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Suppose we are given a set of polynomials g, ,... , g, and we wish to know whether 

another polynomial can be expressed in the form g,h, +...+ gfzs for polynomials h" ... ,h,. 

This is often called the ideal membership problem. If R, ,... , g. are polynomials in one 

variable, then there is really no difficulty at all. If, however, the polynomials are in n 
variables, then the problem becomes much more difficult. 

Now suppose we have a system of polynomial equations and are looking for the 
solutions to It (x, ,... , x,) = ... = t(x, ,... , x,) = O. If all the equations are linear, we can use 

Gaussian elimination on the matrix of coefficients and backsubstitution. The problem 
arises when the polynomials are nonlinear. 

Both of these problems can be simplified by considering the theory of Grobner 
bases. The ideal membership problem can be solved for polynomials in n variables 
similar to the case of polynomials in one variable by using a general form of the division 
algorithm and a Grobner basis for the ideal. Also we can create a corresponding system 
of polynomial equations from any system of polynomial equations with a reduction of 
variables that will at least simplify the work of finding solutions to the original system. 
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Introduction 

Suppose we are given a set of polynomials g ,... , g and we wish to know 
J s 

whether another polynomial can be expressed in the form g h +...+ g h. This is often 
} } s s 

called the ideal membership problem. If g
) 
,..., g 

s 
are polynomials in one variable, 

then the problem can be easily solved. If, however, the polynomials are in n 

variables, then the problem becomes much more difficult. 

Now suppose we have a system of polynomial equations and are looking for 

the solutions to J: (x) ,..., x) = ... = f (x) ,..., x) = O. If all the equations are linear, we 
Ins n 

can use Gaussian elimination of the matrix of coefficients and back-substitution. The 

difficulty arises when the polynomials are nonlinear. 

Both of these problems can be simplified by considering the theory of 

Grabner bases. We will see that the ideal membership problem can be solved for 

polynomials in n variables in a manner similar to the case of polynomials in one 

variable by using a general form of the division algorithm and a different generating 

set for the ideal. Also we can create a corresponding system of polynomial equations 

from any system of polynomial equations with a reduction of variables that will at 

least simplify the work of finding solutions to the original system. 



Chapter I 
Definitions 

We will now define some of the needed algebraic and geometric concepts we 

will be using throughout the paper. Other definitions will come as needed. Let k be a 

field (For example, k might be the field of real numbers or of complex numbers). All 

definitions here and throughout the paper are taken from Ideals, varieties and 

algorithms (See [cD. 

Definition 1.1.1: A monomial in x/'"""x
n 

is a product of the form XI a'"",x
n 

Un 

where all exponents a/'""., an are non-negative integers. If we let a=( a 
l
, ... , a) be 

an n-tuple of exponents, then we can write X
I 
a" ... ,x

n 
Un as xa. 

A polynomialfin variables X , ... ,X is a finite linear combination with 
I n 

coefficients in k of monomials. Polynomials can be written in the form f = L a xa 
(l (l 

where a is the coefficient of the monomial x a and where the sum of n-tuples a is 
(l 

finite. If a is not zero then a xa is called a term off The set of all polynomials 
(l (l 

in x"""x n with coefficients in k is denoted k[xr.,xJ 

We will define an ordering of the monomials of the polynomials using 

lexicographic order. Let a=( a
l
, ••. , a) and 13=(13

1
, ••• ,13) be n-tuples of 

nonnegative integers. We say a>f3 if, in the vector difference a-f3 E Zn, the left­

most nonzero entry is positive. Also, xcx>xf3 if a>13. 

Letf= L a xabe a nonzero polynomial in k[x" ... ,x]. Then the degree off,
(l ex n 

written deg(f), is the max {al a*"O} with respect to this lexicographic ordering. 
ex 

The leading coefficient off, written Lew, is adeg(j) E k. The leading monomial of 

f, written LM(/), is xdeg(j). The leading term offthen is Le(j) . LM(f) and is written 

LT(/). 
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Definition 1.1.2: With the usual addition and multiplication of polynomials, 

k[x, ,... ,x]n is a commutative ring, usually called a polynomial ring. A subset Iof 

k[x,,...,x]n is called an ideal ifit satisfies: 

(i) 0 E 1. 

(ii) Ifj,g E I, thenf+g E I. 

(iii) Iff E I and g E k[x/'"".,xJ, thenfg E I. 

Definition 1.1.3: LetJ:" ...,j E k[x" ...,x]. Define 
S II 

<f1,...J>
S 

= {:L h.1
, I

Ih" ...,h
S 

E k[x" ...,x
II
n·
 

We will show later in Theorem 3.1.1 that <.I;, ...J',> is an ideal.
 

Definition 1.1.4: Given a field k and a positive integer n, we define the n­

dimensional affine space over k to be the set k' = {(a" ...,a) Iar.,a
n 

E k}. Now 

let r, ... ,!. be polynomials in k[x ,... ,x]. Then the affine variety defined by.l:, ...,!.J I J J n } s 

is the set Vif;, ...,j) = {(aJ"'.,a) E k' Jf(ar.,a)=O for aliI ~ i~ s }. 

Definition 1.1.5: We will now give the division algorithm to divide a 

polynomial fE k[x" ... ,xJ by a set of polynomials F={fJ"'.JJ C k[xJ"'.,xJ 

We will see that f can be written as f = q, It +...+ qsj; + r, where aj, r E 

k[x ,...,x], and either r = 0 or r is a k-linear combination of monomials, none 
, n 

of which is divisible by any of LT(j;),... ,LT(j,). 

The input will be a polynomialf and a set of polynomials F={f/'"".,fJ. 

The output will be the quotients after division q" ... ,q, and the remainder r. 
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Input: ;;, ... ,1; f
 
Output: qJ, ...,qs,r
 

q, := 0; ... ; qs := 0; r := 0
 
p:=j
 
WHILEp ~ 0 DO
 

i := 1
 
divisionoccurred := false
 

WHILE i 5 sAND divisionoccurred = false DO
 

IF LT(f;) divides LT(P) THEN 

qi := qi + LT(P)/LT(f) 
p := p - (LT(P)/LT(f)j 
divisionoccurred := true 

ELSE
 
i := i + 1
 

IF divisionoccurred = false THEN
 
r:=r+LT(p)
 
p:=p-LT(p)
 

Example 1.1.6: To see how this algorithm works in practice, consider dividing 

j= iy + 3.xy - 2 by the set of polynomials F={x
2 

+ 3, .xy - y} all from k[x,y]. It will 

look like this: 

q,: y
 
q2: 3
 

r .
 

it: x
2 

+ 3 Jx 2y+ 3xy- 2
 

fi: xy-y - x 2 y _3y
 
3xy - 3y - 2 

-3xy + 3y 
-2 -2 

So dividing polynomialjby polynomials); = x
2 + 3 and}; = xy - y, we get 

q, = y, q2 = 3 and a remainder r = -2. We stop at the -2 since neither the 

4 



LT(x
2

+3)= i nor the LT(xy - y) =.xy divided -2 and hence the term -2 becomes the 

remainder. So we can say f= qdl + q2fi + r =(YXi + 3) + (3)(xy - y) - 2. To see 

what happens if we change the order of the polynomials in F, we will divide fby 

F' = {xy - y, x 
2 + 3}. 

ql: x+4
 
q2: 0
 

r .
 

/J: xy-y }x2y+3xy-2
 
2 2

fi: x + 3 -xy+xy
 
4.xy - 2
 
4xy +4y
 

4y - 2 4y-2 

Since neither 4y nor -2 is divisible by either LT(xy - y) or LT(i + 3), both 

terms become the remainder r =4y - 2. Also, ql = x + 4 and q2 = 0 making 

f=(x + 4)(xy - y) + (O)(x
2 

+ 3) + 4y - 2. Notice the remainder in each division is 

different. 
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Chapter II 

Problems and Objectives 

Here we will be giving a little more insight into the ideal membership problem 

and solving systems of equations. We will discuss why these are problems and 

introduce some techniques for solving or simplifying these problems. 

1. Ideal Membership problem 

When working with polynomials in one variable, to check the membership of 

a polynomial/in an ideal I of k[x], one can simply use the division algorithm and 

look at the remainder. We can do this since any ideal in one variable can be 

expressed as an ideal generated by one polynomial (see [c], Corollary 4,pAO). So 

1= <g> for some polynomial g E k[x]. By definition, <g> = {hg Ih E k[x]}. So for/ 

to be in I, we would have to be able to write it as / = hg for some polynomial h E k[x] 

and the generator g of 1. In other words, lis in the ideal I if and only if/is divisible 

by g if and only if the remainder after division of/by g is zero. This works only 

because we are working in one variable making the remainder after division unique. 

Example 2.1.1: Consider the ideal generated by x + 1 E k[x], or <x + 1>. A 

polynomial will be in the ideal if it can be written in the fonn (x + 1)(h) for some 

polynomial h. So it is easy to show that x
2 

- 1 is in the ideal since 

x 
2 

_ 1 = (x + 1)(x - 1) + 0 but 2x
2 

+ 4 is not since 2x
2 

+ 4 = (x + 1)(2x - 2) + 6. 

Using the division algorithm, dividing x
2 

- 1 by x + I yielded a zero remainder 

whereas dividing 2x
2 + 4 by x + 1 yielded 6 as the remainder. Again this was 

made simple by the fact that the ideal was generated by one polynomial. 
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Example 2.1.2: Suppose we are working with polynomials in two variables and are 

considering the ideal generated by x' + y' - 1 and xy - 1, or <x' + y' -1,~ - 1). We 

would like to know if the polynomial x' -x' +1 is a member of the ideal. This will 

be true if we can write x' -x' +1 as (x' + y' -1)hl + (~-I)h2 for some polynomials 

hI and h2 in k[x,y]. So to see if x' -x' +1 is a member of the ideal, we must find hI 

and h2 in k[x,y] using the division algorithm. So we will divide x'-x'+1 by x'+y'-1 

and xy - 1 in this order. 

2 ,

ql: x - y
 

q2: 0
 

r , , 
2 x + y -1 )x4 

- x + 1 
4 2 2 2 

~ -1 -x - xy + x 

-x'y' + 1 
2 2 4 2 

xy+y-y 

, , , 2 

y - y + 1 Y - Y + 1 

It may seem that x
4 

- i +1 is not in the ideal <x2 + y' -l,~ - 1) since the 

remainder is y' - y' + 1 in the decomposition 

x' -x' +1 = (x' + y' -1)(x' - y') +(O)(~-I) + y' - y' + 1 

and not zero. Yet we can write 

x' -x' +1 = (x' + y' -1)(x') +(-~-1)(~-1) 

which has a zero remainder. To see this, switch the order of the divisors in the 

division algorithm. 
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ql: 
ql: 

-xy-1 
2 

X 

xy - 1 
2 2 

X + Y -1 

JX 4 
- x 

2 + 1 
'" 2 2 2 

-X - xy + X 

r 

_ X
2 

y 2 + 1 
2 2 

xy - xy 

-xy + 1 
xy - 1 

o o 

4 2 2
This shows that x _x +1 = (x + y2 -l)hl + (xy-1)h2 for some hi and hl in k[xJlJ 

and hence is in the ideal <x2 + / -l,xy - 1>. This example shows what problems 

can arise when attempting to check ideal membership of a polynomial. 

Ifwe are working in k[xr.,xJ with an ideal such as ~, ...,J;>, you might have 

to change the order of the generating set to check all possibilities of the remainder 

after division. Of course there are s! different orderings of if;, ,J;} to check and one 

may still not find out for sure whether a polynomialjis in ~, ,f? 

2
Example 2.1.3: Consider the ideal <x y - z, xy -1> in k[ XJl,z]. The polynomial yz -1 

2 2
can be written as (x y - z)(-y) + (xy -l)(xy + 1) and is in the ideal <x y - z, xy -1 >. 

Yet the division algorithm will give nonzero remainders after division on both 

orderings of the generators. This is because neither of the leading terms LT(x
2

y-z) 

nor LT(xy-1) divide LT~-l) In fact, we would get }2-1 as the remainder. 

Fortunately these ideals have more than one generating set of polynomial or 

basis. A nice property that a basis might have is a unique remainder after division of 
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a polynomial by any ordering of the basis polynomials. Then we could say that a 

polynomial is in the ideal if and only if the remainder on division by the basis 

polynomials is zero. This is precisely the direction we will be heading. We will find 

a basis of an ideal called a Grabner basis that has the equivalent of this special 

property. 
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2. Solving Systems of Equations 

We will be concerned with systems of equations with finitely many solutions. 

The problem of solving a system of equations when each equation is linear can be 

solved by considering the row-reduced form of the matrix of coefficients of the 

system and using back-substitution. The problem becomes more difficult when the 

equations are nonlinear, however. Our method of attack for this problem will be to 

reduce the number of variables by using a different system of equations that will have 

the same solutions. 

Example 2.2.1: For example, consider the system 

2x
2 +3/ - 11 = 0 
2 x _ / _ 3 = 0 

We will show later that this system corresponds to another system with the 

same solution set, namely the system 

x2 
_ 4 = 0
 

y2 _ 1 = 0
 

that has the solutions x= 2, -2, y= 1, -1.
 

To accomplish this goal, we will consider the variety determined by the 

equations of the system. In other words, if our system of equations is 

j;(Xl, ... ,Xn) = 0 

!s(Xl, ... ,xn) = 0 

then the variety, V(j;, ...,j;) = {(aJ, ...,a) E /c1lf;(xl, ... ,xn) = 0 for all 1 :s; i:S;s}, is simply 

the set of points III /c1 that satisfy the system of equations. If we also consider 

<.1;, ... ,1,>, we will see that if (aJ"".,a) is a solution tof;(xl, ... ,xn) = 0 for all 1:S; i:S;s, then 

it is a solution to g(XI, ... ,xn) = 0 for any polynomial gin <.1;, ... ,1,>. The crucial 
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observation is that since the ideal ~, ... J;> has more than one basis, the solutions to 

the system of equations will be solutions to more than one corresponding system of 

equations. The trick is finding a system of equations with the same solution set but a 

reduction in variables. We will see later that a special kind of basis of the ideal called 

a Grabner basis corresponding to the system of equations will be the most helpful. 
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Chapter III 
Development of Grobner Bases 

In order to fully solve the problems of ideal membership and solving systems 

of equations, we need to find a basis for an ideal with the desirable properties of 

producing a unique remainder and finding a corresponding system to a given system 

of equations with a reduction in the number of variables. Both problems can be 

simplified by the main ideas that every ideal in k[xJ'"".,xJ has a finite basis and that 

there is a particular kind of basis that is the most helpful called a Grabner basis. We 

will see that this kind of basis will have the properties we want. To do this, we will 

need to observe the correspondence between ideals, varieties and our particular goals. 
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1.	 Correspondence Between Ideals and Varieties 

Using our definitions, we can make many observations about <.I;, ...,.r;>, 

VU;, .. .,1) and how they relate to each other to help us get to the main goal of finding a 

basis of an ideal with the desired properties. Our first observation is this: 

Theorem 3.1.1: If/'I'''''! E k[x ,... ,x], then <r, ... ,r'> is an ideal of k[x ,...,x].sIn 'JJ '.! 5'	 I n 

proof: (i) 0 E <.I;, ...,/.> since 0 = L 0 .f; 

(ii)	 Letf,g E <.I;, ... ,.r;>. ThenJ= Lp;f;forsomep; E k[xJ"'.,xJ andg= Lq;f; 

for some qi E k[xJ""'xJ. ThenJ+g= L(P, + q;)pwhich shows 

j +g E <.1;, ...,/.>. 
(iii) Let h E k[xJ""'xJ. hf= L(hpi)P which shows hf E <.I;, ...,f;>. 
By definition of an ideal, satisfying these three conditions completes the 

proof. 

We will call <.I;, ...,/.> the ideal generated by ;;, ...,.!i and call;;, ...,/. a basis for 

<j" ...,!>. We mentioned before that a given ideal may have many different bases. 
1	 s 

Example 3.1.2: Consider <x,y> and <x + y, x - y>. These are the same ideal with 

different bases. To see this, first notice that a polynomial j in <x,y> must have the 

formj= xh l + yh2 for some hI,h2 E k[xJl] that can be written in the form 

j= (x + y)((h l + h2)/2) + (x - y)((h l - h2)/2) 

which showsj E <x + y, x - y>. Conversely, if g E <x + y, x - y>, it has the form 

g = (x + y)h l + (x - y)h2 that can be written as g = x(h 1 + h2) + y(h 1 - h2) which 

shows g E <x,y>. So any polynomIaljin <x,y> is also in <x +y, x - y> and any 

polynomial g in <x + y, x - y> is also in <X,y>. Then <x,y> = <x + y, x - y>. 

We can use this next helpful fact to show when two ideals are equal. 
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Lemma 3.1.3: LetI C k{xJ'"'.,xJ be an ideal and!;, ... ,!; E k{x" ...,xJ Then!;, ... ,.I; E / 

if and only if <1;, ...,!;> C /. 

proof: First, let!;, ... ,!; E 1. Choose a polynomial gin <1;, ...,!;> where 

g = j; h, + ...+ Is h, 
for some h" ,hs E k{xj, ...,xJ By definition, since / is an ideal then forf; E / 

and h, E k{x" ,xJ, j; hi E 1. Similarly, the sum g = j; h, + ...+ Is h, is in /. 

This shows <1;, ... ,.1;> ~ 1. 

Nowlet~~, ...,!;> c/. Wecanwritej;= O!;+ ...+ /j;+ ...+ O!;which 

shows!;, ... ,!; is in <1;, ... ,.1;>. But <1;, ... ,.1;> C / making!;, ...,!; E /. 

So to show two ideals, say <1;, ...,!;> and <gj, ... ,g? are equal, we only need to 

show r, ...,! E <gj, ...,g > and g ,...,g E <j" ...,j>. It is this property of the same ideal J J s I I I J s 

having more than one basis that will allow us to change the generating set without 

changing the ideal. When dealing with a system of polynomial equations, we can 

also change the polynomials of the system without changing the solutions. For this 

we will next consider the affine variety defined by a set of polynomials 

!;, ... ,.I; E k{xj, ...,xJ 

For a system of equations, say 

f,(XI, ... ,Xn) = 0 

fsCX" ... ,xn) = 0 

we can think of the solutions to this system as the variety VU;, ...,J;). This is because 

VU;, ... ,J;) = {(a" ...,a) E /(llf;(aj, ... ,a) = 0 for all 1 S;; is;;s } that is the set of points in 

/(l where the polynomials!;, ... ,.I: vanish. So the variety ofa set of polynomials is 

really the set of solutions to the system of polynomial equations. 

We wIll see next how the variety VU;, ...,J;) is related to the ideal <1;, ... ,.1:>. 
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Lemma 3.1.4: Let~, ... ,1. be polynomials ink[x/, ...,xJ and (a/, ... ,a) E k!' be a point 

in Vc.J;, ...,J). If g E <[" ...,!:>, then g(aJ"'.,a) = O. 

proof: Let g E <[" ...,!:>. By definition, we can write g = j; h, +...+ Is hs for some 

h" ... ,hs E k[x/, ...,xJ Then 

g(a/, ... ,a ) = p(a" ...,a) h/(a" ... ,a ) +...+ !.(a/, ... ,a) hsCa ,...,a)
n II n n J n 

=0 hli +...+0 hSi
 

=0.
 

This lemma shows that when dealing with a system of equations, we can 

consider the ideal generated by the polynomials of the system and see that any 

polynomial in the ideal generated by the system will vanish at any point in the variety 

determined by the system. We will make another important observation in the next 

theorem. 

Theorem 3.1.5: IfJ;, ...J andgJ"'.,g, are bases of the same ideal in k[x/, ... ,xJ so that 

<[" ...,!:> = <gr·,g,>, then Vif;, ...,f.) = V(g" ...,g) 

proof: Let <[" ...,1.> = <g" ... ,g,>. Choose (a" ,a) E Vc.J;, ...,I.). Then 

};(a" ...,a) = = /s(a" ...,a) = 0 

by definition of variety. Since <[" ... J> = <gJ"'.,g,>, using Lemma 3.1.3, we 

know gi E <[" ...,1.>. By Lemma 3.1.4, g,(a/, ...,a) = O. Then 

(a/, ... ,a) E V(g/, ...,g,) and so Vc.J;, ...,f.) C V(g/, ...,g,). Similarly, we can show 

V(g" ...,g,) C Vc.J;, ...,I.). This proves Vc.J;, ...,f.) = V(g" ...,g) 

Example 3.1.6: To show Vex + xy,y + xy, x' ,y') = V(XJl) in k[x,Y], we can now use 

Theorem 3.1.5 and simply show <x+ xy,y+ xy,x',y'> = <x,y>. Of course to 

prove this we can invoke lemma 3.1.3 and just show x,y E <x + xy, y + xy, x', y'> 

andx+xy,y+xy,x',y' E <x,y>. Since we can write 

x = (x + xy)(1- y) + (y + xy )(0) + (x')(O) + (y'Xx) 

and 

15 



Y = (x + xy)(0) + (y + xy)(1- x) + (X
2

XY) + (/)(0), 

then x,y E <X+ xy,y+ xy,x"/>. Similarly, we can write each of x+ xy,y+ xy,
 

x
2 

, / in the form (x)(h,) + (yXh2) for some h"h2 E k[x,y] to show x + xy, Y + xy, x"
 

y2 E <XJl>. Thus, <x + xy, Y + xy, x" /> = <x,y> by Lemma 3.1.3. Then by
 

Theorem 3.1.5, Vex + xy,y + xy, x,,/) = V(x,y).
 

We could have looked at this problem as finding the solutions to these
 

systems of equations,
 

x+xy=o x=o
 
y+ xy = 0 and y=o
 
X 

2 
=0
 

Y
2

=0
 

where the solutions are clearly x = 0 and y = O. In other words, 

V(x+ xy,y+ xy,x
2
,/) = V(x,y) = {(O,O)}. 

Example 3.1.7: An example that is not so trivial is the system of equations in k[XJl] 

that we considered earlier, 

2

2x + 3/ - 11 = 0 
2 x _ / _ 3 = O. 

This can be thought of as the variety V(2x
2 + 3y2 - 11, x

2 
- / - 3). One can show 

using lemma 3.1.3 that <2x
2 + 3/ - 11, x

2 
- y2 - 3> = <x

2 
- 4, / -1> so that by 

theorem 3.1.5, V(2x
2 + 3/ - 11, x

2 
- y2 - 3) = V(x

2 
- 4, / - 1) which corresponds to 

the system, 

x 
2 
=4 

Y 
2 

= 1 

that has solutions x = 2, -2 and y = 1, -1 making these solutions to the original 

system of equations. 
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In these few examples, finding the solutions would not be that difficult. When 

working with n variables, however, the problem becomes more difficult. Our best 

alternative is to change the polynomials ofthe system to a new system of polynomials 

that may be easier to work with and with the same solution set. 
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2. Monomial Ideal and Ideal of Leading Terms 

To get to our goal of finding a basis of an ideal with the properties that 

division of a polynomial/by the basis polynomials will give a unique remainder r 

and that r = 0 is equivalent to ideal membership, we need to define some additional 

concepts. 

Definition 3.2.1: We define a monomial ideal to be an ideal I for which there is a 

subset A of Zn such that I consists of all polynomials that are finite sums of the 

form L fA h x
a

, where h E k[x1, ...,x] and we write 1= <.xa: a E A>. 
ct 0 a a n 

Definition 3.2.2: Let I be an ideal other than {O}. We denote LT(l) to be the set of 

leading terms of I so that LT(l) = {ex u. I there exists / E I with LT(f) = ex u. }. Then 

we can define <LT(l» to be the ideal generated by the leading terms of 1 

Example 3.2.3: An example of a monomial ideal is <x2
y,.x:/> in k[x,y]. One property 

of a monomial ideal we can observe right away is that a monomial/is in a 

monomial ideal only if/is divisible by one of the monomial generators of the 

monomial ideal. For example, the monomial/= x2
/ is in <x2

y,.xy'> since we can 

2
write i/ = (x y)(y) + (.x:/)(O) whereas the monomial g = .xy is not since it is 

divisible by neither x
2
y nor .xy' . This idea is stated in the next lemma. 

Lemma 3.2.4: Let I = <xu. : a E A> be a monomial ideal. Then a monomial x f3 lies in 

I if and only ifxf3 is divisible by xu. for some a E A. 

proof.	 Let xf3lie in I. Then xf3 = L hixa(i) for hi E k[x1, ...,xJ and a(i) E A. But since 

xf3 is a monomIal and all of xu. are monomials, L hxa(i) can only be one term of 
I 

the form xf3 = hxa(i). This shows xf3 is divisible by xu. for some a E A. If xf3 is 

divisible by xu. for some a E A, say xf3 = (xu.)(xl') for some xY, then clearly we 
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can write xfJ as a combination of the form xfJ = L hj;xafO for h E k[xJ'"'.,xJ and 

a(i) E A. 

Another observation we can make about a monomial ideal I is that if a 

polynomial/is inl then every term of/must lie in I and that/must be a combination 

of the monomials in I. This idea is given by the next lemma. 

Lemma 3.2.5: Let! be a monomial ideal and let/ E k[xJ'"'.,xJ Then the following 

are equivalent: 

(i) jE I. 

(ii) Every term of/ lies in 1. 

(iii) lis a k-linear combination of the monomials in 1. 

proof: Let I = (xCI: a E A> be a monomial ideal. If/is a k-linear combination of the 

monomials in I, we can write/= L c;xafO for c; E k and a(i) E A. Then each 

term off, c;xafO , is in I by lemma 3.2.4. Then clearly lis in I since we can 

write it as a combination of the monomial generators in I. This shows that 

(iii) implies (ii) which implies (i).	 We are left to show (i) implies (iii). 

Let/be a polynomial in I. Then it has the form/= L h;xafO for 
I 

h; E k[xJ'"'.,xJ and a(i) E A. We can write each h;xafO as a combination of 

monomials h;xafO = cJjxf3(li) xafO +...+ c,;J3(IO xafO . This shows every term of/
I 

can be written as c xfJ XCI = c X (rxt-fJ) for some c E k and /3, a E kft. Thus,jis a 

k-linear combination of the monomials in 1. 

By our definition of monomial ideals, we could possibly have an infinite 

number of monomials that generate the ideal. With the help of Lemma 3.2.4 and 

Lemma 3.2.5, we can easily determine what type of polynomials are in a monomial 

ideal. We now an important theorem that will help us characterize monomial ideals as 

finitely generated ideals. 

Theorem 3.2.6 (Dickson's Lemma): A monomial ideal 
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1= <xa : a E A> C k[xJ"'.,xJ
 

can be written in the fonn I = <xa(l), ...,xa(s», where a(l), ..., a(s) E A.
 

proof: See [c], p.70, for proof of Theorem 3.2.6. 

Given any monomial ideal, we can find a finite basis of the ideal by Dickson's 

Lemma. This will become very important when trying to find a basis for any ideal. 

Now consider <LT(!» for an ideal I C k[xJ'"'.,xJ By definition, <LT(!» is 

the ideal of the leading tenns of all the polynomials in an ideal 1. (Recall that LTC/) is 

the leading tenn of a polynomial f) The key here is that LTC/) is a monomial with a 

nonzero coefficient from k. So we will see by the next theorem that <LT(!» is a 

monomial ideal. 

Theorem 3.2.7: Let! C k[xl, .."xJ be an ideal. 

(i) <LT(!» is a monomial ideal. 

(ii) There exists gJ'"'.,g, E I such that <LT(!» = <LT(g/),oo.,LT(g,». 

proof: (i) For I to be a monomial ideal, it has to be generated by monomials. The 

ideal <LT(!» is generated by monomials with coefficients from k. By 

definition, <LT(!» = <LT(g) Ig E I-{O} >. So to show that I is a monomial 

ideal, we can simply show <LT(g) IgEl - {O} >= <LMlg) IgEl - {O} >. For 

this, we must show 

LT(g,) E <LM(g) Ig E [ - {O} > 
and 

LM(g) E <LT(g) IgEl - {O} >. 
We know LT(g,) = LC(g,) LM(g,) which shows it is in the ideal 

<LM(g) IgEl - {O} >. Also we can write LM(g,) = (l/LC(g,)) LT(g,) which 

shows it is in the ideal <LT(g) IgEl - {O} >. So by Lemma 3.1.3, 

<LT(g) Ig E 1- {O}>= <LM(g) Ig EI - {O}>. 

Because LM(g,) is a monomial, <LT(!» is a monomial ideal. 
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(ii) Since <LTV» is a monomial ideal, by Theorem 3.2.6 we know it is 

finitely generated by monomials so that <LT(1» = <Xa(l), ... ,xa(t», for some 

a E Zn. Then each one of xarl), ... ,xa(t) is in <LT(.!» which implies that each of 

Xa(I), ... ,Xa(t) is a leading monomial for some polynomials gl, ... ,g, E I. Then the 

monomials xa(/), ... ,xa(t) are of the form LM(g) for some gEl. This shows 

<LT(./» = <LM(gl),... ,LM(g,». We saw in the previous paragraph that 

<LM(g) Ig EI - {O}>= <LT(g) Ig EI - {O}>. 

Then <LT(1» = <LT(gl), ...,LT(g,». 

Using this theorem, there are some important observations we can make about 

monomial ideals. If an ideal I is a monomial ideal, by Theorem 3.2.6, it has a finite 

basis of monomials. Consider the monomial ideal <xa(J), ... ,xa(s) where xa(l), ...,xa(s) 

are monomials. By Lemma 3.2.5, every polynomial/in <Xa(I), ... ,Xa(s) will be of the 

form/= C1Xa(I)xf3{I) +...+ c.xa(s) x{3(s) wherex!3(l), ... ,x{3(s) are monomials ink(x1, ... ,x] and 
" 

Ci E k. So to check the membership ofa polynomial/in the ideal <xa(l), ... ,xa(s), one 

would simply check each term of polynomial/to see if it is divisible by one of 

Xa(l), ... ,xa(s). Using the division algorithm to divide the polynomial/by xa(l), ... ,xa(s), 

we would get a remainder of zero if/E <xa(I), ... ,Xa(s». 

Example 3.2.8: Consider the monomial ideal <x 
3
/ ,.iy',.xy5). Let us use the division 

algorithm to divide /= x'/ + x'y' + 2xy + 4x 
2
y' + .\)l5 by x 

3
/, x 

2
y', and .X)/. 
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q,: x + .xy2
 
q2: 2y+4
 
q3: 1
 

r 
3 2 2xy Jx4l +X4y' +2x l +4x2y' +xl 
2 4 4 2 

xy xy 
5 

.xy 
x4y' + 2x2/ + 4X2y4 +.xy5 

4 4 

xy 

2 5 2 4 5
2xy +4xy +.xy 

2x
2

/ 

2 4 5

4x y +.xy 
4X2

y4 

5 
.xy 

5 
.xy 

o o 

We came up with a remainder of zero making
 

4 2 + 4 4 + 2 2 5 + 4 2 4 + 5 E <x3 2 2 4 5>
! =xy xy xy xy.xy y,xy,-ry.
 

Again, each term of!is divisible by one of X
3
y2, i y

4 
or .xy5.
 

Notice that in each step of the division process each term of the polynomial! 

was canceled out without introducing any other terms into what remained. Using any 

order of the divisors, one can check that the division algorithm will yield a zero 

remainder for this example. This is exactly the desirable property we are looking for 

given any ideal. We were looking for a generating set of an ideal that would return a 

unique remainder after division of a polynomial by the generating set of the ideal. 

We will see with the help of the next proposition that every monomial ideal has this 

property. Given an ideal, in Theorem 3.2.7 we saw the existence of g!",.,g, E I such 

that <LT(]» = <LT(g-,), ...,LT(g,». The observation we mIght make that is particular 
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for monomial ideals is that if we have a monomial ideal I, then the ideal of leading 

terms <LT(!» is the same as the ideal I itself. 

Proposition 3.2.9: If I C k[x/'"".,xJ is a monomial ideal, then <LT(]» = 1. 

proof: Using Theorem 3.2.6, Dickson's Lemma, we can write I = <Xrt(l), ... ,xa(s) >for 
some monomials xrt(l), ... ,xa(s) E k[x/'"".,xJ By Theorem 3.2.7, 

<LT(!» = <LT(gJ), ,LT(g,» for some g/,"".,g, E k[x/'"".,xJ By Lemma 3.2.5, 

each of the LT(gJ), ,LT(g,) is divisible by one of xa(1), ...,xa(s) since 

gi E <Xa(1), ... ,xa(s», a monomial ideal where every polynomial g is a k-linear 

combination of Xa(1), ... ,xa(s). This means every term of g, is divisible by one of 

Xa(1), ... ,xa(s) including LT(g,). This means LT(gi) E <xa(1), ... ,xa(s». This shows 

<LT(!» c;;;, I. 

Also, xa(i) = LT(xa(i)) since it is a monomial implying xrt(i) E <LT(]». 

Then I C <LT(!». Now we have 1= <LT(!». 

From this theorem, we can see that if an ideal I is a monomial ideal then the 

ideal ofleading terms <LT(]» will be the same as the ideal itself. Notice that this 

implies that for a monomial ideal 1= <gr.,g,> where g/'"".,g, are monomials, then 

<LT(!» = <LT(gJ),... ,LT(g,». We will see that this is exactly the property we want 

out of our basis of an ideal. 

Also see that the leading term of any element of I is divisible by one of 

xa(1), ... ,xa(s). We know for any polynomial;; we can consider each term of/to be 

divisible or not divisible by one of xa(1), .. .,xa(s). If each term is divisible by one of 

Xa(1), ... ,Xa(s), then/E <Xa(1), ... ,Xa(s) >by definition. If there are terms of/that are not 

divisible by any of xa(1), .. .,xa(s), then those terms will become terms of the remainder 

after division of/by any order of xa(1) , ... ,xa(s) which shows the remainder on division 

is unique. So for monomial ideals, we can say that a polynomial/ E <xa(1), . .. ,xa(s) >if 

and only if the remainder after division of/by any order of xa(1), .. .,xa(s) is zero. 
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3. Hilbert Basis Theorem and Grobner Bases 

We have not yet completely solved the ideal membership problem. We have 

seen that if an ideal I is a monomial ideal, we can easily check membership of a 

polynomial fin the ideal. One of the reasons we can do this is because we were able 

to find a finite basis for a monomial ideal. Let us suppose that we want to check 

membership ofa polynomialfin any given ideal of k[xr.,xJ Ifwe are working with 

an ideal defined by an infinite number of polynomials, how can we check ideal 

membership? Fortunately, we will see that for any ideal, there is a finite basis. 

Theorem 3.3.1(Hilbert Basis Theorem): Every ideal I C k[xr.,xJ has a finite 

generating set or basis. Thus, 1= <gr .,g,> for some gr .,g, E I. 

proof:	 By Theorem 3.2.7, there are polynomials gr.,g, E I such that 

<LT(l» = <LT(gl),... ,LT(g,». We will show 1= <gr.,g,>. 

By Lemma 3.1.3, <gr.,g,> <;:;:; I since each of gr.,g, E I. Now let 

fE I. By applying the division algorithm, dividingfby gr.,g, will give 

f = algi,+ ... + a,g, + r where every term of polynomial r is divisible by none of 

LT(gl), ...,LT(g,), We will see that r = O. We know r = f- algl,+ ...+ a,g, E I 

since j,gl, ... ,g, E 1. Suppose r is not equal to zero. Then LT(r) E <LT(!» 

since rEI. But <LT(l» = <LT(gl), ... ,LT(gt» making 

LT(r) E <LT(gl), ... ,LT(g,» which makes LT(r) divisible by one of 

LT(gl), ... ,LT(g,) by Lemma 3.2.4 (Remember LT(gl), ... ,LT(g,) and LT(r) are 

all monomials). This contradicts the fact that r cannot be divisible by any of 

LT(gl), ...,LT(g,). So r = O. Thenf= algi +...+ a,g, E <gl, ... ,g,> by definition 

making I C <gr.,g,>. Thus I = <gl, ...,g,>.(Taken from [c], Theorem 4, p.75) 

So now for any Ideal I, we can talk about a finite basis gr.,g, of 1. Unlike the 

case of a monomial ideal, however, an ideal like <f, .. "J;> where~, ... ,J, are not all 

monomials will not always have the property that <LT~), ... ,LT(fs» = <LT(l». 
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Example 3.3.2: Consider the ideal 1= <x'y- x, xy' + 2>. We can see that 

f= -21 -x' = (x'y - xXxy+ x) + (xy' + 2)(_x3 
) E <x'y- x, xy' + 2>. 

We know LT( _2x
J 
-x) = _2x

3 

E <LT(I» by definition. Yet, _2xJ 
is not in the ideal 

<LT(xy- x),LT(xy' + 2» = <x'y,xy'> by Lemma 3.2.5 since _2x
3 

is not a k-linear 

combination of x'y and xy'. 

We saw that the property that <LT(g/), ... ,LT(g,» = <LT(I» for an ideal I 

played a key role in showing that a basis of a monomial ideal has the desirable 

properties we are looking for. Then it might be in our interest to give any set of basis 

polynomials gJ'"".,g, E I with this special property a special name. 

Definition 3.3.3: A finite subset G = {.Rr.,g,} of an ideal I that has the property that 

<LT(g/), ...,LT(g,» = <LT(I» is said to be a Grobner basis. 

Corollary 3.3.4: Every ideal I ~ k{xJ'"".,xJ other than {O} has a Grabner basis. 

Also, any Grabner basis of I is a basis of I. 

proof: From the proof of the Hilbert Basis theorem, we constructed a finite 

generating set gr.,g, of an ideal I such that <LT(g/), ... ,LT(g,» = <LT(I». 

Thus, the set gr.,g, is a Grabner basis of I. Since 1= <gJ'"".,g,>, then gJ'"".,g, is 

a basis of I. 

So now, using the Hilbert Basis theorem, we have found that any ideal 

I ~ k{xl, ...,xJ has a finite basis of polynomials gr.,g, with the property that 

<LT(g/), ... ,LT(g,» = <LT(I». Now we must find how this property will help with 

our goals. Our goal was to find a basis of an ideal I that had the property that the 

remainder r on division of a polynomIal fby the basis polynomials is unique. From 

this, we would be able to show thatf E I if and only if r = O. 
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Theorem 3.3.5: Let G = {gJ"'.,g,} be a Grobner basis for an ideal I C k[xJ"'.,xJ and 

letfE k[x/, ...,xJ Then there is a unique r E k[x/, ...,xJ with the following two 

properties: 

(i) No term of r is divisible by one ofLT(g,),... ,LT(g,). 

(ii) There is a polynomial q E I such that f = q + r. 

proof: From the division algorithm, we can divide fby g/, ... ,gl to get 

f= a, g, + ...+ a,gI + r 

where no term of r is divisible by one ofLT(g/),... ,LT(g,) establishing (i). 

Setting q = a/ g/ +...+ a,gi establishes (ii). This proves existence of r. 

To prove uniqueness, suppose thatf= q/ + r/ = q2 + r2 satisfy (i) and 

(ii). Then r2 - r, = q, - q2 E I, so that if r, is not equal to r2, then 

LT(rr r,) E <LT(/» = <LT(g,), ... ,LT(gIP' 

Then by Lemma 3.2.4, LT(r2 - r/) is divisible by some LT(g;). This is 

impossible since no term of r" r2 is divisible by one ofLT(g,), ... ,LT(g,). Then 

r2 - r, = 0 meaning r2 = r,.(Taken from [c], Proposition 1, p.81) 

Now we know that for any ideal I ~ k[x" ... ,xJ, we can find a Grobner basis of 

the ideal such that dividing a polynomial fby the basis polynomials will give a unique 

remainder. Next, we will see that a Grobner basis enjoys the property that we have 

been looking for in a basis of an ideal. 

Corollary 3.3.6: Let G = {g" ...,g,} be a Grobner basis for an ideal I ~ k[x/, ...,xJ and 

letfE k[x" ...,xJ ThenfE I if and only if the remainder on division offby G 

IS zero. 

proof: lfthe remainder is zero, we know we can writef= a, g, +...+ alg, which 

showsfE I. lff E I, by Theorem 3.3.5, we can writef= q+ r or specificallyf= f+ 

owhich shows the remainder is zero. 
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4. Buchberger's Algorithm 

We know that for any ideal I ~ k[xJ"".,xJ, we can find a Grabner basis for the 

ideal. Just knowing the existence of a Grabner basis will far from solve our problem 

of ideal membership. What we really would like to know is how to tell if a basis of 

an ideal is a Grabner basis and, if it is not, how to find one. 

Example 3.4.1: Consider the ideal 1= <x2
y-z,xy-1 >from example 2.1.3 where we 

showed that f = ~ -1 E I yet each remainder after division by both orderings of the 

polynomials x
2
y-z and xy-l was nonzero. Obviously the basis {x

2
y-z,xy_l} is not a 

Grabner basis. Considering this problem very carefully, we see that neither of the 

leading terms LT(x
2
y-z) nor LT(xy-l) divided LT(~-l). Thus, we will get a 

nonzero remainder. 

The approach we will take to solve this problem is to realize that for a basis of 

an ideal I, we can add any other element of I to the basis and have the same ideal. In 

other words, for an ideal 1= <J;, ...,I;> and polynomial gEl, then 

<J;, ...,j? = <J;, ,!"g>. This is clear by Lemma 3.1.3 since each of!;, ...,!, E <fJ, ... ,!"g> 

and each ofj" ,j,g E </'I""'/:>'1 s s 

For the basis {/y-z,xy-l}, we might like to add a polynomial of <x2
y-z,xy-l > 

with a leading term that divides LT(yz-l) so that we could at least start dividing ~-l 

by the basis so that we would not get yz-l as the remainder. One way to find such a 

polynomial of <x2

y-z,xy-l >with such a leading term would be to take a combination 

of x
2
y-z and xy-1 that cancels the higher exponents in the leading terms. To do this in 

general, we define the following. 

Definition 3.4.2: Letf,g E k[xl, ...,xJ be nonzero polynomials. Let G = (gl, ...,g) be 

an ordered t-tuple of polynomials in k[xJ"".,xJ 
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(i) If deg(f) = a and deg(g) = /3, then set y= (y;, ...,Yn), where y; = max( a j,/3 i) for 

each i. We will denote xY=LCM(LM(f),LM(g» as the least common multiple of 

LM(f) and LM(g). The S-polynomial offand g is the combination 

S(f,g) = [(fxl)/I..T(f)] - [(g xl)/LT(g)]. 

(ii) We will denote rem(f)G to be the remainder on division of fby G. 

Example 3.4.3: To help us with the problem above, let us compute the S-polynomial 

for the polynomials x'y-z and xy-l. 

xY= LCM(LM(x
2
y-z),LM(xy-l» = LCM(x

2

y,xy) = x
2

y 

LT(x
2
y-z) = x'y 

LT(xy-l) = xy 

S(x
2

y-z,xy-l) = [(x
2

yXx'y-z)/(x'y) - (x
2

YXxy-l)/(xy)]
 

= (x
2

y-z) - (xXxy-l)
 

= x- z
 

Note that the S-polynomial offand g will always be in an ideal with f and g in 

the basis. This is because the S-polynomial offand g is written in the form 

S(f,g) = f hi + gh2 for hi = xY/LT(f) and h2 = - xY/LT(g). (Remember that xr is divisible 

by both LT(f) and LT(g) making hi and h2 E k[x,y,z]). 

We noted earlier that we could add a polynomial of an ideal to the basis of an 

ideal and have the same generating set. Applying this to the example above, let us 

add the polynomial x-z to the basis x
2
y-z andxy-l of the ideal <x2

y-z,xy_l >. We can 

show that <x2
y-z,xy_l >= <x2

y-z,xy-l,x-z> using Lemma 3.1.3 since each basis 

polynomial is in each ideal. Still the problem with our example is not solved since the 

leading term of the S-polynomial x-z does not divide the leading term ofyz-l. 

Example 3.4.3(cont.): We will see what happens if we compute the S-polynomial of 

x
2

y_z andx-z and the S-polynomial ofxy-l andx-z. 
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For iy-z and x-z: 

xY= LCM(LM(x
2
y-z),LM(x-z)) = LCM(iy,x) = x

2
y
 

LT(x
2
y-z) = x2

y
 

LT(x-z) = x
 

2 2 2 2 2

S(x y-z,x-z) = [(X YXX Y-Z)/(X y) - (x yXx-z)/(x)]
 

= (iy-z) - (xyXx-z)
 

=xyz-z
 

For xy-1 andx-z: 

xy = LCM(LM(xy-1),LM(x-z)) = LCM(xy,x) = xy 

LT(xy-1) = xy 

LT(x-z) = x 

S(xy-1,x-z) = [(xyXxy-1)l(xy) - (xyXx-z)/(x)]
 

= (xy-1) - (yXx-z)
 

= yz-1
 

Since these S-polynomials are in the ideal <x
2

y-z,xy-1,x-z>, we can add these 

to the basis to get <x2

y-z,xy-1,x-z> = <x2

y-z,xy-1,x-z,xyz-zJ/.Z-1 >. Notice that in our 

original example we knew that the polynomial yz-1 E <x2
y-z,xy_1 >yet dividing 

yz-1 by the basis polynomials iy-z andxy-l gave a nonzero remainder for each 

order of the basis. 

Now that we know <x2
y-z,xy-1 >= <x2

y-z,xy-1,x-z> = <x2

y-z,xy-1,x-z,xyz-zJ/.Z-1 > 

usmg Lemma 3.1.3, we can use the basis polynomials /y-z,xy-1,x-z,xyz-z andyz-1 

instead in the division algorithm. Of course, since yz-1 is in the new basis we 

know we can divideyz-1 by at least one of the basis elements. We will see in the 

next theorem a criterion for when a basis of an ideal is a Grabner basis. 

Theorem 3.4.4: Let! be a polynomial ideal. Then a basis G = {g" ...,g) for I is a 

Grabner basis for I if and only if for all pairs i not equal to j, rem(S(gi,gj))G = 0 

(G in some order). 
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proof: See [c], Theorem 6, p.84 for the proof of Theorem 3.4.4. 

Example 3.4.3(cont.): For the basis ry-z,Ay-l,x-z,xyz-z andyz-l of the ideal 

<ry-z,xy-l,x-z,Ayz-zJZ-l> in our example above, to see ifit is a Grabner basis, we 

would compute the S-polynomial for each pair of basis polynomials and check to 

see if the remainders after division of the S-polynomials were all zero. Let us do 

this now. 

S(ry-z,Ay-l) = x-z 

S(ry-z,x-z) = xyz-z 

S(ry-z,xyz-z)= xz-z' 

S(ry-z,yz-l)= X'-Z2 

S(~-l,x-z)= yz-l 

S(~-l, xyz-z)= 0 

S(~-I,yz-l)=x-z 

S(x-z,xyz-z)= -yz'+z 

S(x-z, yz -1)= x-yz' 

S(xyz-z,yz-l) = x-z 

Computing remainders on division of each of the S-polynomials by the basis 

polynomials G = (ry-z,Ay-l,x-z,Ayz-zJZ-l), we will get zero as the remainder for 

each S-polynomial. This shows that the basis G = (x'y-z,xy-l,x-z,xyz-zJZ-l) is a 

Grabner basis by Theorem 3.4.4. This idea can be formalized into an algorithm 

that, given a basis of an ideal I, will produce a Grabner basis. 

Theorem 3.4.S(Buchberger's Algorithm): Let 1= <j" ...,j> where I is not {O} be a 
J s 

polynomial ideal. Then a Grabner basis for I can be constructed in a finite 

number of steps by the following algorithm: 

Input: F= U;, ...,f)
 
Output: Grabner basis G = (gr.,g) for I with F C G
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G:=F 

REPEAT
 

G':=G
 

FOR each pair {p,q}, p *q in G' DO
 

S := rem(S(p,q»G'
 

IF S *0 THEN G :=G u{S}
 

UNTIL G=G'
 

proof: We must show that the new ideal <gr.,g? = I and G = (gr.,g) is a Grabner 

basis of I and that the algorithm terminates. 

First, through each loop in the algorithm, we are simply adding the 

remainders of the S-polynomials after division by the expanding set 0' which 

at the beginning is the original basis. So each remainder is an element of I 

making 0' = (gr.,g) a basis of I. This shows I = <f, ...J;> = <g/, ...,g,>. 

Next, the algorithm terminates when G = G' making rem(S(p,q»G = 0 

for all p,q E G. By Theorem 3.4.4, G is a Grabner basis. 

Finally, through each pass in the main loop, G cO' implying that 

<LT(G'» c<LT(G». Furthermore, ifG *0', then <LT(O'» is strictly 

smaller than <LT(G». To see this, suppose G*O'. Then a nonzero 

remainder of an S-polynomial has been added to 0'. By the properties of r, 

none of the polynomials of 0' divide the leading term ofr making LT(r) not in 

<LT(G'». But LT(r) is in <LT(G». 
This shows we have an ascending chain of ideals in k[x/, ... ,xJ Then 

after a finite number of iterations, the chain will stabilize by the Ascending 

Chain Condition (See [v], ACC, p.ll? for the theorem and proof). Th is says 

that at some point we will have <LT(G'» = <LT(G» which implies 0' = G by 

the above paragraph making the algorithm terminate after a finite number of 

iterations. 

This algorithm is by no means the most efficient way to get a Grabner basis 

from a basis. There are many improvements that can be made to improve the 

effiCiency. This version is, however, one of the simplest to understand and still 

serves its purpose as an illustrative tool. 
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The main idea of the algorithm is to add polynomials of an ideal Ito a basis of 

1 in such a way as to take into consideration the remainders of the S-polynomials. 

Since each S-polynomial is in the ideal, then the remainder after division by the basis 

is in the ideal. Once we add the remainder to the basis, we are assured a zero 

remainder when we divide the S-polynomial by the basis. Ifwe continue to do this 

for each pair of polynomials in the basis, we will eventually get a basis of the ideal 

that has the property that the remainder of the S-polynomial after division of the basis 

is zero for each pair of polynomials in the basis. 

This is exactly what Buchberger's algorithm does to a basis. It computes the 

remainders of the S-polynomials after division of the new basis and adds the 

remainders if they are nonzero until fmally all the remainders of the S-polynomials 

for every pair of polynomials in the new basis is zero. 

Recall that an ideal 1 may have more than one basis. Then because we are 

simply adding polynomials to the basis to get a Gr6bner basis, we can see that an 

ideal may have more than one Gr6bner basis. 

Example 3.4.6: Consider the Gr6bner basis G = (x'y-z,xy-l,x-z,xyz-zJ-Z-I) of 

example 3.4.3. We will claim that G' = (x-zJ-Z-1) is also a Gr6bner basis of 

2
1= <x y-z,xy-l,x-z,xyz-z,yz-l >. First, x-z,yz-1 E <x2y-z,xy-1,x-z7.YZ-zJ-Z-l> since 

they are part of the basis. Also, x2y-z,xy-1,x-z7.YZ-zJ-Z-l E <X-zJ-Z-l> since 

2 
x y-z = (x-zX.ry+yz)+(yz-l)(z), 

.ry-l = (x-zXy)+(}Z-l)(l), 

.ryz-z = (x-zXyz)+(}Z-1)(z) 

and clearly x-z and}Z-1 are in the ideal. This shows
 

<x2y-z,xy-1,x-z7.YZ-zJ-Z-1> = <X-zJ-Z-1 >
 

makmg G' = (x-zJ-Z-l) a baSIS ofl.
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To show G' is a Grabner basis, we will show that the remainder of the S-

polynomial after division of the basis polynomials is zero. 

S(x-z,yz-l) = [(xyz)(x-z)/(x)] - [(xyz)~-l)/(yz)] = xyz - V
2 

- xyz + x = x-V
2 

• 

rem(x-v
2
)G' = o. 

This shows G' is a Grabner basis. 

Notice in example 3.4.6 that the Grabner basis G' was the Grabner basis G 

minus a few polynomials. A Grobner basis of an ideal with the fewest number of 

generators would likely cut down on any computational work that might need to be 

done with a Grabner basis of an ideal. The next few results will help with that goal. 

Theorem 3.4.7: Let G be a Grabner basis of a polynomial ideal I. Let pEG be a 

polynomial such that LT(P) E <LT(G-{P}». Then G-{p} is also a Grabner basis 

of I. 

proof: Since G is a Grabner basis, we know <LT(G» = <LT(!». If 

LT(P) E <LT(G-{P}», then <LT(G-{P}» = <LT(G» by Lemma 3.1.3. This 

shows <LT(G-{P}» = <LT(!» which makes G-{p} a Grabner basis by definition. 

This theorem shows that if any polynomial p in a Grabner basis G can be 

written as a combination of the leading terms of the polynomials in G- {p}, then 

G- {P} is a Grabner basis. We can greatly reduce the number of basis polynomials 

using this theorem. 

Example 3.4.8: Consider the Ideal 1= <x2

y-z,xy-l,x-z,xyz-z,yz-1 >from example 3.4.6 

where G = (x
2
y-z,xy-I,x-z,xyz-z,yz-1 ) is a Grabner basis. We can see that 

LT(x
2
y-z) = x

2 
y = (xy )(LT(x-z)), 
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LT(xy-l) = xy = (y)(LT(x-z)) 

and 

LT(xyz-z) = xyz = (x)(LT(}z-l)). 

Then we can say G' = (x-zJ-Z-l) is a Grabner basis by Theorem 3.4.7. We 

already knew G' was a Grabner basis, however, from example 3.4.6. 

We can see that this Grabner basis G' is more simple than G. We will give a 

Grabner basis of this simplicity a name. 

Definition 3.4.9: A reduced Grobner basis for a polynomial ideall is a Grabner 

basis G for I such that: 

(i) LC(P) = 1 for all pEG. 

(ii) For allp E G, no monomial ofp lies in <LT(G-{P}». 

Notice that the Grabner basis G' = (x-zJ-Z-l) has these properties. The leading 

coefficients are both 1 and each monomial of each polynomial cannot be written as a 

combination of x and}Z. We can now say the G' is a reduced Grabner basis of the 

original ideal <x2
y-z,xy_l) = <x2

y-z,xy-l,x-z,.xyz-zJ-Z-l) = <X-zJ-Z-1). Reduced 

Grobner bases can easily be computed on the computer program Maple for Macintosh 

(See [1], gbasis command in the Grobner basis package). 

34 



5. Vel) and the Elimination Theorem 

Coming back to our problem of solving systems of equations in k[xI'"" .,x.], we 

will see that we can use our results up to this point to show how this problem can be 

simplified. The idea is that for a system of equations 

};(XI,... ,xn) = 0 

.!l..XI,... ,xn) = 0 

we can consider the variety V(f", ...,f)s as all the points in kll that correspond to the 

solutions to the system of equations. Also, we can consider 1= <J" ...,J;> ~ k[x" ... ,xJ 

as the set of all polynomials that vanish at each point of V(f" ...,j) using Lemma 3.1.4. 

With this in mind, we can define the following. 

Definition 3.5.3: Let I ~ k[x" ... ,xJ Define 

Vel) = {(ar.,a) E k!' Ij(a" ...,a) = 0 for all! E I}. 

Then using Theorem 3.1.5, we can state the following theorem. 

Theorem 3.5.2: V(l) is an affine variety. Also, if I = <J" ... ,J;>, then V(l) = Vif" ... ,j). 

proof:	 Since! E I, ifj(a" ...,a) = 0 for all! E I, then!(a" ...,a) = O. Then 

V(l) ~ V(f" ...,fJ Also, let (a" ... ,a) E V(f" ...,f) and let f E I. Applying 

Lemma 3.1.4, j(a ,... ,a) = O. Then V(f" ...,f) ~ Vel). This shows 
J n	 I J 

V(l) = Vif" ... ,j). 

We also saw that every ideal has a Grabner basis. We will see that a nice 

basis we can change to is a Grabner basis. For the variety of the system of equations, 

V(j" ...,j), we can consider I = <J" ,J;>. By the prevIOus theorem, V(l) = Vif" ...,f). If 

we change 1= <J" ...,j? to I = <g" ,g,> where G = { g" ...,g,} is a Grabner basis, we 
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will get V(l) = V(g/",.,g). This variety can greatly reduce the problem of solving the 

original system of equations. 

To help see this, we define the following. 

Defmition 3.5.3: Given 1= <j,1"",f> C k[x ,...,x], the kth elimination ideal 1k is the
sin 

ideal of k[xk+J, ... ,xJ defined by 1k = I nk[x/;i !'"".,xJ 

Theorem 3.5.4(Elimination Theorem): Let I ~ k[x ,...,X ] be an ideal and G be a 
I n 

Gr6bner basis of I. Then, for every O<k<n, the set Gk = G nk[xk+I, ...,xJ is a
 

Gr6bner basis of the kth elimination ideal 1k .
 

proof: See [c], Theorem 2, p.114 the proof of Theorem 3.5.4. 

The kth elimination ideal 1k for an ideal I = ~, ... ,f? is the set of all 

polynomials of I that only have the last n- k-l variables. By the Elimination Theorem, 

a basis for 1k can be the polynomials of a Gr6bner basis that only have the last n-k-l 

variables. Furthermore, if we choose these polynomials of a Gr6bner basis as the 

basis of 1k, then these polynomials will also be a Gr6bner basis. 

Example 3.5.5: Consider the ideal 1= (x2+/+z'-I,/+y-x',2/+x'-1 > in k[x,y,z]. 

Computing a reduced Gr6bner basis for I, we get 1= (x'+2z'-1,y+3/-1,9z
4

-7/+1 >. 

We can easily find bases, particularly Gr6bner bases, for the elimination ideals. 

It = <Y+3z'-1,9z
4

-7z'+1>. 

12 = <9z
4

-7/+1 >. 

The ideal L is the set of all polynomials of1= (x'+y'+z' -1,/+y-x',2y'+x
2
-1> that 

are also in k[y,z]. These are just the polynomials that are only in terms of y and z 

or where variable x is eliminated. By the Elimination Theorem, these 
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polynomials can be generated by the polynomials y+3z'-1 and 9z
4

-7z'+1 which 

form a Grabner basis. 

Also, 12 = <9z
4

-7z'+I> is the set of polynomials generated by the polynomial 

9z
4

-7z'+1. Any polynomial in the ideal! = </+/+z'-lj+y-x',2/+x'-1> that has z 

as its only variable will be of the form (9z
4

-7z'+I)(h l ) for some hi E k(z]. 

Using the Elimination Theorem and given a Grabner basis, we can find bases 

for the elimination ideals that contain all polynomials that eliminate the first k 

variables. Moreover, the bases given by the Elimination theorem are Grabner bases. 

Particularly for our problem of solving systems of equations with finite solutions, we 

can compute the elimination ideal In-I, the last elimination ideal of I ~ k(xJ'"".,xJ, to 

find a single polynomial is one variable. In example 3.5.5, the elimination ideal 

12 = <9z
4

-7z2+1>is the set of all polynomials generated by 9/-7z'+1. This is important 

since we want a finite number of solutions for a system of equations. 

Once we consider the last elimination ideal 1"-1, we can extend the solutions to 

the elimination ideal 1r>-2, then to 1n-3 until we finally get to I. If the solutions to the 

original system of equations is fmite, then in each elimination ideal, there will only be 

one variable to solve for. 
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Chapter IV 
Conclusion 

Our problems were determining the membership of a polynomial in an ideal 

and solving systems of equations. We set out to try to find a basis of an ideal with 

some special properties concerning the division algorithm. The properties we would 

like in a basis were to get a unique remainder on division of a polynomial/by the 

basis and to have fewer variables in certain polynomials of the basis. Using the ideas 

and results in the development of Grabner bases, we will see how a Grabner basis 

will help us with the ideal membership problem and solving systems of equations. 

1. Ideal Membership Problem 

From Corollary 3.3.6, we have a simple way of determining ideal membership 

of a polynomial/in an ideal 1. We would use the division algorithm to divide /by a 

Grabner basis of I and check the remainder. We observed earlier that given any basis 

ofan ideal I the order of the polynomials of the basis was important. Now that we 

know there exists a basis of an ideal that returns a unique remainder on division and 

since we are only concerned with the remainder, the order of the basis in the division 

algorithm does not matter when using a Grabner basis. 

Example 4.1.1: Consider the ideal 1= <x2 + y2 -l,xy - I) from example 2.1.2. We 

were checking the membership of the polynomial x' _x
2 + 1 in the ideal I. By 

computing a Grabner basis for I, we need only check the remainder after division 

of the polynomial x' _x
2 + 1 by the Grabner basis polynomials. Using Corollary 

3.3.6, polynomial x' _x
2 + 1 is in the ideal 1= <x2 + y2 -l,xy - 1) if and only if the 

remainder is zero. 
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A Grabner basis for 1= <X2 + y2 -1,.xy -I> is the set {x+yJ_y,y4-y2+1}. We can 

choose any order of the Grabner basis polynomials to divide x 
4 

_x 
2 

+ 1 by the 

polynomials x+yJ_y and y_y2+1. Doing the division, we get a remainder of zero 

4
which shows thatx _x

2 

+ 1 E 1= <X2 + y2 -1,.xy -1> = <x+yJ_y,y4_y2+1>. We can now 

check the membership of a polynomial in any ideal I in k[xJ"".,xJ by computing a 

Grabner basis of I and using the division algorithm. 
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2. Solving Systems of Equations 

If we have a system of equations in n variables, our strategy was to reduce the 

number of variables in certain equations. For the system 

];(Xl, ... ,xn) = 0 

];(XI,...,xn) = 0 

we saw early that we can consider VU;, ...,f) as the set of points in It that correspond 

to the solutions of the system of equations. Also, by Theorem 3.5.2, if we consider 

the ideal generated by the polynomials of the system 1= <.!;, ...,i!, then 

V(l) = Vif;, ...,f). By the properties of the Elimination Theorem, a good candidate for 

a different basis of I would be a Grabner basis. If G = {g/, ...,g) is a Grabner basis for 

I, then since I = <g/, ...,g/, then V(l) = V(g/, ...,g,). The variety V(g/, ...,g) will 

correspond to the same solution set yet the polynomials of the new system will have a 

reduction of variables. This will help with solving the system. 

Example 4.2.1: Consider the system of equations 

X 
2 + /+/-1 = 0
 

_x2 
+y +/ = 0
 

i +2y -1=0
 

We saw in example 3.5.5, we can consider the ideal
 

1= <x'+ y+z'-1 ,-x' +y+/, x' +2y -1>
 

and a Grabner basis for I is G = {x'+2/-1,y+-3z'-1,9z
4

-7/+1} corresponding to the 

Ideal I = <x'+2z'_1,y+-3z
2

-1,9z4_7z'+1 >. 

Then the variety 

V(x'+ y2+z'-1 ,-i +y+z', i +2y -1) =V(i+2z
2
-1,y+-3z

2
-1,9z

4
-7z'+1) 
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by Theorem 3.5.2. This variety corresponds to the system of equations 

x'+2i-I=O 
2

yt3z -1 = 0
 

9z'-7z2+1 = O.
 

We can solve for z in the last equation to find the ordered triple solutions 

for the system of equations (Using the computer program Maple V for Macintosh. See 

[m], solve command, p.I7.) 

I~ 1 1 1 1 l~ 1 1 1 1( - 2+M --+-M ---M) (-- 2+M --+-.J13 ---.J13) 
3 ' 6 6 '6 6 3 ' 6 6 '6 6 

. l~ 1 1 1 1 l~ 1 1 1 1( - 2+M --+-M --+-.Jl3) (-- 2+.J13 --+-m --+-m)
3 '66 '66 3 '66 '66 

l~ 1 1 1 1 I~ 1 1 r;;; 1 1 r;;;( - 2-M ----.Jl3 -+-m) (-- 2-.Jl3 -----vB -+--v13)
3 ' 6 6 '6 6 3 ' 6 6 '6 6 

1~ 1 1 1 1 I~ 1 1 1 1( - 2-M -----J13 ----.J13) (-- 2-M ----.J13 ----.J13) 
3 '66 '66 3 '66 '66 

We can think ofthese triples as the points in c;3 of 

'1222222 22 242)
V(x+y+z-l,-x +y+z,x +2y -1)=V(x+2z-l,yt3z-I,9z-7z+1. 

Also, each point (x,y,z) corresponds to a solution to the original system of equations. 

From this example, we can see that solving a system of equations can be simplified 

using a Grabner basis. 
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