
AN ABSTRACT OF THE THESIS OF 

             Mozhu Liu          for the                          Master of Science                          

in       Mathematics   presented on                           April 17, 2012    

Title:    Power and Sample Size for some Chi-Square Goodness of Fit Tests                                                     
 

Abstract approved: ________________________________________________________                                    
 

The first decision a researcher must make is to decide what sample size will be 

used in the experiment. Many researchers are familiar with sample size issues for the 

simple t-test, approximate binomial tests, two-sample t-test, and the analysis of variance.  

However, it is very difficult to find anyone who is familiar with the power and sample 

size issues for the Chi-Square goodness of fit test. 

For example, the first hypothesis examined is testing to see if two binomial 

proportions are equal. An approximate test of this hypothesis can be conducted using 

either a z-test or a Chi-Square goodness of fit test. These tests are equivalent tests since 

𝑧2 =  𝜒2. The power of these tests can be approximated by using the standard normal 

distribution or a non-central Chi-Square distribution. I derived the non-centrality 

parameter for this test and the other related goodness of fit tests. It is somewhat surprising 

that the power of the test computed using the standard normal is not identical to the 

power based on the Chi-Square. Even though the values are not equal they are quite 

close.  

A simulation is also conducted to estimate alpha and power. The results show that 

the empirical level of significance for the Chi-Square goodness test is close to alpha. It is 

also seen that simulated powers tend to be quite close to powers computed using the non-

central Chi-Square. Some simple iterative programs are included that can be used to 
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compute the sample size needed to detect a given departure from the null hypothesis with 

a desired power.   
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PREFACE 

 I have four chapters in my thesis. The first chapter gives some statistical 

background and discusses some Chi-Square goodness of fit test. In Chapter 2, the non-

centrality parameter is derived for five Chi-Square goodness of fit tests. Chapter 3 gives 

Calculated and simulated sample sizes for these Chi-Square goodness of fit tests. The last 

chapter summarizes my conclusions regarding power and the sample size for Chi-Square 

goodness of fit tests. 
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CHAPTER 1 

INTRODUCTION 

Many statistical methods assume a probability distribution to derive the methods. 

One common approach for checking to see if the data follows the specified distributions 

is a Chi-Square goodness of fit test. My thesis involves the effect of sample size on the 

power and validity of the Chi-Square goodness of fit test. If sample size is too small, 

important differences may not be detected or the test may not be valid. However, if 

sample size is too large, differences may be detected that are too small to be meaningful. 

In addition, I am investigating how different categorizations of a distribution affect the 

Chi-Square goodness of fit test.  

It can be argued that the most important decision a researcher makes is the decision 

of what sample size will be used in the experiment. Many statistical methods books such 

as Zar (1999) discuss this issue for the simple t-test, approximate binomial tests, two-

sample t-test, and the analysis of variance. Some analytical work by Patnaik (1949) has 

been done on the power of the Chi-Square goodness of fit test. O’Brien and Shieh (2000) 

presented power and sample size calculations for F-tests. However, it is very difficult to 

find any detailed discussion of the power and sample size issues for the Chi-square 

goodness of fit test. 

The purpose of this thesis is to investigate how large the sample size should be when 

using the Chi-Square goodness of fit test. I start by looking at computing the power of 

some Chi-Square goodness of fit tests. Slakter (1968) investigated the power of the Chi-

Square goodness of fit test with small expected frequencies. There are a number of other 

situations where the Chi-Square goodness of fit test can be used. In this study five 
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different hypotheses are examined where a Chi-square goodness of fit test might be 

applied. For example, the first hypothesis examined to determine if two binomial 

proportions are equal. This hypothesis can be tested using either a z-test or a Chi-Square 

goodness of fit test. The power of these tests is computed for several different situations 

using the standard normal as well as the non-central Chi-Square. A method for computing 

the non-centrality parameter for the Chi-Square test is provided. It is somewhat surprising 

that the computed powers for these equivalent tests are approximately equal though not 

identical. A simulation is also conducted to estimate alpha and power. The results show 

that the empirical level of significance for the Chi-Square goodness of fit test is close to 

alpha. In most situations, when using the non-central Chi-Square to compute the power of 

the test, the simulated powers and the calculated powers tend to be very close to each 

other.  

Simple iterative programs are used to compute the sample size needed to detect 

departure from the null hypothesis. It should be noted that sample size may be described 

as total number of experimental units or the number of experimental units per group 

depending on exactly which null hypothesis is being tested. In general it is best to use an 

equal number of observations per group. However, in situations where the number of 

observations in a given group is limited, the sample size needed to obtain the desired 

power can be found and provided that there is departure from the null hypothesis in the 

other groups.       

Chapter 2 will discuss some statistical background as well as some hypotheses that 

can be tested by using the Chi-Square goodness of fit test. Methods for calculating power 
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will be investigated. The accuracy of the results will be confirmed using simulations. 

Chapter 3 will address various questions about sample size.  

The goodness of fit test is a statistical procedure to determine whether an assumed 

distribution is consistent with the data collected. The Chi-Square goodness of fit test is 

the major topic of this thesis. In addition, case V in Chapter 2 can be looked as an 

extension of the goodness of fit test.  It is frequently referred to as a test of homogeneity. 

The standard Chi-Square test statistic for the test of homogeneity is 

χ2 = ��
(Oij − Eij)2

Eij
∼ χ2�(r − 1)(k − 1)�, 

where i, j index the rows and columns of table and (r − 1)(k − 1) are the degrees-of-

freedom.  
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CHAPTER 2 

Chi-Square goodness of fit tests are used to test a wide variety of different 

situations. Five null hypotheses are examined in this thesis:  

Case I, H0: p1 = p2 = ⋯ = pk, and ∑pi ≠ 1. Under this hypothesis there are k binomial 

populations with each population having the same p. With 𝑛𝑖 observations are taken from 

each population. 

Case II, H0: p1 = p2 = ⋯ = pk = p0; Under this hypothesis there are k binomial 

populations with each population having the same specified p = p0. With ni observations 

are taken from each population.  

Case III, H0: p1 = p2 = ⋯ = pk, and ∑ pi = 1. Under this hypothesis the distribution is 

multinomial.  The n observations are taken from one multinomial population. Cochran 

(1952) discussed this hypothesis in detail. 

Case IV, H0: p1 = p1,0, p2 = p2,0, … pk = pk,0; Under this hypothesis there are k 

binomial populations with the specified p’s or there is a multinomial population 

with ∑pi,0 = 1. Broffitt and Randles (1977) approximated the power of this test for small 

samples. 

Case V, H0: The r samples are homogeneous. Under this hypothesis, the case of interest 

assumes that the r samples come from the same multinomial distribution.   

The purpose of this chapter is to examine the power of the Chi-Square tests used to 

test each of the above hypotheses. These tests are closely related but important 

differences are noted. I first calculate the approximate power using analytical methods 

and then compare these probabilities to simulated powers. The first case examined is a 
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very simple case where the hypothesis can be tested by using either a z-test or a Chi-

Square goodness of fit test. 

Let H0: p1 = p2, HA: p1 ≠ p2. It is common to use the following z-test as an 

approximate test statistic for testing this hypothesis. The test statistic can be written in 

several different algebraic forms as shown below.  

z = p1�−p2�

�p�q�
n

=
x1
n −

x2
n

�p�q�
n

= x1−x2
�np�q�

= x1−np�
�np�q�

− x2−np�
�np�q�

, 

Many statistical methods textbooks such as Zar (1999) discuss how to compute 

power and sample size using this z-test. It is easy to show that the power of this 

approximate test can be computed as follows: 

power = P

⎣
⎢
⎢
⎡
Z ≤

Zα/2�
p�q�
n1

+ p�q�
n2

− (p1 − p2)

�p1q1
n1

+ p2q2
n2 ⎦

⎥
⎥
⎤

+ P

⎣
⎢
⎢
⎡
Z ≥

Z(1−α2)�
p�q�
n1

+ p�q�
n2

− (p1 − p2)

�p1q1
n1

+ p2q2
n2 ⎦

⎥
⎥
⎤
 

The hypothesis could also be tested using a Chi-Square goodness of fit test. If the 

above z statistic is squared then Zar (1999) gives the following test statistic. 

z2 = (x1−np�
�np�q�

− x2−np�
�np�q�

)2 = (x1−np�)2−2(x1−np�)(x2−np�)+(x2−np�)2

np�q�
= x12−2x1x2+x22

np�q�
=

(x1−x2)2

np�q�
= ∑ (oj−ej)2

ej
2
j=1 = χ2(1). 

It is known that the power of the Chi-Square goodness of fit test can be 

approximated based on using a non-central χ2 distribution. In order to do this the non-

centrality parameter needs to be found. Patnaik (1949) discussed computing the non-

centrality parameter. A convenient way of thinking about this is that when the test 

statistic is computed under the alternative hypothesis, quantity is being added to the Chi-

Square test statistic. That quantity is called the non-centrality parameter 𝜙. A modern 
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notation 𝜙 is 𝜙 = ∑ (oj−ej)2

ej
, where ej = np�, p� = p1+p2

2
, q� = 1 − p� and oj = npj with 

j=1, 2. The test statistic is ∑ (Xi−nip�)2

nip�q�
k
i=1 . Assume the rejection rule is to reject 𝐻0 if the 

value of the test statistic is greater than C. To compute the power, the probability is found 

that this non-central Chi-Square with 1 degree of freedom is greater than C. 

I was interested in determining how well these tests work. To examine this 

question, I started by testing to see if two binomial populations have the same probability 

of a success. Let H0: p1 = p2, HA: p1 ≠ p2, with n1 = 120, n2 = 120, p1 = 0.45, p2 =

0.25,α = 0.05. For this hypothesis, the calculated power using the approximation for a z-

test is 0.90613.  

The power using the non-central Chi-Square approximation is 0.90113. These 

values are very close to each other but it may be somewhat surprising that they differ. I 

was interested in determining how accurately they reflect the real power of this test.  To 

help answer this question, I wrote a Statistical Analysis System (SAS) program to 

simulate the power of this test (see Appendix A). I ran the simulation twice, and the 

results were 0.90636 and 0.90674. Each run was based on 50,000 replications of the test. 

These values are very close to the calculated power for the z-test and not far from the 

value calculated for the Chi-Square test. 

Next, I wanted to try some more examples to investigate how the calculated power 

of the z-test approximation and the non-central Chi-Square approximation relate to 

simulated power. The results are shown in Table 1. 
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Table 1: Powers with Two Samples based on Non-Central Chi-Square Test and Z-Test 

n1 n2 p1 p2 Power-Chi Power-z Power-

Simu 

50 50 0.25 0.35 0.19360 0.19211 0.19139 

75 75 0.25 0.35 0.26692 0.26565 0.26141 

100 100 0.25 0.35 0.33859 0.33766 0.33989 

150 150 0.25 0.35 0.47210 0.47193 0.47284 

200 200 0.25 0.35 0.58794 0.58846 0.58973 

300 300 0.25 0.35 0.76197 0.76329 0.76433 

400 400 0.25 0.35 0.86994 0.87137 0.87219 

 

After trying a few more examples using the same p1, p2, and increasing the sample 

size n, I saw that the calculated and simulated power also increases, but the calculated 

powers between the z-test and the Chi-Square test do not show any consistent pattern. To 

simulate the power, the simulation program was run twice to see the stability of the 

simulations. Then I checked alpha to see if the simulated alpha is close to the chosen 

value of 0.05. Letting p1and p2 be the same value, say 0.25, and running the program a 

few times for various sample sizes (n > 50), the simulated alpha values were either a little 

larger than 0.05 or a little less than 0.05. For these situations, the test seemed to be very 

accurate. 

Table 2 shows some additional examples where the calculated power is based on 

the non-central Chi-Square approximation. The test statistic is: 



9 
 

χ2 = �
(Xi − nip�)2

nip�q�

k

i=1

 

Table 2: Powers with Two Samples Binomial Test based on Non-Central Chi-Square Test 

H0: p1 = p2 

n1 n2 p1 p2 p� Cal. Power Sim. Power 

200 200 0.3 0.4 0.35 0.55435 0.55746 

500 500 0.3 0.4 0.35 0.91229 0.91298 

200 200 0.35 0.45 0.4 0.53242 0.52796 

300 300 0.35 0.45 0.4 0.70542 0.7071 

50 45 0.75 0.50 0.625 0.71112 0.71395 

 

This table shows that the simulated powers are very close to the calculated powers. 

Note that the sample size does not have to be equal, but equal sample size will lead to 

more powerful tests. 

Now, consider an experiment where there are k binomial populations. The null 

hypothesis is, H0: p1 = p2 = ⋯ = pk, and the alternative hypothesis is that at least one of 

the pi′s is different from the others. The z-test can no longer be used to test this 

hypothesis, but the Chi-Square test can still be used. The non-centrality parameter is now 

given as: 

𝜙 = ∑ (oj−ej)2

ej
where p� = ∑ pj

k
k
j=1 ,2k

j=1   q� = 1 − p�, ej = � np�  j = 1, 2, … , k
nq�  j = k + 1, … , 2k  and oj =

�
npj  j = 1, 2, … , k

nqj  j = k + 1, … , 2k.  The test statistic is 𝜒2 =  ∑ (Xj−njp�)2

njp�q�
k
j=1 =  ∑ (Xj−ej)2

ej
2k
j=1    with k-1 

degrees of freedom. Assume the rejection rule is to reject 𝐻0 if the value of the test 
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statistic is greater than C. To compute the power, it is necessary to find the probability 

that this non-central Chi-Square with k-1 degree of freedom is greater than C.  

Suppose the sample size is 200, and p1 = 0.3, p2 = 0.4, p3 = 0.35, p� = 0.35. So 

the non-centrality parameter is Φ = (60−70)2

70
+ (80−70)2

70
+ (70−70)2

70
+ (140−130)2

130
+

(120−130)2

130
+ (130−130)2

130
= 4.39560. Then the power is 0.45116. If  𝛼 = 0.05, the critical 

value for this test is 7.815, and the power can be approximated by the probability that the 

non-central Chi-Square is greater than 7.875. Using SAS to compute this value gives 

0.45116.  

Table 3 shows some additional examples where the calculated power is based on 

the non-central Chi-Square approximation. Zar (1999) gave the following test statistic as: 

χ2 = �
(Xi − nip�)2

nip�q�
.

k

i=1

 

Table 3: Powers with Three Samples based on Non-Central Chi-Square Test 

H0: p1 = p2 = p3 

n1 n2 n3 p1 p2 p3 p� Calculated 

Power 

Simulated 

Power 

200 200 200 0.3 0.4 0.35 0.35 0.45116 0.45259 

500 500 500 0.3 0.4 0.35 0.35 0.85224 0.85658 

200 200 200 0.25 0.35 0.5 0.4 0.99821 0.99856 

300 300 300 0.25 0.35 0.5 0.4 0.99997 0.99999 
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This table shows that the simulated powers are very close to the calculated powers. 

Note that the sample sizes for the k binomial populations do not have to be equal, but 

care must be taken when drawing conclusions about power when at least one pi =  p�. 

The second hypothesis suggested in the beginning of Chapter 2 is H0: p1 = p2 =

⋯ = pk = p0 with the alternative hypothesis stating that at least one pi  ≠  p0. This 

hypothesis can be tested using a Chi-Square goodness of fit type test. It should be noted 

that the big difference between this test and the previous test is that this test has k degrees 

of freedom. The non-centrality parameter is =  ∑ (oj−ej)2

ej
2k
j=1 , 

where  ej = � np0  j = 1, 2, … , k
nq0  j = k + 1, … , 2k and oj = �

npj  j = 1, 2, … , k
nqj  j = k + 1, … , 2k. The test statistic is 

𝜒2 =  ∑ (Xj−njp0)2

njp0q0
k
j=1 =  ∑ (Xj−ej)2

ej
2k
j=1     with k degrees of freedom. Assume the rejection 

rule is to reject 𝐻0 if the value of the test statistic is greater than C. To compute the 

power, it is necessary to find the probability that this non-central Chi-Square with k 

degree of freedom is greater than C. For example, if H0: p1 = p2 = p0, and n1 =

200, n2 = 200, p0 = 0.4, p1 = 0.3, p2 = 0.4, then the non-centrality parameter is 

𝜙 = (60−80)2

80
+ (140−120)2

120
+ (80−80)2

80
+ (120−120)2

120
= 5 + 3.33 = 8.33. Using 𝛼 =

0.05, the rejection rule for this test is to reject the null hypotheses if the test statistic is 

greater than 7.815. The power can be approximated by the probability that the non-

central Chi-Square is greater than 7.875. Using SAS to compute this value we get 

0.73623. Using the SAS program provided in the Appendix C, the simulated power is 

0.7594. The calculated and simulated powers are close. Some additional examples are 

given in Table 4. Zar (1999) also gave the following test statistic as: 
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χ2 = �
(Xi − nip0)2

nip0(1 − p0)

k

i=1

. 

 

Table 4: Powers with Two and Three Samples 

H0: p1 = p2 = p0 

n1 n2 p1 p2 p0 Cal. Power Sim. Power 

200 200 0.3 0.4 0.4 0.73623 0.7594 

500 500 0.3 0.4 0.4 0.98827 0.99166 

200 200 0.35 0.45 0.4 0.43060 0.44129 

300 300 0.35 0.45 0.4 0.60275 0.60246 

 

H0: p1 = p2 = p3 = p0 

n1 n2 n3 p1 p2 p3 p0 Cal. Power Sim. Power 

200 200 200 0.3 0.4 0.4 0.4 0.67398 0.68262 

500 500 500 0.3 0.4 0.4 0.4 0.97981 0.98448 

200 200 200 0.35 0.35 0.5 0.4 0.85617 0.85222 

300 300 300 0.35 0.35 0.5 0.4 0.96594 0.94179 

 

By running the simulation when the null hypothesis is true, and getting a relative 

frequency of rejecting the null hypothesis approximately equal to 𝛼 = 0.05, tends to 

verify the validity test as well as the validity of the simulation program. From the 

examples, I put all the p’s equal to 0.4 and ran the simulations. I saw that the relative 
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frequency of rejecting the null hypothesis is very close to 0.05; sometimes it is bigger and 

sometimes it is smaller. So this approximate test performs well in these situations. 

There were three other hypotheses mentioned in this chapter. For these three 

hypotheses, I assumed that the sample or samples came from a multinomial distribution. 

For case III, the null hypothesis is H0: p1 = p2 = ⋯ = pk, where ∑ pi = 1. Under this 

hypothesis the distribution is multinomial. This hypothesis is another example where a 

Chi-Square goodness of fit type test is commonly used. Slakter (1968) looked at 

approximating the power of this test. The non-centrality parameter is 𝜙 =  ∑ (oj−ej)2

ej
, 

where ej = np , p = 1
k

,   and oj = npj with j = 1, 2,⋯ , k. The test statistic is 𝜒2 =

 ∑ (Xi−nip)2

nip(1−p)
k
i=1  . Assume the rejection rule is to reject 𝐻0 if the value of the test statistic is 

greater than C. To compute the power, it is necessary to find the probability that this non-

central Chi-Square with k-1 degrees of freedom is greater than C. First, I checked to see 

if the relative frequency of rejecting a true null hypothesis is close to 0.05. I ran two 

simulations, and I got 0.04684 and 0.04728. Each run was based on 100,000 replications 

of the test. Then I changed the values of p to reflect a false null hypothesis. The true 

values of p were denoted by p1j, where j denotes the group.  Some simulated and 

calculated powers are given in Table 5:  

Table 5: Calculated and Simulated Powers 

p11 p12 p13 p14 n Cal. 

Power 

Sim. 

Power 

0.20 0.25 0.25 0.30 100 0.19224 0.18871 

0.20 0.25 0.25 0.30 150 0.27464 0.26886 
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0.20 0.25 0.25 0.30 200 0.35853 0.35870 

0.15 0.25 0.25 0.35 200 0.93409 0.94352 

0.10 0.20 0.30 0.40 100 0.97507 0.98540 

 

When the values of p are constant, increasing the sample size should increase the 

power of the test, and it does for the examples given here. It is hard to tell if very small 

increases in n would increase real power. It certainly increased calculated power; when 

the differences between values of p were increased, the power of the test was also 

increased.  

The fourth hypothesis studied in this Chapter is H0: p1 = p1,0, p2 = p2,0, … pk =

pk,0. Under this hypothesis there are k binomial populations with the specified p’s, or 

there is a multinomial population with ∑ pi,0 = 1. This hypothesis can be simulated by 

binomial or multinomial distributions. The multinomial case is the only case studied in 

this thesis. Assume H0: p1 = 0.1, p2 = 0.4, p3 = 0.4, p4 = 0.1, p1,0 = 0.13, p2,0 =

0.37, p3,0 = 0.37, p4,0 = 0.13  where pi,0 is the true value of pi. Table 6 gives the 

calculated power and simulated power for several different sample sizes with 𝛼 = 0.05. 

Table 6: Calculated and Simulated Powers 

n Cal Power Simulated Power 

150 0.25847 0.22742 0.22906 0.22970 

200 0.33697 0.31259 0.31425 0.31258 

300 0.48873 0.48115 0.48218 0.48230 

500 0.72979 0.74164 0.73974 0.74108 
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When I checked for alpha for a few times based on 100,000 replications, the results 

showed 0.0495, 0.05022, 0.04962, 0.05124, 0.04864 and so on. The simulated alpha’s 

were close to the chosen alpha of 0.05.  

The fifth hypothesis studied is H0: The r samples are homogeneous. Under this 

hypothesis the r samples all come from the same multinomial distribution. This test can 

be looked at as an extension of the Chi-Squared goodness of fit test. It is usually called a 

Chi-Square test of homogeneity. 

Suppose a researcher is interested in testing to see if the age structure of a deer 

population is changing over time. Deer are aged, put into one of four classes. And data 

were collected for three years. I tried to compare the calculated and simulated powers of 

the test of homogeneity. First, using an SAS simulation for alpha, I gave all three years 

the same age distribution with the sample size n=200. Then I ran the program and got a 

simulated alpha of 0.04862. It was not exactly 0.05, but it is close enough to assume that 

the level of significance is close to the chosen value of alpha. 

Table 7: the Values of p 

 1 2 3 4 

1 0.30 0.25 0.25 0.20 

2 0.32 0.27 0.23 0.18 

3 0.35 0.30 0.20 0.15 

 

I wanted to compare the calculated power to the simulated power. A program is 

given in the Appendix A to calculate the power of this test based on the non-central Chi-
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Square distribution. Letting alpha equal 0.05 and using the probabilities given in Table 7, 

I got the calculated power equal to 0.29323. Another SAS program is provided to 

simulate the power of this test. The simulated power turned out to be 0.28502. The 

simulated power was a little smaller than the calculated power.  

Since I needed more examples to draw conclusions, I chose a new set of values 

for p. These values are given in Table 8. 

Table 8: Another Example for the Values of p 

 1 2 3 4 

1 0.30 0.25 0.25 0.20 

2 0.35 0.30 0.20 0.15 

3 0.40 0.35 0.15 0.10 

 

Using the SAS program, I got a calculated power of 0.92937. Then I ran the other 

program a few times to see the simulated power based on 50,000 replications. I saw the 

simulated powers are 0.91272, 0.91232, 0.9129 and 0.91448; they were all around 0.91, 

which is smaller than the calculated power. When I simulated alpha for this test of 

homogeneity, I got 0.04954 and 0.0512. The simulated alpha values are about what I 

would expect for a valid test. As expected, when the differences in the values of p are 

increased, both the calculated and simulated powers also increase. 
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CHAPTER 3 

This chapter focuses on finding the sample size needed to design an experiment 

with a given power. The investigator needs to be able to specify the differences that 

should be detected and the desired power. Again, suppose there are two binomial 

populations. Let H0: p1 = p2, HA: p1 ≠ p2.  Zar (2010) gives the approximate solution for 

sample size as n =
(zα+zβ(1))2

2(arcsin�p1−arcsin�p2)2
. Another example is examined. Let H0: p1 =

p2, HA: p1 ≠ p2 with α = 0.05. Suppose the researcher would like to have a 90% chance 

of detecting a difference if p1 = 0.45 and p2 = 0.25. This gives, p� = 0.45+0.25
2

= 0.35,

 q� = 1 − 0.35 = 0.65, z1−α2
= 1.96,  z1−β = 1.2816. Using the above equation shows n 

= 117.44. Thus, the sample size needs to be at least 118. This can be checked using the 

simulation program that is attached to this thesis (see Appendix C). Three runs of this 

simulation program showed an average power of approximately 0.902. That means the 

power is a little higher than the desired power when n=118. It should be noted that the 

sample size was rounded up, which should increase the power slightly. 

An iterative SAS program is attached to this thesis that can be used to determine 

the sample size based on the power approximated using a non-central 𝜒2. This program 

gives n = 120. Simulations using n = 120 yield a power of approximately 0.9055. If a 

researcher needs the sample sizes to test H0: p1 = p2, HA: p1 ≠ p2 with α = 0.05, p1 =

0.75, and p2 = 0.50 and desired power of at least 0.80; the SAS programs provided in 

the Appendix B that can be used to find the minimum sample size needed based on 

approximating the power by using a non-central Chi-Square and for the approximation 

based on the z-test. The non-central Chi-Square approach yields n = 59, while the z-test 
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approximation yields n = 58. These two results are not the same, but they are very close. 

Table 9 gives the sample size results for some other values of p1, p2 and desired power. 

Table 9: Hypothesis I for the Sample Sizes  

p1 p2 power n-chi n-z test 

0.75 0.5 0.8 59 58 

0.5 0.6 0.7 306 305 

0.5 0.6 0.8 389 388 

0.5 0.6 0.9 521 519 

0.2 0.3 0.6 184 183 

0.2 0.3 0.7 232 230 

0.45 0.55 0.7 309 308 

 

These results showed computing the power based on the non-central Chi-Square 

test will yield a sample size that is 1 or 2 units bigger than using the approximation based 

on the z-test. It is not surprising that it takes a larger sample size to detect a specific 

difference when p is close to 0.5 than it does when p is far from 0.5. 

The following work gives some results when there are three binomial populations 

involved in the experiment. In this case, the approximation based on the z-test can no 

longer be used. An SAS program for the case involving three binomial populations is 

provided (see Appendix B). Simulations were run and indicated that the non-central Chi-

Square approach works well for this case. When I took the calculated power of 0.75 with 

the values of p being 0.28, 0.38 and 0.35, the sample size is 365. Then I ran the SAS 



19 
 

program to simulate the power and the sample size for a few times, and I saw that the 

simulated power is around 0.756 with the sample size 365.  

Another SAS program is given in the Appendix B to calculate the sample size for 

Case II. With the desired power of 0.65 and p1 = 0.31, p2 = 0.39, p3 = 0.42, p0 = 0.4, I 

got the sample size of n = 222. When I simulated to investigate the power with the 

computed sample size, I found that the simulated power was around of 0.67, which is 

slightly bigger than the desired power.  

For case III, I tried to get the sample size with the given power and values of p. 

Table 10 gives n for some related values of p and desired power. 

Table 10: Hypothesis III for the Sample Sizes 

p11 p12 p13 p14 Power n 

0.20 0.25 0.25 0.30 0.7 440 

0.20 0.25 0.25 0.30 0.8 546 

0.20 0.25 0.25 0.30 0.9 709 

0.15 0.25 0.25 0.35 0.6 90 

0.15 0.25 0.25 0.35 0.7 110 

0.15 0.25 0.25 0.35 0.8 137 

0.15 0.25 0.25 0.35 0.9 178 

0.10 0.20 0.30 0.40 0.9 71 

     

These values of n are supported by simulations. The values vary as might be 

expected for the given values of p and power. As the values of p get farther apart, the 
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sample size decreases. As the desired power is increased, the sample size must be 

increased.   

In Case IV, I used the same values of p as the ones used in Chapter 2. Let p1 = 0.1,

p2 = 0.4, p3 = 0.4, p4 = 0.1, p1,0 = 0.13, p2,0 = 0.37, p3,0 = 0.37, p4,0 = 0.13. 

Then I used the desired powers of 0.5, 0.6, 0.7 and 0.9. I got the sample sizes of 308, 383, 

470 and 758. In Chapter 2, a sample size of 300 was specified, and a calculated power of 

0.48873 was obtained. In Chapter 3, a desired power of 0.5 was specified, and a sample 

size of 308 was obtained. These results make a lot of sense.  

For Case V, I used another SAS program to get the sample size needed for this 

hypothesis (see Appendix B). The results look good. I tried to look at the case where one 

of the samples had a fixed size and wanted to find the other sample sizes. This situation 

may be very tricky and I need to do more in the future study for this part.  

First, I made the values of p table, since I used the same group of p values with 

different powers to find sample size (see Table 11). 

Table 11: the Values of p 

p11 p12 p13 p14 

0.30 0.25 0.25 0.20 

p21 p22 p23 p24 

0.32 0.27 0.23 0.18 

p31 p32 p33 p34 

0.35 0.30 0.20 0.15 
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Then, I ran the program with different powers to get the sample size with 

 n1 =  n2 = n3.  

Table 12: Hypothesis V for the Sample Sizes 

Power  n1 n2 n3 Sim-Power 

0.3 205 205 205 0.30045 

0.5 345 345 345 0.50061 

0.6 422 422 422 0.60014 

0.7 512 512 512 0.70042 

0.8 626 626 626 0.80028 

0.9 800 800 800 0.90005 

 

For this hypothesis, the sample size increased as the power increased. The 

simulated powers are also close to the real power.  
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CHAPTER 4 

CONCLUSION 

Since I did this research about sample size and power based on the Chi-Square 

goodness of fit tests, I realize there is a close connection among various tests. I also 

realize that there are important differences among these tests. I have investigated five null 

hypotheses and used simulations to confirm my results. Some of these five hypotheses 

assume the data come from a binomial distribution, some assume the data come from a 

multinomial distribution, and some can be applied to data that come from either a 

binomial or multinomial distribution. I found a simple way to calculate the non-centrality 

parameter for each of these tests and used it to compute the power of the tests. 

Simulations seem to confirm that the computed power is very close to the actual power.   

When the sample size is increased the power is expected to increase. This will 

always occur with larger increases in sample size, but it may not always occur for small 

increases in sample size when using approximate test like the Chi-Square goodness of fit 

test. I have not attempted to investigate this issue in this thesis. It would be a good topic 

for future research.  

In Chapter 2, I examined the power of the Chi-Square tests and used it to test each of 

the above hypotheses with a given sample size. In Chapter 3, I did it the opposite way, 

using the given power to find the sample size. When testing H0: p1 =  p2, the 

approximate power of the test can be calculated using either the non-central Chi-Square 

or the standard normal. Intuitively, I expected these two approximations to be the same. It 

turns out that they are close but not equal. The question of why they are not equal might 

be an interesting topic for future research. An SAS program was written to simulate the 
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power of this test (see Appendix C). The result showed the simulated power was either 

bigger or smaller than the calculated power, but they were always close. I also did the 

simulation for checking alpha to see if the actual level of significance of the test was 

0.05. The result showed it was a little bit bigger or smaller than 0.05. The test seems to be 

valid but it should still be viewed as an approximate test.  

These results were generalized and applied to the other tests of interest. Simulations 

were used to confirm the results. All of these tests seem to be valid but they should still 

be viewed as approximate tests. In conclusion, the non-central Chi-Square distribution 

gives us a good method for determining the sample size needed when using a Chi-Square 

goodness of fit test.   
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Appendix A 
 
This program can be used to compute the power for Case I. 
 
Data H1power;  
Input n p; 
q = 1-p; 
Datalines; 
200 0.3  
200 0.4  
200 0.35 
Proc Means; Var p q; 
Output Out=Stat Sum=Sump Sumq n=k; 
Data Stat; Set Stat; 
df1 = k-1; 
pbar = Sump/k; 
qbar = Sumq/k; 
Do I = 1 to k; 
Output; 
End; 
Proc Print; 
Data Stat1; Merge H1power Stat; 
o = n*p; e = n*pbar; phi = (o-e)**2/e; Output; 
o = n*q; e = n*qbar; phi = (o-e)**2/e; Output; 
Proc Print; 
Proc Means; Var phi; Id df1; 
Output Out=Stat2 Sum=phi; 
Data Final; Set Stat2; 
ChiSq = cinv(0.95, df1); 
Power = 1-ProbChi(ChiSq, df1,phi); 
Proc Print; Var df1 phi power; 
Run; 
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This program can be used to compute the power for Case II. 
 
Data H2CalP;  
Input n p; 
p0 = 0.4; 
q0 = 1-p0; 
q = 1-p; 
Datalines; 
300 0.35  
300 0.35  
300 0.5 
Proc Print; 
Data Try; 
Data Stat1; Set H2CalP; 
o = n*p; e = n*p0; phi = (o-e)**2/e; Output; 
o = n*q; e = n*q0; phi = (o-e)**2/e; Output; 
Proc Print; 
Proc Means; Var phi; Id p0; 
Output Out=Stat2 Sum=phi n=k; 
Data Final; Set Stat2; 
df1=k/2; 
ChiSq = cinv(0.95, df1); 
Power = 1-ProbChi(ChiSq, df1,phi); 
Proc Print; Var p0 df1 phi power; 
Run; 
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This program can be used to compute the power for Case III. 
 
Data H3CalP;  
Input p @@; 
n=100; 
k=4; 
pk = 1/k;; 
Datalines; 
.1 .2 .3 .4 
*Proc Print; 
Data Try; 
Data Stat1; Set H3CalP; 
o = n*p; e = n*pk; phi = (o-e)**2/e; Output; 
*Proc Print; 
Proc Means NoPrint; Var phi; Id n k pk; 
Output Out=Stat2 Sum=phi; 
Data Final; Set Stat2; 
df1=k-1; 
ChiSq = cinv(0.95, df1); 
Power = 1-ProbChi(ChiSq, df1,phi); 
Proc Print; Var n k pk df1 phi power; 
Run; 
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This program can be used to compute the power for Case IV. 
 
Data H4CalP; 
n = 200; 
p1 = .10; p2 = .4; p3 = .4; p4 = .10; 
p10 = .13; p20 = .37; p30 = .37; p40 = .13; 
e1 = n*p10; 
e2 = n*p20; 
e3 = n*p30; 
e4 = n*p40; 
o1 = n*p1; 
o2 = n*p2; 
o3 = n*p3; 
o4 = n*p4; 
df1=3; 
phi = (o1-e1)**2/e1 + (o2-e2)**2/e2 + (o3-e3)**2/e3 + (o4-e4)**2/e4; 
ChiSq = cinv(0.95, df1); 
Power = 1-ProbChi(ChiSq, df1,phi); 
Proc Print; Var p1 p2 p3 p4 p10 p20 p30 p40 df1 phi power; 
Run; 
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This program can be used to compute the power for Case V. 
 
Data H5CalP;  
n=200; 
df = 6; 
Input Year Age p @@; 
e = n*p; 
Datalines; 
1 1 .30 1 2 .25 1 3 .25 1 4 .20 
2 1 .35 2 2 .30 2 3 .20 2 4 .15 
3 1 .40 3 2 .35 3 3 .15 3 4 .10 
Proc Sort; By Age; 
Proc Print; 
Proc Means; By Age; Var p; 
Output Out=Stat mean=pbar; Id n df; 
Data Stat1; Set Stat; 
Do I = 1 to 3; 
   o = n*pbar; 
Output; 
End; 
Proc Print; 
Data Stat2; Merge Homog Stat1; 
C = (o - e)**2/e; 
Proc Print; 
Proc means; Var C; 
Output Out=Stat3 Sum=phi; Id df; 
Data Stat4; Set Stat3; 
ChiSq = cinv(0.95, df); 
Power = 1-ProbChi(ChiSq, df,phi); 
Proc Print; Var df phi power; 
Run; 
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Appendix B 
 

This program can be used to calculate the sample size for Case I with 
two binomial populations. 
 
Data H1CalcN;   
n = 20; 
Power = 0.9; 
p1 = 0.25; 
q1 = 1-p1; 
p2 = 0.45; 
q2 = 1-p2; 
pbar = (p1+p2)/2; 
qbar = (q1+q2)/2; 
o1 = n*p1; 
o2 = n*p2; 
o3 = n*q1; 
o4 = n*q2; 
e1 = n*pbar; 
e2 = n*pbar; 
e3 = n*qbar; 
e4 = n*qbar; 
df1=1; 
phi = (o1-e1)**2/e1 + (o2-e2)**2/e2 + (o3-e3)**2/e3 + (o4-e4)**2/e4; 
ChiSq = cinv(0.95, df1); 
P = 1-ProbChi(ChiSq, df1,phi); 
Do while (P < Power); 
n = n+1; 
o1 = n*p1; 
o2 = n*p2; 
o3 = n*q1; 
o4 = n*q2; 
e1 = n*pbar; 
e2 = n*pbar; 
e3 = n*qbar; 
e4 = n*qbar; 
df1=1; 
phi = (o1-e1)**2/e1 + (o2-e2)**2/e2 + (o3-e3)**2/e3 + (o4-e4)**2/e4; 
ChiSq = cinv(0.95, df1); 
P = 1-ProbChi(ChiSq, df1,phi); 
End; 
Proc Print; Var n p1 p2 df1 phi power P; 
Run; 
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This program can be used to calculate the sample size for Case II with 
k=3. 
 
Data H2CalN; 
n1 = 20; n2 = n1; n3 = n2; 
Power = 0.65; 
p1 = 0.31; 
q1 = 1-p1; 
p2 = 0.39; 
q2 = 1-p2; 
p3 = 0.42; 
q3 = 1-p3; 
p0 = 0.4; 
q0 = 1-p0; 
o1 = n1*p1; 
o2 = n2*p2; 
o3 = n3*p3; 
o4 = n1*q1; 
o5 = n2*q2; 
o6 = n3*q3; 
e1 = n1*p0; 
e2 = n2*p0; 
e3 = n3*p0; 
e4 = n1*q0; 
e5 = n2*q0; 
e6 = n3*q0; 
df1=3; 
phi = (o1-e1)**2/e1 + (o2-e2)**2/e2 + (o3-e3)**2/e3 + (o4-e4)**2/e4 
      + (o5-e5)**2/e5 + (o6-e6)**2/e6;    
ChiSq = cinv(0.95, df1); 
P = 1-ProbChi(ChiSq, df1,phi); 
Do while (P < Power and n2 < 5000); 
n1 = n1+1;n2 = n1;n3 = n2; 
o1 = n1*p1; 
o2 = n2*p2; 
o3 = n3*p3; 
o4 = n1*q1; 
o5 = n2*q2; 
o6 = n3*q3; 
e1 = n1*p0; 
e2 = n2*p0; 
e3 = n3*p0; 
e4 = n1*q0; 
e5 = n2*q0; 
e6 = n3*q0; 
ph1 = (o1-e1)**2/e1;  
ph2 = (o2-e2)**2/e2; 
ph3 = (o3-e3)**2/e3; 
ph4 = (o4-e4)**2/e4; 
ph5 = (o5-e5)**2/e5; 
ph6 = (o6-e6)**2/e6; 
phi = ph1+ph2+ph3+ph4+ph5+ph6;  
ChiSq = cinv(0.95, df1); 
P = 1-ProbChi(ChiSq, df1,phi); 
End; 
Proc Print; Var n1 n2 n3 p0 p1 p2 p3 df1 phi power P; 
Run; 
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This program can be used to calculate the sample size for Case III. 
 
Data H3CalN; 
n = 20; 
k = 4; 
Power = 0.934; 
pk = 1/k; 
p1 = .15; p2 = .25; p3 = .25; p4 = .35; 
df1=k-1; 
e1 = n*pk; 
e2 = n*pk; 
e3 = n*pk; 
e4 = n*pk; 
o1 = n*p1; 
o2 = n*p2; 
o3 = n*p3; 
o4 = n*p4; 
phi = (o1-e1)**2/e1 + (o2-e2)**2/e2 + (o3-e3)**2/e3 + (o4-e4)**2/e4; 
ChiSq = cinv(0.95, df1); 
P = 1-ProbChi(ChiSq, df1,phi); 
Do while (P < Power); 
n = n+1; 
e1 = n*pk; 
e2 = n*pk; 
e3 = n*pk; 
e4 = n*pk; 
o1 = n*p1; 
o2 = n*p2; 
o3 = n*p3; 
o4 = n*p4; 
phi = (o1-e1)**2/e1 + (o2-e2)**2/e2 + (o3-e3)**2/e3 + (o4-e4)**2/e4; 
ChiSq = cinv(0.95, df1); 
P = 1-ProbChi(ChiSq, df1,phi); 
End; 
Proc Print; Var p1 p2 p3 p4 pk df1 phi n power p; 
Run; 
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This program can be used to calculate the sample size for Case IV. 
 
Data H4CalcN; 
n = 20; 
Power = 0.9; 
p1 = .10; p2 = .4; p3 = .4; p4 = .10; 
p10 = .13; p20 = .37; p30 = .37; p40 = .13; 
df1=3; 
e1 = n*p10; 
e2 = n*p20; 
e3 = n*p30; 
e4 = n*p40; 
o1 = n*p1; 
o2 = n*p2; 
o3 = n*p3; 
o4 = n*p4; 
phi = (o1-e1)**2/e1 + (o2-e2)**2/e2 + (o3-e3)**2/e3 + (o4-e4)**2/e4; 
ChiSq = cinv(0.95, df1); 
P = 1-ProbChi(ChiSq, df1,phi); 
Do while (P < Power); 
n = n+1; 
e1 = n*p10; 
e2 = n*p20; 
e3 = n*p30; 
e4 = n*p40; 
o1 = n*p1; 
o2 = n*p2; 
o3 = n*p3; 
o4 = n*p4; 
phi = (o1-e1)**2/e1 + (o2-e2)**2/e2 + (o3-e3)**2/e3 + (o4-e4)**2/e4; 
ChiSq = cinv(0.95, df1); 
P = 1-ProbChi(ChiSq, df1,phi); 
End; 
Proc Print; Var p1 p2 p3 p4 p10 p20 p30 p40 df1 phi n power p; 
Run; 
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This program can be used to calculate the sample size for Case V. 
 
Data H5CalcN;  
n1 = 20; n2 = 20; n3 = 20; 
df1=6; Power = 0.9; 
p11 = .30; p12 = .25; p13 = .25; p14 = .20; 
p21 = .35; p22 = .30; p23 = .20; p24 = .15; 
p31 = .40; p32 = .35; p33 = .15; p34 = .10; 
p1b = (p11+p21+p31)/3; p2b = (p12+p22+p32)/3;  
p3b = (p131+p23+p33)/3;p4b = (p14+p24+p34)/3; 
e11 = n1*p11; e12 = n1*p12; e13 = n1*p13; e14 = n1*p14; 
e21 = n2*p21; e22 = n2*p22; e23 = n2*p23; e24 = n2*p24; 
e31 = n3*p31; e32 = n3*p32; e33 = n3*p33; e34 = n3*p34; 
o11 = n1*p1b; o12 = n1*p2b; o13 = n1*p3b; o14 = n1*p4b; 
o21 = n2*p1b; o22 = n2*p2b; o23 = n2*p3b; o24 = n2*p4b; 
o31 = n3*p1b; o32 = n3*p2b; o33 = n3*p3b; o34 = n3*p4b; 
phi = (o11-e11)**2/e11 + (o12-e12)**2/e12 + (o13-e13)**2/e13 + (o14-
e14)**2/e14 + 
      (o21-e21)**2/e21 + (o22-e22)**2/e22 + (o23-e23)**2/e23 + (o24-
e24)**2/e24 + 
      (o31-e31)**2/e31 + (o32-e32)**2/e32 + (o33-e33)**2/e33 + (o34-
e34)**2/e34; 
ChiSq = cinv(0.95, df1); 
P = 1-ProbChi(ChiSq, df1,phi); 
Do while (P < Power); 
n1 = n1+1; n2 = n2+1; n3 = n3+1; 
p1b = (p11+p21+p31)/3; p2b = (p12+p22+p32)/3;  
p3b = (p13+p23+p33)/3;p4b = (p14+p24+p34)/3; 
e11 = n1*p11; e12 = n1*p12; e13 = n1*p13; e14 = n1*p14; 
e21 = n2*p21; e22 = n2*p22; e23 = n2*p23; e24 = n2*p24; 
e31 = n3*p31; e32 = n3*p32; e33 = n3*p33; e34 = n3*p34; 
o11 = n1*p1b; o12 = n1*p2b; o13 = n1*p3b; o14 = n1*p4b; 
o21 = n2*p1b; o22 = n2*p2b; o23 = n2*p3b; o24 = n2*p4b; 
o31 = n3*p1b; o32 = n3*p2b; o33 = n3*p3b; o34 = n3*p4b; 
phi = (o11-e11)**2/e11 + (o12-e12)**2/e12 + (o13-e13)**2/e13 + (o14-
e14)**2/e14 + 
      (o21-e21)**2/e21 + (o22-e22)**2/e22 + (o23-e23)**2/e23 + (o24-
e24)**2/e24 + 
      (o31-e31)**2/e31 + (o32-e32)**2/e32 + (o33-e33)**2/e33 + (o34-
e34)**2/e34; 
ChiSq = cinv(0.95, df1); 
P = 1-ProbChi(ChiSq, df1,phi); 
End; 
Proc Print; Var p11--p14;  
Proc Print; Var p21--p24; 
Proc Print; Var p31--p34; 
Proc Print; Var df1 phi n1 n2 n3 power p; 
Run; 
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Appendix C 
 
Simulates power for Case I testing p1 = p2 = p3. 
 
Data H1SimPow;  
n1 = 365; 
n2 = n1; 
n3 = n1; 
p1 = 0.28; 
p2 = 0.38; 
p3 = 0.35; 
Reps = 100000; 
alpha = 0.05; 
Do K =  1 to Reps; 
  x1 = RanBin(0, n1, p1); 
  p1hat = x1/n1; 
  y1 = n1-x1; 
  x2 = RanBin(0, n2, p2); 
  p2hat = x2/n2; 
  y2 = n2-x2; 
  x3 = RanBin(0, n1, p3); 
  p3hat = x3/n3; 
  y3 = n3-x3; 
pbar = (x1 + x2 + x3)/(n1 + n2 + n3); 
qbar = 1-pbar; 
e1 = n1*pbar; 
e2 = n2*pbar; 
e3 = n3*pbar; 
e4 = n1*qbar; 
e5 = n2*qbar; 
e6 = n3*qbar; 
Output; 
End;   
*Proc Print; 
Data Stat; Set H1SimPow; 
ChiSq = ((x1-e1)**2)/e1 + ((x2-e2)**2)/e2 +((x3-e3)**2)/e3 +  
        ((y1-e4)**2)/e4 + ((y2-e5)**2)/e5 + ((y3-e6)**2)/e6; 
C1 = (x1-n1*pbar)**2/(n1*pbar*(1-pbar)) + (x2-n2*pbar)**2/(n2*pbar*(1-
pbar))                     
     +(x3-n3*pbar)**2/(n3*pbar*(1-pbar)); 
pvalue = 1-ProbChi(ChiSq, 2); 
prob1 =  1-ProbChi(C1, 2); 
If pvalue < alpha then Reject+1; 
If prob1 < alpha then Ch+1; 
Data Final; Set Stat; 
If _n_ = Reps; 
Power = Reject/Reps; 
Power1 = Ch/Reps; 
Proc Print;Var alpha n1 n2 n3 p1 p2 p3 ChiSq C1 Power Power1;  
Run; 
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Case II simulation of power for Testing p1 = p2 = p3 + p0. 
 
Data H2SimP;  
n1 = 222; 
n2 = n1; 
n3 = n1; 
p1 = 0.31; 
p2 = 0.38; 
p3 = 0.42; 
p0 = 0.40; 
q0 = 1-p0; 
Reps = 100000; 
alpha = 0.05; 
Do K =  1 to Reps; 
  x1 = RanBin(0, n1, p1); 
  p1hat = x1/n1; 
  y1 = n1-x1; 
  x2 = RanBin(0, n2, p2); 
  p2hat = x2/n2; 
  y2 = n2-x2; 
  x3 = RanBin(0, n1, p3); 
  p3hat = x3/n3; 
  y3 = n3-x3; 
e1 = n1*p0; 
e2 = n2*p0; 
e3 = n3*p0; 
e4 = n1*q0; 
e5 = n2*q0; 
e6 = n3*q0; 
Output; 
End;   
*Proc Print; 
Data Stat; Set H2SimP; 
ChiSq = ((x1-e1)**2)/e1 + ((x2-e2)**2)/e2 +((x3-e3)**2)/e3 +  
        ((y1-e4)**2)/e4 + ((y2-e5)**2)/e5 + ((y3-e6)**2)/e6; 
C1 = (x1-n1*p0)**2/(n1*p0*(1-p0)) + (x2-n2*p0)**2/(n2*p0*(1-p0)) +  
     (x3-n3*p0)**2/(n3*p0*(1-p0)); 
pvalue = 1-ProbChi(ChiSq, 3); 
prob1 =  1-ProbChi(C1, 3); 
If pvalue < alpha then Reject+1; 
If prob1 < alpha then Ch+1; 
Data Final; Set Stat; 
If _n_ = Reps; 
Power = Reject/Reps; 
Power1 = Ch/Reps; 
Proc Print;Var alpha n1 n2 n3 p1 p2 p3 p0 ChiSq C1 Power Power1;  
Run; 
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Simulates the power for Case III. 
 
Data H3SimPow;  
Reps = 10000; 
n=100; 
alpha = 0.05; 
p11 = .1; p12 = .2; p13 = .3; p14 = .4;   
Do K =  1 to Reps; 
Do Sample = 1 to n; 
  Age = RanTBL(0, p11, p12, p13, p14); 
Output; 
End; 
End;   
*Proc Print; 
Proc Freq NoPrint; Tables Age/ChiSq Testp=(25 25 25 25); 
Output Out=Stat Pchi;  
By K; 
*Proc Print; 
Data Sim; Set Stat; 
Reps = 10000; 
n=100; 
alpha = 0.05; 
p11 = .1; p12 = .2; p13 = .3; p14 = .4;   
If P_PChi < Alpha Then Chi+1; 
PowerChi=Chi/K; 
Proc GPlot; Plot PowerChi*K; 
Data Final;Set Sim; 
If K=Reps; 
Proc Print;Var Alpha p11 p12 p13 p14 Reps n PowerChi; 
Run; 
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Simulates the power for Case IV. 
 
Data H4SimPow;  
Title Simulated Power # 4; 
n = 100; 
p1 = .10; p2 = .4; p3 = .4; p4 = .10; 
p10 = .13; p20 = .37; p30 = .37; p40 = .13; 
e1 = n*p10; 
e2 = n*p20; 
e3 = n*p30; 
e4 = n*p40; 
Reps = 100000; 
alpha = 0.05; 
Do K =  1 to Reps; 
Do Sample = 1 to n; 
  x = RanTBL(0, p1, p2, p3, p4); 
  If x=1 then x1+1; 
else if x=2 then x2+1; 
else if x=3 then x3+1; 
else  x4+1; 
End; 
Output; 
x1=0; x2=0; x3=0; x4=0; 
End; 
*Proc Print; 
Data Stat1; Set H4SimPow; 
*Proc Print; 
Data Stat; Set Stat1; 
ChiSq = ((x1-e1)**2)/e1 + ((x2-e2)**2)/e2 +((x3-e3)**2)/e3 + ((x4-
e4)**2)/e4; 
pvalue = 1-ProbChi(ChiSq, 3); 
If pvalue < alpha then Reject+1; 
Data Final; Set Stat; 
If _n_ = Reps; 
Power = Reject/Reps; 
Proc Print;Var n Reps p1 p2 p3 p4 p10 p20 p30 p40 Power;  
Run; 
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Simulates the power for Case V. 
 
Data H5SimP; 
Reps = 5000; 
n=200; 
alpha = 0.05; 
p11 = .30; p12 = .25; p13 = .25; p14 = .20; 
p21 = .30; p22 = .25; p23 = .25; p24 = .20; 
p31 = .30; p32 = .25; p33 = .25; p34 = .20; 
Do K =  1 to Reps; 
Do Sample = 1 to n; 
  Age = RanTBL(0, p11, p12, p13, p14);Year=1; 
Output; 
  Age = RanTBL(0, p21, p22, p23, p24);Year=2; 
Output; 
  Age = RanTBL(0, p31, p32, p33, p34);Year=3; 
Output;   
End; 
End; 
*Proc Print; 
Proc Freq NoPrint; Tables Year*Age/ChiSq; 
Output Out=Stat Pchi LRChi; 
By K; 
*Proc Print; 
Data Sim; Set Stat; 
Alpha = 0.05; Reps=5000; 
If P_PChi < Alpha Then Chi+1; 
If P_LrChi < Alpha Then LR+1; 
PowerChi=Chi/K; 
PowerLR = LR/K; 
Proc GPlot; Plot PowerChi*K; 
Data Final;Set Sim; 
If K=Reps; 
Proc Print;Var Alpha Reps PowerChi PowerLR; 
Run; 
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