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Chapter 1 

INTRODUCTION 

1.1 Development of Quantum Chemistry 

Early in the twentieth century, physicists came to the conclusion that 

while classical mechanics had been able to successfully describe the motion of 

macroscopic objects, classical mechanics could not correctly describe the behavior 

of very small particles such as the electrons and nuclei of atoms and molecules. 

Quantum mechanics was developed as a set of laws to describe the behavior of 

such submicroscopic particles. Quantum mechanics is usually introduced as a set 

of postulates that are justified only by their ability to predict and correlate 

experimental facts and by their general applicability. Quantum chemistry applies 

those postulates to problems in the field of chemistry. 

1.2 The Schr6dinger Equation for a One-Atom System 

The status of a quantum mechanical system is described by a state function 

or wave function lV, \Aihich is as a function of the coordinates of the particles of the 

system and the time [lV =lV( x, y, Z, t )]. The concepts of the wave function and the 

equation governing its change with time were developed in 1926 by the Austrian 

physicist Erwin SchrOdinger. 1 For a one-particle, one-dimensional system, the time­

dependent Schr6dinger equation is: 
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h a'P(x,t) = h 
2 

a 
2 
'P(x,t) + V(x, t) 'P(x,t) Eq. (1.1) 

j at 2m ax 2 

Eq. (1 .1) is formulated to be the first derivative of the wave function with respect to 

time and allQ\NS the calculation of the future behavior of the wave function for any 

kno'M1 value of t. The constant fI has the value of h/2n; where m is the mass of the 

particle, i =(-1 )~, and V(x, t) is the potential-energy function of the system. 

The wave function, lJJ, is not expected to define specifically the position of 

a particle relating to one of the coordinates (x, for example). Max 80m2 postulated 

that the probability density for finding the particle at various values of the x 

coordinate is given by the following relationship 

IlJJ(X,t)!2dx (1.2) 

This equation predicts the probability of finding the particle at time t in the region 

lying between (x) and (x + dx). 

Frequently, it is not necessary to employ the time-dependent Schr6dinger 

equation. A simpler time-independent form of the equation, Eq. (1.3) is used 

instead: 

h 2 d 2l\1(x) 
- + V(x)l\1(x) == El\1(x) (1.3) 

2m dx 2 

where E is the energy of the particle of mass m moving in one dimension. 

1.3 Operators in Quantum Chemistry 

An operator is a rule that transforms a given function into another one. This 

definition can be dr8'M1 from Eq. (1.3) when it is redisplayed in the form of Eq. (1.4). 

When the wavefunction is an eigenfunction of the energy operator, it gives the 

wave function back again multiplied by the allowed values of the energy. The term 
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within the square brackets is called the Hamiltonian operator for the system. 

-h2 d 2 

[-- + V(x)]*(x) == EtJr(x) (1.4)
2m dx 2 

An important vector operator in quantum mechanics is the Laplacian operator, v2
, 

which acts as a differential operator on the wavefunction, 41, as follows: 

a2 a2 a2 
v2 = - + - + - (1.5) 

ax 2 ay2 az 2 

1.4 The SchrOdinger Equation for Many-Electron Systems 

The molecular properties of a chemical system can be calculated once the 

solutions to the Schrodinger equation have been obtained. The molecular 

Schrodinger equation (Hop 41 =E41) is very complicated and almost impossible to 

solve exactly except for a few special cases. Exact solutions to the Scl"lrodinger 

equation can only be obtained for a few systems known collectively as idealized 

systems; such systems include the particle in a box, the harmonic oscillator, the 

rigid rotor, and the hydrogen atom. 

It is sufficient for the purposes of this research to consider the spin-free, non­

relativistic Hamiltonian operator for many-electron systems. This operator provides 

the major portion of the energy of a stationary state; it includes the kinetic energy 

terms for the electrons and the potential energy terms for the electron-electron and 

nucleus-electron interactions. Eq. (1.6) gives the non-relativistic Hamiltonian. The 

first term, the Laplacian operator for the electrons, refers to the kinetic energy of 

the electrons. 

h 2 Z 2 2 
~=~L~2_L-e_+L~ (1.6) 

...m j j r j /<j r'j 
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The other tv\,o terms account for the potential energy due to Coulombic interactions. 

The second term relates to the nucleus-electron attractions, where Ze is the nuclear 

charge and rj is the distance of the electronjfrom the nucleus. The third term refers 

to the electron-electron repulsions where rij is the distance between the two 

electrons i and j. The notation i < j on the summation sign means that the 

summation is to be made for all values of i, and that for each value of j there is a 

further summation over all values of i that are less than j, thus ensuring that each 

repulsion is taken into account only once.3 

1.5 Approximation Methods in Quantum Chemistry 

For a variety of chemical systems of interest, such as many-electron atoms 

or molecules, the electrostatic interaction of the electrons with one another, as well 

as with the nucleus, make accurate calculations of the wave functions and energy 

levels much more difficult than in the case of any of the idealized systems. For such 

situations, an approximate solution to the equation frequently can give quite 

satisfactory results that closely approach the exact solution. 

1.5.1 The Variation Method 

The variation method is based on the variation principle that states that for 

any normalized acceptable function fIJ, the Hamiltonian is as shown: 

Hav = !4>*Hop4>dr ~ Eo· (1.7) 

Here Eo is the lowest eigenvalue of the energy. This method, in words, states that 

if an arbitrary wavefunction is chosen to describe a chemical system, the energy 
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calculated from this function will be greater than or equal to the energy calculated 

using the true ground state wavefunction. Thus, from among several approximate 

functions, the one that gives the lowest energy should be the one of choice. 

When employing the variation theorem for chemical problems, the first step 

is to guess a starting function. To assist in the minimization process, the initial 

function usually includes one or more variable parameters that can be adjusted to 

obtain the final appropriate function. A mathematical description of the theory can 

be reviewed in the references cited in the reference section. 

1.5.2 Perturbation Theory 

Perturbation theory is used to determine the wavefunction of a system if the 

solution for a similar system is known exactly. One example of this situation is the 

use of the known eigenfunctions for a hydrogen atom to approximate the 

wavefunctions of the same atom when it is being affected by external electrostatic 

fields. 

1.6 The Independent-Electron Approximation 

This type of approximation begins by neglecting the electron-electron 

repulsion term, the third term on the right-hand side of Eq. (1.6) that couples the 

motion of the two electrons. Dropping this term, the Hamiltonian becomes Eq. (1.8): 

H = _ h 
2 

"'i::;2 _ " Ze 2 (1.8)
} "L.J} r_m } L.J 

} } 

In studying the helium atom as an example of a nucleus with charge +2e and two 
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electrons, the potential energy of the system of the three constituents is related to 

their interparticle distances, r" r2, and r12. According to classical mechanics, the 

potential energy is: 

2 e 22e 2 
V(r ,r ,r ) = _ 2e - -- +- (1.9)1 2 12 r, r2 r'2 

The first two terms of Eq (1.9) relate the attractions between the electrons and the 

nucleus while the third term deals with the repulsion between the two electrons. 

Assuming a stationary nucleus, Eq. (1.10) is the Schrodinger equation for this 

system. The coordinates x, y, and z are the Cartesian coordinates of the electrons 

relative to the nucleus as the origin and m is the mass of the electron. 

z z 
-h [(azqr + azqr + azqr) _ (azqr + azqr + a : )]+V(rI,rZ,rIZ)w=E\jI (1.10) 
2m aXI aYI aZI axz ayz a... I 

Substitution of Eq. (1.5) into Eq. (1.10) gives the condensed Eq. (1.11). 

Jiz Jiz 2 _ 
--~w - -Y'zW + V(rl'r2,rI2)w - EW (1.11)

2m 2m 

When one employs the independent-electron approximation to obtain a 

solution for this equation, one begins by neglecting the electron-electron repulsion 

in the potential-energy term. The resulting equation, Eq. (1.12), shows that neither 

electron is affected by the presence of the other and the two of them behave 

completely independently. 
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( _ 
..~ 
h
m 

2 'Ii
1 

_2e 
r 

2) W+ (_ 
2 
h
m 

2 'ii _ 2e
r

2) W= EW (1.12)2 
l 2 

This equation can be written in an even simpler form as in Eq. (1.13): 

W(I,2) = wl (1)wi2) (1.13) 

where 1IJ1(1) and lIJ2 (2) satisfy Eqs. (1.14) and (1.15) for a hydrogen-like atom with 

nuclear charge +2e: 

h 2 2e 2 
_ E 11.(--~ - -)WI - l'fl (1.14) 

2m r2 

h 2 
2 2e 2 _ E 11. (1.15)(- -V2 - -)W2 - 2'f2 

2m r2 

Substitution of Eq. (1.13) into Eq. (1.12) gives: 

$2(2)[( -!C.vi -2e 2) $1(1)] + $1(1)[( -!C.v; -2e 2) $2(2)] = £$1(1)$2(2) (1.16)
2m 2m rr l 2 

Replacing the term in the square brackets by E1and E2 in Eqs. (1.14) and (1.15) 

gives: 

(E1 + E2)1IJ1(1 )1IJ2(2) = E1IJ1(1 )1IJ2(2) ( 1.17) 

In this approximation the total energy of the two electron system is given by 

the sum of the two individual energies, E =E1+ E2. Also, according to Eq. (1.13), 
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the probability density function for two electrons is the product of the probability 

densities for each electron in the field of the bare nucleus: 

Il\.I(1,2)12 = Il\.I(1WIl\.I(2)!2 (1.18) 

The fact that the one-electron probability densities combine in this manner shows 

clearly that the t'MJ electrons move independently of one another in the absence of 

the electron-electron repulsion term.4 

1.7 The Bom-oppenheimer Approximation 

In 1927 Max Born and J. Robert Oppenheimer showed that an excellent 

approximation is to treat the electronic and nuclear motions separately.s The 

approximation considers the movement of the nucleus to be very slow relative to 

that of the electrons. This huge difference in velocities is a result of the nuclear 

mass being thousands of times greater than the electronic mass. Consequently, 

one assumes a fixed configuration of the nucleus, and solves an electronic 

Schrodinger equation for this configuration to find the molecular electronic energy 

and wavefunction. The process is carried out repeatedly for many different fixed 

nuclear configurations to give the electronic energy as a function of the positions 

of the nucleus. The nuclear configuration that corresponds to the minimum value 

of the electronic energy determines the equilibrium geometry of the molecule. 

Finally, the different calculated values of the electronic energy represent the 

potential-energy for the nuclear motion that allows one to obtain the molecular 

vibrational and rotational energy levels for the given electronic state. 

The Hamiltonian in the Born-Oppenheimer approximation, for a molecule 
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with nuclei labeled by a and b, and two electrons labeled by i and j is: 

2 ,,2 2 ,,2 Z 2 ZZ 2 2ViH= _.!..I:_Va - .!..I:_ - I:I:~ + I: a be + I:~ 
2 a M 2 i m. a r. a<b R b i<J' r (1.19)I a I la a IJ 

The first term refers to the kinetic energy of all of the nuclei, where Ma is the mass 

of the a'th nucleus. The second term refers to the kinetic energy of the electrons 

and the third term accounts for the nucleus-electron attractive potential energies. 

Tile distance between the j'th electron and the a'th nucleus is ria. The fourth term 

is due to the nucleus-nucleus repulsion energy where Rab is the distance between 

the a'th and b'th nuclei. Finally, the last term takes into account electron-electron 

repulsion energies where the distance between the j'th and j'th electrons is rij. The 

Hamiltonian of Eq.(1.19) satisfies the Schrodinger equation: 

HopllJ(r,R) = E lIJ(r,R) (1.20) 

where E is the total energy of the system and lIJ is a function of the electronic 

coordinates r and the nuclear coordinates R. 

The Born-Oppenheimer approximation introduces lIJ as a product function of 

two components lIJR(r) and X(R): 

lIJ(r,R) = lIJR(r)x(R) (1.21) 

lVR(r) is the electronic wavefunction that relates the electronic coordinates 

r and that depends only upon quantum states. Although it varies for different fixed 

nuclear positions (R), X(R) is called the nuclear wavefunction. It is a function of the 

nuclear coordinates but depends as well on the electronic energy. The electronic 
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energy can be taken as the potential in which the nuclei move, so that the equation 

for X(R) is: 

[En(R) + Ee(R)]X (R) =EX(R) (1.22) 

where En is the nuclear kinetic energy Hamiltonian and Ee is the electronic kinetic 

energy Hamiltonian. The wavefunction 4JR(r) in Eq. (1.21) satisfies the following 

equation: 

Ee(r, R)4JR(r) =Ee(R)4JR(r) (1.23) 

where Ee(r, R) is the electronic Hamiltonian and Ee(R) is the energy. 

Eqs. (1.21), (1.22), and (1.23) are the description of the Born-Oppenheimer 

approximation. There is clear spectroscopic evidence that this approximation is 

valid for the ground state of molecules, but the approximation is not as good for the 

excited states of large polyatomic molecules. The Born-Oppenheimer approximation 

also breaks down in the case of degeneracy or near degeneracy of electronic 

states. 6 

1.8 Hartree-Fock Self-Consistent Field Method 

The self-consistent field (SCF) method of electronic structure calculations 

was first developed in the early 1930's by Hartee and by Fock for closed shell 

atoms or those containing a single electron. 7 Later, the method was extended to the 

study of open-shell systems. The method is the most commonly employed method 

in the ab initio study of atoms and molecules. The essential physical idea of the 

SCF calculation is to replace the exact dynamics or energetics of a particle by its 

evolution in a field averaged over all the other particles. To achieve consistency an 

initial set of orbital functions is guessed, and then improved by use of the variation 

theorem. For example, a N-electron atom in its ground state will have a 
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wavefunction 41, 

lV = IlV1(1)lV2(2)· .. lVN(N)1 (1.24) 

When a complete variation of the spin-orbitals in Eq. (1.24) is employed, the 

many-electron problem leads to a set of coupled one-electron equations to yield the 

Hartree-Fock equations:8 

Hew (N)lVN(N) =ENlVN(N) (1.25) 

H"" is the effective one-electron Hamiltonian, and it is the same for each of the N 

electrons; EN are the orbital energies. Usually. Hew has two parts: a kinetic energy 

term and a potential energy term. To determine the potential energy part, one 

assumes the electron is subject to the potential of the nucleus plus the average 

potential field created by all the other electrons. In this situation one can write Heff 

as a function of h, a hydrogen-like Hamiltonian for the electron i and the average 

field of the other electrons, Uav: 

HeIdi) =h( i) + Uav (i ) (1.26) 

To solve the Hartree-Fock equations, one uses an iterative method that 

starts by making an initial guess for the form of the lV; 'so Then one uses this set of 

functions to determine the potential acting on one electron. This allows one to solve 

for its orbital. Then the procedure is repeated for another electron's orbital, yielding 

an improved orbital. The process is repeated until all the original orbitals have been 

replaced by improved orbitals. One then takes the improved set of orbitals and 

begins the 'Atlole procedure over again in order to obtain a second improved set of 

orbitals. Eventually a set of orbitals that does not change after an iteration is 
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obtained. At this point one says a self-consistent field has been obtained, since the 

final set of orbitals is able to reproduce the potential field that determined them. 

Energies calculated by this method are usually within about one percent of 

the experimental values. This is quite good in absolute terms, but for most chemical 

purposes these results are not usually satisfactory.9 

1.9 Linear Combination of Atomic Orbitals 

The most commonly used method for constructing molecular orbitals is the 

linear combination of atomic orbitals (LCAO) method. A glossary of definitions is 

included in Appendix A. Employing the variation theorem as a source for obtaining 

an approximate solution for molecular problems, one can generate a trial function 

by taking a linear combination of the atomic orbitals of the atoms that form the 

molecule. One can expect the effect of any of the nuclei on the closest electron 

will be much larger than the effect due to any of the other nuclei on that electron. 

It is usual to assume the molecular orbital is similar to the isolated atomic orbitals. 

This assumed picture can be used as a starting point in the LCAO, and then the 

variation theorem permits the determination of the best molecular orbitals that can 

be constructed. 

The linear combination of n atomic orbitals, <1>;, is expressed by a trial 

function, Eq. (1.27), that was first used by Finkelstine and Horowitz in 1928:10 

ljJ = a1<1>1 + a2<1>2 + ... + an<l>n = L aJ~j (1.27) 

The variation theorem will give the best values for the coefficients, a;, that 

correspond to the lowest value of the energy. Using the theorem to deal with the 
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function in Eq. (1.27), \He obtain Eo, the IO\Hest eigenvalue of the Hamiltonian in Eq. 

(1.28): 

f4J* Hop4Jdr 
(1.28)

f4J*4J dr L': Eo 

The substitution of Eq. (1.27) into Eq. (1.28) will give Eq. (1.29), such that one can 

write it in the form of Eq. (1.30): 

f L (aA>;)H L (aj<pj)dt 
; J ~ E (1.29)
f L Q;<P; L Qj<Pli: 0 

I J 

L 8lJjiij 
if > E--'-----=- - 0 (1.30)L 8f3JS; 
ij 

The integrals, Hg , are matrix elements of the operator in an imaginary matrix of the 

integrals in which the ls and js take on all possible values. 

Hij = f 4>i' A4>j dT (1.31) 

The overlap integrals Sg play an important role in bonding. They are: 

Sij =f 4>i' 4>j dT (1.32) 

If one defines the left side of Eq. (1.30) as E, the energy associated with 4J, then 

one obtains Eq. (1.33) or equivalently Eq. (1.34): 

L 8 i 8j Hij 
if (1.33)

E = L af3
j 
Sif 

if 
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L a/8{Hij - ESij) = 0J
ij 

(1.34) 

Differentiating Eq. (1.34) with respect to one of the coefficients, am for example, 

while keeping the others constant gives: 

~ ajHm; +~ ajHm; -E(~ ajSm; +~ ajSm;) - aaa
E ~ a/8j Sij = 0 

/ / / / m IJ (1.35) 

The energy is a minimum when aE/aam = O. Also, Smi = Sim, and Hmi = Him for the 

assumed real function. Thus, this establishes Eq. (1.36): 

L a/{Hmi - E Smi) = 0 (1.36) 
j 

There will be n equations of this type, one for each coefficient that can be varied. 

A set of n linear equations in n unknowns is obtained. This equation has a non­

trivial solution only if the determinant of the factors that multiply the unknowns a; is 

zero, Le., 

H11 -ES11 H12 -ES12 H -ES1n1n 

H21 -ES21 H22 -ES22 H2n -ES2n , = 0 

(1.37) 

Hn1 -ESn1 Hn2 -ESn2 Hnn-ESnn 

In abbreviated form, this may be writen as:
 

IHmi - ESmil =0 (1.38)
 

When the secular determinants in Eqs. (1.37) and (1.38) are expanded, one 
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obtains a n'th degree polynomial in E. The lowest of the n values for E is the best 

value for the ground state energy obtainable from a function of type Eq. (1.27). To 

determine the function corresponding to this energy, one substitutes the value for 

E into Eq. (1.36) and solves for the coefficients to be put into Eq. (1.28). This 

procedure gives the ratios of the coefficients to be placed in Eq. (1.27). 

Normalization of the resulting function completes the determination of its form. The 

other (n-1) values for E are approximations to the energies of excited states. 

1.10 The Pauli Principle 

In classical mechanics the identities of a set of particles convey no important 

consequences. However, this is not the case in quantum mechanics. The 

Uncertainty Principle states that one cannot follow the expected path of a 

submicroscopic particle. Some properties such as mass, charge, or spin might be 

used to describe the particle when it is in a system of different particles. Thus, the 

wavefunction of a system of interacting identical particles cannot distinguish among 

the particles. 11 The wavefunction of a system of identical particles may behave in 

two possible ways, symmetric and anti-symmetric. Symmetric describes the 

situation when a function of the system of two particles has the property of being 

unchanged Wlen the t'MJ particles are interchanged. The function is said to be anti­

symmetric if its sign is changed when particles are interchanged. Experimental 

evidence shows that for electrons the symmetric case does not occur. The Pauli 

Principle states that the wavefunction of a system of electrons must be 

antisymmetric with respect to interchange of any two electrons. 
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The Pauli Principle has an interesting consequence for a system of n 

identical fermions (particles having antisymmetric wavefunctions). This 

consequence is: 

4J(q1, q2' ... , qn) =4J(q2, q1' ... , qn) (1.39) 

where q stands for the variables that describe each of the particles, the Cartesian 

coordinates (x, y, and z) and their spins (ms)' If electrons 1 and 2 have the same 

values for these variables, Eq. (1.39) becomes: 

4J(q1, q2' .,', qn) =0 (1.40) 

Thus, t'hO electrons with the same spin have zero probability of being found 

at the same point in three-dimensional space. Eq, (1.40) means that the probability 

of finding two electrons with the same spin close to each other in space is quite 

small. 
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Chapter 2 

COMPUTATIONAL METHODS IN CHEMISTRY 

2.1 Background and Historical Approach 

Chemistry, as one of the applied sciences, has frequently been regarded as 

a pure experimental science. This non-precise identification has made it apparent, 

to the nonspecialist, that for any chemical system to be investigated or studied, it 

must first be synthesized. Nevertheless, in recent years through the combined 

employment of ever faster computer systems and better software a new scientific 

era is da'M1ing. One individual from this era has noted that computational chemistry 

requires none of the steps usually needed in the other branches of the "classical 

science" such as preparation, separation or purification. 12 To this extent 

computational chemistry does not even require a chemistry laboratory! 

Computational quantum chemistry has proven useful as a tool for the elucidation 

of molecular structures, molecular properties and chemical reaction mechanisms. 

As a consequence it has been possible to study the chemical reactivities, transition 

states, kinetics, electronic structures, spectra, and other distinctive properties of 

chemical systems. 

Over the past tvvo decades, computational chemistry has undergone 

considerable change. During the seventies tens of untested methods, particularly 
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in the field of semi-empirical theory and of questionable accuracy and limited 

applicability, were appearing frequently. However, in the last few years, different 

methods of computational applications have become more accepted and gained 

considerable popularity. Molecular mechanics, semi-empirical, and ab initio 

(Gaussian methods) are the main three most widely accepted computational 

methods at this time. Each of these methods has carved out a niche where it tends 

to reign supreme, and from which it can recognize the eminence of the other two. 

Along this line, while the conformations of macro molecules are most successfully 

studied using the techniques of molecular mechanics, the electronic properties of 

small molecules are most accurately calculated using ab initio methods. The semi­

empirical methods are superior in the realm between the other two methods. 

2.1.1 Molecular Mechanics Methods 

The molecular mechanics methods (MM), also known as the empirical force 

field method, does not deal with an electronic Hamiltonian or wavefunction. This 

feature excludes the method from being classified as a quantum mechanical 

method. Instead, MM deals with any multi-atomic systems from the view of the 

mutual interactions between atoms expressed by an analytical function. The 

methods can handle very large organic and organometallic ground-state molecules 

with as many as a thousand atoms. They deal with the contributions to a molecule's 

electronic energy due to bond stretching, bond bending, van der Waals attractions 

and repulsions between nonbonded atoms, electrostatic interactions due to polar 

bonds, and energy changes accompanying internal rotation about single bonds. To 
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apply the molecular-mechanics methods, one needs sufficient data to choose 

values for the parameters. The calculations are very fast and generally give 

accurate molecular structures. Unfortunately, MM methods are parametrerized only 

for ground state systems, and as a result they are unable to adequately represent 

the geometries involved in bond-making and bond-breaking processes. However, 

bond lengths and angles are usually determined by this method within 0.01 Aand 

3° of the experimental values. 13 

2.1.2 Semi-Empirical Methods 

Semi-empirical methods are a series of molecular orbital computational 

techniques that were developed specifically for applications to organic chemistry. 

They use a simpler Hamiltonian than the correct molecular Hamiltonian, and 

parameters whose values are adjusted to fit experimental data or the results of ab 

initio calculations. The development of semi-empirical methods has been aimed at 

evaluating molecular properties of chemical system at a reasonable costof 

computer time. The first generation of the methods was intended to reproduce some 

electronic properties, such as the dipole moment, but could not simultaneously 

produce the molecular geometries and heats of formation. Like molecular 

mechanics methods, semi-empirical methods use experimentally determined 

parameters, and like ab initio methods, they are basically quantum-mechanical in 

nature but make extensive use of approximations. 

2.1.3 Ab Initio Methods 

Ab initio is Latin for "from the beginning" and indicates a calculation based 
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on fundamental principles.14 Such calculations use the correct Hamiltonian and do 

not use experimental data other than the values of the fundamental constants. This 

basic feature causes the methods to be classified as a non-parametrized molecular 

orbital treatment of a chemical system. Generally, the accuracy of ab initio 

calculations is comparable with experiments for heats of formation and is at least 

as accurate as experiments for the determination of molecular geometries. The 

methods are also versatile enough to calculate transition states and excited states. 

However, wider applications of ab initio calculations are limited by the costly 

requirement of computational facilities, their long calculation periods and their non­

applicability to large molecular systems. 

2.2 Basis Sets 

Most molecular quantum-mechanical methods begin the calculations with the 

selection of a basis set. The use of an appropriate set is an essential condition for 

the success of the calculations. Two of the basis sets, Slater-type orbitals (STO) 

and Gaussian-type orbitals (GTO), have come to dominate the area of molecular 

calculations. 

2.2.1 Slater-Type Orbitals 

Atomic orbitals at large distances from the nucleus have the exponential 

decay characteristics of hydrogen atomic orbitals. Nearer to the nucleus, the atomic 

orbitals oscillate as r changes. Slater proposed a simple algebraic form for atomic 

orbitals that is capable of representing the atomic wavefunction at large r. 15 The 

essence of the STO basis set is to place on each nucleus a chosen number of STO. 
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Generally, the larger the number of STO and the greater the care taken in choosing 

orbital exponents, the more accurate the final waveful1ction and energy will be. If 

one chooses a minimal basis set of STO, then one must also decide how to 

evaluate the orbital exponents in the STO. Slater's rules, minimization of the 

molecular energy by variation of the orbital exponents, or choosing the values that 

were found best for each type of atom in smaller molecules, are considered 'Nhen 

making a choice of the basis set. It is common to approximate the rather unwieldily 

orbital functions in Hartree-Fock calculations with STO that have the general form: 

Rn,l (r) Yt,m (8,<1» (2.1 ) 

'Nhere the radial part of the wavefunction is given by Eq. (2.2): 

R(r) = Nr(n '-1) e-lf (2.2) 

N is a normalizing constant, n* is the effective quantum number, ~, the orbital 

exponent, is a parameter that allows for the screening of the nucleus by the 

electrons. The set of all such functions with n, /, and m as integers, but with ~ 

having all possible positive values, forms a complete basis set. 

Accurate representation of a many-electron atomic orbital (AO) requires a 

linear combination of several STO. Slater suggested his approximation for an AO 

by taking ~ as: 

~= (Z - s)/n (2.3) 
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where Z is the atomic number and s is a screening constant calculated by a set of 

rules. A single Slater orbital does not have the proper number of radial nodes and 

does not represent the inner part of an orbital well. 

In order for molecules to have a complete set of AO basis functions, an 

infinite number of orbitals are needed. A minimal basis set for a molecular SCF 

calculation consists of a single basis function for each inner-shell AO and each 

valence-shell AO of each atom. However, an extended basis set calculation is 

considerably more accurate. 

2.2.2 Gaussian-Type Orbitals 

The use of STO as basis functions in polyatomic-molecule calculations 

produce integrals that are very time-consuming and often impossible to evaluate 

either numerically or analytically. Beginning in 1950 Boys proposed the use of 

Gaussian orbitals. IS A Gaussian function contains the factor exp(-if) instead of the 

factor exp(..q) in an STO, and thus enables molecular integrals with Gaussian basis 

functions to be evaluated more rapidly using a computer. 

GTO are widely used in molecular structure calculations. However, the 

solutions "fall off' too rapidly with r. Gaussian orbitals have the vvrong behavior at 

r = 0, and this incorrect behavior can have serious consequences for properties that 

depend on electron density at nuclear positions. Almost all modern ab initio 

calculations employ GTO basis sets. This basis set in which each atomic orbital is 

made up of a number of Gaussian probability functions has considerable 

advantages over other types of basis sets for the evaluation of one- and two­
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electron integrals. They are therefore much faster computationally than equivalent 

Slater orbitals. 

A STO can be represented by a linear combination of Gaussian orbitals. In 

order to obtain a STO/3G fit to a hydrogen 1s STO, one needs three primitive 

Gaussians. STO/3G means that three Gaussians have been used to fit a Slater­

type atomic orbital. The fit is shown in Figure 1. 

2.3 Semi-Empirical Molecular Orbital Methods 

A series of semi-empirical methods has been developed to treat medium and 

large polyatomic molecules that commonly present difficulties when studied by ab 

initio methods. The series has the methods CNDO, INDO, and NDDO, MINDO/1, 

MINDO/2, MINDO/3, MINDO, AM1, as well as PM3. These are known as Dewar 

semi-empirical molecular orbital methods.15 These methods have played a major 

role in the theoretical and computational study of organic chemistry, and are now 

being used increasingly in areas that were previously reserved for force-field 

methods. The most recent additions to this series, namely AM1 and PM3, have 

shrunk the debate that has long been circulated regarding the efficiency of these 

methods. Hence, these semi-empirical methods have become accepted and their 

ability to treat "large" systems at low cost in computer facilities and time are now 

appreciated by many experimentally and theoretically oriented chemists. 

2.3.1 The CNDO, INDO, and NDDO Methods 

The early semi-empirical molecular orbital methods, CNDO, INDO, and 

NDDO, were developed at a time when computers could deal with ab initio 
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calculations for only very small systems. These methods were not intended to 

reproduce molecular geometries and heats of formation, but rather other electronic 

properties, such as the dipole moment. The complete neglect of differential 

overlap (CNDO) method was proposed by Pople, Santry, and Segal in 1965.15 In 

this method, differential terms such as the <l>1l (1) <l>v (1) product are set to zero 

whenever fJ and .v refer to different atomic orbitals. This approximation eliminates 

a large number of electron-electron repulsion integrals. When evaluating electron 

repulsion integrals this approximation assumes that the atomic orbitals are 

spherically symmetrical. The directionality of p-orbitals is included only via the one­

electron resonance integrals; the size of the orbital depends on the orientations and 

distances of the orbitals and on a constant assigned to each type of bond. 

The intermediate neglect of differential overlap (INDO) method was 

proposed by Pople, Beveridge, and Dobosh in 1967.15 Both the CNDO and INDO 

methods treat only the valence electrons explicitly. In INDO, which is an 

improvement on the CNDO method, differential overlap between atomic orbitals on 

the same atom is not neglected in the calculation of one-center electron-repulsion 

integrals, but differential overlap is neglected in two-center electron-repulsion 

integrals. Thus, fewer two-electron integrals are neglected, as compared with 

CNDO; otherwise, the two methods are the same. 

The neglect of diatomic differential overlap (NDDO) method was 

suggested by Pople, Santry, and Segal15 as an improvement on INDO. The method 

was the first to include the directionality of the atomic orbitals in calculating the 
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repulsion integrals. In this case the three- and four-center integrals where the 

overlap occurs between atomic orbitals on the same atom 'N8re included. The 

degree of neglect of differential overlap in NDDO is more justifiable than in CNDO 

or INDO. The method was little used until 1977 when Dewar and Thiel modified it 

to produce the MNDO method, after attempts of parametrizing the earlier methods 

'N8re unsuccessful. 

2.3.2 The MINDO and MNDO Methods 

Because of the use of approximations in the SCF calculation, one can expect 

that the results of CNDO and INDO methods are similar but less accurate than 

minimal-basis ab initio SCF results. Thus, these methods do reasonablely well on 

molecular geometry but poorly on binding energies. The parameters in PNDO 

(partial neglect of differential overlap) and MINDO/1 (modified intermediate 

neglect ofdifferential overlap) theories 'N8re chosen so as to have the predicted 

molecular heats of formation fit experimental data as accurately as possible. 

MINDO does not neglect differential overlap between orbitals on the same atom in 

one-center electron-electron integrals, but differential overlap is neglected in two­

center electron-electron repulsion integrals. The MINDO/1 method uses parameters 

that give the best fit to heats of formation for molecules in their ground state. Both 

PNDO and MNDO t~leories produced acceptable values for heats of formation but 

they produce poor values for molecular geometries. Therefore, in the early 

beginnings of the 1970s Dewar and others proposed MNDO/2 and then MNDO/3. 

In the former a careful choice of parameters allo'N8d molecular geometries and 



26 

heats of formation to be calculated rather accurately in most cases. The theory was 

updated in the form of MINDO/2 to improve calculations of dipole moments and 

bond lengths in hydrogen-bonded species.17 

The MINDO/3 method, the last in the series of MINDO and a substantially 

improved version, has been parametrized for hydrocarbons, C-H-O-N compounds, 

C-H-F-CI compounds, and for some types of molecules containing 5i, P, and 5.18 

The method has been widely applied to calculate properties of ground-state organic 

molecules and to calculate potential-energy surfaces of chemical reactions. It uses 

a set of readily approximated parameters that, along with the constants used to 

evaluate the resonance integrals, allow the results to be fitted to experimental data. 

For a sample of a large number of compounds, the average absolute errors in 

MINDOI3-calculated properties are 11 kcal/mol in heats of formation, 0.02 A in bond 

lengths, 50 in bond angles, 0.4 D in dipole moments, and 0.8 eV in ionization 

potentials. 19 Among the wide variety of applications of MINDO/3 to problems other 

than structure and energy calculations are the calculations of NMR coupling 

constants and chemical shifts, 14N nuclear quadrupole resonance coupling 

constants, polarizabilities, nonlinear optical coefficients, and vibrational 

frequencies. 20 The discussion of the success or failure of the method to these 

applications is beyond our current interest. 

Dewar and co-'M)rkers developed the MNDO (modified neglect ofdiatomic 

overlap) method in 1977 to avoid some of the systematic MINDO/3 errors for 

molecules and to extend MINDO/3 to include metallic elements. The method has 
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been parametrized for compounds containing H, Li, Be, B, e, N, 0, F, AI, Si, P, S, 

el, Ge, Br, Sn, I, Hg and Pb. MNOO gives substantially improved results in the 

same calculation time as compared to MINOO/3. Its major improvements were with 

unsaturated molecules, compounds with adjacent lone-pairs, the calculation of 

bond angles, and the ordering of molecular orbitals. It is often the method of choice 

for systems t~lat are too large for good ab initio calculations and it is usually 

preferable to minimal-basis-set Hartree-Fock calculations. MNOO's average 

absolute errors are 9 kcallmol, 3°, 0.025 A, 0.35 0, and 0.5 eV in heats of 

formation, bond angles, bond lengths, dipole moments, and ionization potentials 

respectively. 21 

The advantage of MINDO/3 and MNOO over ab initio calculations is not only 

that they are several orders of magnitude faster, but also that calculations for some 

very large molecules are possible only with the semi-empirical methods. The 

neglect of large numbers of integrals not only saves computer time, but also 

reduces the core and disk space requirements in comparison with those for an 

equivalent ab initio calculation. 

2.3.3 AM1 and PM3 Methods 

AM1 (Austin mode/1) and PM3 (parametric method number 3) are the 

most recent parametric quantum mechanical molecular models based on the NOOO 

approximation. AM1 is a \N911-balanced and reliable method for the standard organic 

chemistry of molecules composed of the elements e, H, Nand O. However, the 

method suffers from the traditional problems that NDOO methods have in dealing 
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with lone pairs of electrons on adjacent atoms and does not perform well for 

phosphorous- and sulfur-containing molecules. AM1 was proposed to improve the 

hydrogen-bond and n-rotation-barrier problems with MNDO. However, there is a 

very small difference in the values of energies for the correct geometries of 

hydrogen-bonded systems and the AM1-predicted structures. These differences 

have been considered a minor problem for most chemical systems. The essential 

development in the AM1-methodology compared to MNDO is the addition of a 

series of Gaussian core-repulsion-functions (CRF) as adjustable parameters that 

enable tuning the methods more finely and then modifies the core-core repulsions. 

PM3 is Stewart's reparametrization of AM1. It was conceived to perform 

better than AM1 for nitro-compounds and hypervalent molecules. Its 

reparametrization depends mainly on statistical methods while it embraces 

chemical sense and experience gained prior to the development of AM1 . While the 

former excludes any bias that the chemist may build into the parametrization, the 

latter has the advantage that differences in stabilities, but not heats of formation, 

play a major role in chemical processes. Surprisingly, Stewart's PM3­

parametrization showed that hypervalent compounds could be treated satisfactorily 

and reproduce their geometries and energies. PM3 produces good results for 

hypervalent compounds because it makes them very polar. This apparent 

overemphasis of ionic character leads to good geometries and energetics for these 

hypervalent structures, but leads to very high atomic charges compared to those 

calculated by other methods. Even though these atomic charges have no physical 

tl;" 

t 
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meaning, the associated incorrect atomic charges are seen as a deficiency of 

PM3.22 

PM3 is usually better than AM1 for describing lone-pairs on adjacent atoms 

and for reproducing the geometries of hydrogen-bonded structures. However, AM1 

gives slightly better results for compounds containing C, H, Nand 0.22 
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Chapter 3 

SEMI-EMPIRICAL METHODS
 

APPLICATIONS TO AROMATIC SYSTEMS
 

3.1 Introduction 

Huckel molecular orbital theory (HMO) was the first semi-empirical method 

that enabled the studying of conjugated organic systems through the utilization of 

the so-called 17-electron approximation. The theory is known for its simplicity and 

limited computational effort. The first consistent improvement of the method utilized 

the LCAO approximation within the Hartee-Fock method to introduce electron 

interactions into the n-electron Hamiltonian. This improvement helps yield a deeper 

understanding of the effective energy operator in the Huckel scheme. The PPP 

method introduced by Pople, Parr, and Pariser21 has been of great value in the 

interpretation of conjugated and aromatic systems. The method improves the 

Huckel scheme by considering electron-electron interactions. However, some 

researchers are of the opinion that the use of Huckel theory is no longer warranted 

given the availability of high-speed computers and more sophisticated MO 

methods.23 

Semi-empirical molecular orbital t~leory is becoming an increasingly effective 

tool for the study of large organic molecules. In recent years a substantial amount 
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of work has gone toward explaining and estimating the effect of substituents on 

various chemical properties such as equilibria and reactivities of aromatics. Usually, 

this substitutional effect can be explained by electronic or stearic effects. To explain 

the electronic part, one should be aware of the electronic structure of the molecule 

of interest 'Nhere semi-empirical methods playa useful role. The following pages 

describe the methodology, or the essence in some cases, of the semi-empirical 

methods in the calculation of representative molecular properties. Since the semi­

empirical methods in the HyperChem™ program were used for the current 

calculations, most of the descriptions will relate to the software program itself. 

3.2 Semi-Empirical MO Theory of Conjugated Molecules 

A planar unsaturated organic molecule, benzene for example, is divided into 

aand nmolecular orbitals. Semi-empirical approximations deal with electrons in 0 

and norbitals separately. This is mainly due to the difference in the symmetries of 

the orbitals in addition to the greater polarizability of the nelectrons compared with 

that of 0 electrons. 

In the rrelectron approximation, rrelectrons are treated separately by 

combining the effects of the a -electrons and the nuclei into some kind of effective 

rrelectron Hamiltonian as in Eq. (3.1). The first summation refers to the Hamiltonian 

of t~le core electrons, 'Nhere Vi is the potential energy of the i'th rrelectron produced 

by the nuclei and the t:relectrons. The variation principle is then applied to 

determine a rrelectron wavefunction 4Jn that minimizes the variational integral and 

gives a rrelectron energy 1;. The Hamiltonian for this effective Hamiltonian is given 
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by Eq. (3.1): 

nn nn 2 

fin = L (--.!.V~+V) + L L Ze 
(3.1 );=1 211 ;=1 .,>i rIJ 

This approximation is not possible when studying non-planar unsaturated 

organic systems. Consequently, all the a and "-valence electrons must be 

considered together.24 

3.3 Single Point Calculations 

A single point calculation performs the calculations of the static properties 

of the system at only a single point. The point that is reached at the last step of 

geometry optimization of the molecule is preferably a minimum or a transition state 

on the potential surface. The calculations allow the determination of the potential 

energy, derivatives of the potential energy, electrostatic potential, molecular 

potential, molecular orbital energies, the coefficients of molecular orbitals for 

ground or exited states, and the vibrational frequencies. 25 

3.4 Geometry Optimization (Minimization) 

Application of molecular orbital theory demands a specification of the 

molecular geometry. A complete theoretical treatment of a molecule's equilibrium 

structure would involve minimization of the energy with respect to each 

independent geometrical parameter to yield an optimized structure. One may need 

to consider the system, the calculated values and the available computational 

resources in order to choose an appropriate geometrical model for a particular 
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study. It is sometimes necessary to use simple models of partial optimized geometry 

when complete optimization requires great computational effort. 

The optimized geometry is one in which no unexpected distortion of the 

geometry would lead to a change in the calculation of heat of formation. For the 

current purposes, the calculations of geometry optimization are performed with two 

goals in mind. First, characterize the potential energy minimum where the geometry 

optimization results in a new structure with new atomic coordinates and energy. 

Second, obtain a new stable structure as a starting point for a single point 

calculation that contributes a large collection of structural and electronic properties. 

The geometry is considered minimized if the predicted change in geometry and/or 

in heat of formation, or the current gradient norm, is sufficiently small. 

Frequently, semi-empirical methods employ one of three techniques to 

optimize the geometry of the molecule, a steepest descent method or one of two 

conjugate gradient methods. A mathematical description of methods used to 

determine the parametrization of the semi-empirical methods is discussed in detail 

in the literature.26 

3.4.1 Steepest Descent 

Steepest descent is the simplest method of optimization. It is a first order 

minimizer that uses the first derivative of the potential energy with respect to the 

Cartesian coordinates. The method moves down the steepest slope of the 

interatomic forces on the potential energy surface. The descent is attained by 

adding an increment to the coordinates in the direction of the negative gradient of 
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the potential energy, or the force. 

3.4.2 Conjugate Gradient Methods 

The conjugate gradient methods use both current gradient and the previous 

search direction to drive the minimization. This provides an advantage since it uses 

the minimization history to calculate the search direction, and converges faster than 

the steepest descent technique. The method also contains a scaling factor for 

determining an optimal step size. 

3.5 Computing Molecular Properties 

In quantum mechanical calculations most of the electronic molecular 

properties of a system, such as the dipole moment, are evaluated at a fixed 

molecular geometry by techniques such as calculating the value of an operator or 

using perturbation theory. HO'Never, some properties, such as bond angles, bond 

lengths, and vibrational frequencies of the system are calculated as a function of 

their molecular geometry, and they depend on the shape of the potential energy 

surface. 

3.5.1 Koopmans' Theorem 

In 1933 T. C. Koopmans sho'Ned that the energy required to remove an 

electron from a closed-shell atom or molecule is reasonably 'Nell approximated by 

the negative of the orbital energy of the molecular orbital from which the electron 

is removed. This result is the basis of Koopmans' theorem, which states that for 

closed-shell systems the ionization potential is the negative o~ the corresponding 

molecular orbital eigenvalue. 27 The method neglects the change in the newly­
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formed molecular orbitals of the ionized molecule. Thus, the difference between the 

Hartee-Fock energies of the ion molecule and the neutral closed-shell one equals 

the orbital energy of the molecular orbital from which the electron was removed. 

3.5.2 First Ionization Energy 

The first ionization energy is defined as the minimum energy required to 

remove a single electron from a gas phase system, M, as represented in Eq. (3.2). 

M(g) -+ M+(g) + e-(g) (3.2) 

The potentials within the orbital approximation require a model for the process 

involving the loss of an electron from the Ith orbital of system M. TI1e electron 

released by this process has zero energy, and thus the orbital model leads to the 

definition: 

I·) =-e·) (3.3) 

The ionization potential of an electron from the i'th orbital, or more precisely, 

the orbital ionization potential, and Eq. (3.3) can be regarded as consequences of 

Koopmans' theorem. The first ionization potential corresponds to removal of the 

most loosely bound electron in a given molecule. Within the orbital model it 

corresponds to the energy necessary to remove an electron from the highest 

occupied molecular orbitals. Higher ionization potentials (for i > 1) refer to the 

removal of an electron from inner shells of the neutral molecule. Thus, within the 

orbital model a molecule will have as many ionization potentials as it has electrons 
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occupying orbitals. The method assumes that despite the removal of an electron, 

the molecular orbitals of M+ are identical with those of M, and that there are no 

geometrical changes during the transition M - M+.28 

3.5.3 Heats of Formation 

The heat of formation (~Hf) represents one of the most important 

characteristic properties of a molecule. Mathematically it is defined in Eq. (3.4) 

where the first term represents the sum of the heats of formation of all atoms in the 

molecule and 0 is the dissociation energy. 

~Hf = L~Hf,A - 0 (3.4) 
A 

The dissociation energy characterizes the energy of the i'th molecule with 

respect to that of the constituent atoms. Consequently, the heat of formation reflects 

the stability of the molecule with respect to the simple substrates from which it is 

formed. The larger the absolute value of the heat of formation the more stable the 

molecule.29 

3.5.4 Molecular Geometries and Force Constants 

The equilibrium molecular geometry is defined as the set of nuclear 

coordinates corresponding to the global energy minimum. Thus, the equilibrium 

geometry should be calculated by systematic minimization of the total energy with 

respect to all independent internal coordinates, that is bond lengths, bond angles 

and torsional angles. 

A molecular configuration is described by parameters q1' q2,"" qM' that may 

be identified with appropriate internal coordinates. In the neighborhood of the 
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equilibrium configuration, for which all net forces acting upon the nuclei are zero, 

the total energy has the form: 

1 a2E
E = Eo + - L (--)odq; dqj +... (3.5) 

2;j aqpqj 

where Eo is the total energy at the equilibrium configuration. The term in 

parentheses is an equilibrium property that defines the force constant for a given 

pair of internal coordinates q; and ~I and is defined by Eq. (3.6): 

2( aE )0 = kg (3.6)aqpqj 

The first-order energy derivative with respect to q; can be interpreted as the 

negative of the force F; acting along the coordinate q; : 

aEF. = -- (3.7) 
I aq; 

At equilibrium this force must vanish because, by definition, for a stable 

configuration all internal forces must vanish and the situation is described by Eq. 

(3.8): 

aE
-F~qo) = (-)0 = 0 (3.8) 

aq; 

The dimensional vector qo defines the set of internal coordinates at the equilibrium 

molecular configuration. To determine the molecular geometry the total energy E(q) 

is minimized with respect to all variables q;. 

Although the calculation of the first-order energy derivatives (3.7) is 
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formidable, the most efficient minimization procedures involve at least some 

approximation to the second-order energy derivatives. Thus, most of the geometry 

optimization schemes are based on algorithms that either completely or at least 

partly eliminate the calculation of second-order derivatives. A detailed description 

of the most frequently employed geometry optimization schemes is described in the 

literature.30 

3.5.5	 Dipole Moment 

A molecule that consists of an assembly of ct"larged particles may at any 

moment in time have an instantaneous dipole moment J.l. The classical definition of 

this quantity for a collection of N particles of charge qj and position vectors f; is 

given by Eq. (3.9). However, in neutral species J.l does not depend on the choice 

of the origin: 

~ = Lq/j	 (3.9) 
j 

The quantum mechanical description of the dipole moment depicts the charge as 

a distribution that is a function of r, and the dipole moment is an average over the 

wavefunction of the dipole moment operator J.l: 

~ = L(-erj ) + LZAeRA	 (3.10) 
j A 

where Za is the charge of the nuclear core and ~ is the distance between the origin 

and electron i. 31 

3.6	 Application of Semi-Empirical Methods to Infrared Spectroscopy 

Spectroscopic methods are a practical approach to provide accurate 

information about molecular structure and different properties of chemical systems. 
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However, theoretical approaches can describe, to a large extent, both the physical 

origin of spectra and the relation between microscopic molecular structure and 

spectral parameters. The role of theory in molecular spectroscopy is mainly to 

provide a simple model, permitting a concise description of the spectrum by some 

set of empirical parameters. These parameters depend on the nature of the 

constituents of the molecule and on their mutual interactions, and may be 

calculated using theoretical methods. 

3.6.1 Vibrational Spectral Parameters 

Infrared spectra result from radiative transitions between vibrational levels of 

the same molecular electronic state. The spectra are characterized by their 

absorption frequencies and the corresponding band intensities. Tl1e determination 

of intermolecular vibration frequencies is achieved by the normal coordinate 

analysis. This analysis requires an assumption that the oscillation of atoms are so 

small that the harmonic approximation is valid. 

If the equilibrium molecular geometry is completely determined by some set 

of internal coordinates (bond lengths, bond angles, torsion angles) qo1, .. 0, q0 3N-6' 

where N is the number of atoms, then the energy change resulting from a small 

distortion dq1' d<l2 "0' d~N-6 of the equilibrium nuclear configuration is given by Eq. 

(3.11). The second-order energy derivatives are vibrational force constants: 

13N-6 3N-6 22E 
llE = - L L (-)0 dqj dqj' (3.11 )

2 j~1 j~1 cqpqj 
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Within the harmonic approximation the energy change defines the potential 

energy for nuclear motion. For the potential energy given by Eq. (3.11), the 

separate vibrations along the coordinates qj are not independent. 

The solution of the corresponding classical equation is obtained by 

transforming the qj into a new set of normal vibrational coordinates 0 1, O2 , ... , ON 

according to: 

3N-6 

q; = L LeO· (3.12) 
. 1 U J

J= 

Thus, the original coupled-classical equations of motion are separated into 3N-6 

equations for independent harmonic motion. 

The determination of the vibration frequencies and the form of the 

transformation matrix L varies the masses of all atoms, the molecular geometry and 

the force constants. The shape of the infrared spectrum is determined by the band 

intensity. Band intensities are more non-local in character than band frequencies. 

For a number of vibrational frequencies, they can be ascribed to the vibration of 

some well-localized molecular fragments, whereas dipole moment derivatives with 

respect to normal coordinates depend critically on the vibration of all atomic groups. 

In this study the determination of vibrational modes and frequencies was 

considered to be the result of semi-empirical calculations of infrared band 

intensities. The simplest approximation to a molecular diatomic oscillator is a model 

of two masses connected by a spring of a given force constant. Using this 
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approximation the frequency v of a molecular oscillator is given by Eq. (3.13), 

where k is the force constant and I.J is the reduced mass of the oscillator. 

v=-1~- (3.13)
2n I.J 

In a polyatomic molecule, each pair of atoms can be considered as a 

diatomic oscillator. HO\Never, these oscillators are not independent as they exert 

forces on each other 'Nhen they oscillate; they are coupled. It can be shown that for 

a nonlinear molecule of N atoms, there are 3N-6 independent vibrations. In each 

normal mode of vibration, all the atoms in the molecule vibrate with the same 

frequency and all the atoms pass through their equilibrium positions simultaneously. 

Once the mass, the molecular geometry, and the force constants are known, the 

complete mathematical procedures are known for calculating both the form and the 

frequency of the normal modes of vibration of the molecule.32 

3.7 HyperChemTIl Visualization of Vibrational Analysis and IR Spectroscopy 

HyperChemTM models the vibrations of a molecule as a set of N point 

masses 'Nhere the points refer to the nuclei and atoms. Each of the points vibrates 

about its equilibrium position. The mass-\Neighted Cartesian displacement 

coordinates q; are defined in Eq. (3.14): 

q. = m~·5(x. - x.eq) (3.14)
I I I I 

The classical kinetic energy T of vibration about the equilibrium position is 

3N 

T = .! L (aq/at)2 (3.15) 
2 i=1 
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The potential energy U may be expanded in a Taylor series about the equilibrium 

positions of the atoms, thus giving: 

3N 13N3N 
U = Ue + L (BUlaq;)e q; + - L L (B2UIBq; Bqj)e q; qj+'" (3.16)

;=1 2 ;=1 j=1 

The subscript indicates these terms are to be evaluated at the equilibrium position. 

For the equilibrium configuration of the molecule, U is a minimum and the gradient 

is given by: 

(au)e = 0 vanishes, wherei= 1, 2, ...3N (3.17) 
aq; 

If the vibrations are small, we may safely neglect terms higher than second-

order. Thus, the potential energy simplifies to Eq. (3.18): 

13N 3N 
U = Ue + - L L ug q; qj+'" (3.18)2 ;=1 j=1 

where uij is given by (Eq. (3.19)): 

d 2UUg = ( )e (3.19)
,.Jq; dqj 

The classical-mechanical problem for the vibrational motion may now be solved 

using Newton's second law. The force on the x component of the nh atom is 

d 2x auF;x = mp;x = m;- = -- (3.20)
dt 2 ax; 

Transforming to mass-weighted coordinates, one obtains a set of 3N simultaneous 

linear differential equations: 
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d2q au . 
- + - = 0 forl= 1, ... J 3N (3.21) 
dt 2 aqj 

Each differential equation contains all the coordinates qj, since aU/aqj is expressed 

as a single summation over the qj 's: 

3N 

aUlaqj = L ui}qj (3.22)
j=1 

To obtain a simpler set of differential equations of one coordinate, one performs an 

orthogonal similarity transformation on the matrix U having elements uij. 

The problem is stated in matrix form as: 

UL =U1 (3.23) 

and then: 

L -1 UL = 11 (3.24) 

where L is an orthogonal matrix that diagonalizes the force constant matrix U into 

11, L is the matrix of eigenvectors and 11 is the diagonal matrix of eigenvalues An. 

Each column of L represents an eigenvector that is a series of coefficients that 

provide the transformation from the Cartesian coordinates to separable coordinates. 

One can define the normal coordinates Q; in Eq. (3.25) as a linear 

combination of mass-weighted Cartesian displacement coordinates q;, where Ik; are 

the matrix elements of L, according to: 

3N 

OJ = L IkJqk 
k=1 

(3.25) 
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In matrix notation Eq. (3.25) becomes: 

o =L-1 q (3.26) 

Using normal coordinates Newton's second law may be solved to yield Eq. (3.27): 

OJ =Bj [ sin (At' t + bk] (3.27) 

Motion along each normal coordinate is described by each atom vibrating in phase 

with the same frequency Ui. TI1e vibrational frequency is related to the eigenvalues 

by: 

Uj =Ar/(2n) (3.28) 

Although the energies and forces are evaluated quantum mechanically in 

HyperChem, TM the vibrational analysis is performed in a purely classical manner.33 

3.7.1 Infrared Absorption 

During the absorption of infrared light the oscillating electric dipole of the 

light beam induces a mirror image oscillating electric dipole in the molecule. Energy 

in the form of photons may be exchanged between the molecule and the light beam 

if the frequency of the light closely corresponds to an energy difference between 

allowed levels of the molecule. Einstein's formula, Eq. (3.29), correlates energy, E 

and frequency, v. The relation indicates that each line in an IR spectrum represents 

a transition from one vibrational state to another: 

E=hv (3.29) 

When infrared light passes through a molecule, the electrons see an 

essentially constant electric field rather than an oscillating dipole. The nuclei move 
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so as to create a molecular dipole that is synchronized with that of the light. To a 

first approximation each normal mode of vibration interacts independently with IR 

light. A normal mode can absorb IR light if the molecular dipole moment changes 

during the course of a normal vibration. A molecule absorbs IR light at frequencies 

corresponding to the asymmetric stretch, and bend because the IR light is "shaking" 

the atoms of the molecule along the asymmetric stretch and bending coordinates. 

The induced dipole is a quantitative measure of rlow "shakeable" a given normal 

mode will be under the influence of IR light. Eq. (3.30) gives the mathematical form 

of the relation: 

dll d 211 

IJ = 1J0 + (-1"")0 dq + (-1"")0 dq 2+ ... (3.30 )dq dq 2 

Keeping only the linear term, the transition dipole moment is given by (Eq. (3.31)): 

<1Jn> = f 4J1
b
( ~~) q4J~b dq (3.31 ) 

Assuming that all higher derivatives are essentially zero, then dp/dq is a constant. 

Therefore, it may be taken out of the integral as in Eq. (3.32) 

<1Jn> = (dlJ )J4J1bq4J~bdq (3.32)
dq I 

Qualitatively, the selection rule for IR absorption for a given mode is that the 

symmetry of ql/l; vib must be the same as qtp,wb. Quantitatively, the transition dipole 
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moment is proportional to the dipole derivative \\lith respect to a given normal mode 

dpldq. In HyperChem, ™ all infrared lines correspond to transitions from the ground 

vibrational state to an excited vibrational state due to the addition of one quantum 

of energy to a given vibrational mode.34 

3.8 Studying Reactions and the Reaction Path 

An increasing collection of information is being gathered on using 

computational methods for the study of reaction pathways. Studying a reaction 

begins with a full optimization of the geometries of the reactants and products, 

normally when no constraints are applied. The minimum is then characterized by 

a calculation of the force constant matrix to ensure the system is ,indeed, at an 

energy minimum with all eigenvalues of the force constant matrix positive. At this 

point the transition states can be located as points on the potential energy surface 

that are characterized by one negative eigenvalue of the second derivative Hessian 

matrix. 35 

If an internal or Cartesian coordinate can be identified with the reaction 

coordinate, then the energy profile of the reaction path can be mapped by 

monotonically increasing or decreasing that coordinate. The transition state is the 

highest point along the reaction path between reactants and products.36 

) 

J.... 



Chapter 4 

ELECTROPHILIC AROMATIC SUBSTITUTION REACTIONS 

4.1 Definitions and Basics 

This study focuses on the theoretical calculation of equilibrium properties of 

the simple aromatic hydrocarbons and their nitrated products. The kinetics of the 

nitration process and the transition state are vital parts of physical organic 

chemistry. 

4.1.1 Aromaticity 

Aromaticity is a useful concept for correlating the properties of conjugated 

unsaturated ring systems. It is necessary, but not sufficient, that an aromatic system 

has cyclic conjugation; that is, overlapping p orbitals are present in a ring without 

beginning or end. The cyclic conjugation must be continuous; that is, every member. 

atom of the aromatic ring contributes a properly aligned p orbital to the n system. 

If the conjugation is interrupted at any point, then the special characteristic of 

aromatic systems will not occur. The cyclic TrOrbitals contain all the electrons in the 

conjugated double bonds that are part of the aromatic ring. n-orbitals may also 

include nonbonding-electron pairs that occupy one of the overlapping p orbitals in 

the ring. It is believed that not all of the nonbonding (unshared) electron pairs of the 

ring atoms are necessarily part of the aromatic n-electron system. 
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4.1.2 Electrophilic Aromatic Substitution Reactions 

Electrophilic aromatic substitution is a class of reactions in which a strong 

electrophilic reagent affects a substitution on the aromatic ring. One of the driving 

forces for the reaction is the fact that a neutral aromatic system such as benzene 

has the characteristic that if it is disturbed, by substitution for example, it tends to 

regain its aromaticity. The addition of a nitronium ion to the benzene ring is 

expected to initially disturb the aromatic system. The tetrahedrally bonded carbon 

atom in the carbonium ion intermediate is Sp3 hybridized, and thus this cation is no 

longer aromatic. HO\Never, as means of regaining aromaticity, a proton is expelled.37 

4.1.3 Mechanism of Electrophilic Aromatic Substitution 

The two successive processes of disturbance and regaining an aromatic 

system are most likely taking place through the following mec~lanism that is 

summarized in Eq. (4.1), where Y represents an electrophile. 

1- Generation of an electrophile. 

The electrophile is NO/, the nitronium ion. As shown in Eqs. (4.2A) and 

(4.28), the ion is formed by the acid-catalyzed removal of water from HN03. 

2- Attack of the TT-electrons of the aromatic ring on the electrophile and formation 

of a resonance-stabilized carbocation. 

3- Loss of a proton from the carbocation intermediate at the site of substitution to 

generate the substituted aromatic compound. 38 
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y 

+ 

•o (4.1 )+ y+- • 
-~ 

4.1.4 Orientation in Electrophilic Aromatic Substitution 

When a monosubstituted benzene molecule undergoes an electrophilic 

substitution reaction, a problem arises as to where the electrophile will attack. A 

benzene derivative, (Z-rp), where some group Z has replaced one of the aromatic 

hydrogens, gives rise to ortho, meta, and para products. Since five positions ( two 

ortho-, two meta-, and one para-) are available, the expected isomer distribution is 

40% ortho, 40% meta, and 20% para. However, this purely statistical result is never 

obtained and the attainable isomer distribution varies due to several different 

factors. The influencing factors include the group Z, solvent, temperature, 

sUbstituting agent, and others. In other words, it is found experimentally that a 

second substitution is not random, but is regioselective. 

The most well-known effect of group Z is its electronic influence upon the 

rate of substitution and upon the isomer distribution. An electron-deficient reagent 

attacks the aromatic ring, and the system develops a positive charge. If Z is an 

electron donor, it has the ability to stabilize the transition states and thereby 

increase the rate of attack at all positions. However, when Z stabilizes the transition 
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states, a consequence is that it makes an attack at the ortho and para positions 

most effectively, and then these positions are attacked preferentially. It occasionally 

happens that Z is an electron donor by resonance, and an electron-withdrawing 

group due to its inductive effect. In such a case it may increase the attack at the 

ortho and para positions, where the resonance effect comes into play and 

deactivates the meta position. This alters the relative rates of attack at the various 

positions, but still leads to ortho-para substitution. 

On the other hand, if Z is an electron-withdrawing group, it deactivates t~le 

system at all positions. The rate of attack by an electrophile y+ at any position in the 

system is decreased as compared to the rate of attack of non-substituted benzene 

under the same conditions and positions. However, attack at a meta position is 

least affected by the presence of an electron-withdrawing group. The rate 

decreases at all positions, but least at the meta position.39 

4.1.5 Aromatic Nitration 

Aromatic hydrocarbons are efficiently nitrated by treatment with a mixture of 

concentrated nitric and sulfuric acids. The active electrophilic species in these 

mixed acids has been identified as the nitronium ion N02+: 

HON02 + HN03 ~ H- T OH-N02 +NO; (4.2A) 
K1 

TH- TOH-N0 ~ N02 + H202 (4.28)K2 
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(4.3A) 

z z 

(4.3B)H • + H+ 
NQz 

+ 
N02 

The electron deficient nitronium ion then attacks an aromatic compound to form the 

substituted products, and the mechanism for product formation is shown in Eqs. 

(4.3 A) and (4.3 B). 

The rate-limiting step in the reaction varies with the choice of the group Z. 

When Z is an electron-withdrawing group, the rate-limiting step is attack of the 

aromatic compound by N02+. However, when Z is an electron donor, t~le rate­

limiting step depends upon the reaction conditions, and it can be the formation of 

nitronium ion from H20N02+. The concentration of N02+ is given by the expression 

in Eq. (4.4): 
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[HNO;f
[N02+] = K K

1 2 (4.4)
[H2 0][NO;] 

Kinetic evidence suggests that in certain circumstances the rate-limiting step 

is the formation of N02+. When compounds such as benzene and toluene are 

nitrated, the rate of reaction is independent of the concentration of the aromatic 

compound. The rate of the nitration reaction does not depend upon the 

concentration of t~le material being nitrated. A mechanism with the formation of 

N02+ as the rate-limiting step leads to kinetics that are zeroth order in the aromatic 

compound, and will be observed whenever the term k [Z-¢][N02+] is much greater 

than the term k' [H20][N027 Thus, increasing the concentration of (Z-¢) favors a 

rate-limiting step dealing with the formation of N02+. Increasing the concentration 

of H20 favors this step and limits attack by N02+ on the aromatic compound. 

When N02+ reacts with water much more frequently than with the aromatic 

compound, the rate limiting step is reaction with (Z-¢). On the other hand, under 

certain conditions the nitronium ion reacts with the aromatic compound much more 

frequently than it reacts with water, and under those conditions formation of N02+ 

becomes rate limiting. 

W~len Z is an electron withdrawing group, the general rate expression for the 

nitration of (Z-¢) in concentrated sulfuric acid follows moderately well the general 

rate law given by Eq. (4.5), or alternately by Eq. (4.6): 
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k[Z-<J>][HN0:J fZ -4> 'NO; 
(4.5)r TS 

Z fNOTk[Z-<J>][N0 / -4> ; 
(4.6)2 f''' TS 

Since sulfuric acid is the solvent, this rate expression is in agreement with a rate-

limiting attack of the aromatic compound by the nitronium ion. 

The species N02+ is knO'M1 to be present in solution when the nitrations are 

conducted in concentrated sulfuric acid; it satisfies the kinetic requirements. The 

evidence suggests NO/ is the active species, and in most nitrations it is this agent 

that attacks the aromatic compound to form the substituted products. It remains to 

be demonstrated that the other species, nitric acid and its conjugate acid H2 0N02+, 

actually can affect nitration, although it certainly seems reasonable to assume that 

these materials, especially the latter, could affect nitration. These reactions are 

much slower than nitration by the nitronium ion and have not been observed.40 

Other methods for introducing the N02 group into an aromatic compound do 

exist. However, a discussion of these methods is not of a concern in this thesis. In 

future work one should consider the details of the transition state intermediate 

formed during the nitration of these aromatic systems. 
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Chapter 5 

SEMI-EMPIRICAL STUDY OF THE NITRATION 

OF SIMPLE AROMATIC SYSTEMS 

5.1 Introduction 

AM1 and PM3 are known to yield acceptable results when employed in the 

field of organic chemistry. The t'NO methods are employed in this research to study 

the nitration reactions of 22 simple aromatic systems. 

The values of different physical and chemical properties of the systems 

before and after nitration were calculated. Calculated results are then compared 

with their experimental counterparts and explained in terms of physical organic 

chemistry. 

A long-term goal is the understanding of the kinetics of the nitration process 

within the concept of computational chemistry. This is expected to include the study 

of the transition state and the potential surface energy of each reaction. 

The aromatic molecules studied were benzene, phenol, aniline, toluene, 

iodobenzene, chlorobenzene and their artha, meta, and para monosubstituted nitro­

compounds. Most of the values of enthalpy of formations and ionization energies 

considered many different experimental methods, and thus the best values and 

error limits have been established through a critical data analysis by the National 



Institute of Standards and Technology, NIST. Estimated values do not include error 

limits. 

5.2	 Computational Calculations, Results, and Interpretation 

The following sections, as well as the accompanying tables, summarize the 

calculations. The tables include both the experimental and the calculated results. 

The differences between the experimental and calculated values are discussed in 

each section. 

5.2.1	 Heats of Formation 

Tables I-A and I-B compare the calculated heats of formation by AM1 and 

PM3, respectively, with the experimental values for 22 aromatic molecules. The 

calculated results are for isolated atoms, and thus the results are compared to the 

gas phase experimental values. 41 
.
42 The fourth column of the data tables show the 

differences between the experimental (observed) and the calculated values. 

HOYJever, the absolute differences bet'Neen the t'M:l values are used to calculate the 

average error in each calculated property. This step was considered to minimize the 

cancellation of errors that occurs in the use of the signed differences. The 

calculated enthalpies of formation are higher than the observed values for most of 

the molecules. The average error is determined to be 5.92 and 2.90 kcal/mol in 

AM1 and PM3, respectively. 

5.3	 Ionization Potentials 

Tables II-A and II-B include the observed43 and calculated values of the first 

ionization potentials (in eV) for the same set of aromatics. The differences between 
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the observed and the calculated values are listed in column four in both of the two 

tables. The average absolute error of the calculations is 0.74 and 0.66 eVfor AM1 

and PM3, respectively. Those averages are consistent with Stewart's computations 

for aromatic compounds in which he calculated average absolute errors of 0.49 

and 0.65 eV for the two methods respectively.44 

5.4 Dipole Moments 

Tables III-A and III-B compare the experimental45 and the calculated dipole 

moments of the compounds. The fourth column in each of the tables shows the 

differences between the observed and the calculated values by AM1 and PM3 

respectively. The average absolute error for the AM1 calculation is 0.92 D, and it 

is 1.02 D in the case of PM3. These values are sUbstantially higher than Stewart's 

values of 0.11 and 0.10 for AM1 and PM3 calculations of seven compounds. 46 

5.5 Molecular Geometries 

Bond lengths and bond angles were calculated for PM3 optimized 

geometries. Normally, all methods reproduce ground-state geometries without 

significant differences. In Stewart's calculations the average errors in bond lengths 

and bond angles for PM3 calculations are 0.036 Aand 3.9 deg respectively.47 

Tables IV-A and IV-B show the bond lengths and bond angles for benzene 

and nitrobenzene. In benzene the calculated lengths of C-C and C-H bonds are 

1.400 Aand 1.100 A. The averages of errors for both calculations are 0.001 Aand 

-0.016 Awith a negligible difference from the observed values of 1.399 Aand 1.084 

Afor the two bonds, respectively. The average errors in Stewart's application of the 

[
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PM3 method is 0.01 and 0.00 A for the two bonds. Each of the angles in the 

benzene ring has an established value of 120.0 deg with an average error of less 

than 0.1 deg. 

In nitrobenzene the C-C bonds range between 1.393 and 1.405 Awith an 

average of 1.397 A. C-N and O-N bonds have values of 1.487 and 1.202 A 

respectively. The C-C-C angles of the ring range betvveen 119.8 and 120.3 deg with 

an average of 120.0 deg. The O-N-O angle of t~le nitro group is 121.1 deg. Figures 

2 and 3 display the molecular geometries of benzene and nitrobenzene, 

respectively. 

Bond lengths of phenol and its nitrated derivatives are listed in Table V-A, 

where the subscript I refers to artha, meta, or para compounds. The average C-C 

bond lengths are 1.394, 1.399, 1.396, and 1.397 A, while the average C-H bond 

lengths are 1.095, 1.102, 1.101, 1.098 Afor these compounds. The average N-O 

bond length is 1.215 Afor all the isomers. The reported experimental values of the 

C-C bond, and the average of C-H bonds of phenol are 1.397 and 1.081 A. This 

yields average errors of 0.003 and 0.014 A. The carbon angles in the ring range 

between 118.5 and 121.7 deg with an average of 120.0 deg. The geometrical 

structures (including bond lengths and bond angles) of phenol and its nitro­

derivatives are shown in Figure 4 through Figure 7. 

For chlorobenzene the averages of calculated C-C bond lengths are 1.391, 

1.3945, 1.394 and 1.394 Afor the compound itself and its artha, meta, and para 

nitro-derivatives. The calculated bond lengths range between 1.386 and 1.403 A. 
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The C-H bond lengths range between 1.094 and 1.100 Awith averages of 1.095, 

1.097, 1.098, and 1.097 Afor chlorobenzene and its orfho, meta, and para nitro­

components. The observed C-C bond length in the chlorobenzene ring is 1.400 A, 

and it is 1.083 Afor the C-H bond lengths. The average errors in the calculation of 

both lengths are 0.009 and 0.012 A. Calculations of C-CI bond lengths in the four 

molecules showed slightly different errors in the case of chlorobenzene, where it 

is 0.051 A. The N-O bond length has an average of 1.215 A. The calculated 

average for the carbon angles in the ring is 120.0 deg. However, the average error 

for individual angles is 0.48 deg. 

In iodobenzene the average calculated C-C bond length is 1.389 A, but it is 

1.393, 1.393, and 1.392 A for its ortho, meta, and para nitro-derivatives. 

Calculations of C-H bond lengths show an average length of 1.093 Ain the case 

of iodobenzene, and 1.097 Afor the bond in any of its mono-nitrated products. The 

N-O bond lengths show average values of 1.214, 1.214, and 1.215 Afor each of 

ortho, meta, and para-iodobenzene derivatives. While the values of C-C-C angles 

in the aromatic ring vary widely, from 118.0 to 123.5 deg, the O-N-O angles show 

similartrends with values of 120.7, 121.3, and 121.2 deg in ortho, meta, and para 

nitro-molecules. 

The average length of C-C bonds in the aniline ring is 1.395 A, while such 

lengths are 1.399, 1.396, and 1.398 A in ortho-, meta-, and para-nitroaniline. An 

observed C-C bond length in aniline of 1.392 Aresults in a calculated average error 

of 0.007 A. Calculated values of C-H bond lengths show averages of 1.095, 1.097, 
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1.098, and 1.098 Afor aniline, and its ortho, meta, and para nitro-d~rivatives. The 

observed C-N bond length of aniline has a value of 1.431 Aand thus the calculated 

value is in error by 0.031 A. While the reported value for the N-H bond length is 

0.998 A, its averages in the four compounds are 0.988, 0.994, 0.995 and 0.988 A. 

This means that the average error in aniline is 0.010 A. Figure 8 shows the 

geometrical structure of aniline with its bond angles and lengths. 

The average calculated values of C-C-C angles in the aniline ring and its 

derivatives are 120.0 deg. However, the calculations yield values between 118.8 

and 120.8 deg. This range was most noticeable between the observed and 

calculated H-N-H angle with a difference of 0.6 deg. 

In the calculations for toluene and its ortho, meta, and para nitro-derivatives 

the average of C-C bond lengths are found to be 1.392, 1.420, 1.395, and 1.394 A. 

An average error of 0.007 Aresults from the difference with the observed value of 

1.399 Ain toluene. The reported value of C-H bond length is 1.110 Awhich yields 

an average error of 0.015 A. For the methyl group, the observed values of C-CH3 

and C-H bond lengths are 1.524 and 1.100 A, respectively. Therefore, the average 

errors are 0.038 and 0.002 A. The average C-H bond length is 1.095 A. 

The average of the calculated values of the internal C-C-C angles is 120.0 

deg for toluene and its derivatives. HO\N6ver, the carbon angle in the methyl group, 

H-C-H, has a slightly different value in some cases, and an average of 107.5 deg 

In toluene. 
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5.6 Infrared Frequencies 

The infrared absorption frequencies of the aromatic systems were calculated 

for optimized geometries by PM3 followed by single-point configuration interaction 

calculations on these geometries. These calculations aim at reproducing the 

frequencies of the infrared absorptions but not their intensities. This means that in 

the process of comparing the observed and calculated frequencies, emphasis was 

placed on the frequency at which the absorption takes place and not on the 

intensity of the absorption. The first calculated value at about 600 cm-1 was 

compared with the first experimental value in the same range and so on. The main 

disadvantage of t~lis method is the opportunity of including or excluding overtone 

and combination bands, such as those that frequently appear as weak absorptions 

in the range 1660-2000 cm-1
. Though signed differences between the observed and 

calculated frequencies are listed, the absolute value of the differences was used 

to calculate the average absolute error. 

5.6.1 Benzene and Nitrobenzene 

Tables X-A and X-B list the calculated frequencies of both benzene and 

nitrobenzene, respectively. The differences betvYeen the observed values44
.48-5O and 

the calculated values show an irregular pattern, especially in the case of 

nitrobenzene. A calculated value of 1547 cm-1 in benzene and 1546 cm-1 in 

nitrobenzene are believed to represent the ring's carbon-carbon stretching 

absorptions in both of the molecules. The vibrations of Ar-H bond are well 

represented by the absorptions 3073 cm-1 in benzene and both 3068 and 3086 cm-1 
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in nitrobenzene. Frequently, aromatic rings show a strong absorption around 1600 

and 1500 cm-1
, 'h11ile the Ar-H bond shows the absorption between 3030 and 3000 

cm-1
. In nitrobenzene the calculated frequencies at 1560, 1546, and 1325 cm-1 refer 

to the nitro-group absorption that is experimentally reported to be 1560-1490 and 

1360-1320 cm-1
. Different absorptions took place below 900 cm-1 as a characteristic 

of C-H bending and ring puckering. The absolute averages of error in the 

calculations of IR frequencies for benzene and nitrobenzene are 34.5 and 15.3 cm-1 

respectively. 

5.6.2 Phenol, ortho-, meta-, and para-Nitrophenol 

Calculated and experimental values for the infrared frequencies of phenol 

and its nitrated derivatives are given in Table XI-A through Table XI-D.44
, 48-50 They 

give common absorptions at 1609 and 1569 cm-1 that are likely to refer to the 

aromatic ring. Similarly, each of the nitrophenol isomers shows absorptions around 

1600 and 1500 cm-1
. Absorptions above 3700 cm-1 in each of the molecules 

probably represent the stretch due to the hydroxyl group that is usually observed 

in the 3200-3600 cm-1 region. Meanwhile, C-O stretching causes absorptions at 

1200-1250 cm-1 in each compound. Absolute averages of error of the calculations 

are 18.9, 20.6, 17.1, and 21.2 cm-1
, respectively. 

5.6.3 Chlorobenzene, ortho-, meta-, and para-Nitrochlorobenzene 

In Tables XII-A through XII-D, the calculations of infrared frequencies of 

chlorobenzene and its ortho, meta, and para nitro-derivatives were compared with 

their experimental values. 44
,48-5O The di'lferences between the two groups give 



62 

averages of error of 26.5, 17.0, 14.2, and 15.9 cm-1
, respectively. Beside the 

common absorptions with the other compounds, such as those related to the ring, 

Ar-H, and the nitro group, the compounds in this group show absorptions around 

the region of 600-800 cm-1 that relate to C-CI stretching. 

5.6.4 lodobenzene, ortho-, meta-, and para-Nitroiodobenzene 

The observed absorption due to C-I bond stretching takes place around 500 

cm-1
, although it is expected to go beyond this range due to the nature of the 

aromatic ring in the case of Ar-I. 44
, 48-51 Although the calculations in Tables XIII-A 

through XIII-D show values around 600 cm-1
, one cannot claim with certainty that 

these refer to Ar-1. The average error for the calculations of IR frequencies of 

iodobenzene, 0-, m-, and p-nitroiodobenzene are 33.3, 12.5, 18.7, 18.2 cm-1
, 

respectively. 

5.6.5 Aniline, ortho-, meta-, and para-Nitroaniline 

Tables XIV-A through XIV-B compare the calculated frequencies of aniline, 

ortho-, meta-, and para-nitroaniline with their observed frequencies. 44
, 48-50 The 

differences bet\.veen the two values give the averages of errors 23.77, 14.61, 13.56, 

and 33.61 cm-1
. Beside the absorptions due to the previously mentioned functional 

groups such as the aromatic ring and nitro group, each of the four molecules shows 

absorptions around the regions 3500-3300 cm-1 and 1180-1360 cm-1 for both N-H 

and C-N, respectively. Consider aniline for example: the calculated values of 3411, 

3532 and 1169, 1328. and 1369 crn-1 are within the two regions, and thus 

reasonably refer to the stretching of N-H and C-H bonds, respectively. 
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5.6.6 Toluene, ortho-, meta-, and para-Nitrotoluene 

The calculated frequencies of toluene, 0-, m-, and p-nitrotoluene are listed 

in Tables XV-A through XV-D along with the experimental values44
,48-5O and the 

differences between both. The calculations yield average errors of 16.2, 11.5,26.9, 

and 18.9 cm-1 for the compounds, respectively. The calculations give regions of C­

H bending, ring puckering, and rings' C-C and Ar-H stretching. 
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Table I-A. Enthalpy of Formation of Simple Aromatics, kcal/mol - AM1 

Enthalpy of Formation 
Compound 

Obs Calc Obs-Calc 

Benzene 19.8 ± 0.1 21.87 - 2.07 

Nitrobenzene 16.1 25.12 - 9.02 

Phenol -23.0± 0.2 -22.41 - 0.59 

o-Nitrophenol -23.0 -20.35 - 2.65 

m-Nitrophenol -27.0 -18.14 - 8.86 

p-Nitrophenol -28.0 -19.73 - 8.27 

Chlorobenzene 13.0 14.63 -1.63 

o-Nitrochlorobenzene - 24.56 

m-Nitrochlorobenzene 9.1 ±2.0 19.61 - 10.51 

p-Nitrochlorobenzene 9.1 ±2.0 19.04 -9.94 

lodobenzene 39.4 ± 1.4 37.97 1.43 

o-Nitroiodobenzene - 51.08 

m Nitroiodobenzene - 42.75 

p-Nitroiodobenzene - 42.84 

Toluene 12.0 ± 0.1 14.22 - 2.22 

o-N itrotoluene 13.0 18.71 - 5.71 

m-Nitrotoluene 7.0 17.39 - 10.39 

p-N itrotoluene 7.0 ± 1.0 17.04 - 10.04 

Aniline 20.8± 0.2 20.32 0.48 

o-Nitroaniline 15.0±1.0 20.54 - 5.54 

m-Nitroaniline 15.0 ± 0.5 23.82 - 8.82 

p-Nitroaniline 13.0 ± 0.5 21.36 - 8.36 
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Table I-B. Enthalpy of Formation of Simple Aromatics kcallmol - PM3 

Enthalpy of Formation
Compound 

Obs Calc Obs-Calc 

Benzene 19.8 ± 0.1 23.29 -3.49 

Nitrobenzene 16.1 14.33 1.77 

Phenol -23.0± 0.2 -21.85 - 1.15 

o-Nitrophenol -23.0 -33.47 10.47 

m-Nitrophenol -27.0 -30.14 3.14 

p-Nitrophenol -28.0 -31.91 3.91 

Chlorobenzene 13.0 16.51 - 3.51 

o-Nitrochlorobenzene - 11.35 

m-Nitrochlorobenzene 9.1 ± 2.0 8.70 0.40 

p-Nitrochlorobenzene 9.1 ± 2.0 8.24 0.86 

lodobenzene 39.4 ± 1.4 44.59 - 5.19 

o-N itroiodobenzene - 45.80 

m-Nitroiodobenzene - 36.64 

p-Nitroiodobenzene - 36.52 

Toluene 12.0 ± 0.1 13.89 - 1.89 

o-Nitrotoluene 13.0 9.30 3.7 

m-Nitrotoluene 7.0 4.83 2.17 

p-Nitrotoluene 7.0 ± 1.0 4.44 2.56 

Aniline 20.8± 0.2 21.12 - 0.32 

o-Nitroaniline 15.0 ± 1.0 12.60 2.40 

m-Nitroaniline 15.0 ± 0.5 12.31 2.69 

p-Nitroaniiine 13.0 ± 0.5 10.46 2.54 



66 

Table II-A. First Ionization Energy of Simple Aromatics, eV- AM1 

First Ionization Energy 
Compound 

Obs Calc Obs-Calc 

Benzene 9.25 ± 0.00 9.25 0.00 

Nitrobenzene 9.86 ± 0.02 10.56 - 0.70 

Phenol 8.51 ± 0.00 9.11 - 0.60 

o-Nitrophenol 9.1 9.91 - 0.81 

m-Nitrophenol 9.0 9.97 - 0.97 

p-Nitrophenol 9.1 10.07 - 0.97 

Chlorobenzene 9.07 ± 0.02 9.56 -0.49 

o-Nitrochlorobenzene - 10.32 

m-Nitrochlorobenzene 9.92 ± 0.1 10.37 -0.45 

p-Nitrochlorobenzene 9.96 ± 0.1 10.47 - 0.51 

lodobenzene 8.69 9.65 - 0.96 

o-Nitroiodobenzene - 10.33 

m-Nitroiodobenzene - 10.40 

p-Nitroiodobenzene 9.24 10.49 -1.25 

Toluene 8.82 ± 0.01 9.33 - 0.51 

o-NitrotoIuene 9.24 10.17 - 0.93 

m-Nitrotoluene 9.49 ± 0.02 10.20 - 0.71 

p-Nitrotoluene 9.1 ± 0.1 10.30 -1.20 

Aniline 7.72 ± 0.00 8.21 -0.49 

o-Nitroaniline 8.27 ± 0.01 9.07 - 0.80 

m-Nitroaniline 8.31 ± 0.02 9.25 - 0.94 

p-Nitroaniline 8.34 ± 0.01 9.16 - 0.82 
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Table II-B. First Ionization Energy of Simple Aromatics, eV- PM3 

First Ionization Energy 
Compound 

Obs Calc Obs-Calc 

Benzene 9.25 ± 0.00 9.75 - 0.50 

Nitrobenzene 9.86 ± 0.02 10.60 - 0.74 

Phenol 8.51 ± 0.00 9.18 - 0.67 

o-N itrophenol 9.1 9.90 - 0.80 

m-Nitrophenol 9.0 9.99 - 0.99 

p-Nitrophenol 9.1 10.17 -1.07 

C~llorobenzene 9.07 ± 0.02 9.39 - 0.32 

o-Nitrochlorobenzene - 9.94 

m-Nitrochlorobenzene 9.92 ± 0.1 10.06 - 0.14 

p-Nitrochlorobenzene 9.96 ± 0.1 10.22 - 0.26 

lodobenzene 8.69 9.04 - 0.35 

o-Nitroiodobenzene - 9.29 

m-Nitroiodobenzene - 9.51 

p-Nitroiodobenzene 9.24 9.63 - 0.39 

Toluene 8.82 ± 0.01 9.44 - 0.62 

o-NitrotollJene 9.24 10.24 - 1.00 

m-Nitrotoluene 9.49 ± 0.02 10.28 - 0.79 

p-Nitrotoluene 9.1 ± 0.1 10.47 - 1.37 

Aniline 7.72 ± 0.00 8.07 - 0.35 

o-Nitroaniline 8.27 ± 0.01 8.84 - 0.57 

m-Nitroaniline 8.31 ± 0.02 9.29 - 0.98 

p-Nitroaniline 8.34 ± 0.01 9.00 - 0.66 
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Table III-A. Dipole Moment of Simple Aromatics, D- AM1 

Compound 

Benzene 

Nitrobenzene 

Phenol 

o-Nitrophenol 

m-Nitrophenol 

p-Nitrophenol 

Chlorobenzene 

o-Nitrochlorobenzene 

m-Nitrochlorobenzene 

p-Nitrochlorobenzene 

lodobenzene 

o-Nitroiodobenzene 

m-Nitroiodobenzene 

p-Nitroiodobenzene 

Toluene 

o-N itrotoluene 

m-Nitrotoluene 

p-N itrotoluene 

Aniline 

o-Nitroaniline 

m-Nitroaniline 

p-Nitroaniline 

Obs 

0.00 

3.93 

1.55 

3.14 

3.90 

5.07 

1.75 

4.63 

3.40 

2.60 

1.70 

3.69 

3.54 

2.18 

0.43 

3.63 

4.23 

4.39 

1.56 

4.06 

4.90 

6.29 

Dipole Moment 

Calc Obs-Calc 

0.00 0.00 

5.24 - 1.31 

1.23 0.32 

4.33 - 1.19 

4.01 - 0.11 

5.26 - 0.19 

1.31 0.44 

5.55 - 0.92 

4.67 - 1.27 

4.18 - 1.58 

1.43 0.27 

5.49 - 1.80 

4.67 - 1.13 

4.02 - 1.84 

0.26 0.17 

5.15 -1.52 

5.46 - 1.23 

5.73 - 1.34 

1.58 - 0.02 

5.29 - 1.23 

5.94 - 1.04 

7.64 - 1.35 
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Table III-B. Dipole Moments of Simple Aromatics, D- PM3 

Compound 
Dipole Moment 

Obs Calc Obs-Calc 

Benzene 0.00 0.00 0.00 

Nitrobenzene 3.93 5.25 - 1.32 

Phenol 1.55 1.14 0.41 

o-Nitrophenol 3.14 4.18 - 1.04 

m-Nitrophenol 3.90 4.19 -0.29 

p-Nitrophenol 5.07 5.57 - 0.50 

Chlorobenzene 1.75 0.95 0.80 

o-Nitrochlorobenzene 4.63 5.38 - 0.75 

m-Nitrochlorobenzene 3.40 4.83 - 1.43 

p-Nitrochlorobenzene 2.60 4.59 - 1.99 

lodobenzene 1.70 0.79 0.91 

o-Nitroiodobenzene 3.69 5.17 - 1.48 

m-Nitrochlorobenzene 3.54 5.03 - 1.49 

p-Nitroch lorobenzene 2.18 4.87 - 2.69 

Toluene 0.43 0.26 0.17 

o-Nitrotoluene 3.63 5.00 - 1.37 

m-Nitrotoluene 4.23 5.44 - 1.21 

p-Nitrotoluene 4.39 5.73 - 1.34 

Aniline 1.56 1.57 - 0.01 

o-Nitroaniline 4.06 5.05 - 0.99 

m-Nitroaniline 4.90 5.70 - 0.8 

p-Nitroaniline 6.29 7.84 - 1.55 
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Table IV-A. Bond Lengths, A, of Benzene and Nitrobenzene-PM3 

Bond Length 

Bond 
Benzene Nitrobenzene 

C1-C2 1.400 1.405 

C2-C3 1.400 1.393 

C3-C4 1.400 1.395 

C4-CS 1.400 1.395 

CS-C6 1.400 1.393 

C6-C1 1.400 1.400 

C1-H1 1.100 

C2-H2 1.100 1.080 

C3-H3 1.100 1.080 

C4-H4 1.100 1.080 

Cs-Hs 1.100 1.080 

C6-H6 1.100 1.080 

C1-N - 1.487 

°1-N - 1.202 

°2-N - 1.202 
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Table IV-B. Bond Angles, deg, of Benzene and Nitrobenzene- PM3 

Bond Angles 
Angle 

Benzene Nitrobenzene 

C1 120.0 119.8 

C2 120.0 119.8 

C3 120.0 120.3 

C4 120.0 120.1 

Cs 120.0 120.3 

Cs 120.0 119.8 

N - 121.1 
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Table V-A. Bond Lengths, A, of Phenol and Nitrophenol - PM3 

Nitrophenol 
Bond Phenol 

Ortho Meta Para 

C1-C2 1.402 1.414 1.398 1.404 

C2-C3 1.388 1.410 1.399 1.384 

C3-C4 1.392 1.379 1.397 1.403 

C4-CS 1.390 1.401 1.393 1.401 

Cs-Ce 1.390 1.379 1.386 1.386 

Ce-C1 1.401 1.412 1.404 1.404 

C2-H2 1.096 - 1.102 1.097 

C3-H3 1.095 1.101 - 1.100 

C4-H4 1.095 1.102 1.103 

Cs-Hs 1.095 1.100 1.101 1.100 

Ce-He 1.095 1.105 1.100 1.097 

C1-Q1 1.369 1.361 1.374 1.359 

H7-Q1 0.949 0.963 0.949 0.950 

C;-N' - 1.477 1.499 1.492 

°2-N - 1.210 1.215 1.216 

°3-N - 1.230 1.216 1.216 
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Table V-B. Bond Angles, deg, of Phenol and Nitrophenol - PM3 

Angle Phenol 
Nitrophenol 

Ortho Meta Para 

C1 120.9 120.0 121.1 120.7 

C2 118.9 118.8 119.0 119.3 

C3 120.6 120.5 120.3 120.4 

C4 120.1 120.4 119.9 119.8 

Cs 120.4 120.6 120.9 120.3 

Ce 119.0 119.7 118.9 119.4 

0 1 107.8 109.9 108.3 108.5 

N - 120.8 121.1 121.0 
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Table VI-A. Bond Lengths, A, of Chlorobenzene and 
Nitrochlorobenzene - PM3 

Nitrochlorobenzene 
Bond Chlorobenzene 

Ortho Meta Para 

C1-C2 1.393 1.403 1.391 1.393 

C2-C3 1.390 1.404 1.399 1.388 

C3-C4 1.392 1.386 1.400 1.401 

C4-CS 1.391 1.393 1.391 1.401 

Cs-Cs 1.390 1.387 1.390 1.388 

CS-C1 1.392 1.398 1.394 1.394 

C2-H2 1.095 - 1.100 1.096 

C3-H3 1.095 1.100 - 1.099 

C4-H4 1.094 1.096 1.099 

Cs-Hs 1.094 1.096 1.096 1.099 

Cs-Hs 1.095 1.097 1.096 1.096 

C1-C1 1.686 1.675 1.684 1.677 

C-N*
I - 1.499 1.499 1.500 

°1-N - 1.213 1.215 1.215 

°2-N - 1.216 1.215 1.215 
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Table VI-B. Bond Angles, deg, of Chlorobenzene and 
Nitrochlorobenzene - PM3 

Nitrochlorobenzene 
Angle Chlorobenzene 

Ortho Meta Para 

C1 121.0 120.0 121.1 120.7 

C2 119.3 118.8 119.2 119.7 

C3 120.1 120.7 120.0 120.0 

C4 120.2 120.2 119.9 119.9 

Cs 120.2 119.8 120.5 120.0 

Cs 119.3 120.5 119.4 119.7 

N - 120.8 121.3 121.2 



76 

Table VII-A. Bond Lengths, A, of lodobenzene and 
Nitroiodobenzene - PM3 

Nitroiodobenzene 
Bond lodobenzene 

Ortho Meta Para 

C1-C2 1.381 1.392 1.380 1.382 

C2-C3 1.394 1.407 1.402 1.392 

C3-C4 1.392 1.387 1.402 1.402 

C4 -CS 1.393 1.393 1.391 1.402 

CS-C6 1.393 1.389 1.393 1.392 

C6-C1 1.380 1.389 1.393 1.382 

C2-H2 1.094 - 1.099 1.096 

C3-H3 1.094 1.100 - 1.099 

C4 -H4 1.095 1.096 1.100 

Cs-Hs 1.094 1.096 1.096 1.099 

C6-H6 1.090 1.096 1.095 1.096 

C1-1 1.970 1.968 1.966 1.966 

Cj-N" - 1.502 1.498 1.498 

°1·N - 1.211 1.214 1.215 

°2-N - 1.218 1.215 1.215 
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Table VII-B. Bond Angles, deg, of lodobenzene and 
Nitroiodobenzene - PM3 

Nitroiodobenzene 
Angle lodobenzene 

Ortho Meta Para 

C1 123.5 121.7 123.3 123.0 

C2 118.0 117.8 118.1 118.5 

C3 120.0 120.7 119.8 119.8 

C4 120.6 120.4 120.3 120.3 

Cs 120.0 119.6 120.3 119.8 

Cs 118.0 119.8 118.2 118.5 

N - 120.7 121.3 121.2 

1. 
1 
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Table VIII-B. Bond Angles, deg, of Aniline and Nitroaniline - PM3 

Nitroaniline 
Angle Aniline 

Oltho Meta Para 

C1 119.9 119.1 119.9 119.5 

C2 119.6 118.8 119.6 120.0 

C3 120.6 121.0 120.3 120.5 

C4 119.8 120.1 119.6 119.4 

Cs 120.6 120.5 120.8 120.5 

Cs 119.6 120.4 119.8 120.0 

N1 119.9 121.1 111.6 119.6 

N2 - 119.8 121.0 120.5 
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Table IX-A. Bond Lengths, A, of Toluene and Nitrotoluene - PM3 

Bond Toluene 

C1-C2 1.396
 

C2-C3 1.389
 

C3-C4 1.391
 

C4-CS 1.390
 

Cs-Cs 1.390
 

CS-C1 1.396
 

C2-H2 1.096
 

C3-H3 1.095
 

C4-H4 1,095
 

Cs-Hs 1.095
 

Cs-Hs 1.096
 

C1-C7 1.486
 

C7-H7 1.098
 

C7-Ha 1.098
 

C7-Hg 1.098
 

Cj-N" ­

°1-N ­

°2-N ­

Ortho 

1.467 

1.460 

1.345 

1.443 

1.345 

1.461 

-

1.098 

1.096 

1.095 

1.096 

1.344 

1.106 

1.098 

1.098 

1.496 

1.215 

1.219 

Nitrotoluene 

Meta 

1.396 

1.390 

1.389 

1.400 

1.399 

1.394 

1.097 

-

1.099 

1.096 

1.096 

1.486 

1.098 

1.098 

1.098 

1.496 

1.216 

1.215 

Para 

1.397 

1.388 

1.401 

1.400 

1.389 

1.396 

1.096 

1.099 

1.099 

1.097 

1.484 

1.098 

1.098 

1.098 

1.495 

1.216 

1.216 
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Figure 1. A Fit of Three Gaussians to a Slater Type Orbitals 
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Table X-A. Infrared Frequencies (cm-1 
) of Benzene - PM3 

Frequency 

Obs. Calc. Obs.- Calc. 

554 No ­

572 No ­

604 No ­

655 No ­

672 No ­

691 712 -21 

779 No ­

1035 1069 -34 

1379 No -

Obs. 

1394 

1481 

1755 

1803 

1949 

2320 

28961 

3056 

3066 

Frequency 

Calc. Obs.- Calc. 

No 

1547 -66 

No 

No 

No 

No 

No 

3703 -17 

No 
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Table X-B. Infrared Frequencies (cm-1
) of Nitrobenzene - PM 3
 

Frequency 

Obs. Calc. Obs. - Calc. 

680 9
671
677 6
 

703 727 -24
 

790 -24
814
793 -21 

853 837 16
 

932 963 -31
 

1022 1031 -9
 

1069 1108 -39
 

1109 1114 -5
 

1176 1182 -6
 

1244 1240 4
 

1306 1297 9
 

1355 30
1325
1351 26
 

Obs. 

1485
 

1527
 

1545
 

1610
 
1603
 

1803
 

No 

2889
 

No 

No 

No 

3068
 

3086
 

Frequency 

Calc. Obs. - Calc. 

No 

1546 -19
 

1560 -15
 

4
1606
 -3
 

1785 18
 

1893
 

No 

3029
 

3032
 

3053
 

3062 6
 

3073 13
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Table XI-A. Infrared Frequencies (cmo1 
) of Phenol - PM3 

Frequency 

Obs. Calc. Obs. - Calc. 

588 No -

632 634 -2 

688 No -

748 
753 773 -25 

-20 

810 
816 No 

881 875 6 

No 921 -

1000 
1013 1009 -9 

4 

1061 1047 14 

No 1103 -

No 1130 -

1168 1152 16 

1185 
1224 1213 -28 

11 

1259 1271 -12 

1336 
1350 1377 -41 

-27 

Obs. 

1499 

1515 

1595 
1620 

1693 

II 1768 

1838 

1930 

2420 

3057 

No 

No 

No 

3652 

No 
II 

Frequency
 

Calc. Obs. - Calc.
 

No 

1569 -54 

1609 -14 
11 

No 

1786 -18 

1792 46 

No 

No 

3055 2 

3066 

3072 

3082 

No 

3889 



Table XI-B. Infrared Frequencies (cmo1 
) of o-Nitrophenol - PM 3 

Frequency
 

Obs. Calc. Obs. - Calc.
 

No 660 ­
679 688 -9
 

747 779 -32
 

819 813 6
 

871 852 19
 

No 890 ­
952 907 45
 

1029 1020 9
 

1079 1111 -32
 

No 1124 ­

1148 1165 -17
 

1202 1224 -22
 

1262 9
12531258 5 

1335 413311331 0 

1474 4014341457 23 

1546 3415121536 24 

1535 1556 -21 

Obs. 

1593 

1620 

1690 

1729 

1746 

1807 

1929 

1953 

No 

No 

No 

3090 

3269 

II 3722 

II 3787 

II 3881 

Frequency 

Calc. Obs. - Calc. 

1590 

1628 

No 

No 

1765 

1793 

1888 

No 

3028 

3049 

3062 

3073 

3 

-8 

-19 

14 

41 

17 

No 

No 

3725 62 

No 
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Table XI-C. Infrared Frequencies (cm-1
) of m-Nitrophenol - PM 3 

Frequency 

Obs. Calc. Obs. - Calc. 

598 570 28 

671 671 0 

735 
742 759 -24 

-17 

796 788 8 

813 
818 827 -14 

-9 

871 No -

927 
933 948 -21 

-15 

1001 1011 -10 

1075 1023 52 

1080 1080 0 

No 1133 -
1163 -1177 14 

1180 1181 -1 

1256 
1214 1237 19 

-23 

1304 1278 26 

Obs. 

1360 

1487 

1548 

1616 

1624 

1668 

1762 

No 

No 

No 

3044 

No 

3081 

3652 

II No 

Frequency
 

Calc. Obs. - Calc.
 

1391 -31 

No 

1579 -31 

1606 10 

1609 15 

No 

1780 -18 

1785 

1893 

3024 

3033 11 

3053 

3068 13 

No 

3883 
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Table XI-D. Infrared Frequencies (cm-1
) of p-Nitrophenol - PM 3 

Frequency 

Obs. Calc. Obs. - Calc. 

623 626 -3 

679 

749 

No 

856 
850 

No 

No 

1109 
1164 

1179 

1214 

1269 

1284 

1350 

1439 

643 

772 

794 

891 

962 

1010 

1155 

1184 

1218 

1228 

1296 

1399 

1435 

36 

-23 

-

-35 
-41 

-

-

-46 
9 

-5 

-4 

41 

-12 

-49 

4 

Obs. 

1540 
1587 

1601 

No 

1746 

No 

1896 

2455 

2878 

No 

3047 

No 

3083 

3646 

No 

Frequency
 

Calc. Obs. - Calc.
 

1569 -29 
18 

1603 -2 

1622 

1769 -23 

1786 

1891 5 

No 

No 

3025 

3027 20 

3058 

3064 19 

No 

3880 
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Table XII-A. Infrared Frequencies (cmo1 
) of Chlorobenzene - PM3 

Frequency Frequency 

Obs.Obs. - Calc. 

49
 

7
 
-5
 

-29
 

-


-14
 

-


6
 

-


-5
 

-19
 

-25
 

-


1482
 

1587
 
1580
 

1628
 

1726
 

1787
 

1869
 

1946
 

No
 

No
 

No
 

No
 

3083
 

Calc. 

1536
 

1545
 

No
 

1779
 

No
 

No
 

No
 

3056
 

3059
 

3066
 

3072
 

3081
 

Obs. -Calc. 

54
 

42
 
35
 

-53 

2
 

Obs. 

682
 

713
 
701
 

739
 

903
 

9181
 

No
 

1022
 

No
 

1088
 

1124
 

1229
 

1370
 

1442
 

Calc. 

633
 

706
 

768
 

No
 

932
 

992
 

1016
 

1067
 

1093
 

1143
 

1254
 

No
 

No
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Table XII-B. Infrared Frequencies (cm-1
) of o-Nitrochlorobenzene - PM3 

Frequency 

Obs. Calc. Obs. - Calc. 

574 544 30 

595 No ­
654 659 -5 

No 676 ­
732 711 21 

767 -4771777 6 

No 808 ­

854 832 22 

No 906 ­

948 974 -26 

No 1023 ­

1060 1066 -6 

No 1111 ­

1133 1141 -8 

No 1158 ­

1258 1214 44 

Obs. 

No 

1312 

1359 

1473 

1532 

1553 

1587 

No 

1805 

1923 

2901 

No 

No 

No 

3085 

Frequency
 

Calc. Obs. - Calc.
 

1295 

1333 -21 

No 

No 

1529 3 

1556 -3 

1604 -17 

1766 

1778 27 

1890 33 

No 

3030 

3050 

3059 

3072 13 



97 

Table XII-C. Infrared Frequencies (cm o1 
) of m-Nitrochlorobenzene - PM3 

Frequency Frequency 

Obs. Calc. 

No 618 

668 664 

No 714 

750 756 

795 829 

881 
877 885 

No 946 

No 1018 

1068 1040 

No 1106 

1132 
1129 1127 

No 1173 

1273 1229 

No 1312 

Obs. - Calc. 

-

4 

-

-6 

-34 

-4 
-8 

-

-

28 

-

5 
2 

-

44 

Obs. 

1352 

1469 

1537 

1552 

No 

No 

No 

No 

2865 

No 

No 

No 

3090 

Calc. 

1329 

No 

1540 

1553 

1603 

1769 

1780 

1897 

No 

3025 

3029 

3053 

3067 

Obs. - Calc. 

23 

-3 

-1 

23 



98
 

Table XII-D: Infrared Frequencies (cm-1
) of p-Nitrochlorobenzene, PM3 

Frequency 

Obs. Calc. Obs. - Calc. 

675 638 37 

No 709 ­

741 765 -24 

853 852 1 

No 889 ­

939 No ­

1016 1014 2 

1100 1119 -19 

No 1138 ­

1173 1181 -8 

1227 1228 -1 

1275 -3513101281 -29 

1350 1713331343	 10 

Obs. 

1481 

II	 1543 
1518 

1585 
1577 

1603 

1656 

1780 

1914 

2877 

No 

No 

No 

3091 

Frequency 

Calc. Obs. - Calc. 

No 

1534 9 
-16 

1557 28 
20 

1603 0 

No 

1780 0 

1896 18 

No 

3026 

3029 

3059 

3062 29 
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Table XIII-A. Infrared Frequencies (cm·1
) of lodobenzene - PM3 

Frequency 

Obs. Calc. Obs. - Calc. 

656 626 30 

685 No ­
729 747 -18 

No 764 ­

882 -48930998 58
 

1016 1012 4
 

1061 1015 46
 

No 1083 ­

1089 1149 40
 

1229 No ­

1260 1294 -34
 

1322 1317 5
 

1377 No -


Obs. 

1438 

1476 

1577 

1631 

1727 

1793 

1877 

1953 

2370 

3028 

No 

3076 

No 

Frequency 

Calc. Obs. - Calc. 

No 

No 

1539 

1570 

38 

61 

1773 -46 

No 

No 

No 

No 

3064 

3071 

3078 

3084 

-36 

-2 
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Table XIII-B. Infrared Frequencies (cm-1
) of o-Nitroiodobenzene - PM3 

Frequency Frequency 

Obs. Calc. 

640 661 

697 673 

729 749 

773 766 

No 805 

851 833 

No 903 

952 973 

1026 1022 

No 1101 

1115 1114 

1164 1166 

No 1168 

1253 No 

1289 No 

Obs. - Calc. 

-21 

24 

-20 

7 

-

18 

-

-21 

4 

-

1 

-2 

-

-

Obs. 

1334 

1356 

1462 

1551 
1524 

1586 
1583 

No 

No 

1806 

1925 

2898 

No 

No 

No 

3079 

Calc. 

1321 

1338 

No 

1538 

1581 

1602 

1769 

1797 

1897 

No 

3033 

3054 

3062 

3074 

Obs. - Calc. 

13 

18 

13 
-14 

5 
2 

9 

28 

5 
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Table XIII-C. Infrared Frequencies (cmo1 
) of m-Nitroiodobenzene - PM3 

Frequency 

Obs. Calc. Obs. - Calc. 

643 612 31
 

665 666 -1
 

715 -21736
725 -11 

No 754 ­

800 -27827
860 33
 

885 No ­

920 930 -10
 

No 945 ­

992 965 27
 

No 1018 ­

1052 1044 8
 

1100 1126 -26
 

1138 1138 0
 

No 1177 ­

1274 1236 38
 

Obs. 

1295
 

1344
 
1381
 

1417
 

1458
 

1516
 

1564
 

1591
 

No
 

No
 

No
 

3010
 

No
 

3053
 

3075
 

3092
 

Frequency 

Calc. Obs. - Calc. 

1339 -44
 

-2
1346
 35
 

No
 

No
 

1549 -33
 

1573 -9
 

1603 -12
 

1770
 

1798
 

1896
 

3027 -17
 

3034
 

3058 -5
 

3072 3
 

No
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Table XIII-D. Infrared Frequencies (cm-1
) of p-Nitroiodobenzene - PM3 

Frequency 

Obs. Calc. Obs. - Calc. 

625 629 -4 

670 No ­

724 728 -4 

748 762 -14
 

832 877 -45
 

953 No ­

850 885 -35
 

1003 1011 -8
 

1043 1049 -6
 

1096 No ­

No 1148 ­

1170 1150 20
 

No 1184 ­

1264 1231 33
 

1300 No
 

Obs. 

1334 

1385 

1400 
1462 

1516 

1564 

1588 

No 

No 

No 

3010 

No 

3045 

3070 

3090 

Frequency
 

Calc. Obs. - Calc.
 

1339 -5 

1343 42 

No 

1537 -21 

1580 -16 

1603 -15 

1776 

1789 

1896 

3029 -19 

3031 

3067 -22 

3070 0 

No 



Table XIV-A. Infrared Frequencies (cm o1 
) of Aniline - PM3 

Frequency Frequency 

Calc. Obs. - Calc. 

No
 

No
 

1776 -7
 

1791 38
 

No
 

No
 

3052 -5
 

3062
 

3067 -30
 

3081 4
 

No 

3
3411
 
-17
 

3532 -34
 

No
 

Obs. - Calc. 

30
 

-21 
-14
 

8
 

-

-3 

-

-

-6
 

-


10
 
6
 

-55
 
-51
 

-55 

-51 

-16 

-59 

Obs. 

1691
 

1754
 

1769
 

1829
 

1924
 

2906
 

3047
 

No
 

3037
 

3085
 

3229
 

3414
 
3394
 

3498
 

3855
 

Obs. 

664
 

745
 
752
 

874
 

No
 

985
 

No
 

No
 

1080
 

No
 

1179
 
1175
 

1273
 
1277
 

1314
 

1502
 

1564
 

1620
 

Calc. 

634
 

766
 

. 866
 

909
 

988
 

1012
 

1049
 

1086
 

1125
 

1169
 

1328
 

1369
 

1553
 

1580
 

1679
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Table XIV-B. Infrared Frequencies (em·') of o-Nitroaniline - PM3 

Frequency
 

Obs. Calc. Obs. - Calc.
 

568 569 -1
 

No 658 ­

681 679 2
 

741 -17
758
748 -10 

No 798 ­

818 819 -1
 

868 847 21
 

No 890 ­

No 909 ­

No 971 ­

1026 1016 10
 

1110 1107 3
 

No 1119 ­

No 1150 ­

1162 1173 -11
 

1243 1238 5
 

1263 1260 3
 

Obs. 

1346
 

1433
 

1523
 

1579
 
1575
 

1625
 

1634
 

No
 

1791
 

1917
 

No
 

No
 

No
 

3073
 

3300
 
33484
 

3409
 

No
 

3526
 

Frequency
 

Calc. Obs. - Calc.
 

1335 11
 

1422 11
 

1548 -25
 

27
1552
 23
 

1602 23
 

1676 -42
 

1752
 

1791 0
 

1876 41
 

3026
 

3044
 

3058
 

3074 -1
 

-36
3336
 12
 

No
 

3503
 

No
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Table XIV-C. Infrared Frequencies (cm-1
) of m-Nitroaniline - PM3 

Frequency 

Obs. Calc. Obs. - Calc. 

No 619 ­

676 5
671
670 -1 

731 -24755
739 -16 

810 789 21
 

818 823 -5
 

868 ­No870 ­

No 915 ­

No 947 ­

No 971 ­

No 1010 ­
No 1017 ­

1093 1074 19
 

1105 1102 3
 

No 1145 ­

No 1171 ­

No 1188 ­

1268 1260 8
 

1337 No ­

lObs.
 
1357
 
1346
 

No 

1491
 

1544
 
1569
 

No
 

1630
 
1624
 

No
 

1740
 

No
 

No
 

2892
 

No
 

No
 

No
 

3074
 

3348
 

II 3400
 
3422
 

II 3509
 

Frequency
 

Calc. Obs. - Calc.
 

7
1350
 
-4 

1402
 

No 

-181562
 7
 

1580
 

23
1607
 17
 

1674
 

1772 -32
 

1783
 

1891
 

No
 

3018
 

3055
 

3047
 

3065 9
 

No
 

No
 

3534 -25
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Table XIV-D. Infrared Frequencies (cm-1
) of p-Nitroaniline - PM3 

Frequency
 

Obs. Calc. Obs. - Calc.
 

633 626 7
 

No 641 ­

750 766 -16
 

No 794 ­
839 -10
849
842 -7
 

858 908 -50
 

998 961 37
 

1000 1009 -9
 

1050 1069 -19
 

1111 1083 28
 

1178 1167 11
 

1181 1193 -12
 

1295 1222 73
 

1328 1374 -46
 

1471 1402 69
 

Obs. 

1481
 

1503
 

1587
 

1597
 

1631
 
1641
 

No
 

No
 

No
 

No
 

No
 

No
 

No
 

3356
 

No
 

Frequency
 

Calc. Obs. - Calc.
 

No 

1554 -51 

1587 0 

1605 -8 

-461677
 -36
 

1757
 

1783
 

1887
 

3025
 

3028
 

3052
 

3055
 

3426 -70
 

3536
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Table XV-A. Infrared Frequencies (cm-1
) of Toluene - PM3 

Frequency
 

Obs. Calc. Obs. - Calc.
 

690 634 56
 

727 758 -31
 

892 907 -15
 

919 991 ­

No 998 ­

1035 1034 1
 

1073 28
1045
1057 12
 

No 1103 ­

1214 No ­

No 1312 ­

1387 1393 -6
 

1498 No ­

1607 1611 -4
 

Obs. 

1796
 

1861
 

1946
 

2749
 

2936
 

No
 

3040
 

No
 

3076
 

No
 

No
 

No
 

Frequency
 

Calc. Obs. - Calc.
 

1800 -4
 

No
 

No
 

No
 

No
 

3054
 

3055 -15
 

3063
 

3070 6
 

3078
 

3081
 

3171
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Table XV-B. Infrared Frequencies (cm-1
) of o-Nitrotoluene - PM3 

Frequency 

Obs. Calc. Obs.• Calc. 

668 688 -20
 

No 713 ­

729 735 -6
 

784 780 4
 

859 850 9
 

No 879 ­
No 934 ­

No 959 ­

No 967 ­

No 1002 ­
1048 1048 0
 

1091 1095 -4
 

No 1128 ­

1157 1164 -7
 

1207 1230 -23
 

1310 1332 -22
 

1359 10
1349
1348 -1
 

1385 1398 -13
 

1429 -24
1453
1460 7
 

Obs. 

1484
 
1522
 

1544
 
1580
 

1613
 

1676
 

No
 

No
 

No
 

No
 

2887
 

2948
 

2990
 

No
 

3045
 

No
 

3079
 

No
 

No 

No 
II
 

Frequency
 

Calc. Obs. - Calc.
 

-331517
 5
 

-24
1568
 12
 

No
 

No
 

1796
 

1825
 

1855
 

1857
 

No
 

No
 

No
 

3036
 

3049 -4
 

3066
 

3077 2
 

3127
 

3147
 

3793
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Table XV-C. Infrared Frequencies (cm-1
) of m-Nitrotoluene - PM3 

Frequency 

Obs. Calc. Obs.-Calc. 

No 617 -

672 670 2 

727 
730 752 -25 

-22 

801 788 13 

No 827 -

906 962 -56 

No 987 -

No 1000 -

No 1021 -
No 1041 -

1097 
1081 1072 25 

9 

No 1130 -
No 1162 -

No 1179 -

1296 
1290 1244 52 

46 

1358 
1314 1335 23 

-21 

1351 1349 2 

No 1390 

Frequency 

Obs. Calc. Obs.-Calc. 

1453 1397 56 

1490 
1481 1436 54 

45 

1546 1553 -7 
1560 7 

1585 1606 -21 

1667 1608 59 

No 1778 

No 1793 

No 1892 

2885 No 

2938 No 

No 3021 

No 3032 

3040 3049 -9 

3079 3067 12 

No 3071 

No 3078 

No 3171 

J
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Table XV-D. Infrared Frequencies (cm-1
) of p-Nitrotoluene - PM3 

Frequency 

Obs. Calc. Obs.-Calc. 

615 628	 -13
 

680 637	 43
 

-23
7~~ 759
 
-18 

785 -5790
787 -3 

856 -10866
859 -7
 

1019 949 70
 

1051 1038 13
 

1109 1152 -43
 

1181 4
1177
1179 2
 

1209 1205 4
 

1232 1239 -7
 

No 1339 ­

1353	 8
 
1325 1345 -20
 
1345 0
 

1368 1387 -19
 

No 1395 ­

1415 1438 -23
 

No 1390
 

Obs. 

1471
 
1513
 

1539
 

1603
 
1597
 

II 1654
 

II 1700
 

1918
 

2883
 

2939
 

3013
 

No 

3052
 

No
 

NoII
 

No 

No 

No 

Frequency 

Calc. Obs.-Calc. 

No 

1542 -3 

-21605
 -8 

1617 37
 

1769 -69 

1891 27
 

No
 

No
 

3028 -15 

3030
 

3054 -2
 

3058
 

3058
 

3069
 

3079
 

3170
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Chapter 6 

SUMMARY 

6.1 Quality of Semi-Empirical Calculations 

Semi-empirical methods are parametrized on the basis of selected properties 

for a given set of molecules. Reasonable performance can be expected for related 

compounds, but problems can remain for molecules not covered by the" training 

set" and sometimes the reliability is limited. In this respect, even a low-level ab initio 

may be more widely applicable. 

6.2 Conclusion 

Semi-empirical molecular theory is becoming an increasingly important tool 

for the study of organic molecules. Both tt"le AM1 and trle PM3 methods provide 

useful accuracy v.tlen employed to study physical properties of chemical systems. 

Although the methods are parametrized to reproduce heats of formation, among 

other properties, the results of energy calculations are not always completely 

satisfactory. For some particular systems one of the two methods performs 

markedly better than the other. The AM1 method gives better results than the PM3 

method for the heat of formation, ionization energy, and dipole moment of closed­

shell simple aromatic compounds containing C, H, N, and O. This conclusion is 

based on a comparison of average absolute errors. 

.i. 
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The PM3 method calculations of molecular geometry, bond lengths and bond 

angles give good results. Trends in Infrared frequencies of related aromatic 

systems are usually reproduced by PM3 calculations. However, errors are random 

and therefore uncorrectable. In ab initio calculations, the calculated infrared 

frequencies are systematically too high and are corrected by multiplying the 

calculated values by a correction factor of 0.89.52 

6.2 Thoughts for Future Work 

Taking advantage of the recent developments in the computational facilities 

including both the hardware components and the software packages, important 

computational studies can be carried out. Experimentally, the field of organic 

reactions is widely studied but not well understood. The lack of understanding is 

mostly related to the kinetics, transition states, reaction paths, different substituents 

interactions and solvent effects on the reaction. High level computational studies 

of the chemical reaction are expected to provide, to a good extent, important 

information about these points. 

Directly related to the study of nitration of simple aromatic systems, different 

computational methods and applications can be employed to study the multi­

nitration process under different conditions. Ab initio calculations, for example, are 

expected to prOVide excellent results when employed to stUdy the energy and the 

geometrical changes accompanying the transition state of the reaction. 
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Austin Model 1 (AM1) 

Atomic Orbital (AO) 

Basis Set 

Complete Neglect of 
Differential Overlap 
(CNDO) 

Coulomb Integral (J) 

Degeneracy 

Gaussian Type Orbital 
(GT 
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the most recent generation of semi-empirical methods 
devised by Dewar at the University of Texas, Austin. 
Generally it is one of the most accurate semi-empirical 
methods. It is an improvement over MNDO where it 
includes some changes in its theoretical framework as 
the function describing repulsion between atomic cores, 
and it assigned new parameters to improve the 
performance. Advantages: it deals with hydrogen bonds 
properly, produces accurate predictions of activation 
barriers for many reactions and predicts heats of 
formation of molecules with a smaller error than MNDO. 

the wavefunction of an electron in an atom. Its square 
gives the probability of finding the electron at each 
point. 

a collection of atom-centered functions from which 
delocalized molecular orbitals are constructed. 

assumes that the atomic orbital basis functions do not 
overlap. The electron repulsion between electrons in 
different orbitals depends only on the nature of the 
atoms involved, and not on the particular orbital. This 
creates a very simple picture. One of its disadvantages 
is that because it neglects almost all exchange 
integrals, thus this method cannot calculate differences 
between states of differing multiplicity arising from the 
same electronic configuration. 

is the contribution of the classical Coulombic interaction 
between charge distributions to the total energy of an 
atom or molecule. The total electrostatic interaction 
between two electrons. It is calculated by summing the 
interactions between the electron densities in two 
volume elements. 

different states having the same energy. 

a mathematical expression that has the functional form 
e-ar2

. It is used to simplify the calculations of the 
electron-electron interaction integrals that must be 
evaluated. The integrals are on up to 4 centers over 
atomic orbitals. 
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Hessian 

Highest Occupied 
Molecular Orbital 
(HOMO) 

Intermediate Neglect of 
Differential Overlap 
(INDO) 

Linear Combination 
of Atomic Orbitals 
(LCAO) 

Lowest Unoccupied 
Molecular Orbital 
(LUMO) 

Modified Intermediate 
Neglect of Differential 
Overlap (MINDO) 

Molecular Mechanics 
(MM) 

Modified Neglect of 
Diatomic Overlap 
(MNDO) 

the matrix of second derivatives of the energy with 
respect to the 3N - 6 geometrical coordinates. 

highest energy occupied molecular orbital. Its energy 
equals the negative ofthe ionization energy of the system. 

developed after CNDO. Corrects some ofIt can deal with spin 
effects. 

an approximation expresses a molecular orbital as a sum 
of atomic orbitals centered each nucleus. Thus, the 0 

and o· orbitals of the H2 molecule are expressed as a 
superposition of the two H 1s orbitals. In general, 
superposition of n atomic orbitals will yield n molecular 
orbitals. If lVi represents a molecular orbital and <t>\.I an 
atomic orbital, then the LCAO representation of 
molecular orbital is: lVi = \.II C\.Ii <t>\.I where C\.Ii is the 
coefficient of the ~'th AO in the i'th MO. 

lowest energy unfilled molecular orbital. The LUMO 
energy is equal to the negative of the electron affinity 
of a molecule. 

Less draconian than complete neglect, differential 
overlap between orbitals on the same atom is not 
neglected in one-center electron-electron repulsion 

integrals but it is neglected in two-center electron­
electron repulsion integrals. The remaining integrals 
are estimated. 

the structure and the molecular energy of a molecule are 
regarded as the result of classical mechanics operating, 
through the medium of chemical bonds, on the 
connected masses of the atoms making up the 
molecule. 

a modification of NDDO where various terms are not 
evaluated analytically. Rather some terms are 
determined from semi-empirical expressions that 
contain parameters that are adjusted to fit 
experimental data. 
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Molecular Orbitals (MO) 

Neglect of Diatomic 
Differential Overlap 
(NDDO) 

Orbital 

Overlap Integral 

Parametrized Method 3 
(PM3) 

Pople, Parr, Pariser 
(PPP) 

radial node 

resonance integral 

Slater Type Orbital 
(ST 

function that is declocalized over the entire molecule 
and is formed from the valence orbitals. In general, n 
atomic orbitals overlap to form n molecular orbitals. 

the basis for MNDO, AM1, and PM3. Neglects 
differential overlap only when atomic orbitals are on 
different atoms. It retains all one-center differential 
overlap terms when Coulomb and exchange integrals 
are computed. 

the wavefunction for a single particle. 

the overlap of two normalized wavefunctions is a 
measure of the mutual resemblance and coincidence of 
the two functions, J411 *412 dT. 

differs from AM1 only in the values of the parameters. 
Its parameters were derived by comparing a much 
larger number and wider variety of experimental versus 
computed molecular properties. It was initially used for 
organic molecules, but has now been parametrized for 
many main group elements. 

quantum mechanical method introduced by Popie, Parr, 
and Pariser to interpret the conjugated and aromatic 
systems the method improves the Huckel scheme by 
considering electron-electron interactions. 

the point 'INhere the probability of finding the electron is 
zero, 41=0. Usually for s orbitals, ns orbital have ns-1 
radial nodes. 

takes into account that the electron is not restricted to 
a specific orbital on either atom, but that it can 
exchange places between two orbitals. 

a mathematical expression involving a function of the 
form e -ar used to simplify the calculations of the 
electron-electron interaction integrals that must be 
evaluated. 
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