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INTRODUCTION

This paper will develop the topic of the spaces ¢,, ¢,, and ¢_. We will
study the properties of these spaces and their relationships to each other. Our
inquiry will begin with the establishment of the relationships among these
spaces and the consideration of them as vector spaces. It will then lead into
the discovery that these spaces are Banach spaces. The topics of linear
functionals, dual spaces, and extreme points will be discussed along the way.
There will also be a serious treatment of the Hahn-Banach theorem.

To begin, it is important to introduce the spaces on which we will
concentrate. They are:

DEFINITION 0.1: The set of all sequences of real numbers converging
to zero is known as ¢,.

DEFINITION 0.2: The set of all sequences of real numbers which are
absolutely summable is known as ¢,.

DEFINITION 0.3: The set of all bounded sequences of real numbers is
known as 7.

For our purposes, the field of scalars will be the set of all real numbers and the
operations defined on our spaces will be componentwise defined vector

addition and scalar multiplication.



CHAPTER 1
VECTOR SPACES

The purpose of this chapter is to establish the relationship among
¢y» ¢, and ¢_ and to determine that they are indeed vector spaces. Once this
has been done we will consider some properties that are inherent to them as

vector spaces.

Subsets

Let us first consider whether any of the sets are subsets of one another.
If we are able to determine subset relationships, the task of verifying that they
are each vector spaces will be easier. To begin, recall that the set ¢, consists of
convergent sequences of real numbers. Since such sequences are bounded, it
seems intuitive that ¢, is a subset of ¢_. Thus, our first observation is this.

THEOREM 1.1: The set ¢, is a subset of ¢_.

PROQOF: Let (a,)€c,. Let €>0. By the definition of ¢,, we know that

lim, . a,=0. Then, there is a natural number & such that for all n2k, |a |<€.

Then there are two cases to consider.

Casel: |a,|<e forall n<k.

In this situation, we have |an| <eg for all n. Hence, (a,) is bounded and an
element of 7_.

Case2: |a,|>¢ for some n<k,

Since k is a positive integer, there is only a finite number of these terms.

Furthermore, there is one of them with the greatest absolute value; call it a,.

Then

<la,| for all n<k. Since |a,|<¢ forall n2k and e<|a,

a, , then |a,|<|a,]
for all n>k. Finally, we have |a,|<|a,| for all n. Therefore, (a,) is bounded

and an element of ¢_. Therefore, ¢, is a subset of ¢_. Q.ED.



Now, we have the task of determining where ¢, fits. Recall the fact

that the elements of ¢, are absolutely summable. In other words, for each

a

n

sequence (a,) in £, the series Z; must converge. This implies that the

original sequence must converge to zero. This leads us to our next

observation.

THEOREM 1.2: The set ¢, is a subset of ¢,.
PROOF: Let (a,)€{,. Then (a,) is absolutely convergent. Let

S;»8y5---5S,,... be the partial sums of the series Z:=1 a,|- Since (a,) is

absolutely convergent, lim,__ S, =S for some real number S. Notice, for any

n—ece ~n
n,S =8,_,+|a, So,
§ = lim §, = lim (S, , +|a,[) = lim s,_, +lima,|.

It then follows that lim

=§-lim,,_S,_,. Notethatas n—>e, §,_, —S.

n—es “Mp—1-°

a’l

n—e

And so we have lim

e |2,|=S—=8=0. Hence, lim,_,_a, =0, and (a,)ec,.

Therefore, ¢, is a subset of c,. Q.E.D.
We have thus verified that ¢, c¢,c¢.. This relationship will

continue to be of importance throughout the study of these spaces, as it will

facilitate many of the proofs that follow.

Vector Spaces

Now that subset relationships are known, let us move on to the
consideration of vector spaces. As /_ is a superset of both ¢, and ¢,, we will
first determine whether it is a vector space.

THEOREM 1.3: The set ¢_ is a vector space.

PROOF: Let (a,),(b,).(c,)€?_and r,s,t€ R. Then, by definition of ¢_,

there are real numbers M, N 20 such that |a,|< M and |b,|< N for all natural

numbers n. Now, since vector addition is defined componentwise,

(a,)+(b,)=(a,+b,). Then, considering the terms of (a,+b,),



<

a, +b,

a,|+[b,| (by the triangle inequality)

<M+ N for all natural numbers n.
Thus, (a,)+(b,) is bounded and an element of ¢_. Therefore, £_ is closed
under vector addition.

Next, consider r(a,). Since scalar multiplication is defined
componentwise, r(a,)=(ra,). Observe that |ra,|=|r|-|a,|<|f|M for all natural
numbers n. Thus, r(a,) is bounded and an element of ¢_. Therefore, ¢_ is
closed under scalar multiplication.

Finally, the properties of vector spaces must be verified:

i) Associativity of vector addition.

To determine if this property is satisfied in /¢, we must inspect the

addition of three vectors in /_. Note
((a)+B))+(c)=(a,+b,)+(c,)=((a, +b,)+c,)=(a, + (b, +c,))

=(a,)+(b, +c,)=(a,)+((b)+(c,)).
Therefore, vector addition in /_ is associative.
ii) Existence of an identity element.

Consider the sequence (0). Forany M e R”, |0|=0< M. Therefore, (0) is
bounded and (0)e?¢_. Let (a,)e?,. Then, (a,)+(0)=(a, +0)=(a,). Likewise,
(0)+(a,)=(a,). Therefore, (0) is the identity element in 7_.

iii) Existence of an inverse element for each element of 7_.

Let (a,) be an arbitrary element of ¢_. Then (-a,)=(-1-a,)=-1:(a,) and
since ¢_ is closed under scalar multiplication, (-a,)e ... Now,
(a,)+(-a,)=(a,+-a,)=(0). Similarly, (-a,)+(a,)=(0). Therefore, each
element of /_ has an inverse element also in 7_.

iv) Commutativity of vector addition.
To verify this property, we must look at the sum of two vectors in /.

Observe (a,)+(b,)=(a,+b,)=(b,+a,)=(b,)+(a,). Thus, vector addition is



commutative in /.
v) Distributivity of scalar multiplication over vector addition.

Take note of the following;:

r((a,)+(b,))=r((a,+b,))=(r(a,+b,))=(ra,+rb,)=(ra,)+(rb,)

= r(a,)+r(b,).
Hence, scalar multiplication distributes over vector addition in ¢_.
vi) Distributivity of scalar multiplication over scalar addition.

Notice (r+s)a,)= ((r + s)an) =(ra,+sa,)=(ra,)+(sa,)=r(a,)+s(a,).
Therefore, scalar multiplication distributes over scalar addition in ¢_.

vii) Miscellaneous scalar property.

Observe (rs)(a,)= ((rs)an)z (r(sa,,)) =r(sa,). The scalar property
connected with vector spaces holds in Z_.

viii) Existence of a scalar identity.

Consider 1€ R; 1-(a,)=(1-a,)=(a,). Thus, 1 is the scalar identity for 7.
Therefore, ¢_ is a vector space. Q.ED.

With this fact known, the task of verifying whether ¢, is a vector space
is reduced to showing that it is a subspace of /.

THEOREM 1.4: The set ¢, is a vector space.

PROOFE: Since we have already shown that ¢, is a subset of a vector
space, namely £_, it suffices to show that ¢, is closed under vector addition
and scalar multiplication. Let (a,),(b,) €¢, and re R. Consider lim,_,_(a, +b,).
Since (a,), (b,) € ¢,, we know that both lim_,_a, and lim,_,_ b, exist and are

n—eo n n—oo n

zero. Hence,

lim (a, +b,)=lima, +lim b, =0+0=0.

n—eo

Therefore, (a,)+(b,)€c,. Now consider lim,_,_ ra,. Since (a,)ec,, lim,_,_a

n—co n

exists. Thus,

limra, =rlima, =r(0)=0.

n—reo n—ea
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Therefore, r(a,)ec,. Hence, c, is a vector space. Q.E.D.

All that remains to be shown, in terms of vector spaces, is that ¢, is a
vector space. We will use the preceding fact to verify this.

THEOREM 1.5: The set ¢, is a vector space.

PROOF: To show that ¢, is a vector space it suffices to show that it is
closed under vector addition and scalar multiplication. Let (a,),(b,)€ ¢, and

re R. Since (a,),(b,)€¢,, they are both absolutely summable sequences.

Thatis, lim,.. Y, |a/and lim, >  [|b|bothexist. Call them S and R

n—oe

respectively. Then,
limi la, +bkqglimi (]ak|+|bk|)=limi la,|+lim 2 b|=5+R.
n—re pa n—oo pa n-—oo . n—oo =)

Thus, (a,)+(b,) is absolutely convergent and an element of ¢,.

Now consider the sequence r(a,)=(ra,). To show r(a,)e¢,, it must be

an absolutely convergent sequence. To determine whether this is the case, we

must evaluate lim, Y ' |ra|. Observe
lim Y |ra,|=lim| Y, |a]=|rlim Y |a,|= S
k=1 k=1 k=1
Thus, r(a,) is absolutely convergent and an element of ¢,. Therefore, ¢, isa

vector space. QED.

Norms of Vectors
We will move on to the topic of norms on vectors. Norms are
generally used in an effort to define a measurement on vectors.
DEFINITION 1.6: Let V be a vector space over the field of real

numbers. Then a norm on V is a function,

-|: V=R, which satisfies the
following: (i) |v|=0 for all v in V, (ii) |v|=0 if and only if v=0,
(iii) |rv]|=]r|[]v| for all real numbers r and vectors vinV, and

(iv) |lv+w| £||+]w| for all vectors v and w in V.



Since we have established that ¢;, |, and ¢_ are all vector spaces, we
take on the task of establishing a norm for each of these spaces. For our
purposes, we shall use the absolute sum of a sequence to be its norm in ¢,,
and the standard supremum norm will be used in ¢_ and ¢,. Before we go any
further, we shall take the time to prove that each of these fulfill the
requirements of a norm in the specified space. First, we will verify the norm

for ¢,.

THEOREM 1.7: The function ||} ¢, =R defined by

. 1 n
=lim Zkzl

PROOF: To show that |

a|=Y |a]isanormon ¢,

(a,)

l(a,)

= zkzliak' is a norm on ¢,, we need to verify

that the four properties of norms do indeed hold. Let (a,),(b,)€ ¢, and r bea
(a,)

which are all nonnegative. Next, consider the case where |(a,)|=0. That s,

>0 since it is a sum of absolute values

real number. First, note that |

2:=1‘ak‘ =0, which is a sum of nonnegative terms. For that to be so, |a,|=0 for
all k. Hence, (a,) must be (0). Now, let (a,)=(0). Then,
l@)) =)= lo]=0. Thus, |(a,)

let us look at |r(a,)

=0 if and only if (a,)=(0). At this time,

. Observe

oo oo

=Y lra|= Y| la | =13 |a] =]
k=1

k=1 k=]

|(a.)

(a,)

=|(ra,)

4

Finally, we must attend to ||(a,,)+(b,,)

la)+ @) =|(a, +5,)] = X |a +b]< Z(|ak‘+|bk0 = la |+ X b= @)+ @)
k=1 k=1 k=1 k=1
Therefore, [|-| is a norm on ¢,. QE.D.
Now, we shall establish that the supremum norm satisfies the
properties of a norm for the space ¢_.
THEOREM 1.8: The function ||:¢. —R defined by |(a,)|:=sup, |a,| is a

norm on /.

PROOF: Let (a,),(b,) €. and r be a real number. First, since |a,[>0 for



all n, we know that sup,

a,|20. This implies |(a,)|20 for all (a,)e .. Next,
let |(a,)|=0. Thatis, sup,

a,|=0. Then 02|a,| for all n, but |a,|20 for all .

Hence,

a,|=0 forall n. Asaresult, (a,) must be (0). Consider if (a,)=(0),
then

|(a.)
(a,)|=0 if and only if (a,)=(0). Now, consider |r(a,)
Irta)=lra,)

=|(0)||=sup|0|=0.
Thus,

4

(a,)

=1

=supra,|=sup |r||a,|=|r|sup|a, .
n n n

. Observe

Finally, we must look at |(a,)+(b,)
(a,)+ &) =|(a, +5,)

Therefore, || is a normon 2_. QED.

+

=supla, +b,| < supla,|+sup|b,| =|(a,)]+|&,)-

Lastly, we need to confirm the supremum norm for c,.

THEOREM 1.9: The function ||-|:c, >R defined by |(a,) isa

'=sup, |a,

norm on ¢,.
PROQF: Let (a,),(b,)ec,. Then, since ¢, is a subset of ¢_, (a,),(b,) € ...
Since the properties of norms hold for vectors in /_, then they also hold for

(a,) and (b,). Therefore, |-| is a norm on c,. Q.E.D.



CHAPTER 2
LINEAR MAPPINGS AND DUAL SPACES

In this chapter we will take our study of ¢, ¢, and 7, as vector spaces
one step further. Linear transformations between two of these spaces or

between one and the field of scalars will be developed in detail. We will then

take on the task of developing further relationships between the spaces ¢,, ¢,,

and 7_.

Linear Mappings
DEFINITION 2.1: A linear mapping is a mapping f:V, = V,, where

V, and V, are vector spaces over a field K, which satisfies the following two
properties: (1) for any elements 4 and v in V,, f(u+v)= f(u)+ f(v); and (2) for
all ¢ in the field K and v in the vector space V,, f(cv)=cf(v).

Let us consider a few examples of linear mappings between our three
spaées.

EXAMPLE 2.2: Let L:c, — /_ be defined by L((a,)):=(a,). Note that if
(a,)€c,, then L((a,))=(a,) € ¢, since c, is a subset of £_. To verify that L is
indeed a linear mapping, it is sufficient to look at L((a,)+r(b,)) where
(a,),(b,)ec, and r is a real numbér. Now,

L((a,)+ (b)) =L((a, +rb,))=(a, +rb,) = (a,) + r(b,) = L((a,)) + rL((5,)).
Since L satisfies both properties, it is a linear mapping.

EXAMPLE 2.3: Let L:c, — ¢, be defined by L((a,))=(4,,0,0,0,...). Let

(a,),(b,)ec, and r be a real number. First, notice that L{(a,))< ¢, since
lim Y [(L{(a,)), )| = lim a|=a |
k=1

Next, consider



10
L((a,)+r(b,))=L((a, +rb))=(a,+rb,0,0,...) = (4,,0,0,...) +(rb,,0,0,...)

= (4,0,0,...)+r(5,,0,0,...)= L((a,)) + rL((b,))-
This proves that L is a linear mapping.

EXAMPLE 2.4: Let L:c, — ¢, be defined by L((a,)):=(a,) if (a,) is
absolutely convergent and (0) if not. Suppose that (a,),(b,) € ¢, such that (a,)
is absolutely convergent and (4,) is not. Then, (a,)+(b,) is not absolutely
convergent. So, L((a,)+(b,))=(0); but, L((a,))+L((b,))=(a,) +(0) = (a,).

Therefore, L is not a linear mapping.

Linear Functionals

DEFINITION 2.5: A linear functional is a linear mapping from a vector
space into its field of scalars.

EXAMPLE 2.6: Let L:¢/_ —R be defined by L((a,)): Z _,r.a; where
r,ry,....r, are all real numbers. Then, 2‘,:1 ra; is a sum of real numbers and a
real number itself. Let (a,),(b,)€?. and s be a real number. Now consider

L((a,)+s(b,));
k
L((a,)+s(b,)) = L((a, +sb,))= Y r.(a, +sb,)
i=1

i (ra,+rsb)= zk: r.a, + i r.sb,

—ira +szrb L((a))+ sL((b,)).

Thus, L is a linear functional.

EXAMPLE 2.7: Let k be a natural number. Let L:¢, — R defined by
L((a,)):=a,. Since elements of c, are sequences of real numbers, L((a,)) is
indeed a real number for any (a,)€¢,. Now to demonstrate the property of
linearity consider:

L((a,)+rb,))=L((a,+rb))=a, +rb, = L((a,))+rL((b,)),

where r is any real number. Therefore, L is a linear functional.
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Kernel and Image

Two concepts that are intrinsic to the topic of linear mappings are
kernel and image. The kernel of a linear mapping is a subspace of the
domain, while the image of a linear mapping is a subspace of the range. Let
F:V — W be a linear map.

DEFINITION 2.8: The kernel of F is the set of all vectors v in V, the
domain, such that F(v)=0.

DEFINITION 2.9: The image of F is the set of all vectors w in W, the
range, such that there exists an element v of V such that F(v)=w.

Let us relate these concepts to the examples of linear mappings we
have already considered involving the spaces ¢,, ¢, and Z_.

EXAMPLE 2.10: Consider the linear mapping L from Example 2.3;

Ker L={(a,) 6| L((a,))=(0) }={(a,)ec,|a,=0}
and
Im L={(b,) € ¢|(b,) = L((a,)) for some (a,) e c, }={(b,) € ¢,|b, =0 forall i=1}.
EXAMPLE 2.11: Next, look at the linear functional in Example 2.6;

Ker L={(a,)e_| L((an))=0}={(an)e€m| Y ra, =0}

and

ImL={reR | r=‘L((an)) for some (a,)€ ¢, } = R.

Norms of Linear Mappings

The concept of a norm is not something that merely applies to vectors.
We can also discuss the idea of a norm with respect to functions.

DEFINITION 2.12: Let L:V —R be a linear functional and suppose V is

a normed linear space. Let the norm of L,|L|, be given by M, where M is the

smallest number such that |L(v)|< M|v| for all ve V, if such an M exists.
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DEFINITION 2.13: A linear functional L is said to be bounded if such
an M (as in Definition 2.12) exists.
We shall begin the investigation of this concept by examining some

examples.

EXAMPLE 2.14: Let L:¢, »R be defined by L((a,)):= a;. To find ||L] we
(a,)| holds. First,

,as (a,)€?,. Since

must find the smallest real number M such that iL((an )| < M|

(a)ll= Z:Ja,.

lag| is a summand in that sum, we know that the inequality |a|<1-3"" la,] is

note that |L((a,))

=la;|. Next, recognize that |

true. If there are terms of (a,), other than as, that are nonzero, M may be less

than one. However, the same M must work for all elements of ¢,. Consider
elements of ¢, in which all the terms of (a,) are zero other than a,. Then

laj/=>"" la]. In which case, M must be one for |L((a,)) < M|(a,)| to hold.

Therefore, ||L|=1.
EXAMPLE 2.15: Let L:¢, »R be defined by L((a,)):=a, +4a,. Notice that

a, +4a;| <|a|+4a|< Y 4a|=4|(a,)| Thatis, |L((a,))<4|a,)

i=]

<4

for any (a,)€?,,

for all (a,) e ¢,. Hence, |L| <4 for this linear functional. Now, let (a,)€ ¢, such

. Note that

(a,)| holds

=|4a,| = 4la,| = 4|(a,)

that a, is the only nonzero term. Then ‘L((an))

< M|

M =4 is the smallest number for which the inequality |L((a,))

for this particular element of ¢,. Therefore, ||L|=4.

EXAMPLE 2.16: Let L:c, —R be defined by L((a,)):=a;. Then for any

(a,) € ¢y, |L((a,))|=|as| < sup,|a,|=|(a,)|- Thus, |L]<1. Now, consider the
sequence (a,)=(0,0,0,0,1,0,0,...)€¢,. Then |L((a,))|=|a]|=[=1=]a,]|=1"]a,|.
That is, for (a,) M =1 is the smallest number for which ‘L((an)) <M|(a,)| is

true. Hence, |L|=1.

Now we shall look at a characteristic of norms that will facilitate any

future use of norms.
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LEMMA 2.17: Let L:V —R be a linear functional and V a normed
linear space. Then ||| = supy [L(v)].

PROQF: Let V be a normed linear space and L:V —R be a linear
functional. Let veV such that |v|<1. By the definition of norm of L,
we know that |L(v)|<|L|[v|. Then, since |y|<1 implies that x||v|<x for all real
numbers x, we have |L(v)|<|L|. Now, since |L(v)|<|L| is true for all ve V such
that |v| <1, we can conclude that sup,,, [L(v)|<||L|. Next, we need to show that
|L|| < supy,, [L(v)|- Let supy,, [L(v)|=c. Then,
= M| ()

<|v|er (since ‘

(since L is linear)

(#) ]:1).
Therefore, |L(v)|< ¢fv| for all ve V. Since |L]| is the least M such that

L)l=|r(4)

|L(v)|< M||v|| is true for all ve V, it may be deduced that |L|< . That is,
|| < supy,q [L(v)|. Therefore, |Z|| =sup,,, [L(v). Q.E.D.

Continuous Linear Functionals

As linear functionals have already been defined, and we have already
looked at examples as well as defined norms on linear functionals, we are
now ready to develop the concept of linear functionals one step further. The
next thing we will do is determine what it means for a linear functional to be
continuous.

DEFINITION 2.18: Let X be a normed linear space. Let x:X —>Rbea

linear functional. Then x” is continuous if for each x € X, given >0, there

exists a §>0 such that if |x—y| <8 then |x"(x)—x"(y)|<e. Furthermore, x" is

said to be continuous at some point x, € X if given £>0 there exists a 6 >0
such that if x € X such that |x—x,|< & then nx'(x)— (x| <e.
We will begin this discussion by developing some properties of

continuous functionals.
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THEOREM 2.19: Let X be a normed linear space. Let x:X >R bea
linear functional. Then x" is continuous if and only if x" is continuous at
some point x, € X.

PROOF: Let X be a normed linear space. Let x":X —R be a linear
functional. Suppose that x" is continuous. Then x" is continuous at each
x€ X. Clearly then x* is continuous at some x, € X.

Suppose that x* is continuous at some point x, € X. Then given £>0

there exists a 6 >0 such that if xe X and |x- x| <& then Hx'(x)— (%)< €.
Now, let x € X such that |[x-0]|< 6. Then ||x—0||=“(x+x0)—x0 H< 0. Since x" is
continuous at x,, we have ”x'(x+x0)—x*(x0)“< €. Since x" is additive, we

arrive at “x )+ x"(x )—x‘(xO)H< & which yields [x"(x)|< €. Since x*(0)=0,

x)“:”x'(x)—x'(o)" < €. Therefore, x* is continuous at Oe X.
Now, consider any ye X. Let £€>0. Then there exists a 6 >0 such that
for all x € X such that |x| < we have ||x'(x)||< €, since x" is continuous at

Oe X. Suppose |x-y|<8. Then |[(x-y)-0[<5,and |x"(x—y)-x'(0)|<e.

Then, since x" is additive, |x"(x)—x"(y)- x"(0) ”< €. This implies then that

||x'(x)—x’ ( y)” < g. Therefore, x" is continuous at each ye X. Q.E.D.
Before making our next observation of continuous linear functionals,
we need to consider the following characteristic of bounded functionals.
LEMMA 2.20: Let X be a normed linear space and x":X —R be a linear
functional. Then x" is bounded if and only if {x'(x)|||x||£ 1} is bounded.
PROOF: Let X be a normed linear space and x:X —R be a linear
functional. Suppose that x" is bounded. Then, by Definition 2.13, we know
that there is a real number M such that

lx |< M|x| for all xe X.

From this fact, we can infer that for those x such that ||x|<1

(x| <M.
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Hence, {x'(x)||x] < 1} is bounded.
Now, suppose that {x'(x)\ |x| <1} is bounded. That is, there exists a real
number M 20 such that |x'(x)| <M for all xe X such that |x|<1. Let x’ be an

arbitrary element of X such that |x/|# 0. Observe that =1 and thus it is

an element of {x"(x)||x|<1}. Hence,

x'(ﬁ) <M.
Since x" is linear,
pr () s M.
This implies
X ()< Ml
Therefore, by Definition 2.13, x” is bounded. Q.ED.

Now that we have the above fact at our disposal, the proof of the
following observation will be made easier.

THEOREM 2.21: Let X be a normed linear space and x:X -»Rbe a
linear functional. Then x* is continuous if and only if x* is bounded.

PROOF: Let X be a normed linear space and x":X —R be a linear
functional. First, suppose that x* is continuous. Then specifically, x” is

continuous at 0. Let e=1. Then there exists a é >0 such that for all xe X

such that x| < then

x'(x)|<1. Let xe X such that |x|<1. Observe
x'(x)l = |x'(§ : 5x)\.

Since x° is linear,

v (4-8) =g (5v)

By the properties of absolute value,
l-}s- -x" (5x)~ = ﬂx'(&c)l.

Now, since |x]|<1 we know that |6x|< &. Consequently, [x*(6x) <1 which

implies

%‘x'(&c)‘ <.
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Thus, substitution yields
|x‘(x)| <+ for all such xe X.
Hence, {x‘(x)HleS 1} is bounded. Therefore, x* is bounded.
Now, suppose that x" is bounded. Then we know that {x‘ x)| |l < 1} is
bounded. That is, there exists a real number M >0 such that |x 4< M for all
x € X such that |x|<1. Let £>0 and § =&. Now, for all xe X such that |x|< &

we have

( |<M Thus

Therefore, for all £>0 thereisa § >0 such that if xe X such that ||x|<é then

Since ||x|| <&, we have ”—"1x||<1 and so

£lx
M| %

]x‘(x)’ <e¢. Thatis, x* is continuous at 0. Therefore, x* is continuous by

Theorem 2.19 since X is a normed linear space. Q.ED.

Dual Spaces

The next step in our reflection on the spaces c,, ¢,,and ¢_ will be the
consideration of dual spaces.

DEFINITION 2.22: Let X be a vector space. Then the dual of X,
denoted X°, is the space of all bounded linear functionals on X.

Since we have recently completed a discussion on the norm of a
function and are now considering a space of functionals, let us begin by
recognizing a connection between the two.

THEOREM 2.23: The function |-|: X" - R defined in Definition 2.12 is a
norm on X'.

PROOF: Let Le X*. Then by definition of dual space, L is a bounded

linear functional. That is, |L|| exists. From Lemma 2.17, we have

|Z|| = supyyq, [L(x)]. Since |L(x)|20 for all x € X, supy,,|L(x)|20 as well. Hence,



17

[L[>0 forall Le X".

Now, let Le X" such that |L|=0. By definition of norm of L,
IL(x)| < ||L]|||x| for all xe X. Substitution yields |L(x)|<0 for all xe X. Since
|L(x)| is a nonnegative value, L(x) must be zero for all xe X. Hence, L is the
zero functional. Next, let 0=Le X’. To determine ||L| we consider the
previously proven fact IL|= SUPy |L(x)|. Since L(x)=0 for all xe X, we can
conclude |L|=0. Thus, |L|=0 if and only if L=0.

Let r be a real number. Then, by Lemma 2.17, we have

I7Ll|=sup [(rL)Cx)].

But, by definition of rL, (rL)(x)=r(L(x)) and so
sup|(rL)(x)] = sup r(L(x))].

Now, by the properties of absolute values,

sup [r(L(x))| = sup |AIL(x).

Since r is a constant,
sup|r[L(x)]=|rlsup |L(x)]-

Hence, we have
risup|ZCol=IAIL).-
Therefore, L] =|r||Z].
Finally, let L,,L, € X". Then |L,| and |L,| both exist. Consider ||L, +L,.

By Lemma 2.17,
|2+ L] = sup (2 + L))

Then, by linearity of L, and L,,
sup (L + L)(x)| = sup L (x)+ Ly(x).-

Now, by the triangle inequality,
sup| L, () + L, ()] < sup (|1 ()| +| L, (0)])-

Next, by the triangle inequality,
sup (|, ()| +[L, () < supl 2y (0] + supl Ly (x)-
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Finally, by Lemma 2.17,

sup L (x)|+ sup L, (o) = |, + | ]
That is, |L, + L,| <|L|+||L,|. Therefore, || |:X" —R satisfies the requirements
for a norm. QED.

Before considering the first relationship among our spaces and their
duals, we will want to know the following fact. Although we are focusing on
the space ¢, in the next proof, it will be useful to consider the corresponding

fact for our other spaces as well.

oo

THEOREM 2.24: Let (a,)e¢,. Then (a,)=) ~ a,-e,, where e, is the
unit sequence in which the nth term is the only nonzero term, and it is 1.
PROOF: To show (4,)=) " a,-e, is equivalent to showing
lim 2221 a,-e,=(a,). Thus, it suffices to show that
(@)~ z:=1 %

Let (a,)e¢,. Then 2;1 la,|= S for some real number S. Now consider

(ak)—i a, e

k=]

=0.

lim

n—yes

lim

n—oo

=}i_l&“(al,a2,a3,...)—(al,az,...,an,O,O,...)”

=1im|(0,0....,a,,,4,,,....)|

n—yoo

=lim i |ak|

n—3e0
k=n+l

00 n
-t 3 a3l
k=1 k=i

=S—1imi la,|=5-5=0.
k=1

n—oo

oo

Therefore, (a,)=Y _ a,-e,. QED.

k=1
We now begin the task of determining any relationships among our
three spaces and their duals. The next theorem states ¢_=¢,". In other words,
for each bounded linear functional L:¢, — R (i.e., each element of ¢,") there
must be some element in ¢_ that could be considered the "same" as L and

each element of ¢_ must represent some bounded linear functional on ¢,.
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Perhaps, in the proof that follows, we will develop a better grasp of this idea.
THEOREM 2.25: The dual space of ¢, is /_.
PROQF: To prove that two spaces are equal we must show that each is
a subspace of the other. We shall begin by letting L ¢,". By definition,
L:¢, >R is a bounded linear functional. Let k, = L(e,) for i=1,2,3,.... Then
k. € R for all i. Consider the sequence (k,) with entries defined as above. Let

(a,)€¢,. Then, from Theorem 2.24, (¢,)= " a-¢,. So, by substitution we

have

L((a,)) = L[i al.e‘.].

i=1

Since L is bounded Theorem 2.21 applies and we may infer that L is
continuous. Next, we can take advantage of a theorem found in the Bartle
and Sherbert text. In summary, the theorem states: For any subset A of the
real numbers, f:A—R and ¢ element of A the statement that f is
continuous at c¢ is equivalent to the statement that if (x,) is a sequence of
elements of A that converges to ¢, then ( f(xn)) converges to f(c) (Bartle and
Sherbert 141-142). Although this theorem is stated for subsets of the reals, it
can be extended to apply to sequences of real numbers as well. Consider the
sequence (s,) defined by s, =z:=1 a; ¢, for all n. Note that (s,) = (a,). Then,
making use of the above mentioned theorem, we have

L((an )) =lim,,_ L((s,1 )) =lim, L(Z;l a- e,.) .

Since L is linear, we arrive at

L((a,))=1lim,_,_ z L(a,-e).
i=1

That is,

L[i a; -ei]= S L(a;-e).
i=1

i=]

Now, since L is linear,
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i L(a,-e)= i a;,-L(e,).
i=]

By definition of %,
2 a; 'L(ei)z Z a(k
i=1 i=1

Therefore, (k,) is the sequence associated with the linear functional L. Since

K

)| S M for all n. Substitution yields |k,|< M for all n. Therefore,

(a,)el,, where M is a real number. In

particular,

(k,) is bounded and thus an element of ¢_. Hence, every Le ¢’ can be

associated with a sequence (k,)e /. Therefore, ¢ c¢..

oo

Now, let (k,)e .. DefineL:¢, 5Rby L((a,))= ), _ ka,. Note that L is
By the definition of L,

L) =3 ak,

By the triangle inequality and properties of absolute values,

> ak

n=l

linear. Consider IL((an)).

Since (k,) e £, there exists a real number M such that |k,|<M for each n.

Therefore,

n=1

since (a,)€?,. Thus, we arrive at

Now, z; a

Hence, L is bounded, by Definition 2.13, and thus an element of ¢,".
Therefore, every element of /_ can be associated with a bounded linear
functional of ¢,". Thatis, ¢/_c¢. Q.E.D.

We will now proceed to explore the relationship between ¢, and its

dual space.

THEOREM 2.26: The dual space of ¢, is ¢,.
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PROOF: Let (k,)e¢,. Define fic, 5Rby f((a,))=) _ ka,. Note that f

is linear. Consider |f((a,))| for all (a,)ec,. By definition of f, we can infer

(@) =[, ke,

By the triangle inequality,

o

Z kn an

n=1

k.a|.

<y
n=1

Since (a,)€c,, there exists a real number M >0 such that | =M.

(a,)

=sup,

an

Therefore,

kﬂ a’l

k’l

S loal< S

n=1 n=1

Observe that, by the property of distribution,
WIARDY

k’l

k’l

Now, note that since (k,)e?,, D" [k, exists. Callit N. Then we have
F((an)f< Ma,).

Therefore, by Definition 2.13, f is bounded. Hence, ¢, is a subset of c¢,".

Now, let Lec,". Let k, =L(e,). Then, as demonstrated in the proof of

Theorem 2.25, it suffices to show that (k,)e¢,. Thus, we must consider

P

k,>20 and b, =—1if k, <0; for n>j, b,=0. Then for any natural number j,

L(5))= L[z bnenj.

. Fix j. Let (b,) be the sequence defined as follows: for n<j, b, =1if

By the linearity of L,
J

L[Z bne"J = i{ L{be,)=Y bLe,)

n=1

From the definition of %,'s, we have

S bL(e)= bk
n=] n=1
and from the definition of (b,),

ILLES
n=| =]

n

k,
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That is, L( ) 21 \k l for all j. Since L is bounded Definition 2.13 tells us

that there exists a real number M such that |L

that |( || b, ||=1 for all j and so we have ‘L b )‘S M for all j. Finally, by a

property of absolute values, L ‘L ‘ and transitivity yields

2.

Therefore, ¢," is a subset of ¢,. Q.E.D.

k<M forall j. Thus, 2,,=1|kn‘ exists and (k,) is an element of ¢,.

Now that we have discovered some relationships among our spaces
and their dual spaces, we will discuss linear functionals on dual spaces. Note
that such a linear functional would take a bounded linear functional (from
the dual space) to a real valued constant.

EXAMPLE 2.27: Let X be a normed linear space and x€ X. Define
n(x):X"— Rby n(x)(x') =x"(x) for all x* € X". To check the linearity of n(x),
we will consider n(x)(x' +ry‘) where x',y" € X" and re R. From the
definition of n(x) we have

n(x)(x" + ") =(x"+ry")(x).
Notice that x* +ry" is a sum of two functionals. Thus,

(x' + ry')(x) =x"(x)+ry'(x).
Since ry" is a scalar multiple of a functional,

x"(0)+ry"(x) = 27 (x) +r(y (x).
Again using the definition of 7(x),
x*(0)+ r(y"(x)) = n(x)(x") + r(x)(y")-
Therefore, n(x) is linear.
To determine |7(x)|, we use the previously stated definitions and facts.

If we begin by considering Lemma 2.17, then we have

In(x)] = "su"p|n )(x*)-

From the definition of 7(x),

sup
ﬂx "Sl

n(x)(x‘)‘ = sup x‘(x)|.

<[t
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Since x' e X", it is a bounded linear functional. Then by Definition 2.13,

‘x'(x)|£ x'[l-|x| for all x" e X". Therefore,

*

X

sup |x‘(x)‘ < sup
= <[

x| <]
and we have |n(x)|<[x|. The reverse inequality can also be shown, as in
previous examples, so that |[n(x)]|=|x].

Then, since n(x) is a bounded linear functional on X*, n(x)e X**. We
can then consider 7:X — X" and whether it is a linear mapping. Let w,uecX,
ce Rand x" € X*. Then to determine if 7 is linear we must consider
n(w+cu)(x"). By the definition of n(x),

nw+cu)(x")=x"(w+cu).
Now, since x° is linear,
x(wtcuw)=x"(w)+cex (u).
Again using the definition of 7n(x), we have
x"(w)+ex’ () = n(w)(x") + en(u)(x").
Finally, since 7n(x) and c7n(x) are both functionals on the same space,
nw)(x") +en@)(x") = (n(w) +cn()(x").

Therefore, 1 is a linear mapping.



24

CHAPTER 3
BANACH SPACES

The purpose of this chapter is to introduce the idea of Banach spaces
and to propose and prove that each of the spaces c,, ¢,, and ¢_ are indeed
Banach spaces. To begin, we must first define a Banach space.

DEFINITION 3.1: A Banach space is a complete normed linear space.

A normed linear space is simply a vector space on which a norm has
been defined. The concept of a vector space was covered extensively in
Chapter 1 where it was proven that ¢, ¢,, and /_ are all vector spaces. In
Chapter 1, we also discussed norms and defined a norm on each of the spaces

¢y, ¢, and ¢_. Therefore, the only thing left to discuss before we further

develop the idea of Banach spaces is the concept of complete spaces.

Complete Spaces

We begin our discussion with a definition.

DEFINITION 3.2: A space X is complete if every Cauchy sequence
converges to a limit in X.

To develop the concept of a complete space it will then be crucial to
know the definition of a Cauchy sequence.

DEFINITION 3.3: A sequence (x,) in a normed linear space is Cauchy if

|<e.

for each £>0, there is some Ne N such that for all n,m=N, |x, - x,,|

Let us examine some Cauchy sequences in our three spaces.
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EXAMPLE 3.4: Let(x,) be the sequence in the space ¢, such that
% =(1,0,0,0,...) "
x2:(1,—£,0,0,...)
X =(1,%,%,0,0,...)

Let £>0. We wish to consider |x, - x,|. There exists a natural number &

such that - <e&. Without loss of generality suppose that n>m. Then for all

natural numbers n,m>N we have
x, =%, =(0,0,...3.....5,0,0,..)|.

Since x,,x, €c, we know that x, —x, € ¢, also, and thus

—x =L
x, = x.|=5%-

Now, because m >N we have 2" 22" which implies 5% <J-<g. Therefore,
(x,) is a Cauchy sequence.

EXAMPLE 3.5: Since ¢, is a subset of ¢_ with the same norm, the
sequence (x,) from Example 3.4 is also a Cauchy sequence in 2.

Keeping the preceeding example in mind, we can make an observation
regarding the completeness of a certain subspace of ¢,.

PROPOSITION 3.6: Let S be the subspace of ¢, consisting of sequences
that are finitely nonzero. Then § is not complete.

PROOF: To show that S is not complete, it suffices to find a Cauchy
sequence in S that does not converge to a limit in §. Consider the sequence
(x,) from Example 3.4. As shown in Example 3.4, this sequence is Cauchy.

However, (x,) converges in ¢, to the sequence (1,%,%,...,55,...) which is not

in S. Therefore, S is not complete. Q.ED.
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It may be difficult to show that every Cauchy sequence in a space
converges to a limit in that same space. Therefore, we shall consider the
following theorem which will facilitate proving completeness. The following
theorem as well as the majority of the proof can be found in Royden's text
(124-125).

THEOREM 3.7: A normed linear space X is complete if and only if
every absolutely summable series is summable.

PROOF: Let X be a complete normed linear space. Let ZL x, be an

absolutely summable series of elements of X. By definition of absolutely

summable, > " =M,

n=1

X

n

=M < where M€ R. Now, since lim__,_ 2:-1

x"l

we have for any €>0 there exists an N, € N such that for all N-12N_,
'M - 2:11 < ¢e. Hence, Z

Let s = 2; x, be the nth partial sum of the series z; x

oo

X, X |<E.

n=N

Then, for

.
n2m=2N,

n
A

i=m+1

5, =5, ||=|\i 5-3 x,
i=] i=!
By the triangle inequality, we have

n
PI

i=m+]

n
< 2 ||xi

i=m+1

Now, by addition of infinitely many nonnegative terms,

S < 3 [

i=m+l i=m+1

(where equality is achieved only if )~ |x]=0). Next, by addition of

m+1-N nonnegative terms we arrive at

oa oo

2 el < Z o

i=m+1 i=N

(in which case equality will occur only if 3 " |x=0). Finally, from above, we

have

gux,nq.
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Therefore,

|<&. Thus, the sequence (s,) of partial sums is a Cauchy

m ’

s, =S
sequence by definition. Since X is complete, (s,) converges to an element s
of X. That is, z;xn is summable.

Now, let X be a normed linear space such that every absolutely
summable series of elements of X is summable. Let (x,) be a Cauchy

sequence in X. For all £>0, in particular for € =27 where ke Z, there is

some integer N, such that for all n,m2N,,

|<e=27*. Now, we may

m'

X, — X
choose n,'s such that n,,, >n,, n,2N,, and n,,, 2N,,,. In doing so, we can then

consider the sequence (x,l‘) which is a subsequence of (x,). Now, let us define

the sequence (y,) such that y =x, and y, =x, —x, for k>1. Since

n>n_2N,_,6 we have || i ”=|

S d=Inl+ Sl <hn 3 2 =[] +1
k=1 k=2 k=2

(as 2; 27" =1). So then, by definition, (y,) is absolutely summable. Now,

x —x (<2 for k>1. Thus,
ny WS

we have that (y,) is summable; that is, the sequence of partial sums of the
series » 'y, (the sequence (x,, ) ) converges to an element x of X.
n=l 3
Now, all that is left to show is that (x,) converges to an element of X.

Since (x,) is a Cauchy sequence, given ¢ >0 there exists a natural number N

such that for all n,m2N,

x,=x,|<%. Since (xnk) coverges to x, there is a

natural number K such that forall k> X,

X, - x” <£. Now, let k be such that

k>K and k2 N. Then

e

+5=c¢.

||xk—-x”Ska—xnk ||+‘ X, —x“S

Hence, (x,) converges to x€ X. Therefore, X is complete. Q.ED.

Banach Spaces

We have already defined a Banach space as a complete normed linear

space and discussed the characteristics that make a set a Banach space. Now
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we are ready to further develop the study of the spaces ¢, ¢,, and ¢_ by
considering them as Banach spaces.

Before proving c¢,, ¢, and ¢_ are Banach spaces, we consider some of
the ideas we will encounter in those proofs. To begin, let us contemplate
what might be involved in showing that any of our three spaces is complete.
We have already revealed two ways to prove that a space is complete. The
first would be to prove that every Cauchy sequence in the space converges to a
limit in that space. The second way would be to show that every absolutely
summable series in the space is summable. Let us concentrate on this second
method. A series in any of our three spaces would necessarily be a series of
sequences. Hence, absolute summability would then rely on norms instead of
entirely on absolute values. Also, to show that such a series was summable,
you would need to show that it converges to a sequence in the space. In any

of our three spaces an absolutely summable series would be a series such as:

o0

n\” _ 11 1 1
E (xk)k=]— (xl,xz,x3,...,xn,...)
n=1
2 .2 .2 2
+(x1,x2,x3,...,x )

n?

3 3 3 3
+(x1,x2,x3,...,x )

n’
n n n n
+(x, x5, x5, %0, )

no

=M for some real number M. As mentioned above, the

xl‘l

where Z; |

dilemma of showing such a series is summable lies in showing that it

converges to an element of the space. For example, in ¢ the task would be to

demonstrate that

:
g
@]
£
Q.
[¢]
3
3
.
=
Q
z
jas
aQ
~
=
=
¢
Y
¢
ch
¢
=
o

..,Zn_l x,’:,...) is first
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of all a sequence of real numbers and secondly that it is a bounded sequence.
A similar argument would have to be followed when considering each of the
other spaces. Keeping this in mind, we will proceed in the task of showing ¢_
is a Banach space.

THEOREM 3.8: The space /_ is a Banach space.

PROOF: It has already been shown that ¢_ is a normed linear space.
Thus, to show that ¢_ is a Banach space, it suffices to show that ¢_ is
complete. To do this, we take advantage of the previous theorem and show
that every absolutely summable series in ¢_ is also summable.

Let 2; x", where x" = (x,:');, be an absolutely summable series in ¢_.

Then, by definition of absolutely summable,

>

n=]

x"f=M <o for some Me R.

Now, examine the series Z; x" as it is a sequence with a kth term of
Z; x; . For this sequence to be an element of /_ it must be a sequence of real

numbers and be bounded. We must first show that ’Z; x;|<ee for all

natural numbers k. Note that by the triangle inequality the following
relationship holds for all &:

n
Xy

S x<¥
n=| n=1
S]supi x,."l for each k. And so we have
PIEAEDIET
n=1 n=l
Since each x" €/_, we know that
> sup
n=l :
Finally, as previously stated, we have
n=]|

<M forall k. Thus, D" x" is a sequence of real

Observe that

n
X

for all k.

n
X

xl'l

=sup|x;|. Hence,
t

n
'xi

x’l

n
X

n

x"f=M.

iy n
Therefore, .anl x;
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numbers. Also, since the absolute value of each term of that sequence is

n

bounded by M, we may conclude that 2;1 x" 1s bounded and hence an

element of ¢_. Therefore, Zmlx" is summable. Consequently, ¢

. isa
Banach space. Q.E.D.
Next we shall consider the space ¢,. Recall from previous discussion

that our task will include showing that a sequence such as
(Z xl",z xé‘,z x;,...,z x:,...]
n=1{ n=1 n=| n=1
is a sequence of real numbers that is absolutely summable.
THEOREM 3.9: The space ¢, is a Banach space.

PROOF: As previously demonstrated, ¢, is a normed linear space.

Thus, to show that ¢, is a Banach space it is sufficient to show that ¢, is

complete. Let Z; x" be an absolutely summable series in ¢,, where

x" = (x: )k_]. Now, since Zm x" is a series in ¢,, it is a series of sequences and

thus a sequence itself. We shall call this sequence x. Note that the kth term

of x is 2::1 x; . For x to be an element of ¢,, x must be an absolutely

summable sequence of real numbers. First, to show that each term of x isa

<M, for each k, where each M, is a real

real number we must have )Z; Xp
number. By the triangle inequality,
PIEAEDY
n=1 n=1
Next, recall that the series Z; x" is absolutely summable. That is,

anl

Since x" €/, for all natural numbers n we have
SI1-3 (5]
n=1 n=1 \ k=l

Observe the following inequality does indeed hold

n=|

for all %.

n
Xi

x"|l=M <o for some real number M.

x'l

n
X

oo
n=]
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Hence, we arrive at the conclusion that

n
Z"k

n=l

<M for all k.

Therefore, x is a sequence of real numbers. Next, for x to be absolutely

* n
2,1:1 X

summable, we must have Z; be a real number. By the triangle

; x:}

inequality we have

n
Zxk

n=1

>

k=1

3
k=1
Using previous inequalities, we arrive at
PIIEA

n=1

k=1

<M.

n

Thus, x is an element of /4, and Z; x" is summable. Therefore, ¢, is a

Banach space. QED.

We may now turn our attention to the space ¢,. Our strategy this time

will be different. We must still show that any absolutely summable series

such as 2; (x,:‘ ):=1 in ¢, is also summable in ¢, but to do so we will take
advantage of the fact that ¢, is a subset of a known Banach space, namely ¢_,

and shares the same norm with that Banach space.
THEOREM 3.10: The space ¢, is a Banach space.
PROOF: As it is already known that ¢, is a normed linear space, the

task of showing it is a Banach space is reduced to showing that it is complete.

Let £>0. Let 2; x" be an absolutely summable sequence in ¢,. Then, since

n

¢, is a subset of ¢ and they have the same norm, 2::1 x" is also an absolutely

n

summable series in ¢_. Since ¢, is a Banach space, 2,,~; x" is summable in

¢_. That is, '2; x"

natural number N, such that forall k25,

=M for some real number M. Then there exists a

D3
n=1

k . .
x" ec, for all n, zn=l x" ec, for ke N. That is, there exists a natural number

k
n
Zn:l i

—M\<§. Fix k. Since

N, such that for all iz N,,

<£. Now let N=sup{N,,N,}. Then, for all
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. Note

n
2 X
n=]

i> N, consider ‘2 x!

n=1

ix,."+ ix,"

n=1 n=k+|

By the triangle inequality,

k o
Zx,f'+ Zx," <
n=|

n=k+|

k

S %

n=1

o0

n
A

a=k+1

+4-

Substitution yields

k oo k oo k k
in" + zx," SZx{‘+ Zx" < Zx[‘ +| M- Zx"
n=1 n=k+1 n=i n=k+l1 n=l1 n=1
Using previously stated relationships,
k k
E £
N x|+ M-Y 2|l<Z=+==e.
n=1 n=1 2 2

<¢ forall i>N. Therefore, lim,__ 2;1)“:‘" =0

In summary, we have ’zn=l x;
and 2:;1 x" €c,. We can thus conclude that every absolutely summable series

in ¢, is also summable in ¢,. Hence, ¢, is a Banach space. QED.

Additional Properties of Banach Spaces

At this time, we have verified that each of the spaces ¢,, ¢, and ¢_ are
Banach spaces. As a result, we are ready to extend our consideration of
Banach spaces. Our next topic will be extreme points.

DEFINITION 3.11: Let X be a subset of a Banach space. Then x is an
extreme point of X if whenever y,ze X and 4 €(0,1) with x=Ay+(1—-A4)z (ie.,
x is between y and z), x=y=2z.

Extreme points of a subset of a Banach space can be seen as those points
which are not between any other two points of that subset. Before we begin
investigating this issue in our three spaces, we will comment on extreme
points of spaces that may be more familiar. For instance, in R? let K be the
closed unit circle. Then every point on the circle itself is an extreme point of

K. Next, in R’ let K be the closed unit sphere. Then every point on the
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surface of the sphere is an extreme point. Note that each of these subsets
have contained elements with norms less than or equal to one. Following
this pattern, we will now examine subsets of ¢, and ¢_ for extreme points.
EXAMPLE 3.12: Consider the set K = {x € ¢||H < 1}. Let us assume that
K has extreme points. Let (a,)€c, be an extreme point of the set K. Now
consider (b,),(c,)€ K such that each differs from (a,) in only one term,

specifically the first term such that

a,|<1. If a, is that term, then b, and ¢,

should be chosen such that b, +¢, =24, and |p,

c,|<1. Note that

$(b,)+3(c,)=(a,). Therefore, by definition, (a,) is not an extreme point of the
set. As aresult, K= {x € | Jxf < 1} has no extreme points.

EXAMPLE 3.13: Consider the set K ={xe¢_|[x|<1}. Letus consider
extreme points for K. Note that the problem experienced above can be
avoided in a subset of 7. Let (a,)e K such that |a,|=1 for all i. Then for any
A €(0,1) and (b,).(c,)€ K the relationship A(b,)+(1-A4)(c,)=(a,) holds only
when (a,)=(b,)=(c,). Therefore, each element of the set

{(an) ek

infinitely many extreme points.

la,| =1 for all i} is an extreme point of K and K ={xef_||x|<1} has

Another issue that can be undertaken when discussing Banach spaces

is unconditionally convergent series.

DEFINITION 3.14: A series 2; x, in a Banach space is called

unconditionally convergent if any rearrangement of the order of the sum
results in a convergent series.

To understand what is meant by unconditionally convergent, we must
also define a rearrangement.

DEFINITION 3.15: A rearrangementof » " x, is )\~ x,,,, Where
¢:N —N is one-to-one and onto.

The following is a famous theorem connecting Banach spaces and
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unconditionally convergent sequences. It was proven by Dvoretsky and
Rogers in 1950.

THEOREM 3.16: (The Dvoretsky-Rogers Theorem) Every infinite
dimensional Banach space has a series which is unconditionally convergent
but not absolutely convergent (Dvoretsky and Rogers 192-196).

Since each of our spaces are infinite dimensional, the Dvoretsky-
Rogers Theorem applies to each of them. We will now entertain such a series
in ¢,.

EXAMPLE 3.17: Let Z; x, be the series in ¢, defined by

x =(1,0,0,0,0,...),
x,=(0,4,0,0,0,...),
x,=(0,0,4,0,0,...),
x, =(0,0,0,4,0,0,...),

()bserve that
z; o(n) 22939450 0
n=1

for any bijection ¢:N —N. However,

oo

D=3 =0

i=1 i=1

does not converge.
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CHAPTER 4
THE HAHN-BANACH THEOREM

The intent of this chapter will be to cover the remaining concepts
needed to discuss the Hahn-Banach theorem. Then, we shall state and prove

that theorem:.

Extensions of Linear Functionals

A concept that is essential to the Hahn-Banach theorem is the
extension of a linear functional.

DEFINITION 4.1: Let f be a function with a domain of S and X2 .
Then any function f with a domain of X is an extension of f to the set X if
f(x)= f(x) for all x€S.

Another way to state f(x)=f(x) for all xeS$ is to say that f restricted to
the set § is the same as f. This is denoted by f|;= f.

For our purposes, we will be concerned with extensions of linear
functionals that retain the same norm. That is, given a linear functional f
on S with a norm of N we want to find a linear extension of f to X, where
X o S, such that the norm of the gxtehsion is N also.

Consider the linear functional f:R°->R given by
5

f((al,a2,a3,a4,a5)) = 21.:‘ a.
We will discuss finding such extensions of f first to all of ¢, and then to all of
¢,. The topics from the section on dual spaces will be helpful in this
discussion.
EXAMPLE 4.2: Before we can begin finding an extension of f to all of
c,, we must first find a way to regard R°* as a subset of ¢,. To do this we

identify each element of R> with the sequence of ¢, in which the first five

terms are the same and the remaining terms are zero. That is, we
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identify (a,,a,,a,,a,,a5)€ R’ with (a,,4,,4,,4,,4,0,0,0,...)ec,. Therefore, R’ is
a subset of ¢,. Another thing that must be done is finding | f| so that we
know what norm to preserve. To find |f| in ¢, we will make use of

Definition 2.12. In which case, we have

5
Y a,|< M(sup{{a1 |a, | |as), a4|,|a5|}).
n=1
However, 2;1 a,|< 2; a,|, and so
5
z_} a, SS(sup{la, ,az,a3|,|a4,]a5|}).

Thus, ||f|<5. Consider the sequence (x,)=(1,1,1,1,1,0,0,0,0,...). Notice that

>,
n=1

inequality to hold. Recall that f’ ¢y =R must be linear and H f “ =5. That is,

x|} = I. Hence, | /| must be 5 for the above

x,|=5 while sup{|x1 Joeab el [l

5

n=l 7

fec,"=1,. Keeping this in mind, let f:c, >R be defined by f((x,))=.
for all (x,)ec,. Thatis, f=(1,1,1,1,1,0,0,0,...).

EXAMPLE 4.3: To find an extension of f to all of ¢, with the same
norm we must again begin by considering R’ as a subset of ¢, and
determining |f| this time in ¢,. We shall consider elements of R” as we did
in Example 4.2. Now, we can turn our attention to ||f||. By applying

Definition 2.12, we arrive at

i a,|< Mi ’an|.
n=1 n=|

It is clear that equality can be achieved when all the a,'s are positive. Hence,

|fl=1. Now, we can find an extension of f to all of ¢,. This time, note that
fet =¢_. Let f:¢, 5Rbe f=(1,1,1,1,1,0,0,0...).

Now, to gain a better understanding of these extensions consider the
following questions. Is there only one such extension into all of ¢,? How
about into all of ¢,? Both of these answers depend on the original linear
functional and its norm. In the above example, there is no other extension of

f into all of ¢,; but, there are infinitely many more extensions of f into all of
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¢,. In fact, any sequence (x,) such that x, =1 for 1<n<5 and

x,|<1for n>5

represents an extension of f into all of ¢,. Observe that |(x,)|=1 and

(x,)et.=¢’ .

Let us continue by examining another more example.

EXAMPLE 4.4: Let S be the set of all finitely nonzero sequences. Let §
have the same norm as ¢,. Define f:S—Rby f((a,))= Z; a,, and note that
this is actually a finite sum. Find an extension of f to all of ¢, with the same

norm.

Let us begin by determining ||f|. By Definition 2.12,

f|l will be the
smallest M such that |f(s)|< M|s| for all s S. Let (a,) be an arbitrary element
of S. Without loss of generality, let 4;,4;,...,a; be the nonzero terms of (a,).

k

Then f£((a,)) becomes f((a,))= Zm a/. By the triangle inequality,

|f((an)) < 2; lal. However, Z; laf]=

f((a,))<1-|(a,)|- Then the question becomes one of determining if there is a
smaller M >0 such that |f((a,))|< M| (a,)

positive valued sequence. Then ’Z; ai" = Z; la]] in which case M must be 1.

a,|. So, we have the inequality

for all (a,)eS. Suppose (a,)is a

Thus, we may conclude that |f|=1.

Now, to find an extension of f to all of ¢,, we should recognize that

fet'=r¢_. Let f:¢, >R be given by f((an))=z a,. Then f=(1,11,..).

n=l "’
In this case, there is no other extension into all of ¢,. The nonzero
terms in the elements of S do not have to be in specific places. Since f =1,
f must allow for the nonzero terms to occur anywhere in the sequence hence

the reason for a sequence of all ones.

The Hahn-Banach Theorem
The last item that should be mentioned before delving into the Hahn-

Banach Theorem is an axiom equivalent to the Axiom of Choice.
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¢,. In fact, any sequence (x,) such that x, =1 for 1<n<5 and |x,|<1 for n>5
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oo
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In this case, there is no other extension into all of ¢,. The nonzero
terms in the elements of S do not have to be in specific places. Since f| =1,

f must allow for the nonzero terms to occur anywhere in the sequence hence

the reason for a sequence of all ones.

The Hahn-Banach Theorem
The last item that should be mentioned before delving into the Hahn-

Banach Theorem is an axiom equivalent to the Axiom of Choice.
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LEMMA 4.5: (Zorn's Lemma) If each chain in a partially ordered set
(X,<) has an upper bound in X, then X has a maximal element (Willard 10).

Now that some of the basic ideas behind the Hahn-Banach theorem
have been covered, we state and prove that theorem.

THEOREM 4.6: (The Hahn-Banach Theorem) Suppose X is a normed

linear space, S is a subspace of X, and f:§ =R is a linear functional with

norm 1. Then there is a linear functional f:X —R such that ﬂ = f and
M

-~

7]=1.

PROOF: Let x,e X\ S and u€S. Then, if we need ”f”:”f”,by
Definition 2.12, we need the following:
\f(xo +u)' < |, + 4| and lf(xo ~ u)i <x, = -
If we need f|s = f, then
£(% +u)= flx)+ f(w) and f(x,—u)= f(x,)~ F(w).

By substitution, we arrive at the following inequalities:

| (x0) + £)] < o + ] and [F(x,) = £ ()] <[5~ ].
Algebraic manipulation results in

Flx) < |xo +ul - f(u) and F(x,) = f(u)=|x, — 4.
Consider the sets {f(u)=|x, —uf|ue S} and {|x, +u|- f(u)|ue S}. Since |f|=1 we
can apply Definition 2.12 to attain |f(u)[<||u] for all € S. From properties of
absolute value inequalities, we have —|u| < f(»)<|u|. Concentrating on
f(uw) < |u| we arrive at f(u)—|ju| <0 and O <|u|— f(u). Therefore,
fQu)=|luf < ||l’)| - f(') for all u,u’ e S. We may then conclude that
F) =, —u| <|x, + |~ f(w) for all ueS. Therefore, {f(u)-|x,—ul[ueS} is
bounded above‘and by the Supremum Property of R has a supremum.
Likewise, {|x,+u|- f(u)|u &S} is bounded below and by the Infimum Property
of R has an infimum (Bartle and Sherbert 46). Since ||x, +u|— f(u) is an upper

bound of {f(u)~|x,—ulue S} for all ue S, then we know that
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sup{f(u)=|x, —u|ue S} <|x, +u| - f(u) forall ues.
That is, sup{ f(«)—|x, —u||ue S} is a lower bound for {lxo +u|- fw)|ues}.
Therefore,
sup{ f(u)—|x, - uf|u € S} < inf{|x, +u| - f(u)|ue S}.
Let o€ R such that sup{f(«) -|x, —u||ue S} < e <inf{|x, +u| - f(u)|ues}.
Define f:(S,x,) >Rby f'(s)=f(s) for all seS and f’(x,)=c. Then f’ isan
extension of f to (S,x,) such that ||f’|=|f|=1. Using this process, we can
continue to extend f one dimension at a time. However, at this rate we can
only extend f in a finite manner. We must do something else in order to

extend f to all of X.

Consider the set 4 ={(S,,,fn)

S, is a subspace of X such that S S,
f,:S, —> Rsuchthatf,|.= f and |f,|=1|

Define the following order on 4 For (S,,f,).(S,. /.)€ A let (S,,f.)<(S,. )
only if S, S, and fm‘S,,zfn‘ Let (S, f,)<(S,, f5) <...<(S,,f,) <... be an arbitrary

n=l%n

chainin 4 Let §’=u;_ S,. Notice S, c §’for all n. Define f:5"’ —>Rby
f’(x)=f,(x) for any n such that xe S,. Note that " is well-defined and that
f,‘s,= f, forall n. Therefore, (5',f")>(S,.f,) forall n and (S’,f’) is an upper

bound for the chain. Hence, by Zorn's lemma, 2 has a maximal element.

Assume that (M, f) is the maximal element, where M # X. Then, as proven

above, we may extend f one dimension to the space (M ,x'). This is a

contradiction, as (M, f) is maximal. Therefore (X, f) is the maximal element

of 4.. Q.E.D.
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CONCLUSION

Throughout this paper we examined the sets ¢,, ¢,, and ¢_,. We began
by considering their definitions and building our understanding of them
from there. The development of each set progressed from vector space to
dual space to Banach space.

The set of all absolutely summable sequences is ¢,. Each absolutely
summable sequence must converge to zero and so ¢, is a subset of the set of
all sequences that converge to zero, otherwise known as ¢,. Likewise, since
each sequence that converges to zero is bounded, ¢, is a subset of the set of all
bounded sequence, or £,,. Working in the opposite order, we were able to
prove that each set is a vector space. Using concepts and definitions
corresponding to those found in any study of finite vector spaces, we were
able to show that the analogous results hold in these spaces.

Since a Banach space is a complete normed linear space and normed
linear spaces were covered under the concepts of vector spaces, the
introduction of complete spaces allowed us to consider ¢,, ¢,,and ¢_ as
Banach spaces. Upon showing that each space was complete, we concluded
that ¢,, ¢,, and ¢_ are each Banach spaces. This knowledge opened up the
field of concepts to consider in relation to these three spaces. With the basic
understanding of the information presented in this paper, one can now move

on to topics such as Banach limits.



41
REFERENCES

Bartle, Robert G. and Donald R. Sherbert. Introduction to Real Analysis. 2nd
ed. New York: John Wiley & Sons, Inc., 1992.

Dvoretsky, A. and C. A. Rogers. "Absolute and Unconditional Convergence
in Normed Spaces.” Proc. Nat. Acad. Sci. 36 (1950) : 192-196.

Royden, H.L. Real Analysis. 3rd ed. New York: Macmillan Publishing
Company, 1988.

Willard, Stephen. General Topology. Reading: Addison-Wesley Publishing
Co., 1970.



I Stefanie D. McKinney  , hereby submit this thesis/report to Emporia
State University as partial fulfillment of the requirements for an advanced
degree. I agree that the Library of the University may make it available for
use in accordance with its regulations governing materials of this type. I
further agree that quoting, photocopying, or other reproduction of this
document is allowed for private study, scholarship (including teaching) and
research purposes of a nonprofit nature. No copying that involves potential
financial gain will be allowed without written permission of the author.

. i %//@é%

Slgt;(a e of Author

July 26,1995

Date

The Spaces ¢,, ¢,.and ¢_

Title of Thesis/Research Project

\Omm (WM /

Signature of Graduate Office Staff Memeber

(Rauggat  10,19057

Date Receivged





