absolutely summable series 

in Co is also summable in Co. Hence, Co is a Banach space. Q.E.D. 

Additional Properties of Banach Spaces 

At this time, we have verified that each of the spaces Co' fl' and f~ are 

Banach spaces. As a result, we are ready to extend our consideration of 

Banach spaces. Our next topic will be extreme points. 

DEFINITION 3.11: Let K be a subset of a Banach space. Then x is an 

extreme point of K if whenever y,zEK and A E(O,l) with x=Ay+(l-A)z (i.e., 

x is between y and z), x=y=z. 

Extreme points of a subset of a Banach space can be seen as those points 

which are not between any other two points of that subset. Before we begin 

investigating this issue in our three spaces, we will comment on extreme 

points of spaces that may be more familiar. For instance, in R 2 let K be the 

closed unit circle. Then every point on the circle itself is an extreme point of 

K. Next, in R 3 let K be the closed unit sphere. Then every point on the 
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surface of the sphere is an extreme point. Note that each of these subsets 

have contained elements with norms less than or equal to one. Following 

this pattern, we will now examine subsets of Co and e~ for extreme points. 

EXAMPLE 3.12: Consider the set K ={x E colllxll:s; 1}. Let us assume that 

K has extreme points. Let (aJ E Co be an extreme point of the set K. Now 

consider (bJ,(Cn)EK such that each differs from (an) in only one term, 

specifically the first term such that lanl < 1. If a; is that term, then bi and Cj 

should be chosen such that bj + C; =2a; and Ibi I, leiI< 1. Note that 

Hbn)+Hcn)= (aJ. Therefore, by definition, (aJ is not an extreme point of the 

set. As a result, K ={x E col JIxII:s; 1} has no extreme points. 

EXAMPLE 3.13: Consider the set K = { X E e~ Illxll :s; 1}. Let us consider 

extreme points for K. Note that the problem experienced above can be 

avoided in a subset of e~. Let (an) E K such that lail =1 for all i. Then for any 

AE(O,1) and (bn),(Cn)EK the relationship A(bn)+(1-A)(cn)=(an) holds only 

when (an)=(bn)=(cn). Therefore, each element of the set 

{(aJ E Klla;1 =1 for all i} is an extreme point of K and K={x E e~lllxll:s; 1} has 

infinitely many extreme points. 

Another issue that can be undertaken when discussing Banach spaces 

is unconditionally convergent series. 

DEFINITION 3.14: A series I~=I xn in a Banach space is called 

unconditionally convergent if any rearrangement of the order of the sum 

results in a convergent series. 

To understand what is meant by unconditionally convergent, we must 

also define a rearrangement. 

DEFINITION 3.15: A rearrangement of I~=I x n is I~=I xrp(n)' where 

cp:N ~N is one-to-one and onto. 

The following is a famous theorem connecting Banach spaces and 
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unconditionally convergent sequences. It was proven by Dvoretsky and 

Rogers in 1950. 

THEOREM 3.16: (The Dvoretsky-Rogers Theorem) Every infinite 

dimensional Banach space has a series which is unconditionally convergent 

but not absolutely convergent (Dvoretsky and Rogers 192-196). 

Since each of our spaces are infinite dimensional, the Dvoretsky­

Rogers Theorem applies to each of them. We will now entertain such a series 

in co' 

EXAMPLE 3.17: Let L~=I Xn be the series in Co defined by
 

Xl =(1,0,0,0,0, ),
 

x2 = (O,t,o,O,O, ),
 

x3 =(O,o,t,o,O, ),
 

x4 =(O,O,O,t,O,O, ),
 

Observe that 

L 
~ 

xq>(n) =(l,t ..Lt, ...)E Co 
n=1 

for any bijection Cf':N ---7N. However, 

2:IIXi ll= L +=00 
;=1 ;=1 

does not converge. 
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CHAPTER 4
 
THE HAHN-BANACH THEOREM
 

The intent of this chapter will be to cover the remaining concepts 

needed to discuss the Hahn-Banach theorem. Then, we shall state and prove 

that theorem. 

Extensions of Linear Functionals 

A concept that is essential to the Hahn-Banach theorem is the 

extension of a linear functional. 

DEFINITION 4.1: Let f be a function with a domain of S and X ~ S. 

Then any function J with a domain of X is an extension of f to the set X if 

J(x)=f(x) for all XES. 

Another way to state J(x) =f(x) for all XES is to say that J restricted to 

the set S is the same as f. This is denoted by Jls= f. 

For our purposes, we will be concerned with extensions of linear 

functionals that retain the same norm. That is, given a linear functional f 

on S with a norm of N we want to find a linear extension of f to X, where 

X => S, such that the norm of the extension is N also. 

Consider the linear functional f: R 5~ R given by 

f(C Ql' Q2,Q3,Q4,Q5)) =I~=I Qj. 

We will discuss finding such extensions of f first to all of Co and then to all of 

fl. The topics from the section on dual spaces will be helpful in this 

discussion. 

EXAMPLE 4.2: Before we can begin finding an extension of f to all of 

Co' we must first find a way to regard R 5 as a subset of co' To do this we 

identify each element of R 5 with the sequence of Co in which the first five 

terms are the same and the remaining terms are zero. That is, we 
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identify (a l ,a2,a3 ,a4,aS) E R S with (al'a2,~,a4,aS'0,0,0,... ) E Co' Therefore, R S is 

a subset of Co' Another thing that must be done is finding 11111 so that we 

know what norm to preserve. To find 11111 in Co we will make use of 

Definition 2.12. In which case, we have

±an I~ M(sup{l~ I, I~ I, la31, la41, las I}). 
n:1 

However, II~:I an I~ I~:I Ian I, and so 

n:1 

I
S

Ian I~ 5(sup {lall, la21, la31, la41, las I}). 

Thus, IIIII~5. Consider the sequence (xJ=(l,I,I,I,I,O,O,O,O, ... ). Notice that 

I::I Ixnl = 5 while sup{lxI/,lx21,lx31,lx41,lxsl} = i. Hence, 11111 must be 5 for the above 

inequality to hold. Recall that }:co-7R must be linear and 1/]11 = 5. That is, 

] E co' =fl' Keeping this in mind, let }: Co -7 R be defined by ]((xn ) ) =I::I Xn 

for all (xJ E Co' That is, ] = (1,1,1,1,1,0,0,0, ...). 

EXAMPLE 4.3: To find an extension of I to all of el with the same 

norm we must again begin by considering R S as a subset of el and 

determining 11111 this time in el • We shall consider elements of R S as we did 

in Example 4.2. Now, we can tum our attention to 11111. By applying 

Definition 2.12, we arrive at 

~anl~M~laJ
 
It is clear that equality can be achieved when all the an's are positive. Hence, 

IVII =1. Now, we can find an extension of I to all of fl' This time, note that 

] E f l ' = f~. Let ]:e1 -7R be ] = (1,1,1,1,1,0,0,0...). 

Now, to gain a better understanding of these extensions consider the 

following questions. Is there only one such extension into all of co? How 

about into all of e,? Both of these answers depend on the original linear 

functional and its norm. In the above example, there is no other extension of 

I into all of Co; but, there are infinitely many more extensions of I into all of 
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fl' In fact, any sequence (xn) such that Xn =1 for 1~ n ~ 5 and Ixnl ~ 1 for n> 5 

represents an extension of I into all of fl' Observe that II( X )/1 =1 andn 

(xn)Ef..o=f l "· 

Let us continue by examining another more example.
 

EXAMPLE 4.4: Let S be the set of all finitely nonzero sequences. Let S
 

have the same norm as fl' Define I:S~Rby I((an»)= I~:l an' and note that 

this is actually a finite sum. Find an extension of I to all of f, with the same 

norm. 

Let us begin by determining 11/11. By Definition 2.12, IIIII will be the 

smallest M such that I/(s)1 ~ Mlisil for all s E S. Let (an) be an arbitrary element 

of S. Without loss of generality, let a;,a;., ... ,a; be the nonzero terms of (an)' 

Then I((an») becomes I(Can») =I::, a;. By the triangle inequality, 

I/((aJ)1 ~ I::l la;\. However, I::l lai1=Ilanll· So, we have the inequality 

/I( (an»)1 ~ 1·11(an)//. Then the question becomes one of determining if there is a 

smaller M > 0 such that 1/((aJ)/ ~ MII(an )11 for all (an) E S. Suppose (an) is a 

positive valued sequence. Then II::, a~ =I::J lai1in which case M must be 1. 

Thus, we may conclude that 11/11=1. 

Now, to find an extension of I to all of f]/ we should recognize that 

J E f l " =f.~. Let }:f, ~R be given by J((aJ) =I~:I an' Then J =(1,1,1, ...). 

In this case, there is no other extension into all of fl' The nonzero 

terms in the elements of S do not have to be in specific places. Since Jls= I, 

J must allow for the nonzero terms to occur anywhere in the sequence hence 

the reason for a sequence of all ones. 

The Hahn-Banach Theorem 

The last item that should be mentioned before delving into the Hahn­

Banach Theorem is an axiom equivalent to the Axiom of Choice. 
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el . In fact, any sequence (xn) such that xn =1 for 1$n $5 and /xnl $1 for n> 5 

represents an extension of I into all of eI' Observe that II( X n )11 =1 and 

(xJ E f~ =el •• 

Let us continue by examining another more example. 

EXAMPLE 4.4: Let S be the set of all finitely nonzero sequences. Let S 

have the same norm as eI' Define I: S~ R by I(CaJ) =2:..~=t an' and note that 

this is actually a finite sum. Find an extension of I to all of el with the same 

norm. 

Let us begin by determining 11/11. By Definition 2.12, Ilfll will be the 

smallest M such that I/(s)1 $ Miisil for all s E S. Let (aJ be an arbitrary element 

of S. Without loss of generality, let a;,a;" ... ,a; be the nonzero terms of (aJ. 

Then I(Ca )) becomes I(CaJ)= 2:..:=1 a;. By the triangle inequality, n 

I/(CaJ)1 $2:..:=1 \al However, 2:..:=1 lai1="anll· So, we have the inequality 

I/(Can))1 $ I·II(an l Then the question becomes one of determining if there is a 

smaller M>O such that I/(Can))1$ MII(an)11 for all (an)ES. Suppose (aJ is a 

positive valued sequence. Then 12:..:=1 ail = 2:..:=1 laj1in which case M must be 1. 

Thus, we may conclude that I1III =1. 

Now, to find an extension of I to all of f ll we should recognize that 

JEfl· =f~. Let ]:el ~R be given by J(CaJ) =2:..~=1 an' Then J=(1,1,1, ...). 

In this case, there is no other extension into all of el' The nonzero 

terms in the elements of S do not have to be in specific places. Since Jls= I, 

J must allow for the nonzero terms to occur anywhere in the sequence hence 

the reason for a sequence of all ones. 

The Hahn-Banach Theorem 

The last item that should be mentioned before delving into the Hahn­

Banach Theorem is an axiom equivalent to the Axiom of Choice. 
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LEMMA 4.5: (Zorn's Lemma) If each chain in a partially ordered set 

(X,~) has an upper bound in X, then X has a maximal element (Willard 10). 

Now that some of the basic ideas behind the Hahn-Banach theorem 

have been covered, we state and prove that theorem. 

THEOREM 4.6: (The Hahn-Banach Theorem) Suppose X is a normed 

linear space, S is a subspace of X, and f: S ~R is a linear functional with 

norm 1. Then there is a linear functional ]: X ~ R such that Jls :::: f and 

IIJII:::: 1. 

PROOF: Let Xo E X \ Sand u E S. Then, if we need IIJI/:::: IIfll, by 

Definition 2.12, we need the following: 

\J(XO+u)1 $llxo+ul/ and IJ( XO - u)1 ~ Ilxo - ull· 
If we need Jls :::: f, then 

J(xo+ u):::: J(xo)+ f(u) and J(xo-u):::: J(xo)- f(u). 

By substitution, we arrive at the following inequalities: 

IJ(xo)+ f(u)I~llxo+ull and IJ(xo)- f(u)I~I/xo-ul/. 

Algebraic manipulation results in 

J(xo)~ Ilxo +ul/ - f(u) and J(xo)2 f(u) -llxo - ull· 
Consider the sets {f(u)-llxo-Ul/IUE S} and {llxo +ull- f(u)lu Es}. Since Ilfll:::: 1 we 

can apply Definition 2.12 to attain' If(u)1 ~ Ilull for all uES. From properties of 

absolute value inequalities, we have -liull $feu) $llull. Concentrating on 

feu) ~ Ilull we arrive at feu) -Ilull ~ 0 and 0 ~ Ilull- f(u). Therefore, 

feu) -liull $llu'li - feu') for all u,u' ES. We may then conclude that 

f(u)-llxo-ull~lIxo+ull-f(u)for all UES. Therefore, {f(u)-llxo-u/lluES} is 

bounded above and by the Supremum Property of R has a supremum. 

Likewise, {/Ixo+ull- f( u)Iu E S} is bounded below and by the Infimum Property 

of R has an infimum (Bartle and Sherbert 46). Since IIxo + ull- feu) is an upper 

bound of {f(u)-llxo-ullluES} for all UES, then we know that 
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sup {f(u) -llxo- ulll u E S}:s; IIXo+ Ull- f(u) for all u E S. 

That is, sup{f(u)-llxo-ullluES} is a lower bound for {llxo+ull- f(u)luES}. 

Therefore, 

sup{f(u) -llxo- ulll u E S}:s; inf{llxo+ ull- f(u)1 u E S}. 

Let a E R such that sup{f(u) -llxo- ulll u E s}:s; a:S; inf{llxo+ ull- f(u)1 u E S}. 

Define f':(S,xo) --;R by f'(s) = f(s) for all s E Sand f'(xo)= a. Then f' is an 

extension of f to (S,xo) such that 11f'1I =Ilfll =1. Using this process, we can 

continue to extend f one dimension at a time. However, at this rate we can 

only extend f in a finite manner. We must do something else in order to 

extend f to all of X. 

Sn is a subspace of X such that S C Sn } 
Consider the set J2l = (Sn,fJ .

{ fn:Sn --; R such thatfnls= f and Ilfnll =1 

Define the following order on.YL For (Sn,fJ(Sm,fm) E .fl.let (Sn,fn) < (Sm,fm) 

only if Sn ~ Sm and fmls. = fn' Let (Spf1) < (Sz,fz) <... < (Sn,fn) <... be an arbitrary 

chain in J2l. Let S'=U~=ISn' Notice Sn~S'forall n. Define f':S'--;Rby 

f'(x) = f n(x) for any n such that x E Sn' Note that f' is well-defined and that 

f'\s. = fn for all n. Therefore, (S' ,f') > (Sn,fn) for all nand (S' ,f') is an upper 

bound for the chain. Hence, by Zorn's lemma, J2l has a maximal element. 

Assume that (M,J) is the maximC\l element, where M"* X. Then, as proven 

above, we may extend J one dimension to the space (M,x'). This is a 

contradiction, as (M,J) is maximal. Therefore (x,J) is the maximal element 

of J2l•• Q.E.D. 
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CONCLUSION 

Throughout this paper we examined the sets Co, i\f and i~. We began 

by considering their definitions and building our understanding of them 

from there. The development of each set progressed from vector space to 

dual space to Banach space. 

The set of all absolutely summable sequences is iI' Each absolutely 

summable sequence must converge to zero and so i, is a subset of the set of 

all sequences that converge to zero, otherwise known as co' Likewise, since 

each sequence that converges to zero is bounded, Co is a subset of the set of all 

bounded sequence, or i~. Working in the opposite order, we were able to 

prove that each set is a vector space. Using concepts and definitions 

corresponding to those found in any study of finite vector spaces, we were 

able to show that the analogous results hold in these spaces. 

Since a Banach space is a complete normed linear space and normed 

linear spaces were covered under the concepts of vector spaces, the 

introduction of complete spaces allowed us to consider co' i\f and i~ as 

Banach spaces. Upon showing that each space was complete, we concluded 

that Co' i\f and i~ are each Banach spaces. This knowledge opened up the 

field of concepts to consider in relation to these three spaces. With the basic 

understanding of the information presented in this paper, one can now move 

on to topics such as Banach limits. 
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