
AN ABSTRACT OF THE THESIS OF
 

Kebin Li for the Master of Science in Physical Science, Physics
 

Emphasis presented in May 1996. Title: Convolution and Optimal
 

Filtering in a Fiber Optic Detection System.
 

Abstract approved: Y'lJ i -. 7/ S'c ~ti:,z=
P 
.' 7 

The Fourier transfonn and the general methods of linear system theory are 

very important in the analysis of optical imaging systems. These tools are 

used to analyze a double-slit intensity pattern as measured by an optical 

fiber bundle connected to an inexpensive PASCO photodetector. The 

three important functions involved in this analysis are the input intensity 

function to the detector, the output of the detector and the response 

function which characterizes the detection system. The recorded data of 

the intensity pattern includes the effects of both noise and modification of 

the detection system. We have developed methods to eliminate these two 

effects and obtain an unspoiled double-slit diffraction pattern. These 

methods are discussed with a view towards developing an improved 

system in the future. 
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Chapter 1 

Introduction 

Fourier methods have revolutionized fields of science and 

engineering, from radio astronomy ~o medical imaging, from seismology to 

spectroscopy. They are so important and useful now that every field 

dealing with wave phenomenon can use them. In the area of optical image 

processing, Fourier analysis is at the core of it. 

Our research goal is to develop an optical fiber bundle scanning 

detection system as a test system. Since the measured data always 

includes noise and the effect of the detector, how to eliminate these two 

effects and regain the original pure signal is what we try to investigate. 

We choose the double-slit Fraunhofer diffraction pattern to 

investigate the differences between the theoretical pattern which can be 

calculated accurately by the diffraction theory and the measured 

experimental data. In this way we can carefully compare them to see how 

the noise and detector actually affect the recorded pattern. Then we try to 

eliminate these effects by applying some techniques of Fourier analysis. 

Both our experimental work and theoretical research efforts will be 

presented in later chapters. 

Convolution is a very important concept to wlderstand the fonnation 

of the recorded diffraction pattern. When the input intensity pattern is 

received by the detector, it is convolved with the response ftmction of the 
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detector which then produces the output signal. Deconvolution is the 

process of undoing the smearing in a data set that has occurred under the 

influence of a known response function. For our situation this is the result 

of a less-than-perfect measuring apparatus. The convolution theorem and 

deconvolution theorem are two very important theorems in Fourier 

analysis. We tried to apply them to eliminate the effect of the response of 

the detector. 

We found that the optimal (Wiener) filtering is a technique that can 

be applied. Since the input intensity pattern was corrupted by noise, a 

consideration of the effect of the detector only by applying the 

deconvolution theorem failed. Because of this, optimal filtering was 

chosen in order tQ remove the noise from the corrupted output signal. 

After carefully designing models for the response function of the 

detector and the noise, we got very good deconvolution results. The 

significance of this research is that we can effectively remove all the 

effects that corrupt the pure original signal. 

In Chapter 2 we present both the theoretical calculation and the 

experimental results of the double-slit diffraction pattenl. Chapter 3 is the 

basic Fourier and optimal filtering theory for the analysis. Our theoretical 

analysis is discussed in Chapter 4. In Chapter 5 we give our conclusions. 
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Chapter 2
 

Double-slit Diffraction Pattern
 

Theory and Experiment
 

1.	 Theoretical Calculation of Double-slit Diffraction 

Pattern 

The reason we choose the double-slit diffraction pattern is that it 

can be calculated very accurately using the Fraunhofer diffraction theory. 

When we consider the double-slit diffraction pattern we assume the light 

incident on the slits is composed of parallel rays. In the wave model of 

light this corresponds to plane parallel waves. Since we use a ReNe Laser 

as our light source, we expect a beam which is parallel to a very high 

degree. 

2As in Figure 1, the situation consists of two long slits of width b 

and center-to-center separation a. The total light intensity is projected on 

a screen or other surface which is a distance D from the slits. In order to 

use FrawlllOfer diffraction theory, D should be relatively large, i.e., D»a 

andD»b. 

The X-axis is used to identify each point on the screen. Each 

aperture, by itself, would generate the same single-slit diffraction pattern 
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Figure 1. The double-slit geometry used in the theoretical calculation of 

the intensity pattern. 
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on the viewing screen. At any point on the screen the contributions from 

the two slits overlap coherently and interference must occur. 

To obtain an expression for the optical disturbance at a point P(x) , 

we need to slightly reformulate the single-slit diffraction analysis. In the 

Fraunhofer approximation, the total contribution to the electric field at 

point P(x) from both slits is, 

b/2 0+b/2 

E =c JF(z)dz + C JF(z)dz, 
-b/2 a-b/2 (1) 

where F(z) =sin[wt - k(R - z sin 8)], it is the contribution to the electric field 

at P(x) from some point of either one of the two apertures. The constant 

amplitude factor C is the secondary source strength per unit length along 

the z axis divided by R, which is measured from the origin to the point 

P(x). The source strength is assumed to be independent of z over each 

aperture and R is assumed to be constant. We will be concerned only with 

relative intensity along the X-axis, so that the actual value of C is not 

important. Integration ofEquation 1 yields, 

E =~Si~P)[Sin(ax - kR)+sin(ax - kR+ 2a)], (2) 

with a == (ka / 2) sin 8,p == (kb / 2) sin 8. This is just the sum of the two fields 

at P(x), the distance from the first slit to P(x) is R, giving a phase term 

equal to (-kR). The distance from the second slit to P(x) is (R-asin8) 
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or (R - 2a / k ), yielding a phase tenn equal to ( - kR + 2a), as in the second 

sine function. The quantity 213 is the phase difference between two nearly 

parallel rays, arriving at point P(x) on the X-axis, from top and bottom 

edges of one of the slits. The quantity 2a is the phase difference between 

two waves arriving at P(x), one having originated at any point in the first 

slit, the other coming from the corresponding point in the second slit. 

Simplifying Equation 2 a bit further, it becomes 

sin 13 .
E =2bC(p)cosa slO(mt - kR;+ a), (3) 

which when squared and averaged over a relatively long interval in time is 

the intensity function. The reason for averaging is that the response time 

for the detector '" is much greater than the vibrating period of the light 

wave, so what the detector records is the average intensity of one period. 

So the intensity is 

sin 2 f3 
1(8) = 4/0( /32 )cos 

2 
a. (4) 

In the 8 =0 direction (i.e., when 13 =a =0), 10 is the flux-density 

contribution from either slit, and 1(0) =4/0 is the total flux density. TIle 

factor of 4 comes from the fact that the amplitude of the electric field is 

twice what it would be at that point with one slit covered. This expression 

can be viewed as being generated by a cos2 a double-slit interference tenn 

modulated by a (sin 2 13)/132 single-slit diffraction tenn. 
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At angular positions (O-values) where p = ±Jr,±2Jr,±3Jr,"', 

diffraction effects are such that no light reaches P(x), and clearly none is 

available for interference. At points on P(x) where 

a = ± Jr/2,±3Jr/2, ±5Jr/2,"', the various contributions to the electric field will 

be completely out of phase and will cancel due to the double-slit 

interference, regardless of the actual amount of light made available from 

the diffraction process. That is quite different from what we will see later 

in the experiment data; we did not get value 0 at any point. 

We used the Quattro Pro spreadsheet to calculate the theoretical 

diffraction intensity pattern. We chose parameters that appear to be close 

to the experiment so that we could compare the difference between them. 

The results are presented in Figure 2 

2. Double-slit Diffraction Experiment 

The experimental setup is just as shown in Figure 3, which is not to 

scale; it is just a demonstration. The 3-milliWatt ReNe Laser emits a 

parallel light beam which is incident on the screen of the double-slit. At a 

certain distance D the diffraction intensity is detected by the optical fiber 

bundle which is mounted on a sliding bench. The optical fiber bundle can 

be moved manually along the bench to scan across the whole diffraction 

pattern. The signal is first processed by the PASCO photo detector and 

then transferred to the computer. We use the Vernier data acquisition 
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Figure 2. The theoretical double-slit diffraction pattern (thin line) and the 

data (thick line). The theoretical curve was generated using a slit 

separation a=O.13 cm and slit width b=O.056 cm which best fit the 

maxima and minima of the data. The intensity has arbitrary units in order 

to compare the two pattenls 
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Figure 3. The setup for the double-slit diffraction experiment. The end of 

the optical fiber bundle detector can be moved manually along the sliding 

bench to scan across the diffraction pattenl. 
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software known as Data Monitor8
. The Quattro Pro spreadsheet is used to 

process the data. 

The following data is what we obtained for our experiment: 

Width of the slit of double-slit: b = 0.056 cm 

Distance between the center of the two slits: a = 0.13 cm 

Distance between the double-slit 

and the optical fiber bundle: D = 91.1 cm 

Radius of the optical fiber bundle: R = 0.11 cm 

Distance between the two measured data points: dy = 0.025 cm 

We measured 157 points of the diffraction pattern which are plotted in the 

Figure 2. Comparing the measured data with the theoretical diffraction 

pattern, the measured data do not have minima zero points and the maxima 

are smaller than the corresponding maxima of the theoretical pattern, the 

ml111ma are greater than the corresponding minima of the theoretical 

pattern. 

As for the processing of the measured data by FFT later, we 

actually used 128 points of the measured data. As is discussed in Chapter 

3, this is because the FFT method requires the number of data points to be 

2 N 
. 
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Chapter 3
 

Fourier Analysis and Optimal Filtering Theory 

1. Fourier Analysis 

1.1 Completeness and Orthogonality of Sinusoidal Functions 

4Jean Baptiste Joseph Fourier(1768-1830), the famous French 

mathematician presented this theorem that any periodic function of period 

21f can be expressed in the form 

a co co 

/(t) =_0 + La" cosnt + Lb" sinnt. (5)
2 11=1 11=1 

For our purposes, we will assume the Fourier series converges for 

any problem of interest to us. At a mathematical level, the Fourier series 

works because the sines and cosines form a complete, orthogonal set. 

Completeness means they are sufficient to describe any periodic function 

as in Equation 5. The orthogonality is expressed by 

I<Isinmtsinntdt = {~..". m:t:. 0, (6) 
-I< 0, m = 0, 
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Ir {tram n m~ 0, 
cosmt cosntdt = .. (7) 

-Ir m =11 =J 2tr, 0, 

J
Ir

sin mt cos11tdt =0, all integral m and n. (8) 
-Ir 

Using these orthogonality relations, we can easily find that the coefficients 

are derived from the given function by the standard fonnulas 

an =-
1 JIr /(t)cOSl1tdt, (9) 
tr 

-Ir 

and 

bn =-
1 JIr /(t)sinl1tdt. (10) 
tr -Ir 

While much of our work will be with real functions, the concept of 

Fourier series is applicable to complex functions as well. Expressing the 

sines and cosines as exponentials, Equation 5 can be rewritten as 

00 

/(t) = Lcneint (11) 
n=-«l 

in which 

(an -ibn)/2, 11 > 0, 

Cn = an' 11 = 0, (12) 
{ 

(a lnl + iblnl ) / 2, 11 > 0, 

12 



The cit I S can , of course, be obtained by integration, 

1 If 

Cn = 21C f f(t)e-intdt. (13) 
-If 

1.2 The Fourier Transform 

7Closely related to the idea of the Fourier series representation of a 

function is the Fourier transfonn of a function. The series representation is 

useful in describing functions over a limited region, or on the infinite 

interval (- 00,(0) if the function is periodic. Fourier transfonns, on the 

other hand, are useful in describing nonperiodic functions on the infinite 

interval. 

To develop the transfonn, first consider the series representation of 

a function that is periodic on the interval [-T, 1]. Making the substitution 

t = 1Ct/T, we have 

'" 
f(t) = "" C einlrtlT (14)£... n , 

-00 

where 

1 T 
cn =2T f f(t)e-inlrtlT dt. (15) 

-T 

We can now identify the discrete frequencies appearing in the summations 

as being 

n1C 
(16)

CiJ =T' 
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and the differences between successive frequencies as being 

~aJ = 
1f 
T' (17) 

Then the series can be written as 

lX) 

j(t) =""£... C e in!1U , (18)n 
-lX) 

where 

~aJ T 

Cn = 2lf Jj(t)e-in!1<ddt. (19) 
-T 

We now define 

C - ~(j) 
n - J2lf g(ll~(j)) (20) 

so that 

1 T 

g(ll~aJ) =--Jj(t)e- in!1<ddt (21)
J2lf -T 

and 

1 lX) 

j(t) = - L~aJg(n~aJ)ein"'<d . (22)
J2lf n=-lX) 

We now take the limit as T In so doing, ll~aJ becomes the~ 00 • 

continuous variable aJ and the swnmation in Equation 21 becomes an 

integral. Therefore 
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-------------

1 00 

f(t) = r;::- fg(w)e ia1 dw (22)
v21f -00 

and 

1 00 

g(w) = .J21f If(t)e-
ia1 

dl. (23) 

Now define g(w) to be the Fourier transfonn of f(t), 

1 00 

.7[f(l)] =g(w) = r;::- f f(t)e- ia1 dl. (24)
v21f -00 

and f (I) to be the inverse transfonn of g(w) , 

1 .00 

.7-1 [g(w)] = f(/) = r;::- fg(w)e Ja1 dw. (25)
v21f -00 

1.3 The Discrete Fourier Transform 

7When a physical quantity is a function of time it is measured in 

discrete time increments of M. As a result, we have a discrete set of 

numbers f(m6t), m = O,I,···,N -1. Under these conditions, we cannot 

actually calculate the true Fourier transfonn using Equation 23 since we 

do not have enough data to work with. We do not have any data before 

1 = 0 , and do not have continuous data, but only data at times m6t . 

15 
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However we can calculate something that resembles the Fourier 

transform. We will assume we took data for a sufficiently long time T that 

all the interesting behavior is contained in the data available. We can 

approximate the Fourier transform of the true data over an infinite range 

by something resembling a Fourier series representation of the actual data, 

on the interval 0 < t < T. 

The complex representation of the Fourier series on the interval 

o< t < T can be written as 

"J 

! (1) =~ C ei2mrtiT (26)£... n , 
-"J 

with the coefficients given by the integral 

1 T 
c = T f!(1)e-i21mtITdt . (27)n 

o 

This representation of the function is periodic with period T. In order to 

make this more like a Fourier transform, define 

2" (28)tJ.OJ =T' 

We then approximate the integral by the trapezoidal rule, and define the 

discrete Fourier transfonn as 

N-I N-I 

g(lltJ.OJ) =L!(mtJ.t)e-in!ltm/!;J =L!(mtJ.t)e-i2
1f1//nIN • (29) 

m=O m=O 
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Since we only have N known quantities, the data taken at N times, we can 

only detennine the transfonn at N frequencies. 

As for evaluating the inverse transfonn, we can find an exact 

inversion procedure based on the idea of orthogonality. Consider the idea 

that functions can be orthogonal to one another, in the sense of performing 

an integration. They can also be orthogonal in the sense of a summation. 

Consider the sum 

N-I iaN 
S =~ ika 1- e 

ia (30)" £...Je = 
k=O 1- e 

In order to generate an orthogonality relation, we need to find a way to 

force s" to be zero if a:t:- O. We can do this by requiring that 

iaN - 1e -, (31) 

or that 

a =21!1 / N (32) 

with I an integer. This makes 1- e iaN 
, and hence SN ,zero. We can then 

write 

N-I 1= 0Lei2
.drIlN = {N' (33) 

k=O 0, I:t:- 0 

We now express I as the difference between the two integers m and n, and 

find our orthogonality relation 

17 



N-I 
~ i2tdrmiN -i21dmIN =NO.£-e e m.,,' (34) 
k=O 

Returning to the DFT given by Equation 29, multiply both sides by 

el211krriN and summing over n to find 

N-I N-IN-I 
L g(n~aJ )ei2"*,,IN =L L j(m~t)e-i21m1"IN ei21dmIN 
,,=0 ,,=0 m=O 

N-I N-I 
=Lj(m~t)Le-i21m1"IN ei21dmIN 

"",0 ,,=0 

N-I 
=Lj(m~t)N8k,m 

"",0 

=Nj(k~t). (35) 

The inverse discrete Fourier transfonn is then given as 

1 N-I 
j(mM) =-Lg(11~aJ)ei21m1"IN . (36)

N ,,=0 

The discrete Fourier transform is different from the Fourier transform, for 

example, the DFT uses only finite summations in its evaluations. It also 

has considerable computational advantage over the Fourier transform in 

practical problems. 
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1.4 Fast Fourier Transform 

The discrete Fourier transfonn is a powerful tool in mathematical 

physics, but it is still a computationally intensive operation.7 With N data 

points, there will be on the order of N operations perfonned in each 

summation. And this only yields one data point. in OJ -space. To evaluate 

all the g(m~OJ}, we'll need to perfonn N summations, for a total of N 2 

operations. So, if we double the nuniber of points, we quadruple the effort 

necessary to perfonn the calculation. 

Fourier analysis is a premier tool of the computational physicist 

because of the existence of a streamlined calculational procedure, the fast 

Fourier transfonn FFT. If N is an even number, then we can write the 

DFT as a sum over even-numbered points and a sum over odd-numbered 

points: 

N-I 
g(l1~OJ) =L!(m~t)e-i2tmrnIN 

m=O 

N-I N-I" 

= L!(mM)e-i21C7/1"IN + L!(m~t)e-i21C7/1"IN (37) 
m=O,eve" m=O,odd 

N12-1 N12-1 
= L!(2)~t)e-i2tr2}"IN + L!«2) + 1)M)e-i2tr(2}+I)"IN , 

}=o }=o 

where we've let m =2) in the first tenn (even points), and m =2) + 1 in the 

second tenn (odd points). But this is simply 

19 



N/2-1 
g(m1m) = Lf(2jM)e-i2trinl(nI2) 

j=O 

N/2-1 
+ e-i21f111N Lf((2j + 1)M)e-i2trinl(N/2) (38) 

j=O 

=geven (nt1m) + e -;21f111Ng odd (nt1m), 

we can see that sums are themselves DFTs, with half as many points, over 

the original even- and odd-numbered points. The original calculation of 

the DFT was to take on the order of N 2 operations, but this 

decomposition shows that it actually only requires 2 x (N / 2)2 operations. 

If we don't stop, each of these DFTs can be decomposed into even and 

odd points, and so on, as long as they each contain an even number of 

points. Let's say that N =2k 
, then after k steps there will be N transfonns 

to be evaluated, each containing only one point! The total operation count 

is thus not on the order of N 2 , but rather on the order of Nlog 2 N!. The 

fast Fourier transfonn is fast. 

The Quattro Pro spreadsheet has the FFT built-in function. We use 

that function to process our data. 

2. Convolution and Deconvolution Theorem 

7Consider two functions, f(x) and h(x). Mathematically, the 

convolution of the two functions can be defmed as 

20
 



g == f 0 h =J
00 

f (x)h(x - X)dx . (39) 
-00 

In Section 1 we discussed Fourier analysis in the time (t) and 

frequency (co) domains. Although they are actually equivalent, we use 

position (x) and wave number (k) domains in order to explain our situation 

more clearly. 

Here g is defined as the convolution off and h. Convolution can 

have different physical meanings for different applications. As for our 

case, f represents the input function to the detector, h represents the 

response function of the detector, and g represents the output function 

from the detector. 

The detecting cross section of our optical fiber bundle detector is 

not an ideal infinitesimal point. The receiving signal at each point actually 

adds up all the contributions incident on the cross section which covers 

some amount of area, so it can not represent the real signal at that point. 

The convolution actually is the description of this kind of weighted 

summation. The h can be regarded as a weight function. We will give a 

model of h for our case in Chapter 4. hI one word, we can say that 

convolution is the mathematical description of the physical distortion of 

the input. 

Now consider the Fourier transfonn of the convolution, 

.:7[f0h]= ~I[f0h]e-ihdx (40)
,,21r _tV 

21 



• 

1 1rl oo 
= .J21f J.l.J21f J.](X)h(X - X)dX}-"'d>: 
_ 1 fOO [1 oo l..Jv
- J2i _oof(X) .J2tr Lh(X - X)e-iladxr· 

We can defme w =x - X, and make the substitution x =w + X. After 

rearranging the integrals, we get 

:7[] ®h]: G(k) =[ .J~1f j!(X)e-'udXl[.J~1f Ih(w)e-"dw] 

=F(k)·H(k), (41) 

where 

F(k) =.:7[f(x)] = ~ j f(x)e-iladx, (42)
v2tr _OO 

and 

H(k) =.:7 [h(x)] = ~ jh(x)e-ibcdx. (43)
v2tr _OO 

This is known as the Fourier Convolution Theorem which is very useful in 

calculating convolutions. 

While there are instances where we want the convolution, we are 

often more interested in the deconvolution. That is, if we know the 

measured data g(x) , can we find the f(x) which is the uncorrupted 

original input function and try to eliminate the effect of the detector? 

Using deconvolution we can do that. 

22 



From the convolution theorem equation (41), we can get 

G(k) 
(44)F(k) = H(k)' 

then by applying the inverse Fourier transfonn, 

we get 

!(x)'=:J--1 [G(k)] (45)
H(k) . 

This useful result is what deconvolution can give us. 

3. Optimal (Wiener) Filtering 

According to the discussion above, we can deconvolve the effect of 

the response function with the dectector h in the absence of any noise. In 

practice the presence of noise degrades the signal beyond the effect of the 

detector response. It is necessary to develop a technique to handle this 

situation. Optimal filtering is a very effective tool to be used to remove 

the noise from a corrupted signal. 

6The measured data contains an additional component of noise. We 

define the measured data c(x), including the effect of noise by, 

c(x) = g(x) + n(x) (46) 
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where g(x) is the data without noise and n(x) is the noise term. 

The removal of the effect of noise can be discussed by using Fourier 

transforms. Since we need to apply the optimal filtering in wave number 

(k) domain, the Fourier transform should be applied to c(x), g(x) and n(x). 

C(k) = 
1 00 

r;::;= Jc(x)e-'Io:dx (47) 
",21r -00 

1 00 . 

G(k) = ~J g(x)e-'Io:dx (48) 
'" 21r -00 

N(k) = 1 
00 

. 

r;::;- Jn(x)e-'Io:dx . (49) 
",21r -00 

Then in wave number (k) domain we get 

C(k) =G(k) + N(k) . (50) 

The main goal of optimal filtering is to find the optimal filter <I>(k) 

which when applied to the measured data C(k) (notice it already contains 

noise), produces a quantity G(k) which is a reasonable approximation to 

the noiseless transform G(k). Then G(k) can be deconvolved with H(k) 

according to Equation 44 to produce a quantity F(k) that is a reasonable 

approximation to the uncorrupted transform F(k). In other words we will 

calculate 

-
G(k) =C(k)cI>(k) (51) 

and 
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- -
F(k) =G(k) / H(k) (52) 

I.e. 

F(k) = <1>(k)C(k) (53)
H(k) . 

Then we can calculate an approximation to the uncorrupted signal by 

taking the inverse transfonn 

I(x) =~-{F(k)J. (54) 

-
We demand that F(k) be close to F(k) in the least-square sense; 

that means 

fIF(k) - F(k)j2 dk is minimized. (55) 
-00 

I~ 

Substituting Equations 44, 50 and 53, Equation 55 becomes 

[G(k)+N(k)]<1>(k) G(k)12 
I-"--------'----'----'----'-:!.-----'-....:... - - dk 

_ H(k) H(k) 

00 

= IIHI-2 {IG+NI 2 1<1>1 2 +IGI 2 -2IG+NI·I<1>j·/GI}dk 
-00 (56) 

= ]IH\-2 {[IGI 2 +2IGI·INI +INI 2 ] .1<1>1 2 +IGI 2 - 2IGI 2 /cfJl- 2INI·IGI·lcfJl}dk 
-00
 

00
 

= IIHI-2 {IGI 2 11- <1>1 2 +IN1 2 1<1>1 2 
}dk . 

-00 
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According to Reference 6, the signal G and the noise N are uncorrelated; 

this means that their cross product, when integrated over wave number k, 

gives nearly zero. This can be used as a definition of noise. Obviously 

Equation 56 will be a minimum if and only if the integrand is minimized 

with respect to <1>(k) at every value of k. This is a problem in the calculus 

of variations. Consider <1>(k) to be a real function. Differentiating with 

respect to <1> and setting the result equal to zero gives 

IHI-2 
{- 21c1 2 11- <1>1 + 21N1 2 1<1>1} =0 (57) 

and then we get 

2 

IC(k)1 2' (58)
<1>(k) = IC(k)[2 + IN(k)! 

This is the fonnula for the optimal or Wiener filter <1>(k) . 

Notice that Equation 58 does not contain F(k) , the true signal. This 

allows an important simplification: The optimal filter can be determined 

independently of the detennination of the deconvolution function that 

relates F(k) and C(k). 

To detennine the optimal filter from Equation 58 we need some 

way of separately estimating IcI 2 and INl 2 
• There is no way to do this from 

the measured signal C alone without some other information, or some 

assumption. Since the optimal filter results from a minimization problem, 

the quality of the results obtained by optimal filter is second order in the 

precision to which the optimal filter is determined. In practice, even a 

fairly crudely detennined optimal filter can give excellent results when it is 
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applied to data. So we can make a reasonable hypothesis as to what the 

optimal filter is by examining C(k), the Fourier transform of the raw data. 

Draw a smooth curve through the noise spectrum, extrapolating it into the 

region dominated by the signal as well. Then draw a smooth curve 

through the signal plus noise power. The difference between these two 

curves is the smooth model of the noiseless signal. Notice that from 

Equation 58 the <1>(k) will be close to unity where the noise is negligible, 

and close to zero where the noise is dominant. The intermediate 

dependence given by the filter is the optimal way of interpolating between 

these two extremes. 
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Chapter 4 

Results 

1. The Theoretical and Experimental Results of 

Double-slit Diffraction Pattern. 

Using the Fraunhofer diffraction theory of the double-slit as 

discussed in Chapter 2, we obtained the theoretical curve of the double-slit 

diffraction pattem as shown in Figure 2. Using the optical fiber bundle 

detection system as shown in Figure 3, we obtained the experimental data 

and plotted it along with the theoretical curve in Figure 2. The minima 

and maxima are at the same locations. As for the differences, the 

theoretical data has minima zeros, but the experimental data does not 

have, the maxima of the experimental data are smaller and the minima of 

the experimental data are greater for the three peaks. These differences 

are present because the noise gives the experimental data an offset and the 

averaging effect of the detector smears out the input signal. 
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2. The Model of Response Function h(x). 

2.1. The design of response function h(x). 

When the detector moves along the bench measuring the intensity of 

every point, the optical fiber bundle detector takes in all the energy 

incident on its cross section. We assume the cross section is circular and 

the intensity depends only on x. From Figure 4 the energy incident on the 

gray band can be calculated by multiplying 2.JR 2 
- x 2 ·cJx (the area of the 

gray band) and the intensity lex), so the total energy the detector actually 

2	 2records is the integral	 
2R

f2.JR 2 
- x • l(x)· cJx . This.JR 2 

- x is just the 
o 

response function hex) that we need, it characterizes the weighted 

response of the detector. Figure 5 shows the theoretical diffraction pattern 

and h(x). Figure 6 shows the experimental data and h(x). 

2.2. The test of the model of h(x). 

The result of convolution of the theoretical double-slit diffraction 

pattern and response function h(x) using the model we designed is shown 

in Figure 7 along with the measured data. The two curves are closely 

matched which means that the model of hex) works very well. In Figure 

8, the theoretical double slit diffraction pattern is compared with what has 

been convoluted by the h(x). 
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I 

x
 

~~~ 

dx 

Figure 4. The calculation of model of the response function h(x). The 

cross section of the end of the optic fiber detector is assumed to be 

circular with radius R. 
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Figure 5. The response function h(x) and the theoretical double-slit 

diffraction pattern. 
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Figure 6. The response nmction hex) and the measured experimental data 

of the double-slit diffraction pattern. 
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Figure 7. The thin curve is the theoretical double-slit diffraction pattern 

convolved with the response function h(x). The thick curve is the 

measured experimental data. 
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Figure 8. The thick curve is the theoretical double-slit diffraction pattern 

convolved with the response ftmction h(x). The thin curve is the 

theoretical double-slit diffraction pattern before convolution. 
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3. The Optimal Filter 

3.1. The necessity of applying the optimal filter. 

First we applied the deconvolution method to the measured data 

directly trying to get the uncorrupted signal pattern, but the result is far 

from the theoretical double-slit diffraction pattern. Because the process of 

deconvolution actually is quite sensitive to noise in the input data, it can 

sometimes produce poor results for this reason. So we have to apply the 

optimal filter method to eliminate the noise. 

3.2. The estimation of G and N. 

We first generate a theoretical G(k)2 to compare with the measured 

data C(k)2 in Figure 9. This gives us an idea of the difference between the 

two curves which is caused by noise. Then we used the method discussed 

in Chapter 4. We assume the values of G(k)2 and N(k)2 just as shown in 

the Figure 10. 

3.3. The calculation of the filter. 

After calculation using Equation 58, we get the optimal filter <1>(k) 

and plot <1>(k)2 ·IC(k)1 
2 

on the same graph as shown in Figure 11. We can 

see how the optimal filter works: When k is less than 0.25, <1>(k) is one 

and <I>(k)2 ·IC(kf is equal to IC(k)1
2 

~ this part of the data is not modified. 
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Figure 9. The thin curve is the square of G(k), the Fourier transfonn of 

g(x) , which is the theoretical double-slit diffraction pattern convolved 

with the response function h(x). The dots represent the square of C(k), 

the Fourier transfonn of measured experimental data of double-slit 

diffraction pattern. 
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Figure 10. The dots represent the square of the Fourier transfonn of 

measured experimental data of double-slit diffraction pattern. The solid 

curve is the square of G(k), the Fourier transfonn of model for the 

noiseless signal g(x). The straight line is the square of N(k), the Fourier 

transfonn of the model of noise n(x). 
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Figure 11. The thin curve is the optimal filter. The thick curve is the data 

after filtering. 
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When k is more than 1, <I>(k) is equal to zero, <I>(k)2 ·IC(k)1
2 
is equal to 

zero, the noise in the data is successfully eliminated. 

4. The Final Result 

Using the Equation 53, we can get F(k) and then take the inverse 

Fourier transform to get the final result f (x) from which has been 

eliminated both the effect of response of the optical fiber bundle detector 

and the noise. In Figure 12 we compare the measured data with f (x). In 

Figure 13 the theoretical double-slit diffraction pattern is compared with 

f (x) which is the experimental measured data after filtering and 

deconvolution. The agreement between the theoretical curve and the data 

has been clearly improved. 
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Figure 12. The thick curve is the measured experimental data of double­

slit diffraction pattern. The thin curve is the measured experimental data 

after optimal filtering and deconvolution. The intensity has arbitrary units. 
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Figure 13. The thin curve is the theoretical double-slit diffraction pattern. 

The thick curve is the measured experimental data after optimal filtering 

and deconvolution. The intensity has arbitrary units. 
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Chapter 5 

Conclusions 

The optical fiber bundle detection system works well. The optimal 

filtering deconvolution method is feasible. By using this method we can 

actually detect the details of the pattern that are smaller than the cross section 

of the detector as long as we take enough data and have reasonable models of 

the response function and the noise. This is an important and very useful 

teclmique to get higher resolution by using the same detection system. 

There are two points that need to be improved in the future. First, the 

existing system should be optimized. In order to be able to measure the data 

in more detail, we need greater intensity and higher resolution. Greater 

intensity will make the noise relatively small and easy to detect, and higher 

resolution is helpful in identifying detailed structure. However, intensity and 

resolution are two quantities related to each other. If we try to get more 

intensity we will lose some resolution and vice versa. So how to arrange the 

distance between the double-slit and the detector to create an optimized 

condition still needs to be investigated. Second, the collection of data should 

be automated. Since we move the detector along the slide bench manually, it 

takes a long time to get the data. This should be improved later. 
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